1
|
Noor RS, Shah AN, Tahir MB, Umair M, Nawaz M, Ali A, Ercisli S, Abdelsalam NR, Ali HM, Yang SH, Ullah S, Assiri MA. Recent Trends and Advances in Additive-Mediated Composting Technology for Agricultural Waste Resources: A Comprehensive Review. ACS OMEGA 2024; 9:8632-8653. [PMID: 38434807 PMCID: PMC10905604 DOI: 10.1021/acsomega.3c06516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
Agriculture waste has increased annually due to the global food demand and intensive animal production. Preventing environmental degradation requires fast and effective agricultural waste treatment. Aerobic digestion or composting uses agricultural wastes to create a stabilized and sterilized organic fertilizer and reduces chemical fertilizer input. Indeed, conventional composting technology requires a large surface area, a long fermentation period, significant malodorous emissions, inferior product quality, and little demand for poor end results. Conventional composting loses a lot of organic nitrogen and carbon. Thus, this comprehensive research examined sustainable and adaptable methods for improving agricultural waste composting efficiency. This review summarizes composting processes and examines how compost additives affect organic solid waste composting and product quality. Our findings indicate that additives have an impact on the composting process by influencing variables including temperature, pH, and moisture. Compost additive amendment could dramatically reduce gas emissions and mineral ion mobility. Composting additives can (1) improve the physicochemical composition of the compost mixture, (2) accelerate organic material disintegration and increase microbial activity, (3) reduce greenhouse gas (GHG) and ammonia (NH3) emissions to reduce nitrogen (N) losses, and (4) retain compost nutrients to increase soil nutrient content, maturity, and phytotoxicity. This essay concluded with a brief summary of compost maturity, which is essential before using it as an organic fertilizer. This work will add to agricultural waste composting technology literature. To increase the sustainability of agricultural waste resource utilization, composting strategies must be locally optimized and involve the created amendments in a circular economy.
Collapse
Affiliation(s)
- Rana Shahzad Noor
- Department
of Agriculture, Biological, Environment and Energy Engineering, College
of Engineering, Northeast Agricultural University, Harbin 150030, China
- Faculty
of Agricultural Engineering and Technology, PMAS-Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Adnan Noor Shah
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan
| | - Muhammad Bilal Tahir
- Institute
of Physics, Khwaja Fareed University of
Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan
| | - Muhammad Umair
- Faculty
of Agricultural Engineering and Technology, PMAS-Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Muhammad Nawaz
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan
| | - Amjed Ali
- Faculty
of Agriculture, Department of Agronomy, University of Sargodha, Sargodha 40100, Punjab, Pakistan
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkiye
| | - Nader R. Abdelsalam
- Agricultural
Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Hayssam M. Ali
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Seung Hwan Yang
- Department
of Biotechnology, Chonnam National University, Yeosu 59626, South Korea
| | - Sami Ullah
- Department
of Chemistry, College of Science, King Khalid
University, Abha 61413, Saudi Arabia
| | - Mohammed Ali Assiri
- Department
of Chemistry, College of Science, King Khalid
University, Abha 61413, Saudi Arabia
| |
Collapse
|
2
|
Papadopoulos C, Larue AE, Toulouze C, Mokhtari O, Lefort J, Libert E, Assémat P, Swider P, Malaquin L, Davit Y. A versatile micromodel technology to explore biofilm development in porous media flows. LAB ON A CHIP 2024; 24:254-271. [PMID: 38059908 DOI: 10.1039/d3lc00293d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Bacterial biofilms that grow in porous media are critical to ecosystem processes and applications ranging from soil bioremediation to bioreactors for treating wastewater or producing value-added products. However, understanding and engineering the complex phenomena that drive the development of biofilms in such systems remains a challenge. Here we present a novel micromodel technology to explore bacterial biofilm development in porous media flows. The technology consists of a set of modules that can be combined as required for any given experiment and conveniently tuned for specific requirements. The core module is a 3D-printed micromodel where biofilm is grown into a perfusable porous substrate. High-precision additive manufacturing, in particular stereolithography, is used to fabricate porous scaffolds with precisely controlled architectures integrating flow channels with diameters down to several hundreds of micrometers. The system is instrumented with: ultraviolet-C light-emitting diodes; on-line measurements of oxygen consumption and pressure drop across the porous medium; camera and spectrophotometric cells for the detection of biofilm detachment events at the outlet. We demonstrate how this technology can be used to study the development of Pseudomonas aeruginosa biofilm for several days within a network of flow channels. We find complex dynamics whereby oxygen consumption reaches a steady-state but not the pressure drop, which instead features a permanent regime with large fluctuations. We further use X-ray computed microtomography to image the spatial distribution of biofilms and computational fluid dynamics to link biofilm development with local flow properties. By combining the advantages of additive manufacturing for the creation of reproducible 3D porous microarchitectures with the flow control and instrumentation accuracy of microfluidics, our system provides a platform to study the dynamics of biofilm development in 3D porous media and to rapidly test new concepts in process engineering.
Collapse
Affiliation(s)
- Christos Papadopoulos
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
- LAAS-CNRS, CNRS & Université de Toulouse, 31400 Toulouse, France
| | - Anne Edith Larue
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
- Transverse Lab, 271 rue des Fontaines, 31300 Toulouse, France
| | - Clara Toulouze
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
| | - Omar Mokhtari
- Physikalisches Institut, Universität Bern, Gesellschaftsstrasse 6, 3012 Bern, Switzerland
| | - Julien Lefort
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
| | - Emmanuel Libert
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
| | - Pauline Assémat
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
| | - Pascal Swider
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
| | - Laurent Malaquin
- LAAS-CNRS, CNRS & Université de Toulouse, 31400 Toulouse, France
| | - Yohan Davit
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
| |
Collapse
|
3
|
Berg C, Busch S, Alawiyah MD, Finger M, Ihling N, Paquet-Durand O, Hitzmann B, Büchs J. Advancing 2D fluorescence online monitoring in microtiter plates by separating scattered light and fluorescence measurement, using a tunable emission monochromator. Biotechnol Bioeng 2023; 120:2925-2939. [PMID: 37350126 DOI: 10.1002/bit.28474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
Online fluorescence monitoring has become a key technology in modern bioprocess development, as it provides in-depth process knowledge at comparably low costs. In particular, the technology is widely established for high-throughput microbioreactor cultivation systems, due to its noninvasive character. For microtiter plates, previously also multi-wavelength 2D fluorescence monitoring was developed. To overcome an observed limitation of fluorescence sensitivity, this study presents a modified spectroscopic setup, including a tunable emission monochromator. The new optical component enables the separation of the scattered and fluorescent light measurements, which allows for the adjustment of integration times of the charge-coupled device detector. The resulting increased fluorescence sensitivity positively affected the performance of principal component analysis for spectral data of Escherichia coli batch cultivation experiments with varying sorbitol concentration supplementation. In direct comparison with spectral data recorded at short integration times, more biologically consistent signal dynamics were calculated. Furthermore, during partial least square regression for E. coli cultivation experiments with varying glucose concentrations, improved modeling performance was observed. Especially, for the growth-uncoupled acetate concentration, a considerable improvement of the root-mean-square error from 0.25 to 0.17 g/L was achieved. In conclusion, the modified setup represents another important step in advancing 2D fluorescence monitoring in microtiter plates.
Collapse
Affiliation(s)
- Christoph Berg
- AVT-Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Selma Busch
- AVT-Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Muthia Dewi Alawiyah
- AVT-Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Maurice Finger
- AVT-Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Nina Ihling
- AVT-Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Olivier Paquet-Durand
- Department of Process Analytics & Cereal Science, Institute for Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Bernd Hitzmann
- Department of Process Analytics & Cereal Science, Institute for Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jochen Büchs
- AVT-Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Lai G, Yu J, Wang J, Li W, Liu G, Wang Z, Guo M, Tang Y. Machine learning methods for predicting the key metabolic parameters of Halomonas elongata DSM 2581 T. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12633-x. [PMID: 37421474 DOI: 10.1007/s00253-023-12633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/28/2023] [Accepted: 06/07/2023] [Indexed: 07/10/2023]
Abstract
Ectoine is generally produced by the fermentation process of Halomonas elongata DSM 2581 T, which is one of the primary industrial ectoine production techniques. To effectively monitor and control the fermentation process, the important parameters require accurate real-time measurement. However, for ectoine fermentation, three critical parameters (cell optical density, glucose, and product concentration) cannot be measured conveniently in real-time due to time variation, strong coupling, and other constraints. As a result, our work effectively created a series of hybrid models to predict the values of these three parameters incorporating both fermentation kinetics and machine learning approaches. Compared with the traditional machine learning models, our models solve the problem of insufficient data which is common in fermentation. In addition, a simple kinetic modeling is only applicable to specific physical conditions, so different physical conditions require refitting the function, which is tedious to operate. However, our models also overcome this limitation. In this work, we compared different hybrid models based on 5 feature engineering methods, 11 machine-learning approaches, and 2 kinetic models. The best models for predicting three key parameters, respectively, are as follows: CORR-Ensemble (R2: 0.983 ± 0.0, RMSE: 0.086 ± 0.0, MAE: 0.07 ± 0.0), SBE-Ensemble (R2: 0.972 ± 0.0, RMSE: 0.127 ± 0.0, MAE: 0.078 ± 0.0), and SBE-Ensemble (R2:0.98 ± 0.0, RMSE: 0.023 ± 0.001, MAE: 0.018 ± 0.001). To verify the universality and stability of constructed models, we have done an experimental verification, and its results showed that our proposed models have excellent performance. KEY POINTS: • Using the kinetic models for producing simulated data • Through different feature engineering methods for dimension reduction • Creating a series of hybrid models to predict the values of three parameters in the fermentation process of Halomonas elongata DSM 2581 T.
Collapse
Affiliation(s)
- Guanxue Lai
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Junxiong Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Wang
- Department of Chemical Engineering for Energy Resources, East China University of Science and Technology, Shanghai, 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
5
|
Lopes MGM, Santana HS, Silva AGP, Taranto OP. Three‐dimensional‐printed millireactor with yeast immobilized in calcium‐alginate film for application in fermentation processes. AIChE J 2021. [DOI: 10.1002/aic.17460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Harrson S. Santana
- School of Chemical Engineering University of Campinas Campinas SP Brazil
| | | | | |
Collapse
|
6
|
Conacher CG, Luyt NA, Naidoo-Blassoples RK, Rossouw D, Setati ME, Bauer FF. The ecology of wine fermentation: a model for the study of complex microbial ecosystems. Appl Microbiol Biotechnol 2021; 105:3027-3043. [PMID: 33834254 DOI: 10.1007/s00253-021-11270-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 12/11/2022]
Abstract
The general interest in microbial ecology has skyrocketed over the past decade, driven by technical advances and by the rapidly increasing appreciation of the fundamental services that these ecosystems provide. In biotechnology, ecosystems have many more functionalities than single species, and, if properly understood and harnessed, will be able to deliver better outcomes for almost all imaginable applications. However, the complexity of microbial ecosystems and of the interactions between species has limited their applicability. In research, next generation sequencing allows accurate mapping of the microbiomes that characterise ecosystems of biotechnological and/or medical relevance. But the gap between mapping and understanding, to be filled by "functional microbiomics", requires the collection and integration of many different layers of complex data sets, from molecular multi-omics to spatial imaging technologies to online ecosystem monitoring tools. Holistically, studying the complexity of most microbial ecosystems, consisting of hundreds of species in specific spatial arrangements, is beyond our current technical capabilities, and simpler model systems with fewer species and reduced spatial complexity are required to establish the fundamental rules of ecosystem functioning. One such ecosystem, the ecosystem responsible for natural alcoholic fermentation, can provide an excellent tool to study evolutionarily relevant interactions between multiple species within a relatively easily controlled environment. This review will critically evaluate the approaches that are currently implemented to dissect the cellular and molecular networks that govern this ecosystem. KEY POINTS: • Evolutionarily isolated fermentation ecosystem can be used as an ecological model. • Experimental toolbox is gearing towards mechanistic understanding of this ecosystem. • Integration of multidisciplinary datasets is key to predictive understanding.
Collapse
Affiliation(s)
- C G Conacher
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - N A Luyt
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - R K Naidoo-Blassoples
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - D Rossouw
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - M E Setati
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - F F Bauer
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa.
| |
Collapse
|
7
|
3D-printed micro bubble column reactor with integrated microsensors for biotechnological applications: From design to evaluation. Sci Rep 2021; 11:7276. [PMID: 33790348 PMCID: PMC8012708 DOI: 10.1038/s41598-021-86654-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/18/2021] [Indexed: 01/09/2023] Open
Abstract
With the technological advances in 3D printing technology, which are associated with ever-increasing printing resolution, additive manufacturing is now increasingly being used for rapid manufacturing of complex devices including microsystems development for laboratory applications. Personalized experimental devices or entire bioreactors of high complexity can be manufactured within few hours from start to finish. This study presents a customized 3D-printed micro bubble column reactor (3D-µBCR), which can be used for the cultivation of microorganisms (e.g., Saccharomyces cerevisiae) and allows online-monitoring of process parameters through integrated microsensor technology. The modular 3D-µBCR achieves rapid homogenization in less than 1 s and high oxygen transfer with kLa values up to 788 h−1 and is able to monitor biomass, pH, and DOT in the fluid phase, as well as CO2 and O2 in the gas phase. By extensive comparison of different reactor designs, the influence of the geometry on the resulting hydrodynamics was investigated. In order to quantify local flow patterns in the fluid, a three-dimensional and transient multiphase Computational Fluid Dynamics model was successfully developed and applied. The presented 3D-µBCR shows enormous potential for experimental parallelization and enables a high level of flexibility in reactor design, which can support versatile process development.
Collapse
|
8
|
Birgen C, Degnes KF, Markussen S, Wentzel A, Sletta H. Butanol production from lignocellulosic sugars by Clostridium beijerinckii in microbioreactors. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:34. [PMID: 33516261 PMCID: PMC7846990 DOI: 10.1186/s13068-021-01886-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Butanol (n-butanol) has been gaining attention as a renewable energy carrier and an alternative biofuel with superior properties to the most widely used ethanol. We performed 48 anaerobic fermentations simultaneously with glucose and xylose as representative lignocellulosic sugars by Clostridium beijerinckii NCIMB 8052 in BioLector® microbioreactors to understand the effect of different sugar mixtures on fermentation and to demonstrate the applicability of the micro-cultivation system for high-throughput anaerobic cultivation studies. We then compared the results to those of similar cultures in serum flasks to provide insight into different setups and measurement methods. RESULTS ANOVA results showed that the glucose-to-xylose ratio affects both growth and production due to Carbon Catabolite Repression. The study demonstrated successful use of BioLector® system for the first time for screening several media and sugar compositions under anaerobic conditions by using online monitoring of cell mass and pH in real-time and at unprecedented time-resolution. Fermentation products possibly interfered with dissolved oxygen (DO) measurements, which require a careful interpretation of DO monitoring results. CONCLUSIONS The statistical approach to evaluate the microbioreactor setup, and information obtained in this study will support further research in bioreactor and bioprocess design, which are very important aspects of industrial fermentations of lignocellulosic biomass.
Collapse
Affiliation(s)
- Cansu Birgen
- Department of Chemical Engineering, NTNU, 7491, Trondheim, Norway.
- Department of Thermal Energy, SINTEF Energy Research, 7034, Trondheim, Norway.
| | - Kristin F Degnes
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465, Trondheim, Norway
| | - Sidsel Markussen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465, Trondheim, Norway
| | - Alexander Wentzel
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465, Trondheim, Norway
| | - Håvard Sletta
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465, Trondheim, Norway
| |
Collapse
|
9
|
Mann M, Wittke D, Büchs J. Online monitoring applying the anaerobic respiratory monitoring system reveals iron(II) limitation in YTF medium for Clostridium ljungdahlii. Eng Life Sci 2021; 21:19-28. [PMID: 33531887 PMCID: PMC7837299 DOI: 10.1002/elsc.202000054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Online monitoring of microbial cultures is an effective approach for studying both aerobic and anaerobic microorganisms. Especially in small-scale cultivations, several parallel online monitored experiments can generate a detailed understanding of the cultivation, compared to a situation where a few data points are generated from time course sampling and offline analysis. However, the availability of small-scale online monitoring devices for acetogenic organisms is limited. In this study, the previously reported anaerobic Respiration Activity MOnitoring System (anaRAMOS) device was adapted for online monitoring of Clostridium ljungdahlii (C. ljungdahlii) cultures with fructose as the carbon source. The anaRAMOS was applied to identify conversion of different carbon sources present in commonly used YTF medium. An iron(II) deficiency was discovered in this medium for C. ljungdahlii. Addition of iron(II) to the YTF medium reduced the cultivation time and increased biomass yield of C. ljungdahlii cultures by 50% and 40%, respectively. The measurement of the carbon dioxide transfer rate was used to calculated the iron(II) contained in complex components. By demonstrating the application of the anaRAMOS device for medium optimization, it is proven that the described online monitoring device has potential for use in process development.
Collapse
Affiliation(s)
- Marcel Mann
- AVT – Biochemical EngineeringRWTH Aachen UniversityAachenGermany
| | - Darina Wittke
- AVT – Biochemical EngineeringRWTH Aachen UniversityAachenGermany
| | - Jochen Büchs
- AVT – Biochemical EngineeringRWTH Aachen UniversityAachenGermany
| |
Collapse
|
10
|
Marroquín-Fandiño JE, Ramírez-Acosta CM, Luna-Wandurraga HJ, Valderrama-Rincón JA, Cruz JC, Reyes LH, Valderrama-Rincon JD. Novel external-loop-airlift milliliter scale bioreactors for cell growth studies: Low cost design, CFD analysis and experimental characterization. J Biotechnol 2020; 324:71-82. [PMID: 32991936 DOI: 10.1016/j.jbiotec.2020.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022]
Abstract
Many researchers have limited access to fully equipped laboratory-scale batch bioreactors and chemostats due to their relatively high cost. This becomes particularly prohibitive when multiple replicas of the same experiment are required, but not enough bioreactors are available to operate simultaneously. Additionally, experiments using shaken flasks are common but show significant limitations in terms of maintaining homogeneous conditions in liquid cultures or installing instrumentation for monitoring. Here, we proposed to tackle this significant hurdle by providing a route to make available the manufacture of low-cost, milliliter-scale bioreactors. This approach seems plausible for enabling proof-of-concept experiments before moving to a larger scale without significant investments. The conceptually designed systems were based on external-loop bioreactors due to their flexibility, simplicity, and ease of assembling and testing. Designs were initially evaluated in silico with the aid of COMSOL Multiphysics. The successfully evaluated systems were then constructed via additive manufacturing and assembled for hydrodynamics testing via tracer methods. This was enabled by a newly home-made optical absorbance sensor (OAS) for in-line and real-time measurements. Both the in silico and experimental results indicated close to ideal mixing conditions and low shear stress. Cell growth curves were prepared by culturing Escherichia coli and following its cell density in real-time. Our cell growth rate and maximum cell density were similar to those previously obtained in closely related systems. Therefore, the proposed bioreactors are an affordable alternative for batch and continuous cell growth studies rapidly and inexpensively.
Collapse
Affiliation(s)
| | - Carlos Manuel Ramírez-Acosta
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, 110311, Colombia
| | | | | | - Juan C Cruz
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, South Australia, 5005, Australia; Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 110311, Colombia
| | - Luis H Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, 110311, Colombia
| | - Juan D Valderrama-Rincon
- Grupo GRESIA, Department of Environmental Engineering, Universidad Antonio Nariño, Bogotá, 110231, Colombia.
| |
Collapse
|
11
|
High-throughput screening for high-efficiency small-molecule biosynthesis. Metab Eng 2020; 63:102-125. [PMID: 33017684 DOI: 10.1016/j.ymben.2020.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 01/14/2023]
Abstract
Systems metabolic engineering faces the formidable task of rewiring microbial metabolism to cost-effectively generate high-value molecules from a variety of inexpensive feedstocks for many different applications. Because these cellular systems are still too complex to model accurately, vast collections of engineered organism variants must be systematically created and evaluated through an enormous trial-and-error process in order to identify a manufacturing-ready strain. The high-throughput screening of strains to optimize their scalable manufacturing potential requires execution of many carefully controlled, parallel, miniature fermentations, followed by high-precision analysis of the resulting complex mixtures. This review discusses strategies for the design of high-throughput, small-scale fermentation models to predict improved strain performance at large commercial scale. Established and promising approaches from industrial and academic groups are presented for both cell culture and analysis, with primary focus on microplate- and microfluidics-based screening systems.
Collapse
|
12
|
Ebrahimzadeh Kouchesfahani M, Babaeipour V. Micro bioreactor scale-up and industrialization: a critical review of the methods, their prerequisites, and perquisites. MINERVA BIOTECNOL 2020. [DOI: 10.23736/s1120-4826.19.02595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Novel mutagenesis and screening technologies for food microorganisms: advances and prospects. Appl Microbiol Biotechnol 2020; 104:1517-1531. [DOI: 10.1007/s00253-019-10341-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/19/2019] [Accepted: 12/28/2019] [Indexed: 12/19/2022]
|
14
|
Munch G, Schulte A, Mann M, Dinger R, Regestein L, Rehmann L, Büchs J. Online measurement of CO2 and total gas production in parallel anaerobic shake flask cultivations. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Microbioreactors for Process Development and Cell-Based Screening Studies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:67-100. [PMID: 32712680 DOI: 10.1007/10_2020_130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microbioreactors (MBRs) have emerged as potent cultivation devices enabling automated small-scale experiments in parallel while enhancing their cost efficiency. The widespread use of MBRs has contributed to recent advances in industrial and pharmaceutical biotechnology, and they have proved to be indispensable tools in the development of many modern bioprocesses. Being predominantly applied in early stage process development, they open up new fields of research and enhance the efficacy of biotechnological product development. Their reduced reaction volume is associated with numerous inherent advantages - particularly the possibility for enabling parallel screening operations that facilitate high-throughput cultivations with reduced sample consumption (or the use of rare and expensive educts). As a result, multiple variables can be examined in a shorter time and with a lower expense. This leads to a simultaneous acceleration of research and process development along with decreased costs.MBRs range from simple miniaturized cultivations vessels (i.e., in the milliliter scale with limited possibilities for process control) to highly complex and automated small-scale microreactors with integrated sensors that allow for comprehensive screenings in very short time or a precise reflection of large-scale cultivation conditions. Progressive developments and improvements in manufacturing and automation techniques are already helping researchers to make use of the advantages that MBRs offer. This overview of current MBR systems surveys the diverse application for microbial and mammalian cell cultivations that have been developed in recent years.
Collapse
|
16
|
Narayanan H, Luna MF, Stosch M, Cruz Bournazou MN, Polotti G, Morbidelli M, Butté A, Sokolov M. Bioprocessing in the Digital Age: The Role of Process Models. Biotechnol J 2019; 15:e1900172. [DOI: 10.1002/biot.201900172] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/15/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Harini Narayanan
- Institute for Chemical and Bioengineering ETHZ Zurich Switzerland
| | - Martin F. Luna
- Institute for Chemical and Bioengineering ETHZ Zurich Switzerland
| | | | - Mariano Nicolas Cruz Bournazou
- Institute for Chemical and Bioengineering ETHZ Zurich Switzerland
- DataHow AGc/o ETH ZurichHCI, F137Vladimir‐Prelog‐Weg 1 8093 Zurich Switzerland
| | - Gianmarco Polotti
- DataHow AGc/o ETH ZurichHCI, F137Vladimir‐Prelog‐Weg 1 8093 Zurich Switzerland
| | - Massimo Morbidelli
- Institute for Chemical and Bioengineering ETHZ Zurich Switzerland
- DataHow AGc/o ETH ZurichHCI, F137Vladimir‐Prelog‐Weg 1 8093 Zurich Switzerland
| | - Alessandro Butté
- Institute for Chemical and Bioengineering ETHZ Zurich Switzerland
- DataHow AGc/o ETH ZurichHCI, F137Vladimir‐Prelog‐Weg 1 8093 Zurich Switzerland
| | - Michael Sokolov
- Institute for Chemical and Bioengineering ETHZ Zurich Switzerland
- DataHow AGc/o ETH ZurichHCI, F137Vladimir‐Prelog‐Weg 1 8093 Zurich Switzerland
| |
Collapse
|
17
|
Haby B, Hans S, Anane E, Sawatzki A, Krausch N, Neubauer P, Cruz Bournazou MN. Integrated Robotic Mini Bioreactor Platform for Automated, Parallel Microbial Cultivation With Online Data Handling and Process Control. SLAS Technol 2019; 24:569-582. [PMID: 31288593 DOI: 10.1177/2472630319860775] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During process development, the experimental search space is defined by the number of experiments that can be performed in specific time frames but also by its sophistication (e.g., inputs, sensors, sampling frequency, analytics). High-throughput liquid-handling stations can perform a large number of automated experiments in parallel. Nevertheless, the experimental data sets that are obtained are not always relevant for development of industrial bioprocesses, leading to a high rate of failure during scale-up. We present an automated mini bioreactor platform that enables parallel cultivations in the milliliter scale with online monitoring and control, well-controlled conditions, and advanced feeding strategies similar to industrial processes. The combination of two liquid handlers allows both automated mini bioreactor operation and at-line analysis in parallel. A central database enables end-to-end data exchange and fully integrated device and process control. A model-based operation algorithm allows for the accurate performance of complex cultivations for scale-down studies and strain characterization via optimal experimental redesign, significantly increasing the reliability and transferability of data throughout process development. The platform meets the tradeoff between experimental throughput and process control and monitoring comparable to laboratory-scale bioreactors.
Collapse
Affiliation(s)
- Benjamin Haby
- Institute of Biotechnology, Technische Universität, Berlin, Germany
| | - Sebastian Hans
- Institute of Biotechnology, Technische Universität, Berlin, Germany
| | - Emmanuel Anane
- Institute of Biotechnology, Technische Universität, Berlin, Germany
| | - Annina Sawatzki
- Institute of Biotechnology, Technische Universität, Berlin, Germany
| | - Niels Krausch
- Institute of Biotechnology, Technische Universität, Berlin, Germany
| | - Peter Neubauer
- Institute of Biotechnology, Technische Universität, Berlin, Germany
| | | |
Collapse
|
18
|
Frey LJ, Vorländer D, Rasch D, Ostsieker H, Müller B, Schulze M, Schenkendorf R, Mayr T, Grosch JH, Krull R. Novel electrodynamic oscillation technique enables enhanced mass transfer and mixing for cultivation in micro-bioreactor. Biotechnol Prog 2019; 35:e2827. [PMID: 31021498 DOI: 10.1002/btpr.2827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/21/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
Abstract
Micro-bioreactors (MBRs) have become an indispensable part for modern bioprocess development enabling automated experiments in parallel while reducing material cost. Novel developments aim to further intensify the advantages as dimensions are being reduced. However, one factor hindering the scale-down of cultivation systems is to provide adequate mixing and mass transfer. Here, vertical oscillation is demonstrated as an effective method for mixing of MBRs with a reaction volume of 20 μL providing adequate mass transfer. Electrodynamic exciters are used to transduce kinetic energy onto the cultivation broth avoiding additional moving parts inside the applied model MBR. The induced vertical vibration leads to oscillation of the liquid surface corresponding to the frequency and displacement. On this basis, the resonance frequency of the fluid was identified as the most decisive factor for mixing performance. Applying this vertical oscillation method outstanding mixing times below 1 s and exceptionally high oxygen transport with volumetric mass transfer coefficients (kL a) above 1,000/hr can be successfully achieved and controlled. To evaluate the applicability of this vertical oscillation mixing for low volume MBR systems, cultivations of Escherichia coli BL21 as proof-of-concept were performed. The dissolved oxygen was successfully online monitored to assure any avoidance of oxygen limitations during the cultivation. The here presented data illustrate the high potential of the vertical oscillation technique as a flexible measure to adapt mixing times and oxygen transfer according to experimental demands. Thus, the mixing technique is a promising tool for various biological and chemical micro-scale applications still enabling adequate mass transfer.
Collapse
Affiliation(s)
- Lasse J Frey
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - David Vorländer
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Detlev Rasch
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Hendrik Ostsieker
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Bernhard Müller
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technologies, Graz, Austria
| | - Moritz Schulze
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Energy and Process Systems Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - René Schenkendorf
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Energy and Process Systems Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technologies, Graz, Austria
| | - Jan-Hendrik Grosch
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
19
|
Beiroti A, Aghasadeghi MR, Hosseini SN, Norouzian D. Application of recurrent neural network for online prediction of cell density of recombinant Pichia pastoris producing HBsAg. Prep Biochem Biotechnol 2019; 49:352-359. [PMID: 30707051 DOI: 10.1080/10826068.2019.1566153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Artificial neural networking (ANN) seems to be a promising soft sensor for implementing current approaches of quality by design (QbD) and process analytical technologies (PAT) in the biopharmaceutical industry. In this study, we aimed to implement best-fitted ANN architecture for online prediction of the biomass amount of recombinant Pichia pastoris (P. pastoris) - expressing intracellular hepatitis B surface antigen (HBsAg) - during the fed-batch fermentation process using methanol as a sole carbon source. For this purpose, at the induction phase of methanol fed-batch fermentation, carbon evolution rate (CER), dissolved oxygen (DO), and methanol feed rate were selected as input vectors and total wet cell weight (WCW) was considered as output vector for the ANN. The obtained results indicated that after training recurrent ANN with data sets of four fed-batch runs, this toolbox could predict the WCW of the next fed-batch fermentation process at each specified time point with high accuracy. The R-squared and root-mean-square error between actual and predicted values were found to be 0.9985 and 13.73, respectively. This verified toolbox could have major importance in the biopharmaceutical industry since recombinant P. pastoris is widely used for the large-scale production of HBsAg.
Collapse
Affiliation(s)
- Ahmad Beiroti
- a Department of Recombinant Hepatitis B Vaccine , Pasteur Institute of Iran , Tehran , Iran
| | | | | | - Dariush Norouzian
- c Department of Pilot Nano-Biotechnology , Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
20
|
Prado RC, Borges ER. MICROBIOREACTORS AS ENGINEERING TOOLS FOR BIOPROCESS DEVELOPMENT. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1590/0104-6632.20180354s20170433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- R. C. Prado
- Federal University of Rio de Janeiro, Brazil
| | | |
Collapse
|
21
|
Fernandes AC, Semenova D, Panjan P, Sesay AM, Gernaey KV, Krühne U. Multi-function microfluidic platform for sensor integration. N Biotechnol 2018. [DOI: 10.1016/j.nbt.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Lam KL, Lin S, Liu C, Wu X, Tang S, Kwan HS, Cheung PCK. Low-Cost Method Generating In Situ Anaerobic Conditions on a 96-Well Plate for Microbial Fermentation in Food Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11839-11845. [PMID: 30277075 DOI: 10.1021/acs.jafc.8b04888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Commercial tools and instruments have been developed for a screening study of microbial fermentation, but they are expensive and mostly confined to aerobic fermentation only. There is little development on the generation of anaerobic conditions directly on a 96-well plate. This report proposed a simple and versatile microbial fermentation system known as OVAMO that makes use of Oxyrase, vacuum, and mineral oil to generate an in situ anaerobic environment on a 96-well plate for at least 48 h. The practicality of OVAMO in anaerobic fermentation experiments used for functional food research was validated by a prebiotic screening study of different carbohydrates by Bifidobacterium longum subsp. infantis. The OVAMO system provides a less expensive but effective way to conduct a microbial fermentation screening study that requires anaerobic conditions without the need for atmospheric control by external devices.
Collapse
Affiliation(s)
- Ka-Lung Lam
- Food and Nutritional Sciences Program, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territory , Hong Kong
| | - Shaolin Lin
- College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , People's Republic of China
| | - Chaoran Liu
- Food and Nutritional Sciences Program, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territory , Hong Kong
- Food and Drug Safety Research Centre , Shenzhen Institute of Standards and Technology , Shenzhen , Guangdong 518055 , People's Republic of China
| | - Xiyang Wu
- Department of Food Science and Engineering, College of Science and Engineering , Jinan University , Guangzhou , Guangdong 510632 , People's Republic of China
| | - Shuze Tang
- Department of Food Science and Engineering, College of Science and Engineering , Jinan University , Guangzhou , Guangdong 510632 , People's Republic of China
| | - Hoi-Shan Kwan
- Food and Nutritional Sciences Program, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territory , Hong Kong
| | - Peter Chi-Keung Cheung
- Food and Nutritional Sciences Program, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territory , Hong Kong
| |
Collapse
|
23
|
Lladó Maldonado S, Panjan P, Sun S, Rasch D, Sesay AM, Mayr T, Krull R. A fully online sensor-equipped, disposable multiphase microbioreactor as a screening platform for biotechnological applications. Biotechnol Bioeng 2018; 116:65-75. [DOI: 10.1002/bit.26831] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/08/2018] [Accepted: 09/05/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Susanna Lladó Maldonado
- Institute of Biochemical Engineering, Technische Universität Braunschweig; Braunschweig Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig; Braunschweig Germany
| | - Peter Panjan
- Unit of Measurement Technologies, University of Oulu; Kajaani Finland
| | - Shiwen Sun
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology; Graz Austria
| | - Detlev Rasch
- Institute of Biochemical Engineering, Technische Universität Braunschweig; Braunschweig Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig; Braunschweig Germany
| | - Adama M. Sesay
- Unit of Measurement Technologies, University of Oulu; Kajaani Finland
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology; Graz Austria
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig; Braunschweig Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig; Braunschweig Germany
| |
Collapse
|
24
|
Lladó Maldonado S, Rasch D, Kasjanow A, Bouwes D, Krühne U, Krull R. Multiphase microreactors with intensification of oxygen mass transfer rate and mixing performance for bioprocess development. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
25
|
Velugula-Yellela SR, Kohnhorst C, Powers DN, Trunfio N, Faustino A, Angart P, Berilla E, Faison T, Agarabi C. Use of High-Throughput Automated Microbioreactor System for Production of Model IgG1 in CHO Cells. J Vis Exp 2018. [PMID: 30320757 PMCID: PMC6235343 DOI: 10.3791/58231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Automated microscale bioreactors (15 mL) can be a useful tool for cell culture engineers. They facilitate the simultaneous execution of a wide variety of experimental conditions while minimizing potential process variability. Applications of this approach include: clone screening, temperature and pH shifts, media and supplement optimization. Furthermore, the small reactor volumes are conducive to large Design of Experiments that investigate a wide range of conditions. This allows upstream processes to be significantly optimized before scale-up where experimentation is more limited in scope due to time and economic constraints. Automated microscale bioreactor systems offer various advantages over traditional small scale cell culture units, such as shake flasks or spinner flasks. However, during pilot scale process development significant care must be taken to ensure that these advantages are realized. When run with care, the system can enable high level automation, can be programmed to run DOE's with a higher number of variables and can reduce sampling time when integrated with a nutrient analyzer or cell counter. Integration of the expert-derived heuristics presented here, with current automated microscale bioreactor experiments can minimize common pitfalls that hinder meaningful results. In the extreme, failure to adhere to the principles laid out here can lead to equipment damage that requires expensive repairs. Furthermore, the microbioreactor systems have small culture volumes making characterization of cell culture conditions difficult. The number and amount of samples taken in-process in batch mode culture is limited as operating volumes cannot fall below 10 mL. This method will discuss the benefits and drawbacks of microscale bioreactor systems.
Collapse
Affiliation(s)
- Sai Rashmika Velugula-Yellela
- Center for Drug Evaluation and Research, Office of Product Quality, Office of Biotechnology Products, Division of Biotechnology Review and Research II, U.S. Food and Drug Administration
| | - Casey Kohnhorst
- Center for Drug Evaluation and Research, Office of Product Quality, Office of Biotechnology Products, Division of Biotechnology Review and Research II, U.S. Food and Drug Administration
| | - David N Powers
- Center for Drug Evaluation and Research, Office of Product Quality, Office of Biotechnology Products, Division of Biotechnology Review and Research II, U.S. Food and Drug Administration
| | - Nicholas Trunfio
- Center for Drug Evaluation and Research, Office of Product Quality, Office of Biotechnology Products, Division of Biotechnology Review and Research II, U.S. Food and Drug Administration
| | - Anneliese Faustino
- Center for Drug Evaluation and Research, Office of Product Quality, Office of Biotechnology Products, Division of Biotechnology Review and Research II, U.S. Food and Drug Administration
| | - Phillip Angart
- Center for Drug Evaluation and Research, Office of Product Quality, Office of Biotechnology Products, Division of Biotechnology Review and Research II, U.S. Food and Drug Administration
| | - Erica Berilla
- Center for Drug Evaluation and Research, Office of Product Quality, Office of Biotechnology Products, Division of Biotechnology Review and Research II, U.S. Food and Drug Administration
| | - Talia Faison
- Center for Drug Evaluation and Research, Office of Product Quality, Office of Biotechnology Products, Division of Biotechnology Review and Research II, U.S. Food and Drug Administration
| | - Cyrus Agarabi
- Center for Drug Evaluation and Research, Office of Product Quality, Office of Biotechnology Products, Division of Biotechnology Review and Research II, U.S. Food and Drug Administration;
| |
Collapse
|
26
|
Orrego D, Zapata-Zapata AD, Kim D. Ethanol production from coffee mucilage fermentation by S. cerevisiae immobilized in calcium-alginate beads. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Mandenius CF. Conceptual Design of Micro-Bioreactors and Organ-on-Chips for Studies of Cell Cultures. Bioengineering (Basel) 2018; 5:E56. [PMID: 30029542 PMCID: PMC6164921 DOI: 10.3390/bioengineering5030056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 01/19/2023] Open
Abstract
Engineering design of microbioreactors (MBRs) and organ-on-chip (OoC) devices can take advantage of established design science theory, in which systematic evaluation of functional concepts and user requirements are analyzed. This is commonly referred to as a conceptual design. This review article compares how common conceptual design principles are applicable to MBR and OoC devices. The complexity of this design, which is exemplified by MBRs for scaled-down cell cultures in bioprocess development and drug testing in OoCs for heart and eye, is discussed and compared with previous design solutions of MBRs and OoCs, from the perspective of how similarities in understanding design from functionality and user purpose perspectives can more efficiently be exploited. The review can serve as a guideline and help the future design of MBR and OoC devices for cell culture studies.
Collapse
|
28
|
Tian X, Zhou G, Wang W, Zhang M, Hang H, Mohsin A, Chu J, Zhuang Y, Zhang S. Application of 8-parallel micro-bioreactor system with non-invasive optical pH and DO biosensor in high-throughput screening of l-lactic acid producing strain. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0207-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
29
|
Heins AL, Weuster-Botz D. Population heterogeneity in microbial bioprocesses: origin, analysis, mechanisms, and future perspectives. Bioprocess Biosyst Eng 2018. [PMID: 29541890 DOI: 10.1007/s00449-018-1922-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Population heterogeneity is omnipresent in all bioprocesses even in homogenous environments. Its origin, however, is only so well understood that potential strategies like bet-hedging, noise in gene expression and division of labour that lead to population heterogeneity can be derived from experimental studies simulating the dynamics in industrial scale bioprocesses. This review aims at summarizing the current state of the different parts of single cell studies in bioprocesses. This includes setups to visualize different phenotypes of single cells, computational approaches connecting single cell physiology with environmental influence and special cultivation setups like scale-down reactors that have been proven to be useful to simulate large-scale conditions. A step in between investigation of populations and single cells is studying subpopulations with distinct properties that differ from the rest of the population with sub-omics methods which are also presented here. Moreover, the current knowledge about population heterogeneity in bioprocesses is summarized for relevant industrial production hosts and mixed cultures, as they provide the unique opportunity to distribute metabolic burden and optimize production processes in a way that is impossible in traditional monocultures. In the end, approaches to explain the underlying mechanism of population heterogeneity and the evidences found to support each hypothesis are presented. For instance, population heterogeneity serving as a bet-hedging strategy that is used as coordinated action against bioprocess-related stresses while at the same time spreading the risk between individual cells as it ensures the survival of least a part of the population in any environment the cells encounter.
Collapse
Affiliation(s)
- Anna-Lena Heins
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany.
| | - Dirk Weuster-Botz
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| |
Collapse
|
30
|
P Radhakrishnan AN, Marques MPC, Davies MJ, O'Sullivan B, Bracewell DG, Szita N. Flocculation on a chip: a novel screening approach to determine floc growth rates and select flocculating agents. LAB ON A CHIP 2018; 18:585-594. [PMID: 29345271 DOI: 10.1039/c7lc00793k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Flocculation is a key purification step in cell-based processes for the food and pharmaceutical industry where the removal of cells and cellular debris is aided by adding flocculating agents. However, finding the best suited flocculating agent and optimal conditions to achieve rapid and effective flocculation is a non-trivial task. In conventional analytical systems, turbulent mixing creates a dynamic equilibrium between floc growth and breakage, constraining the determination of floc formation rates. Furthermore, these systems typically rely on end-point measurements only. We have successfully developed for the first time a microfluidic system for the study of flocculation under well controlled conditions. In our microfluidic device (μFLOC), floc sizes and growth rates were monitored in real time using high-speed imaging and computational image analysis. The on-line and in situ detection allowed quantification of floc sizes and their growth kinetics. This eliminated the issues of sample handling, sample dispersion, and end-point measurements. We demonstrated the power of this approach by quantifying the growth rates of floc formation under forty different growth conditions by varying industrially relevant flocculating agents (pDADMAC, PEI, PEG), their concentration and dosage. Growth rates between 12.2 μm s-1 for a strongly cationic flocculant (pDADMAC) and 0.6 μm s-1 for a non-ionic flocculant (PEG) were observed, demonstrating the potential to rank flocculating conditions in a quantitative way. We have therefore created a screening tool to efficiently compare flocculating agents and rapidly find the best flocculating condition, which will significantly accelerate early bioprocess development.
Collapse
Affiliation(s)
- Anand N P Radhakrishnan
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gordon Street, London WC1H 0AH, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Santos ELI, Rostro-Alanís M, Parra-Saldívar R, Alvarez AJ. A novel method for bioethanol production using immobilized yeast cells in calcium-alginate films and hybrid composite pervaporation membrane. BIORESOURCE TECHNOLOGY 2018; 247:165-173. [PMID: 28950123 DOI: 10.1016/j.biortech.2017.09.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 05/12/2023]
Abstract
Fermentation of sugar for production of ethanol was carried out using Saccharomyces cerevisiae cells immobilized in calcium alginate films. Thin films of calcium alginate casted on a microchannel surface were used instead of the typical spherical bead configuration. Yeast immobilized on alginate films produced a higher ethanol yield than free yeast cells under the same fermentation conditions. Also, a silicalite-1/poly dimethyl siloxane composite pervaporation membrane was synthesized for ethanol separation, and characterized with flux and separation factor. The composite membrane synthesized with a 3-1 ratio of silicalite-1 to poly dimethyl siloxane showed promising results, with a flux of 140.6g/m2h±19.3 and a separation factor of 37.52±3.55. Thus, the performance of both the alginate film with immobilized cells and the customized hybrid membrane suggests they could have an interesting potential application in an integrated reaction-separation device for the production and purification of bioethanol.
Collapse
Affiliation(s)
- Eduardo Leal Isla Santos
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| | - Magdalena Rostro-Alanís
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| | - Alejandro J Alvarez
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.
| |
Collapse
|
32
|
Marques MP, Szita N. Bioprocess microfluidics: applying microfluidic devices for bioprocessing. Curr Opin Chem Eng 2017; 18:61-68. [PMID: 29276669 PMCID: PMC5727670 DOI: 10.1016/j.coche.2017.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microfluidic devices as novel bioprocess development tools. Processes with stem cells, microbes and enzymes are viable in microfluidic devices. Microfluidic devices with integrated sensors provide high quality data. Laminar flow enables spatial and temporal control over transport phenomena. Standardization of devices required for automation and industrial uptake.
Scale-down approaches have long been applied in bioprocessing to resolve scale-up problems. Miniaturized bioreactors have thrived as a tool to obtain process relevant data during early-stage process development. Microfluidic devices are an attractive alternative in bioprocessing development due to the high degree of control over process variables afforded by the laminar flow, and the possibility to reduce time and cost factors. Data quality obtained with these devices is high when integrated with sensing technology and is invaluable for scale-translation and to assess the economical viability of bioprocesses. Microfluidic devices as upstream process development tools have been developed in the area of small molecules, therapeutic proteins, and cellular therapies. More recently, they have also been applied to mimic downstream unit operations.
Collapse
Affiliation(s)
- Marco Pc Marques
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gordon Street, London WC1H 0AH, United Kingdom
| | - Nicolas Szita
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gordon Street, London WC1H 0AH, United Kingdom
| |
Collapse
|
33
|
Gruber P, Marques MPC, Szita N, Mayr T. Integration and application of optical chemical sensors in microbioreactors. LAB ON A CHIP 2017; 17:2693-2712. [PMID: 28725897 DOI: 10.1039/c7lc00538e] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The quantification of key variables such as oxygen, pH, carbon dioxide, glucose, and temperature provides essential information for biological and biotechnological applications and their development. Microfluidic devices offer an opportunity to accelerate research and development in these areas due to their small scale, and the fine control over the microenvironment, provided that these key variables can be measured. Optical sensors are well-suited for this task. They offer non-invasive and non-destructive monitoring of the mentioned variables, and the establishment of time-course profiles without the need for sampling from the microfluidic devices. They can also be implemented in larger systems, facilitating cross-scale comparison of analytical data. This tutorial review presents an overview of the optical sensors and their technology, with a view to support current and potential new users in microfluidics and biotechnology in the implementation of such sensors. It introduces the benefits and challenges of sensor integration, including, their application for microbioreactors. Sensor formats, integration methods, device bonding options, and monitoring options are explained. Luminescent sensors for oxygen, pH, carbon dioxide, glucose and temperature are showcased. Areas where further development is needed are highlighted with the intent to guide future development efforts towards analytes for which reliable, stable, or easily integrated detection methods are not yet available.
Collapse
Affiliation(s)
- Pia Gruber
- Department of Biochemical Engineering, University College London, Gower Street, WC1E 6BT, London, UK.
| | | | | | | |
Collapse
|
34
|
Pachapur VL, Das RK, Brar SK, Le Bihan Y, Buelna G. Valorization of crude glycerol and eggshell biowaste as media components for hydrogen production: A scale-up study using co-culture system. BIORESOURCE TECHNOLOGY 2017; 225:386-394. [PMID: 27956329 DOI: 10.1016/j.biortech.2016.11.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
The properties of eggshells (EGS) as neutralizing and immobilizing agent were investigated for hydrogen (H2) production using crude glycerol (CG) by co-culture system. Eggshells of different sizes and concentrations were used during batch and repeated-batch fermentation. For batch and repeated-batch fermentation, the maximum H2 production (36.53±0.53 and 41.16±0.95mmol/L, respectively) was obtained with the EGS size of 33μm<x5<75μm. Hydrogen production increased with the decreasing size of EGS. Eggshells maintained the fermentation pH (6.00-6.30) and provided immobilization support as confirmed by scanning electron microscopy. As media components, the EGS concentration of 0.25% (w/v) was found to be optimum for maximum H2 production (31.66±0.55mmol/L) and the production profile was comparable to H2 production (32.07±0.92mmol/L) obtained with all media components. In scale-up study with semi-continuous bioreactor (7.5L), almost 1.5-fold increase (in comparison to mono-culture) i.e. 312.12mmol-H2/L-of medium with 86.65% glycerol utilization was obtained.
Collapse
Affiliation(s)
- Vinayak Laxman Pachapur
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec (QC) G1K 9A9, Canada
| | - Ratul Kumar Das
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec (QC) G1K 9A9, Canada
| | - Satinder Kaur Brar
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec (QC) G1K 9A9, Canada.
| | - Yann Le Bihan
- Centre de recherche industrielle du Québec (CRIQ), Québec (QC), Canada
| | - Gerardo Buelna
- Centre de recherche industrielle du Québec (CRIQ), Québec (QC), Canada
| |
Collapse
|
35
|
Cruz Bournazou M, Barz T, Nickel D, Lopez Cárdenas D, Glauche F, Knepper A, Neubauer P. Online optimal experimental re-design in robotic parallel fed-batch cultivation facilities. Biotechnol Bioeng 2016; 114:610-619. [DOI: 10.1002/bit.26192] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/29/2016] [Indexed: 11/07/2022]
Affiliation(s)
- M.N. Cruz Bournazou
- Chair of Bioprocess Engineering; Institute of Biotechnology, Technische Universität Berlin; Berlin Germany
| | - T. Barz
- Department of Energy; Austrian Institute of Technology GmbH; Vienna Austria
| | - D.B. Nickel
- Chair of Bioprocess Engineering; Institute of Biotechnology, Technische Universität Berlin; Berlin Germany
| | - D.C. Lopez Cárdenas
- Chair of Bioprocess Engineering; Institute of Biotechnology, Technische Universität Berlin; Berlin Germany
| | - F. Glauche
- Chair of Bioprocess Engineering; Institute of Biotechnology, Technische Universität Berlin; Berlin Germany
| | - A. Knepper
- Chair of Bioprocess Engineering; Institute of Biotechnology, Technische Universität Berlin; Berlin Germany
| | - P. Neubauer
- Chair of Bioprocess Engineering; Institute of Biotechnology, Technische Universität Berlin; Berlin Germany
| |
Collapse
|
36
|
High-throughput strategies for the discovery and engineering of enzymes for biocatalysis. Bioprocess Biosyst Eng 2016; 40:161-180. [DOI: 10.1007/s00449-016-1690-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/05/2016] [Indexed: 12/16/2022]
|
37
|
Oliveira AF, Pessoa ACSN, Bastos RG, de la Torre LG. Microfluidic tools toward industrial biotechnology. Biotechnol Prog 2016; 32:1372-1389. [DOI: 10.1002/btpr.2350] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/15/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Aline F. Oliveira
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas; 500 Albert Einstein avenue Campinas P.O. Box 6066
| | - Amanda C. S. N. Pessoa
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas; 500 Albert Einstein avenue Campinas P.O. Box 6066
| | - Reinaldo G. Bastos
- Department of Agroindustrial Technology and Rural Socioeconomy, Center of Agricultural Sciences, Federal University of São Carlos; Km 174 Anhanguera Highway Araras P.O. Box 153
| | - Lucimara G. de la Torre
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas; 500 Albert Einstein avenue Campinas P.O. Box 6066
| |
Collapse
|
38
|
Kirk TV, Marques MPC, Radhakrishnan ANP, Szita N. Quantification of the oxygen uptake rate in a dissolved oxygen controlled oscillating jet-driven microbioreactor. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2016; 91:823-831. [PMID: 27478291 PMCID: PMC4950047 DOI: 10.1002/jctb.4833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/10/2015] [Accepted: 10/06/2015] [Indexed: 06/06/2023]
Abstract
BACKGROUND Microbioreactors have emerged as a new tool for early bioprocess development. The technology has advanced rapidly in the last decade and obtaining real-time quantitative data of process variables is nowadays state of the art. In addition, control over process variables has also been achieved. The aim of this study was to build a microbioreactor capable of controlling dissolved oxygen (DO) concentrations and to determine oxygen uptake rate in real time. RESULTS An oscillating jet driven, membrane-aerated microbioreactor was developed without comprising any moving parts. Mixing times of ∼7 s, and kLa values of ∼170 h-1 were achieved. DO control was achieved by varying the duty cycle of a solenoid microvalve, which changed the gas mixture in the reactor incubator chamber. The microbioreactor supported Saccharomyces cerevisiae growth over 30 h and cell densities of 6.7 gdcw L-1. Oxygen uptake rates of ∼34 mmol L-1 h-1 were achieved. CONCLUSION The results highlight the potential of DO-controlled microbioreactors to obtain real-time information on oxygen uptake rate, and by extension on cellular metabolism for a variety of cell types over a broad range of processing conditions. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Timothy V Kirk
- Department of Biochemical EngineeringUniversity College LondonBernard Katz Building, Gordon StreetLondon WC1H 0AHUK
| | - Marco PC Marques
- Department of Biochemical EngineeringUniversity College LondonBernard Katz Building, Gordon StreetLondon WC1H 0AHUK
| | | | - Nicolas Szita
- Department of Biochemical EngineeringUniversity College LondonBernard Katz Building, Gordon StreetLondon WC1H 0AHUK
| |
Collapse
|
39
|
Recent advances and future applications of microfluidic live-cell microarrays. Biotechnol Adv 2015; 33:948-61. [DOI: 10.1016/j.biotechadv.2015.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/16/2015] [Accepted: 06/19/2015] [Indexed: 12/31/2022]
|
40
|
Tan CKL, Davies MJ, McCluskey DK, Munro IR, Nweke MC, Tracey MC, Szita N. Electromagnetic stirring in a microbioreactor with non-conventional chamber morphology and implementation of multiplexed mixing. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2015; 90:1927-1936. [PMID: 27546945 PMCID: PMC4973846 DOI: 10.1002/jctb.4762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 06/01/2015] [Accepted: 06/18/2015] [Indexed: 06/06/2023]
Abstract
BACKGROUND Microbioreactors have emerged as novel tools for early bioprocess development. Mixing lies at the heart of bioreactor operation (at all scales). The successful implementation of micro-stirring methods is thus central to the further advancement of microbioreactor technology. The aim of this study was to develop a micro-stirring method that aids robust microbioreactor operation and facilitates cost-effective parallelization. RESULTS A microbioreactor was developed with a novel micro-stirring method involving the movement of a magnetic bead by sequenced activation of a ring of electromagnets. The micro-stirring method offers flexibility in chamber designs, and mixing is demonstrated in cylindrical, diamond and triangular shaped reactor chambers. Mixing was analyzed for different electromagnet on/off sequences; mixing times of 4.5 s, 2.9 s, and 2.5 s were achieved for cylindrical, diamond and triangular shaped chambers, respectively. Ease of micro-bubble free priming, a typical challenge of cylindrical shaped microbioreactor chambers, was obtained with a diamond-shaped chamber. Consistent mixing behavior was observed between the constituent reactors in a duplex system. CONCLUSION A novel stirring method using electromagnetic actuation offering rapid mixing and easy integration with microbioreactors was characterized. The design flexibility gained enables fabrication of chambers suitable for microfluidic operation, and a duplex demonstrator highlights potential for cost-effective parallelization. Combined with a previously published cassette-like fabrication of microbioreactors, these advances will facilitate the development of robust and parallelized microbioreactors. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Matthew J Davies
- Department of Biochemical EngineeringUniversity College LondonUK
| | | | - Ian R Munro
- School of Engineering and TechnologyUniversity of HertfordshireUK
| | - Mauryn C Nweke
- Department of Biochemical EngineeringUniversity College LondonUK
| | - Mark C Tracey
- School of Engineering and TechnologyUniversity of HertfordshireUK
| | - Nicolas Szita
- Department of Biochemical EngineeringUniversity College LondonUK
| |
Collapse
|
41
|
Husain AR, Hadad Y, Zainal Alam MNH. Development of Low-Cost Microcontroller-Based Interface for Data Acquisition and Control of Microbioreactor Operation. ACTA ACUST UNITED AC 2015; 21:660-70. [PMID: 26185253 DOI: 10.1177/2211068215594770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Indexed: 12/27/2022]
Abstract
This article presents the development of a low-cost microcontroller-based interface for a microbioreactor operation. An Arduino MEGA 2560 board with 54 digital input/outputs, including 15 pulse-width-modulation outputs, has been chosen to perform the acquisition and control of the microbioreactor. The microbioreactor (volume = 800 µL) was made of poly(dimethylsiloxane) and poly(methylmethacrylate) polymers. The reactor was built to be equipped with sensors and actuators for the control of reactor temperature and the mixing speed. The article discusses the circuit of the microcontroller-based platform, describes the signal conditioning steps, and evaluates the capacity of the proposed low-cost microcontroller-based interface in terms of control accuracy and system responses. It is demonstrated that the proposed microcontroller-based platform is able to operate parallel microbioreactor operation with satisfactory performances. Control accuracy at a deviation less than 5% of the set-point values and responses in the range of few seconds have been recorded.
Collapse
Affiliation(s)
- Abdul Rashid Husain
- Department of Control and Mechatronic Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Yaser Hadad
- Department of Control and Mechatronic Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Muhd Nazrul Hisham Zainal Alam
- Process Systems Engineering Centre, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
42
|
Peterat G, Lladó Maldonado S, Edlich A, Rasch D, Dietzel A, Krull R. Bioreaktionstechnik in mikrofluidischen Reaktoren. CHEM-ING-TECH 2015. [DOI: 10.1002/cite.201400176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
YAMASHITA T, YASUKAWA K, KEMMEI T, HORII Y, NAKAYAMA E, MURAMOTO T, TAKADA H. Low-cost Methods for Making 3D Fluidic Polymer and Glass Chips Using Metal Templates. ANAL SCI 2015; 31:1261-6. [DOI: 10.2116/analsci.31.1261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Kim HD, Yi SJ, Kim KC. Photo-bleaching characteristics of oxygen-sensitive particles. J Vis (Tokyo) 2014. [DOI: 10.1007/s12650-014-0244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
|
46
|
Abeille F, Mittler F, Obeid P, Huet M, Kermarrec F, Dolega ME, Navarro F, Pouteau P, Icard B, Gidrol X, Agache V, Picollet-D'hahan N. Continuous microcarrier-based cell culture in a benchtop microfluidic bioreactor. LAB ON A CHIP 2014; 14:3510-8. [PMID: 25012393 DOI: 10.1039/c4lc00570h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microfluidic bioreactors are expected to impact cell therapy and biopharmaceutical production due to their ability to control cellular microenvironments. This work presents a novel approach for continuous cell culture in a microfluidic system. Microcarriers (i.e., microbeads) are used as growth support for anchorage-dependent mammalian cells. This approach eases the manipulation of cells within the system and enables harmless extraction of cells. Moreover, the microbioreactor uses a perfusion function based on the biocompatible integration of a porous membrane to continuously feed the cells. The perfusion rate is optimized through simulations to provide a stable biochemical environment. Thermal management is also addressed to ensure a homogeneous bioreactor temperature. Eventually, incubator-free cell cultures of Drosophila S2 and PC3 cells are achieved over the course of a week using this bioreactor. In future applications, a more efficient alternative to harvesting cells from microcarriers is also anticipated as suggested by our positive results from the microcarrier digestion experiments.
Collapse
Affiliation(s)
- F Abeille
- Univ. Grenoble Alpes, F-38000 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Minireactor-based high-throughput temperature profiling for the optimization of microbial and enzymatic processes. J Biol Eng 2014; 8:22. [PMID: 25126113 PMCID: PMC4128537 DOI: 10.1186/1754-1611-8-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/28/2014] [Indexed: 01/29/2023] Open
Abstract
Background Bioprocesses depend on a number of different operating parameters and temperature is one of the most important ones. Unfortunately, systems for rapid determination of temperature dependent reaction kinetics are rare. Obviously, there is a need for a high-throughput screening procedure of temperature dependent process behavior. Even though, well equipped micro-bioreactors are a promising approach sufficient temperature control is quite challenging and rather complex. Results In this work a unique system is presented combining an optical on-line monitoring device with a customized temperature control unit for 96 well microtiter plates. By exposing microtiter plates to specific temperature profiles, high-throughput temperature optimization for microbial and enzymatic systems in a micro-scale of 200 μL is realized. For single well resolved temperature measurement fluorescence thermometry was used, combining the fluorescent dyes Rhodamin B and Rhodamin 110. The real time monitoring of the microbial and enzymatic reactions provides extensive data output. To evaluate this novel system the temperature optima for Escherichia coli and Kluyveromyces lactis regarding growth and recombinant protein production were determined. Furthermore, the commercial cellulase mixture Celluclast as a representative for enzymes was investigated applying a fluorescent activity assay. Conclusion Microtiter plate-based high-throughput temperature profiling is a convenient tool for characterizing temperature dependent reaction processes. It allows the evaluation of numerous conditions, e.g. microorganisms, enzymes, media, and others, in a short time. The simple temperature control combined with a commercial on-line monitoring device makes it a user friendly system.
Collapse
|
48
|
Implementation of Synchronous Micromotor in Developing Integrated Microfluidic Systems. MICROMACHINES 2014. [DOI: 10.3390/mi5030442] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Lattermann C, Funke M, Hansen S, Diederichs S, Büchs J. Cross-section perimeter is a suitable parameter to describe the effects of different baffle geometries in shaken microtiter plates. J Biol Eng 2014; 8:18. [PMID: 25093039 PMCID: PMC4107583 DOI: 10.1186/1754-1611-8-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biotechnological screening processes are performed since more than 8 decades in small scale shaken bioreactors like shake flasks or microtiter plates. One of the major issues of such reactors is the sufficient oxygen supply of suspended microorganisms. Oxygen transfer into the bulk liquid can in general be increased by introducing suitable baffles at the reactor wall. However, a comprehensive and systematic characterization of baffled shaken bioreactors has never been carried out so far. Baffles often differ in number, size and shape. The exact geometry of baffles in glass lab ware like shake flasks is very difficult to reproduce from piece to piece due to the hard to control flow behavior of molten glass during manufacturing. Thus, reproducibility of the maximum oxygen transfer capacity in such baffled shake flasks is hardly given. RESULTS As a first step to systematically elucidate the general effect of different baffle geometries on shaken bioreactor performance, the maximum oxygen transfer capacity (OTRmax) in baffled 48-well microtiter plates as shaken model reactor was characterized. This type of bioreactor made of plastic material was chosen, as the exact geometry of the baffles can be fabricated by highly reproducible laser cutting. As a result, thirty different geometries were investigated regarding their maximum oxygen transfer capacity (OTRmax) and liquid distribution during shaking. The relative perimeter of the cross-section area as new fundamental geometric key parameter is introduced. An empirical correlation for the OTRmax as function of the relative perimeter, shaking frequency and filling volume is derived. For the first time, this correlation allows a systematic description of the maximum oxygen transfer capacity in baffled microtiter plates. CONCLUSIONS Calculated and experimentally determined OTRmax values agree within ± 30% accuracy. Furthermore, undesired out-of-phase operating conditions can be identified by using the relative perimeter as key parameter. Finally, an optimum well geometry characterized by an increased perimeter of 10% compared to the unbaffled round geometry is identified. This study may also assist to comprehensively describe and optimize the baffles of shake flasks in future.
Collapse
Affiliation(s)
- Clemens Lattermann
- AVT.Biochemical Engineering, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Matthias Funke
- Lonza Group Ltd, Münchensteinerstraße 38, 4002 Basel, Switzerland
| | - Sven Hansen
- Evonik Industries AG, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany
| | - Sylvia Diederichs
- AVT.Biochemical Engineering, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Jochen Büchs
- AVT.Biochemical Engineering, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| |
Collapse
|
50
|
Formenti LR, Nørregaard A, Bolic A, Hernandez DQ, Hagemann T, Heins AL, Larsson H, Mears L, Mauricio-Iglesias M, Krühne U, Gernaey KV. Challenges in industrial fermentation technology research. Biotechnol J 2014; 9:727-38. [PMID: 24846823 DOI: 10.1002/biot.201300236] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/01/2014] [Accepted: 04/23/2014] [Indexed: 11/06/2022]
Abstract
Industrial fermentation processes are increasingly popular, and are considered an important technological asset for reducing our dependence on chemicals and products produced from fossil fuels. However, despite their increasing popularity, fermentation processes have not yet reached the same maturity as traditional chemical processes, particularly when it comes to using engineering tools such as mathematical models and optimization techniques. This perspective starts with a brief overview of these engineering tools. However, the main focus is on a description of some of the most important engineering challenges: scaling up and scaling down fermentation processes, the influence of morphology on broth rheology and mass transfer, and establishing novel sensors to measure and control insightful process parameters. The greatest emphasis is on the challenges posed by filamentous fungi, because of their wide applications as cell factories and therefore their relevance in a White Biotechnology context. Computational fluid dynamics (CFD) is introduced as a promising tool that can be used to support the scaling up and scaling down of bioreactors, and for studying mixing and the potential occurrence of gradients in a tank.
Collapse
Affiliation(s)
- Luca Riccardo Formenti
- Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Lyngby, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|