1
|
Balaban Hanoglu S, Harmanci D, Evran S, Timur S. Detection strategies of infectious diseases via peptide-based electrochemical biosensors. Bioelectrochemistry 2024; 160:108784. [PMID: 39094447 DOI: 10.1016/j.bioelechem.2024.108784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Infectious diseases have threatened human life for as long as humankind has existed. One of the most crucial aspects of fighting against these infections is diagnosis to prevent disease spread. However, traditional diagnostic methods prove insufficient and time-consuming in the face of a pandemic. Therefore, studies focusing on detecting viruses causing these diseases have increased, with a particular emphasis on developing rapid, accurate, specific, user-friendly, and portable electrochemical biosensor systems. Peptides are used integral components in biosensor fabrication for several reasons, including various and adaptable synthesis protocols, long-term stability, and specificity. Here, we discuss peptide-based electrochemical biosensor systems that have been developed over the last decade for the detection of infectious diseases. In contrast to other reports on peptide-based biosensors, we have emphasized the following points i) the synthesis methods of peptides for biosensor applications, ii) biosensor fabrication approaches of peptide-based electrochemical biosensor systems, iii) the comparison of electrochemical biosensors with other peptide-based biosensor systems and the advantages and limitations of electrochemical biosensors, iv) the pros and cons of peptides compared to other biorecognition molecules in the detection of infectious diseases, v) different perspectives for future studies with the shortcomings of the systems developed in the past decade.
Collapse
Affiliation(s)
- Simge Balaban Hanoglu
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey.
| | - Duygu Harmanci
- Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey; Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey.
| |
Collapse
|
2
|
Yang X, Li Y, Zhu Z, Huang X, Wang T, Yuan J, Li J. Identification of a peptide that crosses the blood-cerebrospinal fluid barrier by phage display technology. Amino Acids 2021; 53:1181-1186. [PMID: 34185171 DOI: 10.1007/s00726-021-03016-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/03/2021] [Indexed: 12/01/2022]
Abstract
Treatments of brain diseases are heavily limited by the existence of the blood-brain barrier (BBB), which precludes efficient drug delivery to the brain. Compared with the BBB, drugs may have a better likelihood of reaching the brain via the cerebrospinal fluid (CSF) because of the lack of a barrier between the CSF and the brain. In this study, phage display technology was effectively applied to screen novel peptides as targeting motifs to transport drugs across the blood-cerebrospinal fluid barrier (BCSFB). We applied a phage seven-mer cyclic peptide library (Ph.D.-C7C™) intravenously to rats and later recovered phages from the CSF. After several rounds of screening, the candidate phages that could cross the BCSFB were enriched. Several bacteriophage clones from the final round were randomly selected and sequenced. A peptide sequence denoted as PMK, which was demonstrated to be able to cross the BCSFB via in vivo optical imaging analysis, could be used in the future for the construction of targeted drug delivery systems.
Collapse
Affiliation(s)
- Xi Yang
- College of Pharmacy (School of Pharmacy), Dali University, Xueren Rd, Dali, 671000, People's Republic of China
| | - Yongjie Li
- College of Pharmacy (School of Pharmacy), Dali University, Xueren Rd, Dali, 671000, People's Republic of China
| | - Zhanzhan Zhu
- College of Pharmacy (School of Pharmacy), Dali University, Xueren Rd, Dali, 671000, People's Republic of China
| | - Xufang Huang
- College of Pharmacy (School of Pharmacy), Dali University, Xueren Rd, Dali, 671000, People's Republic of China
| | - Tianlong Wang
- College of Pharmacy (School of Pharmacy), Dali University, Xueren Rd, Dali, 671000, People's Republic of China
| | - Jinjin Yuan
- College of Pharmacy (School of Pharmacy), Dali University, Xueren Rd, Dali, 671000, People's Republic of China
| | - Jingwei Li
- College of Pharmacy (School of Pharmacy), Dali University, Xueren Rd, Dali, 671000, People's Republic of China. .,Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, 671000, People's Republic of China. .,National-Local Joint Engineering Research Center of Entomoceutics, Dali, 671000, People's Republic of China.
| |
Collapse
|
3
|
Abstract
Novel affinity agents with high specificity are needed to make progress in disease diagnosis and therapy. Over the last several years, peptides have been considered to have fundamental benefits over other affinity agents, such as antibodies, due to their fast blood clearance, low immunogenicity, rapid tissue penetration, and reproducible chemical synthesis. These features make peptides ideal affinity agents for applications in disease diagnostics and therapeutics for a wide variety of afflictions. Virus-derived peptide techniques provide a rapid, robust, and high-throughput way to identify organism-targeting peptides with high affinity and selectivity. Here, we will review viral peptide display techniques, how these techniques have been utilized to select new organism-targeting peptides, and their numerous biomedical applications with an emphasis on targeted imaging, diagnosis, and therapeutic techniques. In the future, these virus-derived peptides may be used as common diagnosis and therapeutics tools in local clinics.
Collapse
Affiliation(s)
- Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Kegan Sunderland
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
4
|
Kulabhusan PK, Rajwade JM, Sahul Hameed AS, Paknikar KM. Lateral flow assay for rapid detection of white spot syndrome virus (WSSV) using a phage-displayed peptide as bio-recognition probe. Appl Microbiol Biotechnol 2017; 101:4459-4469. [DOI: 10.1007/s00253-017-8232-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 01/01/2023]
|
5
|
Hurwitz AM, Huang W, Estes MK, Atmar RL, Palzkill T. Deep sequencing of phage-displayed peptide libraries reveals sequence motif that detects norovirus. Protein Eng Des Sel 2017; 30:129-139. [PMID: 28035012 PMCID: PMC5241761 DOI: 10.1093/protein/gzw074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 10/12/2016] [Accepted: 12/14/2016] [Indexed: 01/10/2023] Open
Abstract
Norovirus infections are the leading cause of non-bacterial gastroenteritis and result in about 21 million new cases and $2 billion in costs per year in the United States. Existing diagnostics have limited feasibility for point-of-care applications, so there is a clear need for more reliable, rapid, and simple-to-use diagnostic tools in order to contain outbreaks and prevent inappropriate treatments. In this study, a combination of phage display technology, deep sequencing and computational analysis was used to identify 12-mer peptides with specific binding to norovirus genotype GI.1 virus-like particles (VLPs). After biopanning, phage populations were sequenced and analyzed to identify a consensus peptide motif-YRSWXP. Two 12-mer peptides containing this sequence, NV-O-R5-3 and NV-O-R5-6, were further characterized to evaluate the motif's functional ability to detect VLPs and virus. Results indicated that these peptides effectively detect GI.1 VLPs in solid-phase peptide arrays, ELISAs and dot blots. Further, their specificity for the S-domain of the major capsid protein enables them to detect a wide range of GI and GII norovirus genotypes. Both peptides were able to detect virus in norovirus-positive clinical stool samples. Overall, the work reported here demonstrates the application of phage display coupled with next generation sequencing and computational analysis to uncover peptides with specific binding ability to a target protein for diagnostic applications. Further, the reagents characterized here can be integrated into existing diagnostic formats to detect clinically relevant genotypes of norovirus in stool.
Collapse
Affiliation(s)
- Amy M Hurwitz
- Interdepartmental Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Wanzhi Huang
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Mary K Estes
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert L Atmar
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Timothy Palzkill
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Tanaka M, Hikiba S, Yamashita K, Muto M, Okochi M. Array-based functional peptide screening and characterization of gold nanoparticle synthesis. Acta Biomater 2017; 49:495-506. [PMID: 27865964 DOI: 10.1016/j.actbio.2016.11.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 01/20/2023]
Abstract
Based on inorganic material production through biomineralization in organisms, the use of biological molecules in nanomaterial production has received increasing attention as a vehicle to synthesize inorganic materials with selected properties in ambient conditions. Among various biological molecules that interact with metallic surfaces, short peptides are putative ligand molecules as they exhibit potential to control the synthesis of nanoscale materials with tailored functions. Herein, using a spot synthesis-based peptide array, the gold nanoparticle (AuNP) binding activities of approximately 1800 peptides were evaluated and revealed various activities ranging from positive (high-affinity binding peptides) to negative (weak- or null-affinity binding peptides). Among 50 peptides showing the highest AuNP binding activity, 46 sequences showed the presence of tryptophan-based motifs including W[Xn]W, H[Xn]W, and W[Xn]H (W: tryptophan, X: any amino acid, n: 1-8 amino acid residues), whereas none of these motifs was found in the WORST50 peptides. Notably, three peptides showing the highest binding affinities possessed bi-functionality in AuNP binding and Au(III) reduction in solution and on solid surfaces. In addition, the characterization of truncated peptide derivatives revealed unique peptide motifs for their function expressions that also supported the importance of tryptophan-based motifs for peptide-AuNP binding. These findings open the door for peptide-mediated precise regulation of AuNP synthesis in ambient condition and for site dependent controlled AuNP integration onto nanotechnological devices. STATEMENT OF SIGNIFICANCE The development of a technique for functionally regulated nanosized material production in ambient condition is broadly required according to the expansion of nanomaterial based applications. Short peptides, which bind to metallic surfaces, have great potential for the technique development, but the realization remains a difficult challenge due to the lack of metal binding peptide varieties. Herein, approximately 1800 peptides with the gold nanoparticle (AuNP) binding activity are reported and characterized. Furthermore, by three highest binding peptides, the expression of bi-functionality in AuNP binding and Au(III) reduction was serendipitously discovered in solution and on solid surfaces. These findings will be attributed to new technique development of functional nanoparticle synthesis in mild condition, and for site-dependent AuNP integration in various nanotechnological devices.
Collapse
Affiliation(s)
- Masayoshi Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan; JST ImPACT, Japan
| | - Shun Hikiba
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Kiyoto Yamashita
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Masaki Muto
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan; JST ImPACT, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan; JST ImPACT, Japan.
| |
Collapse
|
7
|
Chen C, Liu K, Xu Y, Zhang P, Suo Y, Lu Y, Zhang W, Su L, Gu Q, Wang H, Gu J, Li Z, Xu X. Anti-angiogenesis through noninvasive to minimally invasive intraocular delivery of the peptide CC12 identified by in vivo-directed evolution. Biomaterials 2016; 112:218-233. [PMID: 27768975 DOI: 10.1016/j.biomaterials.2016.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 12/13/2022]
Abstract
Anti-vascular endothelial growth factor (VEGF) therapies are widely used for the treatment of neovascular fundus diseases such as diabetic retinopathy. However, these agents need to be injected intravitreally, because their strong hydrophilicity and high molecular weight prevent them from penetrating cell membranes and complex tissue barriers. Moreover, the repeated injections that are required can cause infection and tissue injury. In this study, we used in vivo-directed evolution phage display technology to identify a novel dodecapeptide, named CC12, with the ability to penetrate the ocular barrier in a noninvasive (via conjunctival sac instillation) or minimally invasive (via retrobulbar injection) manner. KV11, an antiangiogenesis peptide previously demonstrated to inhibit pathological neovascularization in the retina, was then used as a model antiangiogenesis cargo for CC12. We found that conjugation of KV11 peptide with CC12 peptide facilitated the delivery of KV11 to the retina, resulting in significant inhibition of retinal neovascularization development via topical application without tissue toxicity. Collectively, our data of multilevel evaluations demonstrate that CC12 may enable the noninvasive to minimally invasive intraocular delivery of antiangiogenic therapeutics.
Collapse
Affiliation(s)
- Chong Chen
- Department of Ophthalmology, Shanghai Key Laboratory of Fundus Disease, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Kun Liu
- Department of Ophthalmology, Shanghai Key Laboratory of Fundus Disease, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Yupeng Xu
- Department of Ophthalmology, Shanghai Key Laboratory of Fundus Disease, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Pengwei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital Affiliated to Medical School of Shanghai Jiao Tong University, Shanghai 200032, PR China
| | - Yan Suo
- Department of Ophthalmology, Shanghai Key Laboratory of Fundus Disease, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Yi Lu
- Department of Ophthalmology, Shanghai Key Laboratory of Fundus Disease, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Wenyuan Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Li Su
- Department of Ophthalmology, Shanghai Key Laboratory of Fundus Disease, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Qing Gu
- Department of Ophthalmology, Shanghai Key Laboratory of Fundus Disease, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Huamao Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital Affiliated to Medical School of Shanghai Jiao Tong University, Shanghai 200032, PR China
| | - Jianren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital Affiliated to Medical School of Shanghai Jiao Tong University, Shanghai 200032, PR China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital Affiliated to Medical School of Shanghai Jiao Tong University, Shanghai 200032, PR China.
| | - Xun Xu
- Department of Ophthalmology, Shanghai Key Laboratory of Fundus Disease, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200080, PR China.
| |
Collapse
|
8
|
Fernandes CSM, Barbosa I, Castro R, Pina AS, Coroadinha AS, Barbas A, Roque ACA. Retroviral particles are effectively purified on an affinity matrix containing peptides selected by phage-display. Biotechnol J 2016; 11:1513-1524. [DOI: 10.1002/biot.201600025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Cláudia S. M. Fernandes
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnológia; Universidade Nova de Lisboa; Caparica Portugal
| | - Inês Barbosa
- iBET, Instituto de Biologia Experimental e Tecnológia; Oeiras Portugal
| | - Rute Castro
- iBET, Instituto de Biologia Experimental e Tecnológia; Oeiras Portugal
- Instituto de Tecnológia Química e Biológica António Xavier; Universidade Nova de Lisboa; Oeiras Portugal
| | - Ana Sofia Pina
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnológia; Universidade Nova de Lisboa; Caparica Portugal
| | - Ana Sofia Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológia; Oeiras Portugal
- Instituto de Tecnológia Química e Biológica António Xavier; Universidade Nova de Lisboa; Oeiras Portugal
| | - Ana Barbas
- iBET, Instituto de Biologia Experimental e Tecnológia; Oeiras Portugal
- Bayer Portugal, S.A.; Carnaxide Portugal
| | - A. Cecília A. Roque
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnológia; Universidade Nova de Lisboa; Caparica Portugal
| |
Collapse
|
9
|
Affitins for protein purification by affinity magnetic fishing. J Chromatogr A 2016; 1457:50-8. [DOI: 10.1016/j.chroma.2016.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/25/2016] [Accepted: 06/06/2016] [Indexed: 12/21/2022]
|
10
|
OKOCHI M, KAMIYA T, OMASA T, TANAKA M, HONDA H. Rapid Colorimetric Antibody Detection Using a Dual-function Peptide Probe for Silver Nanoparticle Aggregation and Antibody Recognition. ANAL SCI 2016; 32:93-7. [DOI: 10.2116/analsci.32.93] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Mina OKOCHI
- Department of Biotechnology, School of Engineering, Nagoya University
- Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology
| | - Tomohiro KAMIYA
- Department of Biotechnology, School of Engineering, Nagoya University
| | - Takeshi OMASA
- Department of Material and Life Science, Graduate School Engineering, Osaka University
| | - Masayoshi TANAKA
- Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology
| | - Hiroyuki HONDA
- Department of Biotechnology, School of Engineering, Nagoya University
| |
Collapse
|
11
|
Okochi M, Kuboyama M, Tanaka M, Honda H. Design of a dual-function peptide probe as a binder of angiotensin II and an inducer of silver nanoparticle aggregation for use in label-free colorimetric assays. Talanta 2015; 142:235-9. [PMID: 26003717 DOI: 10.1016/j.talanta.2015.04.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/17/2015] [Indexed: 01/21/2023]
Abstract
Label-free colorimetric assays using metallic nanoparticles have received much recent attention, for their application in simple and sensitive methods for detection of biomolecules. Short peptide probes that can bind to analyte biomolecules are attractive ligands in molecular nanotechnology; however, identification of biological recognition motifs is usually based on trial-and-error experiments. Herein, a peptide probe was screened for colorimetric detection of angiotensin II (Ang II) using a mechanism for non-crosslinking aggregation of silver nanoparticles (AgNPs). The dual-function peptides, which bind to the analyte and induce AgNP aggregation, were identified using a two-step strategy: (1) screening of an Ang II-binding peptide from an Ang II receptor sequence library, using SPOT technology, which enable peptides synthesis on cellulose membranes via an Fmoc method and (2) selection of peptide probes that effectively induce aggregation of AgNPs using a photolinker modified peptide array. Using the identified peptide probe, KGKNKRRR, aggregation of AgNPs was detected by observation of a pink color in the absence of Ang II, whereas AgNPs remained dispersed in the presence of Ang II (yellow). The color changes were not observed in the presence of other hormone molecules. Ang II could be detected within 15 min, with a detection limit of 10 µM, by measuring the ratio of absorbance at 400 nm and 568 nm; the signal could also be observed with the naked eye. These data suggest that the peptide identified here could be used as a probe for simple and rapid colorimetric detection of Ang II. This strategy for the identification of functional peptides shows promise for the development of colorimetric detection of various diagnostically important biomolecules.
Collapse
Affiliation(s)
- Mina Okochi
- Department of Biotechnology, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-S1-24, O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Masashi Kuboyama
- Department of Biotechnology, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masayoshi Tanaka
- Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-S1-24, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Hiroyuki Honda
- Department of Biotechnology, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|