1
|
Yang J, Zhang Y, Luo G, Zheng S, Han S, Liang S, Lin Y. Collaborative light-off and light-on bacterial luciferase biosensors: Innovative approach for rapid contaminant detection. Biosens Bioelectron 2025; 280:117369. [PMID: 40179701 DOI: 10.1016/j.bios.2025.117369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 02/12/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025]
Abstract
Bioluminescence-based light-off and light-on biosensors are widely used in environmental monitoring due to their rapid, cost-effective, real-time, and easy operation. However, stability and sensitivity issues in detecting real samples remain challenging. This study introduces a novel approach utilizing combined light-off and light-on biosensors for rapid and sensitive contaminants detection within 45 min in real samples. First, a recombinase-based state machine (RSM) was used to construct light-off RSM biosensors (light-off RSMs) for continuously strong light emission and overexpressing of outer membrane porins OmpC and OmpF enhanced their sensitivity to toxic contaminants. Additionally, a new experimental protocol containing the cell culture, collection, preparation, and the contaminant measurement was established for bioluminescent light-on whole-cell biosensors (light-on WCBs) in contaminant detection, initially developed using cadmium (Cd) and later applied to lead (Pb) and mercury (Hg). For Cd light-on WCBs, overexpressing OmpC and knocking out the contaminant exporter ZntA enhanced the accumulation of intracellular Cd in WCB cells, resulting in increased sensitivity to low concentrations of contaminants. Further, metabolic modifications in light-on WCBs significantly boosted luminescence. These genetic modified bacterial strains, whether freshly harvested or as freeze-dried powders, showed rapid luminescent responses to contaminants in the picomolar (pM) to nanomolar (nM) range within 45 min. Finally, the combined use of light-off RSMs and light-on WCBs successfully assessed toxicity and detected specific contaminants in real environmental and food samples. These strategies could be applied to developing other bacterial luciferase-based biosensors and even other types such as colorimetric biosensors.
Collapse
Affiliation(s)
- Jun Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yongwei Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Guangjuan Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Suiping Zheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Shuangyan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Shuli Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Shahzad S, Sharma A, Mehdi SEH, Gurung A, Hussain F, Kang W, Jang M, Oh SE. Assessment of Metals Toxicity Using a Nitrifying Bacteria Bioassay Kit Based on Oxygen Consumption. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 88:437-451. [PMID: 40402242 DOI: 10.1007/s00244-025-01126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/05/2025] [Indexed: 05/23/2025]
Abstract
The escalating concentrations of emerging contaminants in water systems and the possible environmental threats they emphasize the necessity for more sophisticated methods in the evaluation of water quality. Traditional bioassays raise ethical concerns, require intricate procedures, entail significant expenses, and only allow for endpoint measurements. The using of nitrifying bacteria in bioassays has resulted in increased sensitivity to a wide range of toxic substances, making them valuable for the identification of water pollution. This study introduces a novel nitrifying bacteria bioassay kit for detecting heavy metal contaminants in water. This bioassay is specifically designed for expedited analysis of oxygen consumption. This technique enables the identification of a range of toxic metals. Optimization studies indicated that 100 mg ammonia NH4+-N/L, and 1 mL acclimated culture were the ideal conditions facilitating the necessary volume of gas consumption for sensitive data generation. Determined EC50 values of the selected toxic metals were: chromium (Cr6+), 0.51 mg/L; silver (Ag+), 2.90 mg/L; copper (Cu2+), 2.90 mg/L; nickel (Ni2+), 3.60 mg/L; arsenic (As3+), 4.10 mg/L; cadmium (Cd2+), 5.56 mg/L; mercury (Hg2+), 8.06 mg/L; and lead (Pb2+), 19.3 mg/L. Metagenomics analysis found key species in the research included Nitrosomonas eutropha, Nitrosomonas oligotropha, Nitrosomonas europaea, Nitrobacter vulgaris, Nitrobacter winogradskyi, Nitrospira moscoviensis and Nitrospira lenta. In addition, this bioassay is ideal for field screening and real-time monitoring due to its simplicity and reliability. This bioassay provides a precise, economical, and effective substitute for more intricate and ethically problematic techniques, enhancing the effectiveness of water quality monitoring programs.
Collapse
Affiliation(s)
- Suleman Shahzad
- Department of Biological Environmental, Kangwon National University, 192-1 Hyoja-Dong, Chuncheon-Si, Gangwon-State, 24341, Republic of Korea
| | - Aparna Sharma
- Department of Biological Environmental, Kangwon National University, 192-1 Hyoja-Dong, Chuncheon-Si, Gangwon-State, 24341, Republic of Korea
| | - Syed Ejaz Hussain Mehdi
- Department of Biological Environmental, Kangwon National University, 192-1 Hyoja-Dong, Chuncheon-Si, Gangwon-State, 24341, Republic of Korea
| | - Anup Gurung
- Department of Biological Environmental, Kangwon National University, 192-1 Hyoja-Dong, Chuncheon-Si, Gangwon-State, 24341, Republic of Korea
| | - Fida Hussain
- Department of Biological Environmental, Kangwon National University, 192-1 Hyoja-Dong, Chuncheon-Si, Gangwon-State, 24341, Republic of Korea
- Department of Environmental Sciences, University of Lahore, Lahore, Pakistan
| | - Woochang Kang
- Department of Biological Environmental, Kangwon National University, 192-1 Hyoja-Dong, Chuncheon-Si, Gangwon-State, 24341, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon Gu, Seoul, 01897, Republic of Korea
| | - Sang-Eun Oh
- Department of Biological Environmental, Kangwon National University, 192-1 Hyoja-Dong, Chuncheon-Si, Gangwon-State, 24341, Republic of Korea.
| |
Collapse
|
3
|
Belkin S. Bioluminescent Microbial Bioreporters: A Personal Perspective. BIOSENSORS 2025; 15:111. [PMID: 39997013 PMCID: PMC11853290 DOI: 10.3390/bios15020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
This review attempts to summarize my three decades-long involvement in, and contribution to, the design, construction and testing of bioluminescent microbial sensor strains (bioreporters). With the understanding that such a document cannot be completely free of bias, the review focuses on studies from my own lab only, with almost no coverage of the parallel progress made by others in similar fields. This admittedly subjective approach by no way detracts from the achievements of countless excellent researchers who are not mentioned here, and whose contributions to the field are at least as important as that of my own. The review covers basic aspects of microbial sensor design, and then progresses to describe approaches to performance improvement of sensor strains aimed at the detection of either specific chemicals, groups of chemicals sharing similar characteristics, or global effects, such as toxicity and genotoxicity. The need for integration of live sensor cells into a compatible hardware platform is highlighted, as is the importance of long-term maintenance of the cells' viability and activity. The use of multi-member sensors' panels is presented as a means for enhancing the detection spectrum and sample "fingerprinting", along with a list of different purposes to which such sensors have been put to use.
Collapse
Affiliation(s)
- Shimshon Belkin
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
4
|
Li Y, Zhao Y, Du Y, Ren X, Ding H, Wang Z. Recent advances in the development and applications of luminescent bacteria-based biosensors. LUMINESCENCE 2024; 39:e4721. [PMID: 38501275 DOI: 10.1002/bio.4721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Luminescent bacteria-based biosensors are widely used for fast and sensitive monitoring of food safety, water quality, and other environmental pollutions. Recent advancements in biomedical engineering technology have led to improved portability, integration, and intelligence of these biotoxicity assays. Moreover, genetic engineering has played a significant role in the development of recombinant luminescent bacterial biosensors, enhancing both detection accuracy and sensitivity. This review provides an overview of recent advances in the development and applications of novel luminescent bacteria-based biosensors, and future perspectives and challenges in the cutting-edge research, market translation, and practical applications of luminescent bacterial biosensing are discussed.
Collapse
Affiliation(s)
- Yingying Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Yuankun Zhao
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Yiyang Du
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Xuechun Ren
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
| | - He Ding
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
| | - Zhimin Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
5
|
Dunuweera AN, Dunuweera SP, Ranganathan K. A Comprehensive Exploration of Bioluminescence Systems, Mechanisms, and Advanced Assays for Versatile Applications. Biochem Res Int 2024; 2024:8273237. [PMID: 38347947 PMCID: PMC10861286 DOI: 10.1155/2024/8273237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
Bioluminescence has been a fascinating natural phenomenon of light emission from living creatures. It happens when the enzyme luciferase facilitates the oxidation of luciferin, resulting in the creation of an excited-state species that emits light. Although there are many bioluminescent systems, few have been identified. D-luciferin-dependent systems, coelenterazine-dependent systems, Cypridina luciferin-based systems, tetrapyrrole-based luciferins, bacterial bioluminescent systems, and fungal bioluminescent systems are natural bioluminescent systems. Since different bioluminescence systems, such as various combinations of luciferin-luciferase pair reactions, have different light emission wavelengths, they benefit industrial applications such as drug discovery, protein-protein interactions, in vivo imaging in small animals, and controlling neurons. Due to the expression of luciferase and easy permeation of luciferin into most cells and tissues, bioluminescence assays are applied nowadays with modern technologies in most cell and tissue types. It is a versatile technique in a variety of biomedical research. Furthermore, there are some investigated blue-sky research projects, such as bioluminescent plants and lamps. This review article is mainly based on the theory of diverse bioluminescence systems and their past, present, and future applications.
Collapse
Affiliation(s)
| | | | - K. Ranganathan
- Department of Botany, University of Jaffna, Jaffna 40000, Sri Lanka
| |
Collapse
|
6
|
Zhu X, Tian Y, He B. Developing an ecofriendly UCST-type enzymatic cascade system for efficient and cost-effective starch solid wastes treatment. ENVIRONMENTAL RESEARCH 2023; 222:115414. [PMID: 36736754 DOI: 10.1016/j.envres.2023.115414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/06/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Enzymatic utilization of starch solid wastes is promising but hindered by its high cost. Enzymes immobilization is one solution; however, the key challenge remains the low mass transfer rate between the solid immobilization system and the solid wastes. Herein, an enzymatic modification strategy was applied instead of the traditional immobilization method. A novel system composed of poly(methacrylic acid), polyacrylic acid, and gelatin was firstly prepared and then used to modify α-amylase and glucoamylase to endow them with upper critical solution temperature (UCST) characteristic. As a result, we found that the wastes can be hydrolyzed efficiently with the modified co-enzymes above UCST and can be easily recovered and separated below UCST, thus the cost of starch wastes treatment can be largely reduced. Besides, the proposed method exhibited excellent environmental-friendly and bio-safety properties. Therefore, this method laid a solid foundation for efficient and cost-effective enzymatic conversion of starch solid wastes.
Collapse
Affiliation(s)
- Xing Zhu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, PR China; The Youth Innovation Team of Shaanxi Universities, Xi'an, 710021, Shaanxi, PR China
| | - Yi Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, PR China
| | - Bin He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, PR China.
| |
Collapse
|
7
|
Azhogina T, Sazykina M, Konstantinova E, Khmelevtsova L, Minkina T, Antonenko E, Sushkova S, Khammami M, Mandzhieva S, Sazykin I. Bioaccessible PAH influence on distribution of antibiotic resistance genes and soil toxicity of different types of land use. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12695-12713. [PMID: 36114974 DOI: 10.1007/s11356-022-23028-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
For a better understanding of the dissemination of antibiotic resistance genes (ARGs) in natural microbial communities, it is necessary to study the factors influencing it. There are not enough studies showing the connection of some pollutants with the dissemination of ARGs and especially few works on the effect of polycyclic aromatic compounds (PAHs) on the spread of resistance in microbiocenosis. In this respect, the aim of the study was to determine the effect of bioaccessible PAHs on soil resistome. The toxicity and the content of bioaccessible PAHs and ARGs were studied in 64 samples of soils of different types of land use in the Rostov Region of Russia. In most soils, a close positive correlation was demonstrated between different ARGs and bioaccessible PAHs with different content of rings in the structure. Six of the seven studied ARGs correlated with the content of 2-, 3-, 4-, 5- or 6-ring PAHs. The greatest number of close correlations was found between the content of PAHs and ARGs in the soils of protected areas, for agricultural purposes, and in soils of hospitals. The diverse composition of microbial communities in these soils might greatly facilitate this process. A close correlation between various toxic effects identified with a battery of whole-cell bacterial biosensors and bioaccessible PAHs of various compositions was established. This correlation showed possible mechanisms of PAHs' influence on microorganisms (DNA damage, oxidative stress, etc.), which led to a significant increase in horizontal gene transfer and spread of some ARGs in soil microbial communities. All this information, taken together, suggests that bioaccessible PAHs can enhance the spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Tatiana Azhogina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - Marina Sazykina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation.
| | - Elizaveta Konstantinova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - Ludmila Khmelevtsova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - Tatiana Minkina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - Elena Antonenko
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - Svetlana Sushkova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - Margarita Khammami
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - Saglara Mandzhieva
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - Ivan Sazykin
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| |
Collapse
|
8
|
Wlodkowic D, Jansen M. High-throughput screening paradigms in ecotoxicity testing: Emerging prospects and ongoing challenges. CHEMOSPHERE 2022; 307:135929. [PMID: 35944679 DOI: 10.1016/j.chemosphere.2022.135929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The rapidly increasing number of new production chemicals coupled with stringent implementation of global chemical management programs necessities a paradigm shift towards boarder uses of low-cost and high-throughput ecotoxicity testing strategies as well as deeper understanding of cellular and sub-cellular mechanisms of ecotoxicity that can be used in effective risk assessment. The latter will require automated acquisition of biological data, new capabilities for big data analysis as well as computational simulations capable of translating new data into in vivo relevance. However, very few efforts have been so far devoted into the development of automated bioanalytical systems in ecotoxicology. This is in stark contrast to standardized and high-throughput chemical screening and prioritization routines found in modern drug discovery pipelines. As a result, the high-throughput and high-content data acquisition in ecotoxicology is still in its infancy with limited examples focused on cell-free and cell-based assays. In this work we outline recent developments and emerging prospects of high-throughput bioanalytical approaches in ecotoxicology that reach beyond in vitro biotests. We discuss future importance of automated quantitative data acquisition for cell-free, cell-based as well as developments in phytotoxicity and in vivo biotests utilizing small aquatic model organisms. We also discuss recent innovations such as organs-on-a-chip technologies and existing challenges for emerging high-throughput ecotoxicity testing strategies. Lastly, we provide seminal examples of the small number of successful high-throughput implementations that have been employed in prioritization of chemicals and accelerated environmental risk assessment.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC, 3083, Australia.
| | - Marcus Jansen
- LemnaTec GmbH, Nerscheider Weg 170, 52076, Aachen, Germany
| |
Collapse
|
9
|
Sazykina M, Barabashin T, Konstantinova E, Al-Rammahi AAK, Pavlenko L, Khmelevtsova L, Karchava S, Klimova M, Mkhitaryan I, Khammami M, Sazykin I. Non-corresponding contaminants in marine surface sediments as a factor of ARGs spread in the Sea of Azov. MARINE POLLUTION BULLETIN 2022; 184:114196. [PMID: 36219972 DOI: 10.1016/j.marpolbul.2022.114196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 09/10/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The present study aims to analyze the level and total toxicity of the most common pollutants in surface sediments and assess their impact on the occurrence of antibiotic resistance genes (ARGs) in the Sea of Azov. Biotesting using the whole-cell bacterial lux-biosensors showed high integral toxicity of surface sediments and the presence of genotoxicants and substances that cause oxidative stress and protein damage. Using cluster analysis, it was shown that the distribution of pollutants in the Sea of Azov depends on the type of surface sediments. The relative abundance and distribution of 14 ARGs in surface sediments were shown. Principle component analyses results suggest that non-corresponding contaminants do not exert direct influence on the ARGs abundance in the surface sediments of the Sea of Azov. Thus, the need to investigate the significance of non-corresponding pollutants in the selection and distribution of ARGs in the aquatic environment remains a pressing problem.
Collapse
Affiliation(s)
- Marina Sazykina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation.
| | - Timofey Barabashin
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation; Azov-Black Sea Branch of Russian Federal Research Institute of Fisheries and Oceanography, 21v Beregovaya St., Rostov-on-Don 344002, Russian Federation
| | | | | | - Liliya Pavlenko
- Azov-Black Sea Branch of Russian Federal Research Institute of Fisheries and Oceanography, 21v Beregovaya St., Rostov-on-Don 344002, Russian Federation
| | - Lyudmila Khmelevtsova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - Shorena Karchava
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - Maria Klimova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - Irina Mkhitaryan
- Azov-Black Sea Branch of Russian Federal Research Institute of Fisheries and Oceanography, 21v Beregovaya St., Rostov-on-Don 344002, Russian Federation
| | - Margarita Khammami
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - Ivan Sazykin
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| |
Collapse
|
10
|
Zhu Y, Elcin E, Jiang M, Li B, Wang H, Zhang X, Wang Z. Use of whole-cell bioreporters to assess bioavailability of contaminants in aquatic systems. Front Chem 2022; 10:1018124. [PMID: 36247665 PMCID: PMC9561917 DOI: 10.3389/fchem.2022.1018124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Water contamination has become increasingly a critical global environmental issue that threatens human and ecosystems’ health. Monitoring and risk assessment of toxic pollutants in water bodies is essential to identifying water pollution treatment needs. Compared with the traditional monitoring approaches, environmental biosensing via whole-cell bioreporters (WCBs) has exhibited excellent capabilities for detecting bioavailability of multiple pollutants by providing a fast, simple, versatile and economical way for environmental risk assessment. The performance of WCBs is determined by its elements of construction, such as host strain, regulatory and reporter genes, as well as experimental conditions. Previously, numerous studies have focused on the design and construction of WCB rather than improving the detection process and commercialization of this technology. For investigators working in the environmental field, WCB can be used to detect pollutants is more important than how they are constructed. This work provides a review of the development of WCBs and a brief introduction to genetic construction strategies and aims to summarize key studies on the application of WCB technology in detection of water contaminants, including organic pollutants and heavy metals. In addition, the current status of commercialization of WCBs is highlighted.
Collapse
Affiliation(s)
- Yi Zhu
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Evrim Elcin
- Department of Agricultural Biotechnology, Division of Enzyme and Microbial Biotechnology, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın, Turkey
| | - Mengyuan Jiang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Xiaokai Zhang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
- *Correspondence: Xiaokai Zhang,
| | - Zhenyu Wang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Ashun E, Kang W, Thapa BS, Gurung A, Rahimnejad M, Jang M, Jeon BH, Kim JR, Oh SE. A novel gas production bioassay of thiosulfate utilizing denitrifying bacteria (TUDB) for the toxicity assessment of heavy metals contaminated water. CHEMOSPHERE 2022; 303:134902. [PMID: 35561773 DOI: 10.1016/j.chemosphere.2022.134902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
This study reports for the first-time the possibility of deploying gas production by thiosulfate utilizing denitrifying bacteria (TUDB) as a proxy to evaluate water toxicity. The test relies on gas production by TUDB due to inhibited metabolic activity in the presence of toxicants. Gas production was measured using a bubble-type respirometer. Optimization studies indicated that 300 mg NO3--N/L, 0.5 mL acclimated culture, and 2100 mg S2O32-/L were the ideal conditions facilitating the necessary volume of gas production for sensitive data generation. Determined EC50 values of the selected heavy metals were: Cr6+, 0.51 mg/L; Ag+, 2.90 mg/L; Cu2+, 2.90 mg/L; Ni2+, 3.60 mg/L; As3+, 4.10 mg/L; Cd2+, 5.56 mg/L; Hg2+, 8.06 mg/L; and Pb2+, 19.3 mg/L. The advantages of this method include operational simplicity through the elimination of cumbersome preprocessing procedures which are used to eliminate interferences caused by turbidity when the toxicity of turbid samples is determined via spectrophotometry.
Collapse
Affiliation(s)
- Ebenezer Ashun
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Gangwon-do, Chuncheon-si, 200-701, Republic of Korea
| | - Woochang Kang
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Gangwon-do, Chuncheon-si, 200-701, Republic of Korea
| | - Bhim Sen Thapa
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Gangwon-do, Chuncheon-si, 200-701, Republic of Korea
| | - Anup Gurung
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Gangwon-do, Chuncheon-si, 200-701, Republic of Korea
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Islamic Republic of Iran
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Gangwon-do, Chuncheon-si, 200-701, Republic of Korea.
| |
Collapse
|
12
|
Yakimov AS, Denisov IA, Bukatin AS, Lukyanenko KA, Belousov KI, Kukhtevich IV, Esimbekova EN, Evstrapov AA, Belobrov PI. Droplet Microfluidic Device for Chemoenzymatic Sensing. MICROMACHINES 2022; 13:1146. [PMID: 35888963 PMCID: PMC9325247 DOI: 10.3390/mi13071146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022]
Abstract
The rapid detection of pollutants in water can be performed with enzymatic probes, the catalytic light-emitting activity of which decreases in the presence of many types of pollutants. Herein, we present a microfluidic system for continuous chemoenzymatic biosensing that generates emulsion droplets containing two enzymes of the bacterial bioluminescent system (luciferase and NAD(P)H:FMN-oxidoreductase) with substrates required for the reaction. The developed chip generates "water-in-oil" emulsion droplets with a volume of 0.1 μL and a frequency of up to 12 drops per minute as well as provides the efficient mixing of reagents in droplets and their distancing. The bioluminescent signal from each individual droplet was measured by a photomultiplier tube with a signal-to-noise ratio of up to 3000/1. The intensity of the luminescence depended on the concentration of the copper sulfate with the limit of its detection of 5 μM. It was shown that bioluminescent enzymatic reactions could be carried out in droplet reactors in dispersed streams. The parameters and limitations required for the bioluminescent reaction to proceed were also studied. Hereby, chemoenzymatic sensing capabilities powered by a droplet microfluidics manipulation technique may serve as the basis for early-warning online water pollution systems.
Collapse
Affiliation(s)
- Anton S. Yakimov
- Laboratory of Physical and Chemical Technologies for the Development of Hard-to-Recover Hydrocarbon Reserves, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | - Ivan A. Denisov
- Laboratory of Physical and Chemical Technologies for the Development of Hard-to-Recover Hydrocarbon Reserves, Siberian Federal University, 660041 Krasnoyarsk, Russia;
- Laboratory of Bioluminescent Biotechnologies, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | - Anton S. Bukatin
- Laboratory of Renewable Energy Sources, Alferov University, 194021 Saint Petersburg, Russia; (A.S.B.); (K.I.B.)
- Institute for Analytical Instrumentation RAS, 194021 Saint Petersburg, Russia;
| | - Kirill A. Lukyanenko
- Laboratory of Bioluminescent Biotechnologies, Siberian Federal University, 660041 Krasnoyarsk, Russia;
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
| | - Kirill I. Belousov
- Laboratory of Renewable Energy Sources, Alferov University, 194021 Saint Petersburg, Russia; (A.S.B.); (K.I.B.)
| | - Igor V. Kukhtevich
- Institute of Silicate Chemistry of RAS, 199034 Saint Petersburg, Russia;
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Elena N. Esimbekova
- Institute of Biophysics SB RAS, 660036 Krasnoyarsk, Russia;
- Department of Biophysics, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | | | - Peter I. Belobrov
- Department of Biophysics, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| |
Collapse
|
13
|
Mora-Garduño JD, Tamayo-Nuñez J, Padilla-Vaca F, Ramírez-Montiel FB, Rangel-Serrano Á, Santos-Escobar F, Gutiérrez-Corona F, Páramo-Pérez I, Anaya-Velázquez F, García-Contreras R, Vargas-Maya NI, Franco B. Chromogenic Escherichia coli reporter strain for screening DNA damaging agents. AMB Express 2022; 12:2. [PMID: 34989906 PMCID: PMC8739417 DOI: 10.1186/s13568-021-01342-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
The presence of pollutants in soil and water has given rise to diverse analytical and biological approaches to detect and measure contaminants in the environment. Using bacterial cells as reporter strains represents an advantage for detecting pollutants present in soil or water samples. Here, an Escherichia coli reporter strain expressing a chromoprotein capable of interacting with soil or water samples and responding to DNA damaging compounds is validated. The reporter strain generates a qualitative signal and is based on the expression of the coral chromoprotein AmilCP under the control of the recA promoter. This strain can be used simply by applying soil or water samples directly and rendering activation upon DNA damage. This reporter strain responds to agents that damage DNA (with an apparent detection limit of 1 µg of mitomycin C) without observable response to membrane integrity damage, protein folding or oxidative stress generating agents, in the latter case, DNA damage was observed. The developed reporter strain reported here is effective for the detection of DNA damaging agents present in soils samples. In a proof-of-concept analysis using soil containing chromium, showing activation at 15.56 mg/L of Cr(VI) present in soil and leached samples and is consistent with Cr(III) toxicity at high concentrations (130 µg). Our findings suggest that chromogenic reporter strains can be applied for simple screening, thus reducing the number of samples requiring analytical techniques.
Collapse
|
14
|
Wlodkowic D, Karpiński TM. Live-Cell Systems in Real-Time Biomonitoring of Water Pollution: Practical Considerations and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:7028. [PMID: 34770335 PMCID: PMC8588540 DOI: 10.3390/s21217028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022]
Abstract
Continuous monitoring and early warning of potential water contamination with toxic chemicals is of paramount importance for human health and sustainable food production. During the last few decades there have been noteworthy advances in technologies for the automated sensing of physicochemical parameters of water. These do not translate well into online monitoring of chemical pollutants since most of them are either incapable of real-time detection or unable to detect impacts on biological organisms. As a result, biological early warning systems have been proposed to supplement conventional water quality test strategies. Such systems can continuously evaluate physiological parameters of suitable aquatic species and alert the user to the presence of toxicants. In this regard, single cellular organisms, such as bacteria, cyanobacteria, micro-algae and vertebrate cell lines, offer promising avenues for development of water biosensors. Historically, only a handful of systems utilising single-cell organisms have been deployed as established online water biomonitoring tools. Recent advances in recombinant microorganisms, cell immobilisation techniques, live-cell microarrays and microfluidic Lab-on-a-Chip technologies open new avenues to develop miniaturised systems capable of detecting a broad range of water contaminants. In experimental settings, they have been shown as sensitive and rapid biosensors with capabilities to detect traces of contaminants. In this work, we critically review the recent advances and practical prospects of biological early warning systems based on live-cell biosensors. We demonstrate historical deployment successes, technological innovations, as well as current challenges for the broader deployment of live-cell biosensors in the monitoring of water quality.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Laboratory, School of Science, RMIT University, Plenty Road, P.O. Box 71, Bundoora, VIC 3083, Australia
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland;
| |
Collapse
|
15
|
The Mode of Action of Cyclic Monoterpenes (-)-Limoneneand (+)-α-Pinene on Bacterial Cells. Biomolecules 2021; 11:biom11060806. [PMID: 34072355 PMCID: PMC8227088 DOI: 10.3390/biom11060806] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 01/16/2023] Open
Abstract
A broad spectrum of volatile organic compounds’ (VOCs’) biological activities has attracted significant scientific interest, but their mechanisms of action remain little understood. The mechanism of action of two VOCs—the cyclic monoterpenes (−)-limonene and (+)-α-pinene—on bacteria was studied in this work. We used genetically engineered Escherichia coli bioluminescent strains harboring stress-responsive promoters (responsive to oxidative stress, DNA damage, SOS response, protein damage, heatshock, membrane damage) fused to the luxCDABE genes of Photorhabdus luminescens. We showed that (−)-limonene induces the PkatG and PsoxS promoters due to the formation of reactive oxygen species and, as a result, causes damage to DNA (SOSresponse), proteins (heat shock), and membrane (increases its permeability). The experimental data indicate that the action of (−)-limonene at high concentrations and prolonged incubation time makes degrading processes in cells irreversible. The effect of (+)-α-pinene is much weaker: it induces only heat shock in the bacteria. Moreover, we showed for the first time that (−)-limonene completely inhibits the DnaKJE–ClpB bichaperone-dependent refolding of heat-inactivated bacterial luciferase in both E. coli wild type and mutant ΔibpB strains. (+)-α-Pinene partially inhibits refolding only in ΔibpB mutant strain.
Collapse
|
16
|
Submicron polymer particles may mask the presence of toxicants in wastewater effluents probed by reporter gene containing bacteria. Sci Rep 2021; 11:7424. [PMID: 33795746 PMCID: PMC8016889 DOI: 10.1038/s41598-021-86672-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/11/2021] [Indexed: 11/08/2022] Open
Abstract
Microplastics are ubiquitous in aquatic systems and break down into submicron particles that can interact with aquatic toxic chemicals. These interactions may affect the detection of toxicants when using bacteria as a biomonitoring tool. This study examined the effects of model polystyrene (PS)-based submicron particles on the detection of aqueous geno- and cytotoxicity by genetically modified bioluminescent (GMB) bacteria. The toxicities were tested in three treated wastewater (TWW) effluents before and after chlorination. The PS plastics included negatively charged sulfate-coated (S-PS) and pristine (P-PS) particles of different sizes (0.1, 0.5, and 1.0 µm) that were present at different concentrations. Chlorinated or not, the S-PS and P-PS particles per se were not toxic to the GMB bacteria. However, exposure of PS particles to TWW effluents can significantly reduce the measured geno- and cytotoxicity. Adsorption of toxic compounds to polymer particles can limit the ability of the bacteria to detect those compounds. This masking effect may be mitigated by TWW chlorination, possibly due to the formation of new toxic material. Due to interactions between toxic TWW constituents and the plastics particles, water samples containing particle-associated contaminants and/or their transformation products may be declared non-toxic, based on bacterial tests as a biomonitoring tool.
Collapse
|
17
|
Bergua JF, Álvarez-Diduk R, Hu L, Hassan AHA, Merkoçi A. Improved Aliivibrio fischeri based-toxicity assay: Graphene-oxide as a sensitivity booster with a mobile-phone application. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124434. [PMID: 33307446 DOI: 10.1016/j.jhazmat.2020.124434] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Recently, many bioluminescence-based applications have arisen in several fields, such as biosensing, bioimaging, molecular biology, and human health diagnosis. Among all bioluminescent organisms, Aliivibrio fischeri (A. fischeri) is a bioluminescent bacterium used to carry out water toxicity assays since the late 1970s. Since then, several commercial A. fischeri-based products have been launched to the market, as these bacteria are considered as a gold standard for water toxicity assessment worldwide. However, the aforementioned commercial products rely on expensive equipment, requiring several reagents and working steps, as well as high-trained personnel to perform the assays and analyze the output data. For these reasons, in this work, we have developed for the first time a mobile-phone-based sensing platform for water toxicity assessment in just 5 min using two widespread pesticides as model analytes. To accomplish this, we have established new methodologies to enhance the bioluminescent signal of A. fischeri based on the bacterial culture in a solid media and/or using graphene oxide. Finally, we have addressed the biocompatibility of graphene oxide to A. fischeri, boosting the sensitivity of the toxicity assays and the bacterial growth of the lyophilized bacterial cultures for more user-friendly storage.
Collapse
Affiliation(s)
- José Francisco Bergua
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Liming Hu
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Abdelrahim H A Hassan
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain; ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
18
|
Sazykin IS, Minkina TM, Khmelevtsova LE, Antonenko EM, Azhogina TN, Dudnikova TS, Sushkova SN, Klimova MV, Karchava SK, Seliverstova EY, Kudeevskaya EM, Konstantinova EY, Khammami MI, Gnennaya NV, Al-Rammahi AAK, Rakin AV, Sazykina MA. Polycyclic aromatic hydrocarbons, antibiotic resistance genes, toxicity in the exposed to anthropogenic pressure soils of the Southern Russia. ENVIRONMENTAL RESEARCH 2021; 194:110715. [PMID: 33444610 DOI: 10.1016/j.envres.2021.110715] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/02/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
The influence of anthropogenic pollution, particularly with polycyclic aromatic hydrocarbons (PAHs) on soil toxicity and spread of antibiotic resistance genes (ARGs) is extremely important nowadays. We studied 20 soil samples from a technogenically polluted site, municipal solid wastes (MSW) landfills, and rural settlements in the southwestern part of the Rostov Region of Russia. A close correlation was established between the results of biosensor testing for integral toxicity, the content of genes for the biodegradation of hydrocarbons, and the concentration of PAHs in soils. The relation between the quantitative content of ARGs and the qualitative and quantitative composition of PAHs has not been registered. Soils subjected to different types of the anthropogenic pressure differed in PAHs composition. The technogenic soils are the most polluted ones. These soils are enriched with 5 ring PAHs and carry the maximum variety of assayed ARGs, despite the fact that they do not receive household or medical waste.
Collapse
Affiliation(s)
- I S Sazykin
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - T M Minkina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - L E Khmelevtsova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - E M Antonenko
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - T N Azhogina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - T S Dudnikova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - S N Sushkova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - M V Klimova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - Sh K Karchava
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - E Yu Seliverstova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - E M Kudeevskaya
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - E Yu Konstantinova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - M I Khammami
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - N V Gnennaya
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - A A K Al-Rammahi
- Technical University Al-Furat Al-Awsat, 70, Hill St., Najaf, 54003, Iraq
| | - A V Rakin
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Bacterial Infections and Zoonoses, 96a, Naumburger St., Jena, D-07743, Germany
| | - M A Sazykina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation.
| |
Collapse
|
19
|
Eom H, Park M, Jang A, Kim S, Oh SE. A simple and rapid algal assay kit to assess toxicity of heavy metal-contaminated water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116135. [PMID: 33290954 DOI: 10.1016/j.envpol.2020.116135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
This study presents a novel algal-based toxicity test suitable for simple and rapid assessment of heavy metal (Hg2+, Cr6+, Cd2+, Pb2+, or As3+)-contaminated water. A closed-system kit-type algal assay was developed using Chlorella vulgaris. Toxicity was assessed by oxygen evolution in the gaseous phase of the assay kits, which was measured via a needle-type oxygen sensor. Initial cell density, light intensity, and exposure time that enabled favorable test performance for the algal assay kits were 103 cells/mL, 250 μmol m-2s-1, and 18 h, respectively. Results from the heavy metal toxicity tests demonstrate that Hg2+, Cr6+, Cd2+, and Pb2+ are more toxic in inhibiting algal photosynthetic activity than As3+. The 18 h half-maximum effective concentrations (EC50) for Hg2+, Cr6+, Cd2+, Pb2+, and As3+ were determined to be 31.3 ± 0.5, 179.6 ± 7.5, 301.3 ± 6.1, 476.1 ± 10.5, and 2184.1 ± 31.1 μg/L, respectively. A strong correlation between oxygen concentrations in the headspace of the assay kits and chlorophyll a production indicates that oxygen evolution in the gaseous phase is able to represent algal photosynthetic activity and serve as the end-point in algal toxicity tests. High test sensitivity and reproducibility as well as an easy test protocol and rapid processing time make the algal assay kit a suitable tool for simple and rapid toxicity testing of heavy metal-contaminated water.
Collapse
Affiliation(s)
- Heonseop Eom
- Department of Biological Environment, Kangwon National University, 1 Gangwondaehakgil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Minseung Park
- EH R&C Co. Ltd, 410 Jeongseojin-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Seunggyu Kim
- Department of Biological Environment, Kangwon National University, 1 Gangwondaehakgil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, 1 Gangwondaehakgil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
20
|
Manivannan B, Massalha N, Halahlih F, Eltzov E, Nguyen TH, Sabbah I, Borisover M. Water toxicity evaluations: Comparing genetically modified bioluminescent bacteria and CHO cells as biomonitoring tools. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110984. [PMID: 32888605 DOI: 10.1016/j.ecoenv.2020.110984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
The use of water for drinking and agriculture requires knowledge of its toxicity. In this study, we compared the use of genetically modified bioluminescent (GMB) bacteria whose luminescence increases in the presence of toxicants and Chinese Hamster Ovary (CHO) cells for the characterization of the toxicity of water samples collected from a lake and streams, hydroponic and aquaponic farms, and a wastewater treatment plant. GMB bacteria were used to probe genotoxicity, cytotoxicity and reactive oxygen species-induced effects in the whole water samples. Unlike GMB bacteria, the use of CHO cells requires XAD resin-based pre-concentration of toxic material present in water samples for the subsequent cytotoxicity assay. In addition to the examination of the toxicity of the water from the different sources, the GMB bacteria were also used to test the XAD extracts diluted to the concentrations causing 50% growth inhibition of the CHO cells. The two biomonitoring tools provided different results when they were used to test the above-mentioned diluted XAD extracts. A pre-concentration procedure based on adsorption by XAD resins with subsequent elution was not sufficient to represent the material responsible for the toxicity of the whole water samples toward the GMB bacteria. Therefore, the use of XAD resin extracts may lead to major underestimates of the toxicity of water samples. Although the toxicity findings obtained using the GMB bacteria and CHO cells may not correlate with each another, the GMB bacteria assay did provide a mechanism-specific biomonitoring tool to probe the toxicity of water samples without a need for the pre-concentration step.
Collapse
Affiliation(s)
- Bhuvaneshwari Manivannan
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, Israel.
| | - Nedal Massalha
- The Institute of Applied Research, The Galilee Society, P.O. Box 437, Shefa-Amr, Israel; Department of Natural Resources & Environmental Management, Faculty of Management, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, 3498838, Israel.
| | - Fares Halahlih
- The Institute of Applied Research, The Galilee Society, P.O. Box 437, Shefa-Amr, Israel.
| | - Evgeni Eltzov
- Institute of Postharvest and Food Science, Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Israel.
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, Safe Global Water Institute, University of Illinois at Urbana-Champaign, USA.
| | - Isam Sabbah
- The Institute of Applied Research, The Galilee Society, P.O. Box 437, Shefa-Amr, Israel; Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College, Karmiel, Israel.
| | - Mikhail Borisover
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, Israel.
| |
Collapse
|
21
|
Monitoring Approaches for Faecal Indicator Bacteria in Water: Visioning a Remote Real-Time Sensor for E. coli and Enterococci. WATER 2020. [DOI: 10.3390/w12092591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A comprehensive review was conducted to assess the current state of monitoring approaches for primary faecal indicator bacteria (FIB) E. coli and enterococci. Approaches were identified and examined in relation to their accuracy, ability to provide continuous data and instantaneous detection results, cost, environmental awareness regarding necessary reagent release or other pollution sources, in situ monitoring capability, and portability. Findings showed that several methods are precise and sophisticated but cannot be performed in real-time or remotely. This is mainly due to their laboratory testing requirements, such as lengthy sample preparations, the requirement for expensive reagents, and fluorescent tags. This study determined that portable fluorescence sensing, combined with advanced modelling methods to compensate readings for environmental interferences and false positives, can lay the foundations for a hybrid FIB sensing approach, allowing remote field deployment of a fleet of networked FIB sensors that can collect high-frequency data in near real-time. Such sensors will support proactive responses to sudden harmful faecal contamination events. A method is proposed to enable the development of the visioned FIB monitoring tool.
Collapse
|
22
|
Abstract
Bacterial luciferase is a flavin-dependent monooxygenase which is remarkable for its distinctive feature in transforming chemical energy to photons of visible light. The bacterial luciferase catalyzes bioluminescent reaction using reduced flavin mononucleotide, long-chain aldehyde and oxygen to yield oxidized flavin, corresponding acid, water and light at λmax around 490nm. The enzyme comprises of two non-identical α and β subunits, where α subunit is a catalytic center and β subunit is crucially required for maintaining catalytic function of the α subunit. The crystal structure with FMN bound and mutagenesis studies have assigned a number of amino acid residues that are important in coordinating critical reactions and stabilizing intermediates to attain optimum reaction efficiency. The enzyme achieves monooxygenation by generating C4a-hydroperoxyflavin intermediate that later changes its protonation status to become C4a-peroxyflavin, which is necessary for the nucleophilic attacking with aldehyde substrate. The decomposing of C4a-peroxyhemiacetal produces excited C4a-hydroxyflavin and acid product. The chemical basis regrading bioluminophore generation in Lux reaction remains an inconclusive issue. However, current data can, at least, demonstrate the involvement of electron transfer to create radical molecules which is the key step in this mechanism. Lux is a self-sufficient bioluminescent system in which all substrates can be recycled and produced by a group of enzymes from the lux operon. This makes Lux distinctively advantageous over other luciferases for reporter enzyme application. The progression of understanding of Lux catalysis is beneficial to improve light emitting efficiency in order to expand the robustness of Lux application.
Collapse
|
23
|
Eom H, Hwang JH, Hassan SH, Joo JH, Hur JH, Chon K, Jeon BH, Song YC, Chae KJ, Oh SE. Rapid detection of heavy metal-induced toxicity in water using a fed-batch sulfur-oxidizing bacteria (SOB) bioreactor. J Microbiol Methods 2019; 161:35-42. [DOI: 10.1016/j.mimet.2019.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/04/2019] [Accepted: 04/07/2019] [Indexed: 02/09/2023]
|
24
|
Hassan SHA, Gurung A, Kang WC, Shin BS, Rahimnejad M, Jeon BH, Kim JR, Oh SE. Real-time monitoring of water quality of stream water using sulfur-oxidizing bacteria as bio-indicator. CHEMOSPHERE 2019; 223:58-63. [PMID: 30769290 DOI: 10.1016/j.chemosphere.2019.01.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
In aquatic ecosystems, real-time water-quality (WQ) biomonitoring has become the most effective technology for monitoring toxic events by using living organisms as a biosensor. In this study, an online WQ monitoring system using sulfur oxidizing bacteria (SOB) was tested to monitor WQ changes in real-time in natural stream water. The WQ monitoring system consisted of three SOB reactors (one continuous and two semi-continuous mode reactors). The SOB system did not detect any toxicity in relatively-unpolluted, natural stream water when operated for more than six months. When diluted swine wastewater (50:1) was added to the influent of the reactors, the system detected toxic conditions in both the continuous and semi-continuous operational modes, showing 90% inhibition of SOB activity within 1 h of operation. The addition of 30 mg/L NO2--N or 2 mg/L of Cr6+ to the influents of SOB reactors resulted in the complete inhibition of the SOB activity within 1-2 h. The results demonstrated the successful application of an SOB bioassay as an online toxicity monitoring system for detecting pollutants from stream or river waters.
Collapse
Affiliation(s)
- Sedky H A Hassan
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-2-dong, Gangwondo, Chuncheon, 200-701, South Korea; Botany & Microbiology Department, Faculty of Science, New Valley University, 72511, El-Kharga, Egypt
| | - Anup Gurung
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-2-dong, Gangwondo, Chuncheon, 200-701, South Korea
| | - Woo-Chang Kang
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-2-dong, Gangwondo, Chuncheon, 200-701, South Korea
| | - Beom-Soo Shin
- Department of Biosystems Engineering, Kangwon National University, Gangwon-do, South Korea
| | - Mostafa Rahimnejad
- Biotechnology Research Lab., Faculty of Chemical Engineering, Noshirvani University, Babol, Iran
| | - Byong-Hun Jeon
- Department of Natural Resources and Environment Engineering, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Jung Rae Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-2-dong, Gangwondo, Chuncheon, 200-701, South Korea.
| |
Collapse
|
25
|
Yang M, Ren B, Qiao L, Ren B, Hu Y, Zhao R, Ren Z, Du J. Behavior responses of zebrafish (Danio rerio) to aquatic environmental stresses in the characteristic of circadian rhythms. CHEMOSPHERE 2018; 210:129-138. [PMID: 29986218 DOI: 10.1016/j.chemosphere.2018.07.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
As behavior shows a distinct circadian rhythm, it is hypothesized that circadian rhythms based on zebrafish (Danio rerio) behavior responses could be affected by contaminants in this study, and then the behavior strength of zebrafish exposed to 0.005 mg/L Cadmium chloride (CdCl2), 0.01 mg/L Dibasic Sodium Phosphate (Na2HPO4), 0.002 mg/L deltamethrin, and 0.003 mg/L atrazine for 6 days is used to illustrate the possibility of behavior circadian rhythms as an indicator in the environmental stress assessment. Statistical analysis with p < 0.01 shows that a clear difference between average values of BS during dark period (AVD) and those during light period (AVL) could be observed, and 24 h circadian rhythms do exist in zebrafish behavior responses. Both BS values and circadian rhythms of zebrafish can be affected in the aspect of periodicity with clear time delay, which were 1 h delay in CdCl2, 4 h delay in Na2HPO4, 4 h delay in deltamethrin, and 1 h delay in atrazine. Behavior circadian rhythms were disturbed according to the repetitive cycles after autocorrelation analysis, and the toxic effects of different chemicals could be reflected by the profiles of the Self-Organizing Map (SOM), which indicated the circadian rhythm disorder in different degrees. These results deduced from the statistical analysis, autocorrelation and SOM strongly supported that circadian rhythms based on zebrafish BS could be used as an indicator in the environmental stress assessment.
Collapse
Affiliation(s)
- Meiyi Yang
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Baigang Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, Shandong, China; School of Physics and Electronic Science, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Linlin Qiao
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Baixiang Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Yongyuan Hu
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Ruibin Zhao
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, Shandong, China.
| | - Jun Du
- School of Physics and Electronic Science, Shandong Normal University, Ji'nan 250014, Shandong, China
| |
Collapse
|
26
|
da Silva LFBA, Yang Z, Pires NMM, Dong T, Teien HC, Storebakken T, Salbu B. Monitoring Aquaculture Water Quality: Design of an Early Warning Sensor with Aliivibrio fischeri and Predictive Models. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2848. [PMID: 30158465 PMCID: PMC6164392 DOI: 10.3390/s18092848] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 11/17/2022]
Abstract
A novel toxicity-warning sensor for water quality monitoring in recirculating aquaculture systems (RAS) is presented. The design of the sensor system mainly comprises a whole-cell biosensor. Aliivibrio fischeri, a luminescent bacterium widely used in toxicity analysis, was tested for a mixture of known fish-health stressors, namely nitrite, un-ionized ammonia, copper, aluminum and zinc. Two toxicity predictive models were constructed. Correlation, root mean squared error, relative error and toxic behavior were analyzed. The linear concentration addition (LCA) model was found suitable to ally with a machine learning algorithm for prediction of toxic events, thanks to additive behavior near the limit concentrations for these stressors, with a root-mean-squared error (RMSE) of 0.0623, and a mean absolute error of 4%. The model was proved to have a smaller relative deviation than other methods described in the literature. Moreover, the design of a novel microfluidic chip for toxicity testing is also proposed, which is to be integrated in a fluidic system that functions as a bypass of the RAS tank to enable near-real time monitoring. This chip was tested with simulated samples of RAS water spiked with zinc, with an EC50 of 6,46E-7 M. Future work will be extended to the analysis of other stressors with the novel chip.
Collapse
Affiliation(s)
- Luís F B A da Silva
- Institute of Applied Micro-Nano Science and Technology-IAMNST, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Chongqing Engineering Laboratory for Detection, Control and Integrated System, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
- Department of Microsystems-IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway.
| | - Zhaochu Yang
- Institute of Applied Micro-Nano Science and Technology-IAMNST, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Chongqing Engineering Laboratory for Detection, Control and Integrated System, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
| | - Nuno M M Pires
- Institute of Applied Micro-Nano Science and Technology-IAMNST, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Chongqing Engineering Laboratory for Detection, Control and Integrated System, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
- Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Tao Dong
- Institute of Applied Micro-Nano Science and Technology-IAMNST, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Chongqing Engineering Laboratory for Detection, Control and Integrated System, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
| | - Hans-Christian Teien
- Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Trond Storebakken
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway.
| | - Brit Salbu
- Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway.
| |
Collapse
|
27
|
Hurtado-Gallego J, Martín-Betancor K, Rodea-Palomares I, Leganés F, Rosal R, Fernández-Piñas F. Two novel cyanobacterial bioluminescent whole-cell bioreporters based on superoxide dismutases MnSod and FeSod to detect superoxide anion. CHEMOSPHERE 2018; 201:772-779. [PMID: 29550571 DOI: 10.1016/j.chemosphere.2018.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/13/2018] [Accepted: 03/03/2018] [Indexed: 06/08/2023]
Abstract
This work describes the construction of two novel self-luminescent bioreporter strains of the cyanobacterium Nostoc sp. PCC 7120 by fusing the promoter region of the sodA and sodB genes (encoding the superoxide dismutases MnSod and FeSod, respectively) to luxCDABE from Photorhabdus luminescens aimed at detecting pollutants that generate reactive oxygen species (ROS), particularly O2-. Bioreporters were tested against methyl viologen (MV) as the inducer of superoxide anion (O2-). Both bioreporters were specific for O2- and Limits of detection (LODs) and Maximum Permissive Concentrations (MPCs) were calculated: Nostoc sp. PCC 7120 pBG2154 (sodA) had a range of detection from 400 to 1000 pM of MV and for Nostoc sp. PCC 7120 pBG2165 (sodB) the range of detection was from 500 to 1800 pM of MV after 5 h-exposure. To further validate the bioreporters, they were tested with the emerging pollutant Triclosan which induced bioluminescence in both strains. Furthermore, the bioreporters performance was tested in two real environmental samples with different water matrix complexity, spiked with MV. Both bioreporters were induced by O2- in these environmental samples. In the case of the river water sample, the amount of bioavailable MV as calculated from the bioreporters output was similar to that nominally added. For the waste water sample, the bioavailable MV concentration detected by the bioreporters was one order of magnitude lower than nominal. These differences could be due to MV complexation with organic matter and/or co-occurring organic contaminants. These results confirm their high sensitivity to O2- and their suitability to detect oxidative stress-generating pollutants in fresh-waters.
Collapse
Affiliation(s)
- J Hurtado-Gallego
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - K Martín-Betancor
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - I Rodea-Palomares
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - F Leganés
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - R Rosal
- Departamento de Ingeniería Química, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - F Fernández-Piñas
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
28
|
Nakamura H. Current status of water environment and their microbial biosensor techniques - Part II: Recent trends in microbial biosensor development. Anal Bioanal Chem 2018; 410:3967-3989. [PMID: 29736704 DOI: 10.1007/s00216-018-1080-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/07/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022]
Abstract
In Part I of the present review series, I presented the current state of the water environment by focusing on Japanese cases and discussed the need to further develop microbial biosensor technologies for the actual water environment. I comprehensively present trends after approximately 2010 in microbial biosensor development for the water environment. In the first section, after briefly summarizing historical studies, recent studies on microbial biosensor principles are introduced. In the second section, recent application studies for the water environment are also introduced. Finally, I conclude the present review series by describing the need to further develop microbial biosensor technologies. Graphical abstract Current water pollution indirectly occurs by anthropogenic eutrophication (Part I). Recent trends in microbial biosensor development for water environment are described in part II of the present review series.
Collapse
Affiliation(s)
- Hideaki Nakamura
- Department of Liberal Arts, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
29
|
Woutersen M, van der Gaag B, Abrafi Boakye A, Mink J, Marks RS, Wagenvoort AJ, Ketelaars HAM, Brouwer B, Heringa MB. Development and Validation of an On-Line Water Toxicity Sensor with Immobilized Luminescent Bacteria for On-Line Surface Water Monitoring. SENSORS 2017; 17:s17112682. [PMID: 29165334 PMCID: PMC5713466 DOI: 10.3390/s17112682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 11/30/2022]
Abstract
Surface water used for drinking water production is frequently monitored in The Netherlands using whole organism biomonitors, with for example Daphnia magna or Dreissena mussels, which respond to changes in the water quality. However, not all human-relevant toxic compounds can be detected by these biomonitors. Therefore, a new on-line biosensor has been developed, containing immobilized genetically modified bacteria, which respond to genotoxicity in the water by emitting luminescence. The performance of this sensor was tested under laboratory conditions, as well as under field conditions at a monitoring station along the river Meuse in The Netherlands. The sensor was robust and easy to clean, with inert materials, temperature control and nutrient feed for the reporter organisms. The bacteria were immobilized in sol-gel on either an optical fiber or a glass slide and then continuously exposed to water. Since the glass slide was more sensitive and robust, only this setup was used in the field. The sensor responded to spikes of genotoxic compounds in the water with a minimal detectable concentration of 0.01 mg/L mitomycin C in the laboratory and 0.1 mg/L mitomycin C in the field. With further optimization, which should include a reduction in daily maintenance, the sensor has the potential to become a useful addition to the currently available biomonitors.
Collapse
Affiliation(s)
- Marjolijn Woutersen
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | | | - Afua Abrafi Boakye
- PAREXEL International, The Quays, 101-105 Oxford Rd, Uxbridge UB8 1LZ, UK.
| | - Jan Mink
- VTEC Lasers & Sensors, Kastanjelaan 400, 5616 LZ Eindhoven, The Netherlands.
| | - Robert S Marks
- Department of Biotechnology Engineering, Faculty of Engineering Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
- The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the 6egev, Beer-Sheva 84105, Israel.
| | | | - Henk A M Ketelaars
- Evides Water Company, Schaardijk 150, 3063 NH Rotterdam, The Netherlands.
| | - Bram Brouwer
- Vrije Universiteit Faculty of Earth & Life Sciences, Department of Animal Ecology, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
- BioDectection Systems, Science Park 406, 1089 XH Amsterdam, The Netherlands.
| | - Minne B Heringa
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| |
Collapse
|
30
|
Yang SH, Cheng KC, Liao VHC. A novel approach for rapidly and cost-effectively assessing toxicity of toxic metals in acidic water using an acidophilic iron-oxidizing biosensor. CHEMOSPHERE 2017; 186:446-452. [PMID: 28806672 DOI: 10.1016/j.chemosphere.2017.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/29/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Contamination by heavy metals and metalloids is a serious environmental and health concern. Acidic wastewaters are often associated with toxic metals which may enter and spread into agricultural soils. Several biological assays have been developed to detect toxic metals; however, most of them can only detect toxic metals in a neutral pH, not in an acidic environment. In this study, an acidophilic iron-oxidizing bacterium (IOB) Strain Y10 was isolated, characterized, and used to detect toxic metals toxicity in acidic water at pH 2.5. The colorimetric acidophilic IOB biosensor was based on the inhibition of the iron oxidizing ability of Strain Y10, an acidophilic iron-oxidizing bacterium, by metals toxicity. Our results showed that Strain Y10 is acidophilic iron-oxidizing bacterium. Thiobacillus caldus medium (TCM) (pH 2.5) supplied with both S4O62- and glucose was the optimum growth medium for Strain Y10. The optimum temperature and pH for the growth of Strain Y10 was 45 °C and pH 2.5, respectively. Our study demonstrates that the color-based acidophilic IOB biosensor can be semi-quantitatively observed by eye or quantitatively measured by spectrometer to detect toxicity from multiple toxic metals at pH 2.5 within 45 min. Our study shows that monitoring toxic metals in acidic water is possible by using the acidophilic IOB biosensor. Our study thus provides a novel approach for rapid and cost-effective detection of toxic metals in acidic conditions that can otherwise compromise current methods of chemical analysis. This method also allows for increased efficiency when screening large numbers of environmental samples.
Collapse
Affiliation(s)
- Shih-Hung Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1 Roosevelt Road, Sec. 4, Taipei, 106, Taiwan, ROC
| | - Kuo-Chih Cheng
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1 Roosevelt Road, Sec. 4, Taipei, 106, Taiwan, ROC
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1 Roosevelt Road, Sec. 4, Taipei, 106, Taiwan, ROC.
| |
Collapse
|
31
|
New methodologies in screening of antibiotic residues in animal-derived foods: Biosensors. Talanta 2017; 175:435-442. [PMID: 28842013 DOI: 10.1016/j.talanta.2017.07.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/15/2017] [Accepted: 07/13/2017] [Indexed: 01/05/2023]
Abstract
Antibiotics are leading medicine asset for fighting against microbial infection, but also one of the important causes of death worldwide. Many antibiotics used as therapeutics and growth promotion agents in animals can lead to antibiotic residues in animal-derived food which harm the health of people. Hence, it is vital to screen antibiotic residues in animal derived foods. Typical methods for screening antibiotic residues are based on microbiological growth inhibition and immunological analyses. However these two methods have some disadvantages, such as poor sensitive, lack of specificity and etc. Therefore, it is necessary to develop simple, more efficient and high sensitive screening methods of antibiotic residues. These assays have been introduced for the screening of numerous food samples. Biosensors are emerging methods, applied in screening antibiotic residues in animal-derived foods. Two types of biosensors, whole-cell based biosensors and surface plasmon resonance-based sensors have been extensively used. Their advantages include portability, small sample requirement, high sensitivity and good specificity over the traditional screening methods.
Collapse
|
32
|
Balabanov VP, Khrulnova SA, Kotova VY, Zavilgelsky GB. Ammonium perchlorate detection in natural environments using specific lux biosensors. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2017. [DOI: 10.1134/s1990793117040133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Wakuri S, Yamakage K, Kazuki Y, Kazuki K, Oshimura M, Aburatani S, Yasunaga M, Nakajima Y. Correlation between luminescence intensity and cytotoxicity in cell-based cytotoxicity assay using luciferase. Anal Biochem 2017; 522:18-29. [PMID: 28111305 DOI: 10.1016/j.ab.2017.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
Abstract
The luciferase reporter assay has become one of the conventional methods for cytotoxicity evaluation. Typically, the decrease of luminescence expressed by a constitutive promoter is used as an index of cytotoxicity. However, to our knowledge, there have been no reports of the correlation between cytotoxicity and luminescence intensity. In this study, to accurately verify the correlation between them, beetle luciferase was stably expressed in human hepatoma HepG2 cells harboring the multi-integrase mouse artificial chromosome vector. We showed that the cytotoxicity assay using luciferase does not depend on the stability of luciferase protein and the kind of constitutive promoter. Next, HepG2 cells in which green-emitting beetle luciferase was expressed under the control of CAG promoter were exposed to 58 compounds. The luminescence intensity and cytotoxicity curves of cells exposed to 48 compounds showed similar tendencies, whereas those of cells exposed to 10 compounds did not do so, although the curves gradually approached each other with increasing exposure time. Finally, we demonstrated that luciferase expressed under the control of a constitutive promoter can be utilized both as an internal control reporter for normalizing a test reporter and for monitoring cytotoxicity when two kinds of luciferases are simultaneously used in the cytotoxicity assay.
Collapse
Affiliation(s)
- S Wakuri
- Hatano Research Institute, Food and Drug Safety Center, Hadano, Kanagawa 257-8523, Japan
| | - K Yamakage
- Hatano Research Institute, Food and Drug Safety Center, Hadano, Kanagawa 257-8523, Japan
| | - Y Kazuki
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori 683-8503, Japan; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori 683-8503, Japan
| | - K Kazuki
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori 683-8503, Japan
| | - M Oshimura
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori 683-8503, Japan
| | - S Aburatani
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Aomi, Tokyo 135-0064, Japan
| | - M Yasunaga
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | - Y Nakajima
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori 683-8503, Japan; Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan.
| |
Collapse
|
34
|
Roggo C, van der Meer JR. Miniaturized and integrated whole cell living bacterial sensors in field applicable autonomous devices. Curr Opin Biotechnol 2017; 45:24-33. [PMID: 28088093 DOI: 10.1016/j.copbio.2016.11.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 11/19/2022]
Abstract
Live-cell based bioreporters are increasingly being deployed in microstructures, which facilitates their handling and permits the development of instruments that could perform autonomous environmental monitoring. Here we review recent developments of on-chip integration of live-cell bioreporters, the coupling of their reporter signal to the devices, their longer term preservation and multi-analyte capacity. We show examples of instruments that have attempted to fully integrate bioreporters as their sensing elements.
Collapse
Affiliation(s)
- Clémence Roggo
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
35
|
Prévéral S, Brutesco C, Descamps ECT, Escoffier C, Pignol D, Ginet N, Garcia D. A bioluminescent arsenite biosensor designed for inline water analyzer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25-32. [PMID: 26769474 DOI: 10.1007/s11356-015-6000-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
Whole-cell biosensors based on the reporter gene system can offer rapid detection of trace levels of organic or metallic compounds in water. They are well characterized in laboratory conditions, but their transfer into technological devices for the surveillance of water networks remains at a conceptual level. The development of a semi-autonomous inline water analyzer stumbles across the conservation of the bacterial biosensors over a period of time compatible with the autonomy requested by the end-user while maintaining a satisfactory sensitivity, specificity, and time response. We focused here on assessing the effect of lyophilization on two biosensors based on the reporter gene system and hosted in Escherichia coli. The reporter gene used here is the entire bacterial luciferase lux operon (luxCDABE) for an autonomous bioluminescence emission without the need to add any substrate. In the cell-survival biosensor that is used to determine the overall fitness of the bacteria when mixed with the water sample, lux expression is driven by a constitutive E. coli promoter PrpoD. In the arsenite biosensor, the arsenite-inducible promoter P ars involved in arsenite resistance in E. coli controls lux expression. Evaluation of the shelf life of these lyophilized biosensors kept at 4 °C over a year evidenced that about 40 % of the lyophilized cells can be revived in such storage conditions. The performances of the lyophilized biosensor after 7 months in storage are maintained, with a detection limit of 0.2 μM arsenite for a response in about an hour with good reproducibility. These results pave the way to the use in tandem of both biosensors (one for general toxicity and one for arsenite contamination) as consumables of an autonomous analyzer in the field.
Collapse
Affiliation(s)
- Sandra Prévéral
- CEA, DSV, IBEB, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265 Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, BVME UMR7265, Marseille, F-13284, France
| | - Catherine Brutesco
- CEA, DSV, IBEB, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265 Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, BVME UMR7265, Marseille, F-13284, France
| | - Elodie C T Descamps
- CEA, DSV, IBEB, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265 Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, BVME UMR7265, Marseille, F-13284, France
| | - Camille Escoffier
- CEA, DSV, IBEB, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265 Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, BVME UMR7265, Marseille, F-13284, France
| | - David Pignol
- CEA, DSV, IBEB, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265 Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, BVME UMR7265, Marseille, F-13284, France
| | - Nicolas Ginet
- CEA, DSV, IBEB, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, F-13108, France.
- CNRS, UMR 7265 Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France.
- Aix-Marseille Université, BVME UMR7265, Marseille, F-13284, France.
| | - Daniel Garcia
- CEA, DSV, IBEB, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265 Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, BVME UMR7265, Marseille, F-13284, France
| |
Collapse
|
36
|
van der Meer JR. Towards improved biomonitoring tools for an intensified sustainable multi-use environment. Microb Biotechnol 2016; 9:658-65. [PMID: 27468753 PMCID: PMC4993185 DOI: 10.1111/1751-7915.12395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 07/10/2016] [Indexed: 11/28/2022] Open
Abstract
The increasing use of our environment for multiple contrasting activities (e.g. fisheries, tourism) will have to be accompanied by improved monitoring of environmental quality, to avoid transboundary conflicts and ensure long-term sustainable intensified usage. Biomonitoring approaches are appropriate for this, since they can integrate biological effects of environmental exposure rather than measure individual compound concentrations. Recent advances in biomonitoring concepts and tools focus on single-cell assays and purified biological components that can be miniaturized and integrated in automated systems. Despite these advances, we are still very far from being able to deploy bioassays routinely in environmental monitoring, mostly because of lack of experience in interpreting responses and insufficient robustness of the biosensors for their environmental application. Further future challenges include broadening the spectrum of detectable compounds by biosensors, accelerate response times and combining sample pretreatment strategies with bioassays.
Collapse
|
37
|
Bittel M, Cordella CBY, Assaf A, Jouanneau S, Durand MJ, Thouand G. Potential of Raman Spectroscopy To Monitor Arsenic Toxicity on Bacteria: Insights toward Multiparametric Bioassays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12324-12332. [PMID: 26398864 DOI: 10.1021/acs.est.5b03013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the field of toxicological bioassays, the latest progress in Raman spectroscopy opens new research perspectives on a fast method of observing metabolic responses against toxic agents. This technique offers a multiparametric approach, providing an overview of the physiological changes that are caused by pollutants. However, physiological spectral fingerprints require complex chemometric methods for proper analysis. In this study, particular attention has been given to the elaboration of an "aberrant spectra" detection strategy to highlight the effects of arsenic on the bacteria Escherichia coli. This strategy significantly improved spectra classification, consistent with a dose-response effect of the four tested concentrations of the metal. Indeed, the correct classification score of the spectra increased from 88 to more than 99%. The exposure time effect has also been investigated. The fine analysis of Raman spectroscopy fingerprints enabled the design of different "spectral signatures", highlighting early and late effects of arsenic on bacteria. The observed variations are in agreement with the expected toxicity and encourage the use of Raman spectroscopy for toxic element detection.
Collapse
Affiliation(s)
- M Bittel
- UMR CNRS GEPEA 6144 CBAC, University of Nantes , 18 Boulevard Gaston Defferre, CS 50020, 85035 La Roche-sur-Yon, France
- Tronico-Vigicell , 18 Boulevard Gaston Defferre, 85035 La Roche-sur-Yon, France
| | - C B Y Cordella
- INRA UMR 1145 GENIAL, Laboratoire de Chimie Analytique , 16 Rue Claude Bernard, 75005 Paris, France
| | - A Assaf
- UMR CNRS GEPEA 6144 CBAC, University of Nantes , 18 Boulevard Gaston Defferre, CS 50020, 85035 La Roche-sur-Yon, France
| | - S Jouanneau
- UMR CNRS GEPEA 6144 CBAC, University of Nantes , 18 Boulevard Gaston Defferre, CS 50020, 85035 La Roche-sur-Yon, France
| | - M J Durand
- UMR CNRS GEPEA 6144 CBAC, University of Nantes , 18 Boulevard Gaston Defferre, CS 50020, 85035 La Roche-sur-Yon, France
| | - G Thouand
- UMR CNRS GEPEA 6144 CBAC, University of Nantes , 18 Boulevard Gaston Defferre, CS 50020, 85035 La Roche-sur-Yon, France
| |
Collapse
|
38
|
Pospíšilová M, Kuncová G, Trögl J. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors. SENSORS (BASEL, SWITZERLAND) 2015; 15:25208-59. [PMID: 26437407 PMCID: PMC4634516 DOI: 10.3390/s151025208] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 02/06/2023]
Abstract
This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 μm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.
Collapse
Affiliation(s)
- Marie Pospíšilová
- Czech Technical University, Faculty of Biomedical Engeneering, Nám. Sítná 3105, 27201 Kladno, Czech Republic.
| | - Gabriela Kuncová
- Institute of Chemical Process Fundamentals, ASCR, Rozvojová 135, 16500 Prague, Czech Republic.
| | - Josef Trögl
- Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, KrálovaVýšina 3132/7, 40096 Ústí nad Labem, Czech Republic.
| |
Collapse
|
39
|
Zavil’gel’skii GB, Kotova VY, Mironov AS. Lux biosensors for antibiotic detection: The contribution from reactive oxygen species to the bactericidal activity of antibiotics. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2015. [DOI: 10.1134/s1990793115030239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Preconcentration and detection of mercury with bioluminescent bioreporter E. coli ARL1. Appl Microbiol Biotechnol 2015; 99:8793-802. [DOI: 10.1007/s00253-015-6747-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/31/2015] [Accepted: 06/02/2015] [Indexed: 10/23/2022]
|
41
|
Jia K, Ionescu RE. Measurement of Bacterial Bioluminescence Intensity and Spectrum: Current Physical Techniques and Principles. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 154:19-45. [PMID: 25981856 DOI: 10.1007/10_2015_324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
: Bioluminescence is light production by living organisms, which can be observed in numerous marine creatures and some terrestrial invertebrates. More specifically, bacterial bioluminescence is the "cold light" produced and emitted by bacterial cells, including both wild-type luminescent and genetically engineered bacteria. Because of the lively interplay of synthetic biology, microbiology, toxicology, and biophysics, different configurations of whole-cell biosensors based on bacterial bioluminescence have been designed and are widely used in different fields, such as ecotoxicology, food toxicity, and environmental pollution. This chapter first discusses the background of the bioluminescence phenomenon in terms of optical spectrum. Platforms for bacterial bioluminescence detection using various techniques are then introduced, such as a photomultiplier tube, charge-coupled device (CCD) camera, micro-electro-mechanical systems (MEMS), and complementary metal-oxide-semiconductor (CMOS) based integrated circuit. Furthermore, some typical biochemical methods to optimize the analytical performances of bacterial bioluminescent biosensors/assays are reviewed, followed by a presentation of author's recent work concerning the improved sensitivity of a bioluminescent assay for pesticides. Finally, bacterial bioluminescence as implemented in eukaryotic cells, bioluminescent imaging, and cancer cell therapies is discussed.
Collapse
Affiliation(s)
- Kun Jia
- Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institut Charles Delaunay, Université de Technologie de Troyes, UMR CNRS 6281, 12 rue Marie Curie CS 42060, TROYES, 10004 Cedex, France
| | - Rodica Elena Ionescu
- Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institut Charles Delaunay, Université de Technologie de Troyes, UMR CNRS 6281, 12 rue Marie Curie CS 42060, TROYES, 10004 Cedex, France.
| |
Collapse
|
42
|
Sazykin IS, Sazykina MA, Khammami MI, Kostina NV, Khmelevtsova LE, Trubnik RG. Distribution of polycyclic aromatic hydrocarbons in surface sediments of lower reaches of the Don River (Russia) and their ecotoxicologic assessment by bacterial lux-biosensors. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:277. [PMID: 25893752 DOI: 10.1007/s10661-015-4406-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 03/04/2015] [Indexed: 06/04/2023]
Abstract
The lower Don River in the south of the European part of Russia was studied to determine the concentration, spatial distribution, and sources of 19 polycyclic aromatic hydrocarbons (PAHs) in surface sediments. Total PAH concentrations ranged from 14.2 to 529 ng/g-dw. Sedimentary PAH concentrations were higher in the delta of the Don River and in the estuaries of rivers Sal and Aksai compared to the main channel of the Don. Analysis of the PAHs sources showed that PAHs came mostly from pyrogenic sources as a result of incomplete combustion of coal. Bioluminescent bacterial sensors were used for ecotoxicological assessment of surface sediments. The surface sediments of all the investigated stations of lower reaches of the Don River were toxic and genotoxic. The maximum concentration of PAHs and the high genotoxicity effect caused by the presence of genotoxicants were found in the surface sediments of the same stations. Significant correlations between the concentrations of individual PAHs in sediments and the genotoxic effect were found. Correlation between genotoxicity of surface sediments and concentration of phenanthrene and benz(k)fluoranthene was the most significant both with and without application of metabolic activation.
Collapse
Affiliation(s)
- I S Sazykin
- Southern Federal University, Rostov-on-Don, Russia
| | | | | | | | | | | |
Collapse
|
43
|
Xiao Y, De Araujo C, Sze CC, Stuckey DC. Toxicity measurement in biological wastewater treatment processes: a review. JOURNAL OF HAZARDOUS MATERIALS 2015; 286:15-29. [PMID: 25550080 DOI: 10.1016/j.jhazmat.2014.12.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 12/09/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Biological wastewater treatment processes (WWTPs), by nature of their reliance on biological entities to degrade organics and sometimes remove nutrients, are vulnerable to toxicants present in their influent. Various toxicity measurement methods have been adopted for biological WWTPs, but most are performed off-line, and cannot be adapted to on-line monitoring tools to provide an early warning for WWTP operators. However, the past decade has seen a rapid expansion in the research and development of biosensors that can be used for toxicity assessment of aquatic environments. Some of these biosensors have also been shown to be effective for use in biological WWTPs. Nevertheless, more research is needed to: examine the sensitivity of assays and sensors based on single organisms to various toxicants and develop a matrix of biosensors or a biosensor incorporating multiple organisms that can protect WWTPs; test the micro fuel cell (MFC)-based biosensors with real wastewaters and correlate the results with the well-established oxygen uptake rate (OUR)-based or CH4-based toxicity assay; and, develop advanced data processing methods for interpreting the results of on-line toxicity sensors in real WWTPs to reduce the noise due to the normal fluctuation in influent quality and quantity.
Collapse
Affiliation(s)
- Yeyuan Xiao
- Advanced Environmental Biotechnology Centre (AEBC), Nanyang Environment and Water Research Centre (NEWRI), Nanyang Technological University,Singapore 637141, Singapore
| | - Cecilia De Araujo
- Advanced Environmental Biotechnology Centre (AEBC), Nanyang Environment and Water Research Centre (NEWRI), Nanyang Technological University,Singapore 637141, Singapore
| | - Chun Chau Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 637141, Singapore
| | - David C Stuckey
- Advanced Environmental Biotechnology Centre (AEBC), Nanyang Environment and Water Research Centre (NEWRI), Nanyang Technological University,Singapore 637141, Singapore; Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
44
|
Tsai HF, Tsai YC, Yagur-Kroll S, Palevsky N, Belkin S, Cheng JY. Water pollutant monitoring by a whole cell array through lens-free detection on CCD. LAB ON A CHIP 2015; 15:1472-1480. [PMID: 25608666 DOI: 10.1039/c4lc01189a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Environmental contamination has become a serious problem to human and environmental health, as exposure to a wide range of possible contaminants continuously increases due to industrial and agricultural activities. Whole cell sensors have been proposed as a powerful tool to detect class-specific toxicants based upon their biological activity and bioavailability. We demonstrated a robust toxicant detection platform based on a bioluminescence whole cell sensor array biochip (LumiChip). LumiChip harbors an integrated temperature control and a 16-member sensor array, as well as a simple but highly efficient luminescence collection setup. On LumiChip, samples were infused in an oxygen-permeable microfluidic flow channel to reach the sensor array. Time-lapse changes in bioluminescence emitted by the array members were measured on a single window-removed linear charge-coupled device (CCD) commonly used in commercial industrial process control or in barcode readers. Removal of the protective window on the linear CCD allowed lens-free direct interfacing of LumiChip to the CCD surface for measurement with high light collection efficiency. Bioluminescence induced by simulated contamination events was detected within 15 to 45 minutes. The portable LumiSense system utilizing the linear CCD in combination with the miniaturized LumiChip is a promising potential platform for on-site environmental monitoring of toxicant contamination.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | | | | | | | | | | |
Collapse
|
45
|
Adeniran A, Sherer M, Tyo KE. Yeast-based biosensors: design and applications. FEMS Yeast Res 2014; 15:1-15. [DOI: 10.1111/1567-1364.12203] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/19/2014] [Accepted: 08/19/2014] [Indexed: 12/30/2022] Open
Affiliation(s)
- Adebola Adeniran
- Department of Chemical & Biological Engineering; Northwestern University; Evanston IL USA
| | - Michael Sherer
- Department of Chemical & Biological Engineering; Northwestern University; Evanston IL USA
| | - Keith E.J. Tyo
- Department of Chemical & Biological Engineering; Northwestern University; Evanston IL USA
| |
Collapse
|
46
|
Gurung A, Kang WC, Shin BS, Cho JS, Oh SE. Development of an Online Sulfur-Oxidizing Bacteria Biosensor for the Monitoring of Water Toxicity. Appl Biochem Biotechnol 2014; 174:2585-93. [DOI: 10.1007/s12010-014-1210-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/25/2014] [Indexed: 11/25/2022]
|
47
|
Biosensors, antibiotics and food. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 145:153-85. [PMID: 25216955 DOI: 10.1007/978-3-662-43619-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Antibiotics are medicine's leading asset for fighting microbial infection, which is one of the leading causes of death worldwide. However, the misuse of antibiotics has led to the rapid spread of antibiotic resistance among bacteria and the development of multiple resistant pathogens. Therefore, antibiotics are rapidly losing their antimicrobial value. The use of antibiotics in food production animals is strictly controlled by the European Union (EU). Veterinary use is regulated to prevent the spread of resistance. EU legislation establishes maximum residue limits for veterinary medicinal products in foodstuffs of animal origin and enforces the establishment and execution of national monitoring plans. Among samples selected for monitoring, suspected noncompliant samples are screened and then subjected to confirmatory analysis to establish the identity and concentration of the contaminant. Screening methods for antibiotic residues are typically based on microbiological growth inhibition, whereas physico-chemical methods are used for confirmatory analysis. This chapter discusses biosensors, especially whole-cell based biosensors, as emerging screening methods for antibiotic residues. Whole-cell biosensors can offer highly sensitive and specific detection of residues. Applications demonstrating quantitative analysis and specific analyte identification further improve their potential as screening methods.
Collapse
|
48
|
High-performance thin-layer chromatography screening of multi class antibiotics in animal food by bioluminescent bioautography and electrospray ionization mass spectrometry. J Chromatogr A 2014; 1356:249-57. [DOI: 10.1016/j.chroma.2014.06.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 11/22/2022]
|
49
|
Talà A, Delle Side D, Buccolieri G, Tredici SM, Velardi L, Paladini F, De Stefano M, Nassisi V, Alifano P. Exposure to static magnetic field stimulates quorum sensing circuit in luminescent Vibrio strains of the Harveyi clade. PLoS One 2014; 9:e100825. [PMID: 24960170 PMCID: PMC4069165 DOI: 10.1371/journal.pone.0100825] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/29/2014] [Indexed: 11/18/2022] Open
Abstract
In this study, the evidence of electron-dense magnetic inclusions with polyhedral shape in the cytoplasm of Harveyi clade Vibrio strain PS1, a bioluminescent bacterium living in symbiosis with marine organisms, led us to investigate the behavior of this bacterium under exposure to static magnetic fields ranging between 20 and 2000 Gauss. When compared to sham-exposed, the light emission of magnetic field-exposed bacteria growing on solid medium at 18°C ±0.1°C was increased up to two-fold as a function of dose and growth phase. Stimulation of bioluminescence by magnetic field was more pronounced during the post-exponential growth and stationary phase, and was lost when bacteria were grown in the presence of the iron chelator deferoxamine, which caused disassembly of the magnetic inclusions suggesting their involvement in magnetic response. As in luminescent Vibrio spp. bioluminescence is regulated by quorum sensing, possible effects of magnetic field exposure on quorum sensing were investigated. Measurement of mRNA levels by reverse transcriptase real time-PCR demonstrated that luxR regulatory gene and luxCDABE operon coding for luciferase and fatty acid reductase complex were significantly up-regulated in magnetic field-exposed bacteria. In contrast, genes coding for a type III secretion system, whose expression was negatively affected by LuxR, were down-regulated. Up-regulation of luxR paralleled with down-regulation of small RNAs that mediate destabilization of luxR mRNA in quorum sensing signaling pathways. The results of experiments with the well-studied Vibrio campbellii strain BB120 (originally classified as Vibrio harveyi) and derivative mutants unable to synthesize autoinducers suggest that the effects of magnetic fields on quorum sensing may be mediated by AI-2, the interspecies quorum sensing signal molecule.
Collapse
Affiliation(s)
- Adelfia Talà
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| | - Domenico Delle Side
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento INFN – Lecce, Lecce, Italy
| | - Giovanni Buccolieri
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento INFN – Lecce, Lecce, Italy
| | | | - Luciano Velardi
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento INFN – Lecce, Lecce, Italy
| | - Fabio Paladini
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento INFN – Lecce, Lecce, Italy
| | - Mario De Stefano
- Dipartimento di Scienze Ambientali, Seconda Università di Napoli, Caserta, Italy
| | - Vincenzo Nassisi
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento INFN – Lecce, Lecce, Italy
| | - Pietro Alifano
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| |
Collapse
|
50
|
Qambrani NA, Shin BS, Cho JS, Oh SE. Assessment of chromium-contaminated groundwater using a thiosulfate-oxidizing bacteria (TOB) biosensor. CHEMOSPHERE 2014; 104:32-36. [PMID: 24275152 DOI: 10.1016/j.chemosphere.2013.10.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 06/02/2023]
Abstract
The effect of Cr(6+)-contaminated groundwater was assessed using thiosulfate-oxidizing bacteria (TOB). Electrical conductivity (EC), pH, and sulfate production were determined based on thiosulfate oxidation. Final pH values in the different test treatments of Cr(6+)-contaminated groundwater (50-1000 μg Cr(6+)L(-1)) ranged from 2.02 ± 0.09 to 7.76 ± 0.07 and EC ranged from 5.95 ± 0.03 to 3.63 ± 0.03 mS cm(-1). Inhibition of TOB due to Cr(6+) was between 16.7% and 100%, with higher levels of inhibition occurring at higher Cr(6+) concentrations. The median effective concentration (EC50) was 78.96 μg Cr(6+)L(-1). These data demonstrate that TOB can detect less than 100 μg L(-1) of Cr(6+) in the groundwater and can be used as an effective bioassay for toxicity assessment.
Collapse
Affiliation(s)
- Naveed Ahmed Qambrani
- Department of Biological Environment, Kangwon National University, Gangwon-do, Chuncheon-si, South Korea
| | - Beom-Soo Shin
- Department of Biosystems Engineering, Kangwon National University, Gangwon-do Chuncheon-si, South Korea
| | - Ju-Sik Cho
- Department of Bio-environmental Sciences, Sunchon National University, Suncheon 540-950, Korea.
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, Gangwon-do, Chuncheon-si, South Korea.
| |
Collapse
|