1
|
Chao MR, Chang YJ, Cooke MS, Hu CW. Multi-adductomics: Advancing mass spectrometry techniques for comprehensive exposome characterization. Trends Analyt Chem 2024; 180:117900. [PMID: 39246549 PMCID: PMC11375889 DOI: 10.1016/j.trac.2024.117900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Adductomics, an emerging field within the 'omics sciences, focuses on the formation and prevalence of DNA, RNA, and protein adducts induced by endogenous and exogenous agents in biological systems. These modifications often result from exposure to environmental pollutants, dietary components, and xenobiotics, impacting cellular functions and potentially leading to diseases such as cancer. This review highlights advances in mass spectrometry (MS) that enhance the detection of these critical modifications and discusses current and emerging trends in adductomics, including developments in MS instrument use, screening techniques, and the study of various biomolecular modifications from mono-adducts to complex hybrid crosslinks between different types of biomolecules. The review also considers challenges, including the need for specialized MS spectra databases and multi-omics integration, while emphasizing techniques to distinguish between exogenous and endogenous modifications. The future of adductomics possesses significant potential for enhancing our understanding of health in relation to environmental exposures and precision medicine.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
2
|
Mitsumoto T, Ishii Y, Takimoto N, Takasu S, Namiki M, Nohmi T, Umemura T, Ogawa K. Site-specific genotoxicity of rubiadin: localization and histopathological changes in the kidneys of rats. Arch Toxicol 2023; 97:3273-3283. [PMID: 37794257 DOI: 10.1007/s00204-023-03610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Rubiadin (Rub) is a genotoxic component of madder color (MC) that is extracted from the root of Rubia tinctorum L. MC induces renal tumors and preneoplastic lesions that are found in the proximal tubule of the outer stripe of the outer medulla (OSOM), suggesting that the renal carcinogenicity of MC is site specific. To clarify the involvement of Rub in renal carcinogenesis of MC, we examined the distribution of Rub in the kidney of male gpt delta rats that were treated with Rub for 28 days. We used desorption electrospray ionization quadrupole time-of-flight mass spectrometry imaging (DESI-Q-TOF-MSI), along with the histopathological analysis, immunohistochemical staining, and reporter gene mutation assays of the kidney. DESI-Q-TOF-MSI revealed that Rub and its metabolites, lucidin and Rub-sulfation, were specifically distributed in the OSOM. Histopathologically, karyomegaly characterized by enlarged nuclear and microvesicular vacuolar degeneration occurred in proximal tubule epithelial cells in the OSOM. The ɤ-H2AX- and p21-positive cells were also found in the OSOM rather than the cortex. Although dose-dependent increases in gpt and Spi- mutant frequencies were observed in both the medulla and cortex, the mutant frequencies in the medulla were significantly higher. The mutation spectra of gpt mutants showed that A:T-T:A transversion was predominant in Rub-induced gene mutations, consistent with those of MC. Overall, the data showed that the distribution of Rub and its metabolites resulted in site-specific histopathological changes, DNA damage, and gene mutations, suggesting that the distribution of genotoxic components and metabolites is responsible for the site-specific renal carcinogenesis of MC.
Collapse
Affiliation(s)
- Tatsuya Mitsumoto
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki-Shi, Kanagawa, 210-9501, Japan
- Faculty of Animal Health Technology, Yamazaki University of Animal Health Technology, 4-7-2, Minami-Osawa, Hachihoji, Tokyo, 192-0364, Japan
| | - Yuji Ishii
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki-Shi, Kanagawa, 210-9501, Japan.
| | - Norifumi Takimoto
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki-Shi, Kanagawa, 210-9501, Japan
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu-Shi, Tokyo, 183-8509, Japan
| | - Shinji Takasu
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki-Shi, Kanagawa, 210-9501, Japan
| | - Moeka Namiki
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki-Shi, Kanagawa, 210-9501, Japan
| | - Takehiko Nohmi
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki-Shi, Kanagawa, 210-9501, Japan
| | - Takashi Umemura
- Faculty of Animal Health Technology, Yamazaki University of Animal Health Technology, 4-7-2, Minami-Osawa, Hachihoji, Tokyo, 192-0364, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki-Shi, Kanagawa, 210-9501, Japan
| |
Collapse
|
3
|
Liang S, Bo H, Zhang Y, Zhen H, Zhong L. Alizarin, an Agonist of AHR Receptor, Enhances CYP1A1 Enzyme Activity and Induces Transcriptional Changes in Hepatoma Cells. Molecules 2023; 28:7373. [PMID: 37959792 PMCID: PMC10650112 DOI: 10.3390/molecules28217373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The phytopigment alizarin was previously characterized as an anti-tumor drug owing to its antioxidant or antigenotoxic activities. However, the safety of alizarin is currently still under dispute. In this study, we explored the activity of alizarin in the AHR-CYP1A1 pathway and analyzed the transcriptional changes affected by alizarin using human hepatoma cell line HepG2-based assays. The results showed that alizarin decreased HepG2 cell viability in a dose-dependent manner, with IC50 values between 160.4 and 216.8 μM. Furthermore, alizarin significantly upregulated the expression of CYP1A1 and increased the ethoxyresorufin-O-deethylase activity. Alizarin also exhibited agonistic activity toward the AHR receptor in the XRE-mediated luciferase reporter gene assay, which was further confirmed via the molecular docking assay. In addition, the transcriptional analysis indicated that alizarin may act as a potential carcinogen through significantly enriching several items related to cancer in both DO and KEGG analysis. In brief, our findings indicated that alizarin shows agonistic activities to the AHR receptor through activating the AHR-CYP1A1 signaling pathway in HepG2 cells, which may lead to the risks for cancer developing.
Collapse
Affiliation(s)
- Shengxian Liang
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; (H.B.); (Y.Z.); (H.Z.)
| | - Haimei Bo
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; (H.B.); (Y.Z.); (H.Z.)
| | - Yue Zhang
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; (H.B.); (Y.Z.); (H.Z.)
| | - Hongcheng Zhen
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; (H.B.); (Y.Z.); (H.Z.)
| | - Li Zhong
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; (H.B.); (Y.Z.); (H.Z.)
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
4
|
Takasu S, Ishii Y, Namiki M, Nakamura K, Mitsumoto T, Takimoto N, Nohmi T, Ogawa K. Comprehensive analysis of the general toxicity, genotoxicity, and carcinogenicity of 3-acetyl-2,5-dimethylfuran in male gpt delta rats. Food Chem Toxicol 2023; 172:113544. [PMID: 36464108 DOI: 10.1016/j.fct.2022.113544] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
The safety of flavoring agents has been evaluated according to classification by chemical structure and using a decision tree approach. The genotoxic potential found in some flavoring agents has highlighted the importance of efficient toxicity studies. We performed a comprehensive toxicity analysis using reporter gene transgenic rats to assess the safety of 3-acetyl-2,5-dimethylfuran (ADF), a flavoring agent exhibiting genotoxic potential in silico and in vitro assays. Male F344 gpt delta rats were given 0, 30, or 300 mg/kg body weight/day ADF by gavage for 13 weeks. In serum biochemistry analyses, triglyceride, total cholesterol, phospholipid, and total protein levels and albumin/globulin ratios were significantly altered in the 30 and 300 mg/kg groups. Histopathologically, nasal cavity toxicity and hepatocellular hypertrophy were observed in the 300 mg/kg group. In the livers of 300 mg/kg group, a significant increase in gpt mutant frequencies were observed along with ADF-specific DNA adduct formation. The number and area of glutathione S-transferase placental form-positive foci were significantly increased in the same group. Thus, ADF affected nasal cavity, liver, and lipid metabolism and showed genotoxicity and possible carcinogenicity in the liver. Overall, our comprehensive toxicity study using gpt delta rats provided insights into the safety evaluation of ADF.
Collapse
Affiliation(s)
- Shinji Takasu
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Yuji Ishii
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Moeka Namiki
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Kenji Nakamura
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Tatsuya Mitsumoto
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Norifumi Takimoto
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan; Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Takehiko Nohmi
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| |
Collapse
|
5
|
Ishii Y, Nakamura K, Mitsumoto T, Takimoto N, Namiki M, Takasu S, Ogawa K. Visualization of the distribution of anthraquinone components from madder roots in rat kidneys by desorption electrospray ionization-time-of-flight mass spectrometry imaging. Food Chem Toxicol 2022; 161:112851. [DOI: 10.1016/j.fct.2022.112851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 12/17/2022]
|
6
|
Ishii Y, Takasu S, Grúz P, Masumura K, Ogawa K, Nohmi T, Umemura T. The role of DNA polymerase ζ in benzo[a]pyrene-induced mutagenesis in the mouse lung. Mutagenesis 2021; 36:155-164. [PMID: 33544859 DOI: 10.1093/mutage/geab007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/02/2021] [Indexed: 11/12/2022] Open
Abstract
DNA polymerase zeta (Polζ) is a heterotetramer composed of the catalytic subunit Rev3l, Rev7 and two subunits of Polδ (PolD2/Pol31 and PolD3/Pol32), and this polymerase exerts translesion DNA synthesis (TLS) in yeast. Because Rev3l knockout results in embryonic lethality in mice, the functions of Polζ need further investigation in vivo. Then, we noted the two facts that substitution of leucine 979 of yeast Rev3l with methionine reduces Polζ replication fidelity and that reporter gene transgenic rodents are able to provide the detailed mutation status. Here, we established gpt delta mouse knocked in the constructed gene encoding methionine instead of leucine at residue 2610 of Rev3l (Rev3l L2610M gpt delta mice), to clarify the role of Polζ in TLS of chemical-induced bulky DNA adducts in vivo. Eight-week-old gpt delta mice and Rev3l L2610M gpt delta mice were treated with benzo[a]pyrene (BaP) at 0, 40, 80, or 160 mg/kg via single intraperitoneal injection. At necropsy 31 days after treatment, lungs were collected for reporter gene mutation assays. Although the gpt mutant frequency was significantly increased by BaP in both mouse genotypes, it was three times higher in Rev3l L2610M gpt delta than gpt delta mice after treatment with 160 mg/kg BaP. The frequencies of G:C base substitutions and characteristic complex mutations were significantly increased in Rev3l L2610M gpt delta mice compared with gpt delta mice. The BaP dose-response relationship suggested that Polζ plays a central role in TLS when protective mechanisms against BaP mutagenesis, such as error-free TLS, are saturated. Overall, Polζ may incorporate incorrect nucleotides at the sites opposite to BaP-modified guanines and extend short DNA sequences from the resultant terminal mismatches only when DNA is heavily damaged.
Collapse
Affiliation(s)
- Yuji Ishii
- Division of Pathology, National Institute of Health Sciences, Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, Japan
| | - Shinji Takasu
- Division of Pathology, National Institute of Health Sciences, Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, Japan
| | - Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, Japan
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, Japan
| | - Takehiko Nohmi
- Division of Pathology, National Institute of Health Sciences, Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, Japan
| | - Takashi Umemura
- Division of Pathology, National Institute of Health Sciences, Tonomachi, Kawasaki-shi, Kawasaki-ku, Kanagawa, Japan
- Faculty of Animal Health Technology, Yamazaki University of Animal Health Technology, Minami-osawa, Hachihoji, Tokyo, Japan
| |
Collapse
|
7
|
Ishii Y, Kijima A, Takasu S, Ogawa K, Umemura T. Effects of inhibition of hepatic sulfotransferase activity on renal genotoxicity induced by lucidin-3-O-primeveroside. J Appl Toxicol 2018; 39:650-657. [PMID: 30874336 DOI: 10.1002/jat.3755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 11/11/2022]
Abstract
Sulfotransferase 1A (SULT1A) expression is lower in the liver of humans than that of rodents. Therefore, species differences should be taken into consideration when assessing the risk of rodent hepatocarcinogens metabolically activated by SULT1A in humans. Although some renal carcinogens require SULT1A-mediated activation, it is unclear how SULT1A activity in the liver affects renal carcinogens. To explore the effects of SULT1A activity in the liver on genotoxicity induced by SULT1A-activated renal carcinogens, B6C3F1 mice or gpt delta mice of the same strain background were given lucidin-3-O-primeveroside (LuP), a hepatic and renal carcinogen of rodents, for 4 or 13 weeks, respectively, and pentachlorophenol (PCP) as a liver-specific SULT inhibitor, was given from 1 week before LuP treatment to the end of the experiment. A 4 week exposure of LuP induced lucidin-specific DNA adduct formation. The suppression of Sult1a expression was observed only in the liver but not in the kidneys of PCP-treated mice, but co-administration of PCP suppressed LuP-induced DNA adduct formation in both organs. Thirteen-week exposure of LuP increased mutation frequencies and cotreatment with PCP suppressed these increases in both organs. Given that intact levels of SULT activity in the liver were much higher than in the kidneys of rodents, SULT1A may predominantly activate LuP in the liver, consequently leading to genotoxicity not only in the liver but also in the kidney. Thus, species differences should be considered in human risk assessment of renal carcinogens activated by SULT1A as in the case of the corresponding liver carcinogens.
Collapse
Affiliation(s)
- Yuji Ishii
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Aki Kijima
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Shinji Takasu
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Takashi Umemura
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.,Faculty of Animal Health Technology, Yamazaki University of Animal Health Technology, 4-7-2, Minami-osawa, Hachihoji, Tokyo, 192-0364, Japan
| |
Collapse
|
8
|
Nohmi T. Thresholds of Genotoxic and Non-Genotoxic Carcinogens. Toxicol Res 2018; 34:281-290. [PMID: 30370002 PMCID: PMC6195886 DOI: 10.5487/tr.2018.34.4.281] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/10/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022] Open
Abstract
Exposure to chemical agents is an inevitable consequence of modern society; some of these agents are hazardous to human health. The effects of chemical carcinogens are of great concern in many countries, and international organizations, such as the World Health Organization, have established guidelines for the regulation of these chemicals. Carcinogens are currently categorized into two classes, genotoxic and non-genotoxic carcinogens, which are subject to different regulatory policies. Genotoxic carcinogens are chemicals that exert carcinogenicity via the induction of mutations. Owing to their DNA interaction properties, there is thought to be no safe exposure threshold or dose. Genotoxic carcinogens are regulated under the assumption that they pose a cancer risk for humans, even at very low doses. In contrast, non-genotoxic carcinogens, which induce cancer through mechanisms other than mutations, such as hormonal effects, cytotoxicity, cell proliferation, or epigenetic changes, are thought to have a safe exposure threshold or dose; thus, their use in society is permitted unless the exposure or intake level would exceed the threshold. Genotoxicity assays are an important method to distinguish the two classes of carcinogens. However, some carcinogens have negative results in in vitro bacterial mutation assays, but yield positive results in the in vivo transgenic rodent gene mutation assay. Non-DNA damage, such as spindle poison or topoisomerase inhibition, often leads to positive results in cytogenetic genotoxicity assays such as the chromosome aberration assay or the micronucleus assay. Therefore, mechanistic considerations of tumor induction, based on the results of the genotoxicity assays, are necessary to distinguish genotoxic and non-genotoxic carcinogens. In this review, the concept of threshold of toxicological concern is introduced and the potential risk from multiple exposures to low doses of genotoxic carcinogens is also discussed.
Collapse
Affiliation(s)
- Takehiko Nohmi
- Division of Pathology, Biological Safety Research Center, National Institute of Health Sciences, Kanagawa, Japan
| |
Collapse
|
9
|
Yockey OP, Jha V, Ghodke PP, Xu T, Xu W, Ling H, Pradeepkumar PI, Zhao L. Mechanism of Error-Free DNA Replication Past Lucidin-Derived DNA Damage by Human DNA Polymerase κ. Chem Res Toxicol 2017; 30:2023-2032. [PMID: 28972744 DOI: 10.1021/acs.chemrestox.7b00227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
DNA damage impinges on genetic information flow and has significant implications in human disease and aging. Lucidin-3-O-primeveroside (LuP) is an anthraquinone derivative present in madder root, which has been used as a coloring agent and food additive. LuP can be metabolically converted to genotoxic compound lucidin, which subsequently forms lucidin-specific N2-2'-deoxyguanosine (N2-dG) and N6-2'-deoxyadenosine (N6-dA) DNA adducts. Lucidin is mutagenic and carcinogenic in rodents but has low carcinogenic risks in humans. To understand the molecular mechanism of low carcinogenicity of lucidin in humans, we performed DNA replication assays using site-specifically modified oligodeoxynucleotides containing a structural analogue (LdG) of lucidin-N2-dG DNA adduct and determined the crystal structures of DNA polymerase (pol) κ in complex with LdG-bearing DNA and an incoming nucleotide. We examined four human pols (pol η, pol ι, pol κ, and Rev1) in their efficiency and accuracy during DNA replication with LdG; these pols are key players in translesion DNA synthesis. Our results demonstrate that pol κ efficiently and accurately replicates past the LdG adduct, whereas DNA replication by pol η, pol ι is compromised to different extents. Rev1 retains its ability to incorporate dCTP opposite the lesion albeit with decreased efficiency. Two ternary crystal structures of pol κ illustrate that the LdG adduct is accommodated by pol κ at the enzyme active site during insertion and postlesion-extension steps. The unique open active site of pol κ allows the adducted DNA to adopt a standard B-form for accurate DNA replication. Collectively, these biochemical and structural data provide mechanistic insights into the low carcinogenic risk of lucidin in humans.
Collapse
Affiliation(s)
| | - Vikash Jha
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario , London, Ontario N6A 5C1, Canada
| | - Pratibha P Ghodke
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai 400076, India
| | | | | | - Hong Ling
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario , London, Ontario N6A 5C1, Canada
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai 400076, India
| | | |
Collapse
|
10
|
Nohmi T, Masumura K, Toyoda-Hokaiwado N. Transgenic rat models for mutagenesis and carcinogenesis. Genes Environ 2017; 39:11. [PMID: 28174618 PMCID: PMC5289047 DOI: 10.1186/s41021-016-0072-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 12/08/2016] [Indexed: 01/18/2023] Open
Abstract
Rats are a standard experimental animal for cancer bioassay and toxicological research for chemicals. Although the genetic analyses were behind mice, rats have been more frequently used for toxicological research than mice. This is partly because they live longer than mice and induce a wider variety of tumors, which are morphologically similar to those in humans. The body mass is larger than mice, which enables to take samples from organs for studies on pharmacokinetics or toxicokinetics. In addition, there are a number of chemicals that exhibit marked species differences in the carcinogenicity. These compounds are carcinogenic in rats but not in mice. Such examples are aflatoxin B1 and tamoxifen, both are carcinogenic to humans. Therefore, negative mutagenic/carcinogenic responses in mice do not guarantee that the chemical is not mutagenic/carcinogenic to rats or perhaps to humans. To facilitate research on in vivo mutagenesis and carcinogenesis, several transgenic rat models have been established. In general, the transgenic rats for mutagenesis are treated with chemicals longer than transgenic mice for more exact examination of the relationship between mutagenesis and carcinogenesis. Transgenic rat models for carcinogenesis are engineered mostly to understand mechanisms underlying chemical carcinogenesis. Here, we review papers dealing with the transgenic rat models for mutagenesis and carcinogenesis, and discuss the future perspective.
Collapse
Affiliation(s)
- Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
- Present address: Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| | - Naomi Toyoda-Hokaiwado
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| |
Collapse
|
11
|
Hemeryck LY, Moore SA, Vanhaecke L. Mass Spectrometric Mapping of the DNA Adductome as a Means to Study Genotoxin Exposure, Metabolism, and Effect. Anal Chem 2016; 88:7436-46. [DOI: 10.1021/acs.analchem.6b00863] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Lieselot Y. Hemeryck
- Laboratory of Chemical Analysis, Department
of Veterinary Public Health and Food Safety, Faculty of Veterinary
Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium
| | - Sharon A. Moore
- School of Pharmacy and Biomolecular Sciences, Faculty
of Science, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department
of Veterinary Public Health and Food Safety, Faculty of Veterinary
Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium
| |
Collapse
|
12
|
Nohmi T. Past, Present and Future Directions of gpt delta Rodent Gene Mutation Assays. Food Saf (Tokyo) 2016; 4:1-13. [PMID: 32231899 PMCID: PMC6989157 DOI: 10.14252/foodsafetyfscj.2015024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/21/2015] [Indexed: 01/28/2023] Open
Abstract
Genotoxicity is a critical endpoint of toxicity to regulate environmental chemicals. Genotoxic chemicals are believed to have no thresholds for the action and impose genotoxic risk to humans even at very low doses. Therefore, genotoxic carcinogens, which induce tumors via genotoxic mechanisms, are regulated more strictly than non-genotoxic carcinogens, which induce tumors through non-genotoxic mechanisms such as hormonal effects, cell proliferation and cell toxicity. Although Ames bacterial mutagenicity assay is the gold standard to identify genotoxicity of chemicals, the genotoxicity should be further examined in rodents because Ames positive chemicals are not necessarily genotoxic in vivo. To better evaluate the genotoxicity of chemicals in a whole body system, gene mutation assays with gpt delta transgenic mice and rats have been developed. A feature of the assays is to detect point mutations and deletions by two distinct selection methods, ie, gpt and Spi- assays, respectively. The Spi- assay is unique in that it allows analyses of deletions and complex DNA rearrangements induced by double-strand breaks in DNA. Here, I describe the concept of gpt delta gene mutation assays and the application in food safety research, and discuss future perspectives of genotoxicity assays in vivo.
Collapse
Affiliation(s)
- Takehiko Nohmi
- Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
13
|
Kanaly RA, Micheletto R, Matsuda T, Utsuno Y, Ozeki Y, Hamamura N. Application of DNA adductomics to soil bacterium Sphingobium sp. strain KK22. Microbiologyopen 2015; 4:841-56. [PMID: 26305056 PMCID: PMC4618615 DOI: 10.1002/mbo3.283] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/16/2015] [Accepted: 07/21/2015] [Indexed: 12/21/2022] Open
Abstract
Toward the development of ecotoxicology methods to investigate microbial markers of impacts of hydrocarbon processing activities, DNA adductomic analyses were conducted on a sphingomonad soil bacterium. From growing cells that were exposed or unexposed to acrolein, a commonly used biocide in hydraulic fracturing processes, DNA was extracted, digested to 2'-deoxynucleosides and analyzed by liquid chromatography-positive ionization electrospray-tandem mass spectrometry in selected reaction monitoring mode transmitting the [M + H](+) > [M + H - 116](+) transition over 100 transitions. Overall data shown as DNA adductome maps revealed numerous putative DNA adducts under both conditions with some occurring specifically for each condition. Adductomic analyses of triplicate samples indicated that elevated levels of some targeted putative adducts occurred in exposed cells. Two exposure-specific adducts were identified in exposed cells as 3-(2'-deoxyribosyl)-5,6,7,8-tetrahydro-6-hydroxy-(and 8-hydroxy-)pyrimido[1,2-a]- purine-(3H)-one (6- and 8-hydroxy-PdG) following synthesis of authentic standards of these compounds and subsequent analyses. A time course experiment showed that 6- and 8-hydroxy-PdG were detected in bacterial DNA within 30 min of acrolein exposure but were not detected in unexposed cells. This work demonstrated the first application of DNA adductomics to examine DNA damage in a bacterium and sets a foundation for future work.
Collapse
Affiliation(s)
- Robert A Kanaly
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, Kanagawa, Yokohama, 236-0027, Japan
| | - Ruggero Micheletto
- Department of Nanosystem Science, Graduate School of Nanobiosciences, Yokohama City University, Kanagawa, Yokohama, 236-0027, Japan
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga, 520-0811, Japan
| | - Youko Utsuno
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, Kanagawa, Yokohama, 236-0027, Japan
| | - Yasuhiro Ozeki
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, Kanagawa, Yokohama, 236-0027, Japan
| | - Natsuko Hamamura
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 790-8577, Japan.,Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581, Japan
| |
Collapse
|
14
|
A medium-term gpt delta rat model as an in vivo system for analysis of renal carcinogenesis and the underlying mode of action. ACTA ACUST UNITED AC 2014; 67:31-9. [PMID: 25446801 DOI: 10.1016/j.etp.2014.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 09/26/2014] [Indexed: 01/16/2023]
Abstract
The kidney is a major target site of chemical carcinogenesis. However, a reliable in vivo assay for rapid identification of renal carcinogens has not been established. The purpose of this study was to develop a new medium-term gpt delta rat model (the GNP model) to facilitate identification of renal carcinogens. In this model, we carried out an in vivo mutation assay using unilaterally nephrectomized kidney tissue and a tumor-promoting assay using residual kidney tissue, with diethylnitrosamine (DEN) as the renal tumor initiator. To clarify the optimal time of DEN injection after nephrectomy, time-dependent changes in bromodeoxyuridine-labeling indices in the tubular epithelium of nephrectomized rats were examined. The optimal dose of DEN injection and sufficient duration of subsequent nitrilotriacetic acid treatment were determined for detection of renal preneoplastic lesions. The standard protocol for the GNP model was determined as follows. Six-week-old female gpt delta rats were treated with test chemicals for 4 weeks, followed by a 2-week washout period, and 40 mg/kg DEN was administered intraperitoneally to initiate renal carcinogenesis. Unilateral nephrectomy was performed 48 h before DEN injection, followed by gpt assays using excised kidney tissues. One week after DEN injection, rats were further exposed to test chemicals for 12 weeks, and histopathological analysis of renal preneoplastic lesions was performed as an indicator of tumor-promoting activity in residual kidney tissue. Validation studies using aristolochic acid, potassium dibasic phosphate, phenylbutazone, and d-limonene indicated the reliability of the GNP model for predicting renal carcinogens and the underlying mode of action.
Collapse
|
15
|
Improvement and validation of a medium-term gpt delta rat model for predicting chemical carcinogenicity and underlying mode of action. ACTA ACUST UNITED AC 2014; 66:313-21. [PMID: 24929978 DOI: 10.1016/j.etp.2014.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/17/2014] [Accepted: 05/12/2014] [Indexed: 12/24/2022]
Abstract
We have developed a new medium-term animal model, "GPG", in which an in vivo mutation assay in partially hepatectomized tissue and a tumor-promoting assay were performed. The tumor-promoting assay measures glutathione S-transferase placental form positive foci induced by diethylnitrosamine (DEN) in the residual tissue. Given that a limitation of the original protocol is the potential interaction between the test chemical and DEN, the present study establishes a modified protocol that includes a test chemical washout period. Using CYP2E1 inhibitor and CYP1A or CYP2B inducers, a period of 2 weeks after cessation of exposure to the chemicals was confirmed to be sufficient to return their enzymatic activities to normal levels. Additionally, to avoid the effects of DEN on the pharmacokinetics of the test chemical, re-exposure to the test chemical started 1 week after DEN injection, in which tumor-promoting activities were clearly detected. Consequently, a modified protocol has been established with 2- and 1-week washout periods before and after DEN injection, respectively. The applicability of the modified protocol was demonstrated using the genotoxic hepatocarcinogen, estragole (ES), the genotoxic renal carcinogen, aristolochic acid (AA), and the non-genotoxic hepatocarcinogens, β-naphthoflavone and barbital. Furthermore, the increase of cell cycle-related parameters in ES-treated livers, but not in AA-treated livers, may indicate that the liver is not the carcinogenic target site of AA despite its genotoxic role. Thus, since various parameters related to carcinogenesis can be evaluated concurrently, the GPG model could be a rapid and reliable assay for the assessment of human cancer hazards.
Collapse
|
16
|
|