1
|
Li C, Jiang X, Yang N. Synthesis, Surface Chemistry, and Applications of Non-Zero-Dimensional Diamond Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400798. [PMID: 39340271 DOI: 10.1002/smll.202400798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Diamond nanomaterials are renowned for their exceptional properties, which include the inherent attributes of bulk diamond. Additionally, they exhibit unique characteristics at the nanoscale, including high specific surface areas, tunable surface structure, and excellent biocompatibility. These multifaceted attributes have piqued the interest of researchers globally, leading to an extensive exploration of various diamond nanostructures in a myriad of applications. This review focuses on non-zero-dimensional (non-0D) diamond nanostructures including diamond films and extended diamond nanostructures, such as diamond nanowires, nanoplatelets, and diamond foams. It delves into the fabrication, modification, and diverse applications of non-0D diamond nanostructures. This review begins with a concise review of the preparation methods for different types of diamond films and extended nanostructures, followed by an exploration of the intricacies of surface termination and the process of immobilizing target moieties of interest. It then transitions into an exploration of the applications of diamond films and extended nanostructures in the fields of biomedicine and electrochemistry. In the concluding section, this article provides a forward-looking perspective on the current state and future directions of diamond films and extended nanostructures research, offering insights into the opportunities and challenges that lie ahead in this exciting field.
Collapse
Affiliation(s)
- Changli Li
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Xin Jiang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Nianjun Yang
- Department of Chemistry, Hasselt University, Diepenbeek, 3590, Belgium
- IMO-IMOMEC, Hasselt University, Diepenbeek, 3590, Belgium
| |
Collapse
|
2
|
Saleh M, Gul A, Nasir A, Moses TO, Nural Y, Yabalak E. Comprehensive review of Carbon-based nanostructures: Properties, synthesis, characterization, and cross-disciplinary applications. J IND ENG CHEM 2024. [DOI: 10.1016/j.jiec.2024.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Tian Y, Ortiz Moreno AR, Chipaux M, Wu K, Perona Martinez FP, Shirzad H, Hamoh T, Mzyk A, van Rijn P, Schirhagl R. Diamond Surfaces with Lateral Gradients for Systematic Optimization of Surface Chemistry for Relaxometry - a Low-Pressure Plasma-Based Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23007-23017. [PMID: 39421905 PMCID: PMC11526373 DOI: 10.1021/acs.langmuir.4c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Diamond is increasingly popular because of its unique material properties. Diamond defects called nitrogen vacancy (NV) centers allow for measurements with unprecedented sensitivity. However, to achieve ideal sensing performance, NV centers need to be within nanometers from the surface and are thus strongly dependent on the local surface chemistry. Several attempts have been made to compare diamond surfaces. However, due to the high price of diamond crystals with shallow NV centers, a limited number of chemical modifications have been studied. Here, we developed a systematic method to investigate the continuity of different local environments with varying densities and natures of surface groups in a single experiment on a single diamond plate. To achieve this goal, we used diamonds with a shallow ensemble of NV centers and introduced a chemical gradient across the surface. More specifically, we used air and hydrogen plasma. The gradients were formed by a low-pressure plasma treatment after masking with a right-angled triangular prism shield. As a result, the surface contained gradually more oxygen/hydrogen toward the open end of the shield. We then performed wide-field relaxometry to determine the effect of surface chemistry on the sensing performance. As expected, relaxation times and thus sensing performance indeed vary along the gradient.
Collapse
Affiliation(s)
- Yuchen Tian
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, Netherlands
| | - Ari R. Ortiz Moreno
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, Netherlands
| | - Mayeul Chipaux
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, Netherlands
- Institute
of Physics, École Polytechnique Fédérale de Lausanne
(EPFL), Lausanne CH-1015, Switzerland
| | - Kaiqi Wu
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, Netherlands
| | - Felipe P. Perona Martinez
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, Netherlands
| | - Hoda Shirzad
- Institute
of Physics, École Polytechnique Fédérale de Lausanne
(EPFL), Lausanne CH-1015, Switzerland
| | - Thamir Hamoh
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, Netherlands
| | - Aldona Mzyk
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, Netherlands
| | - Patrick van Rijn
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, Netherlands
| | - Romana Schirhagl
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, Netherlands
| |
Collapse
|
4
|
Rikiyama K, Maehara N, Abe H, Nishimura Y, Yukawa H, Kaminaga K, Igarashi R, Osada K. Quantification of Poly(ethylene glycol) Crowding on Nanodiamonds toward Quantum Biosensor for Improved Prevention Effects on Protein Adsorption and Lung Accumulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9471-9480. [PMID: 38649324 DOI: 10.1021/acs.langmuir.3c03988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Nanometer-sized diamonds (NDs) containing nitrogen vacancy centers have garnered significant attention as potential quantum sensors for reading various types of physicochemical information in vitro and in vivo. However, NDs intrinsically aggregate when placed in biological environments, hampering their sensing capacities. To address this issue, the grafting of hydrophilic polymers onto the surface of NDs has been demonstrated considering their excellent ability to prevent protein adsorption. To this end, crowding of the grafted chains plays a crucial role because it is directly associated with the antiadsorption effect of proteins; however, its quantitative evaluation has not been reported previously. In this study, we graft poly(ethylene glycol) (PEG) with various molecular weights onto NDs, determine their crowding using a gas adsorption technique, and disclose the cross-correlation between the pH in the grafting reaction, crowding density, molecular weight, and the prevention effect on protein adsorption. PEG-grafted NDs exhibit a pronounced effect on the prevention of lung accumulation after intravenous injection in mice. PEG crowding was compared to that calculated by using a diameter determined by dynamic light scattering (DLS) assuming a sphere.
Collapse
Affiliation(s)
- Kazuaki Rikiyama
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nanami Maehara
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo, Tokyo 112-8681, Japan
| | - Hiroshi Abe
- Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Yushi Nishimura
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hiroshi Yukawa
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inageku, Chiba 263-8522, Japan
| | - Kiichi Kaminaga
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kensuke Osada
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
5
|
Mignon C, Ortiz Moreno AR, Shirzad H, Padamati SK, Damle VG, Ong Y, Schirhagl R, Chipaux M. Fast, Broad-Band Magnetic Resonance Spectroscopy with Diamond Widefield Relaxometry. ACS Sens 2023; 8:1667-1675. [PMID: 37043367 PMCID: PMC10152489 DOI: 10.1021/acssensors.2c02809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/29/2023] [Indexed: 04/13/2023]
Abstract
We present an alternative to conventional Electron Paramagnetic Resonance (EPR) spectroscopy equipment. Avoiding the use of bulky magnets and magnetron equipment, we use the photoluminescence of an ensemble of Nitrogen-Vacancy centers at the surface of a diamond. Monitoring their relaxation time (or T1), we detected their cross-relaxation with a compound of interest. In addition, the EPR spectra are encoded through a localized magnetic field gradient. While recording previous data took 12 min per data point with individual NV centers, we were able to reconstruct a full spectrum at once in 3 s, over a range from 3 to 11 G. In terms of sensitivity, only 0.5 μL of a 1 μM hexaaquacopper(II) ion solution was necessary.
Collapse
Affiliation(s)
- Charles Mignon
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Ari R. Ortiz Moreno
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Hoda Shirzad
- Institute
of Physics, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sandeep K. Padamati
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Viraj G. Damle
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Yori Ong
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Romana Schirhagl
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Mayeul Chipaux
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
- Institute
of Physics, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Aslam N, Zhou H, Urbach EK, Turner MJ, Walsworth RL, Lukin MD, Park H. Quantum sensors for biomedical applications. NATURE REVIEWS. PHYSICS 2023; 5:157-169. [PMID: 36776813 PMCID: PMC9896461 DOI: 10.1038/s42254-023-00558-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 05/09/2023]
Abstract
Quantum sensors are finding their way from laboratories to the real world, as witnessed by the increasing number of start-ups in this field. The atomic length scale of quantum sensors and their coherence properties enable unprecedented spatial resolution and sensitivity. Biomedical applications could benefit from these quantum technologies, but it is often difficult to evaluate the potential impact of the techniques. This Review sheds light on these questions, presenting the status of quantum sensing applications and discussing their path towards commercialization. The focus is on two promising quantum sensing platforms: optically pumped atomic magnetometers, and nitrogen-vacancy centres in diamond. The broad spectrum of biomedical applications is highlighted by four case studies ranging from brain imaging to single-cell spectroscopy.
Collapse
Affiliation(s)
- Nabeel Aslam
- Department of Physics, Harvard University, Cambridge, MA USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA
- Institute of Condensed Matter Physics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Hengyun Zhou
- Department of Physics, Harvard University, Cambridge, MA USA
| | - Elana K. Urbach
- Department of Physics, Harvard University, Cambridge, MA USA
| | - Matthew J. Turner
- Quantum Technology Center, University of Maryland, College Park, MD USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD USA
| | - Ronald L. Walsworth
- Quantum Technology Center, University of Maryland, College Park, MD USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD USA
- Department of Physics, University of Maryland, College Park, MD USA
| | | | - Hongkun Park
- Department of Physics, Harvard University, Cambridge, MA USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA
| |
Collapse
|
7
|
Kunuku S, Lin BR, Chen CH, Chang CH, Chen TY, Hsiao TY, Yu HK, Chang YJ, Liao LC, Chen FH, Bogdanowicz R, Niu H. Nanodiamonds Doped with Manganese for Applications in Magnetic Resonance Imaging. ACS OMEGA 2023; 8:4398-4409. [PMID: 36743038 PMCID: PMC9893453 DOI: 10.1021/acsomega.2c08043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Nanodiamonds (NDs) are emerging with great potential in biomedical applications like biomarking through fluorescence and magnetic resonance imaging (MRI), targeted drug delivery, and cancer therapy. The magnetic and optical properties of NDs could be tuned by selective doping. Therefore, we report multifunctional manganese-incorporated NDs (Mn-NDs) fabricated by Mn ion implantation. The fluorescent properties of Mn-NDs were tuned by inducing the defects by ion implantation and enhancing the residual nitrogen vacancy density achieved by a two-step annealing process. The cytotoxicity of Mn-NDs was investigated using NCTC clone 929 cells, and the results revealed no cytotoxicity effect. Mn-NDs have demonstrated dual mode contrast enhancement for both T 1- and T 2-weighted in vitro MR imaging. Furthermore, Mn-NDs have illustrated a significant increase in longitudinal relaxivity (fivefold) and transversal relaxivity (17-fold) compared to the as-received NDs. Mn-NDs are employed to investigate their ability for in vivo MR imaging by intraperitoneal (ip) injection of Mn-NDs into mice with liver tumors. After 2.5 h of ip injection, the enhancement of contrast in T 1- and T 2-weighted images has been observed via the accumulation of Mn-NDs in liver tumors of mice. Therefore, Mn-NDs have great potential for in vivo imaging by MR imaging in cancer therapy.
Collapse
Affiliation(s)
- Srinivasu Kunuku
- Department
of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications
and Informatics, Gdańsk University
of Technology, Gdańsk 80233, Poland
- Accelerator
Laboratory, Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Bo-Rong Lin
- Accelerator
Laboratory, Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chien-Hsu Chen
- Accelerator
Laboratory, Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chun-Hsiang Chang
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Tzung-Yuang Chen
- Health
Physics Division, Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Tung-Yuan Hsiao
- Accelerator
Laboratory, Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Hung-Kai Yu
- Accelerator
Laboratory, Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yu-Jen Chang
- Bioresource
Collection and Research Center, Food Industry
Research and Development Institute, Hsinchu 300193, Taiwan
| | - Li-Chuan Liao
- Bioresource
Collection and Research Center, Food Industry
Research and Development Institute, Hsinchu 300193, Taiwan
| | - Fang-Hsin Chen
- Institute
of Nuclear Engineering and Science, National
Tsing Hua University, Hsinchu 300044, Taiwan
| | - Robert Bogdanowicz
- Department
of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications
and Informatics, Gdańsk University
of Technology, Gdańsk 80233, Poland
| | - Huan Niu
- Accelerator
Laboratory, Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
8
|
Fluorescent nanodiamond for nanotheranostic applications. Mikrochim Acta 2022; 189:447. [DOI: 10.1007/s00604-022-05545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
|
9
|
Olivares-Postigo D, Gorrini F, Bitonto V, Ackermann J, Giri R, Krueger A, Bifone A. Divergent Effects of Laser Irradiation on Ensembles of Nitrogen-Vacancy Centers in Bulk and Nanodiamonds: Implications for Biosensing. NANOSCALE RESEARCH LETTERS 2022; 17:95. [PMID: 36161373 PMCID: PMC9512947 DOI: 10.1186/s11671-022-03723-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Ensembles of negatively charged nitrogen-vacancy centers (NV-) in diamond have been proposed for sensing of magnetic fields and paramagnetic agents, and as a source of spin-order for the hyperpolarization of nuclei in magnetic resonance applications. To this end, strongly fluorescent nanodiamonds (NDs) represent promising materials, with large surface areas and dense ensembles of NV-. However, surface effects tend to favor the less useful neutral form, the NV0 centers, and strategies to increase the density of shallow NV- centers have been proposed, including irradiation with strong laser power (Gorrini in ACS Appl Mater Interfaces. 13:43221-43232, 2021). Here, we study the fluorescence properties and optically detected magnetic resonance (ODMR) of NV- centers as a function of laser power in strongly fluorescent bulk diamond and in nanodiamonds obtained by nanomilling of the native material. In bulk diamond, we find that increasing laser power increases ODMR contrast, consistent with a power-dependent increase in spin-polarization. Conversely, in nanodiamonds we observe a non-monotonic behavior, with a decrease in ODMR contrast at higher laser power. We hypothesize that this phenomenon may be ascribed to more efficient NV-→NV0 photoconversion in nanodiamonds compared to bulk diamond, resulting in depletion of the NV- pool. A similar behavior is shown for NDs internalized in macrophage cells under the typical experimental conditions of imaging bioassays. Our results suggest strong laser irradiation is not an effective strategy in NDs, where the interplay between surface effects and local microenvironment determine the optimal experimental conditions.
Collapse
Affiliation(s)
- Domingo Olivares-Postigo
- Center for Neuroscience and Cognitive Systems, Istituto Italiano Di Tecnologia, Corso Bettini 31, 38068, Rovereto, Trento, Italy.
- Molecular Biology Center, University of Torino, via Nizza 52, 10126, Turin, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126, Turin, Italy.
| | - Federico Gorrini
- Molecular Biology Center, University of Torino, via Nizza 52, 10126, Turin, Italy
- Center for Sustainable Future Technologies, Istituto Italiano Di Tecnologia, via Livorno 60, 10144, Turin, Italy
| | - Valeria Bitonto
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126, Turin, Italy
| | - Johannes Ackermann
- Institut Für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Rakshyakar Giri
- Center for Neuroscience and Cognitive Systems, Istituto Italiano Di Tecnologia, Corso Bettini 31, 38068, Rovereto, Trento, Italy
| | - Anke Krueger
- Institut Für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Wilhelm Conrad Röntgen Center for Complex Materials Research (RCCM), Julius-Maximilians University Würzburg, 97074, Würzburg, Germany
| | - Angelo Bifone
- Molecular Biology Center, University of Torino, via Nizza 52, 10126, Turin, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126, Turin, Italy.
- Center for Sustainable Future Technologies, Istituto Italiano Di Tecnologia, via Livorno 60, 10144, Turin, Italy.
| |
Collapse
|
10
|
Svadlakova T, Holmannova D, Kolackova M, Malkova A, Krejsek J, Fiala Z. Immunotoxicity of Carbon-Based Nanomaterials, Starring Phagocytes. Int J Mol Sci 2022; 23:ijms23168889. [PMID: 36012161 PMCID: PMC9408998 DOI: 10.3390/ijms23168889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
In the field of science, technology and medicine, carbon-based nanomaterials and nanoparticles (CNMs) are becoming attractive nanomaterials that are increasingly used. However, it is important to acknowledge the risk of nanotoxicity that comes with the widespread use of CNMs. CNMs can enter the body via inhalation, ingestion, intravenously or by any other route, spread through the bloodstream and penetrate tissues where (in both compartments) they interact with components of the immune system. Like invading pathogens, CNMs can be recognized by large numbers of receptors that are present on the surface of innate immune cells, notably monocytes and macrophages. Depending on the physicochemical properties of CNMs, i.e., shape, size, or adsorbed contamination, phagocytes try to engulf and process CNMs, which might induce pro/anti-inflammatory response or lead to modulation and disruption of basic immune activity. This review focuses on existing data on the immunotoxic potential of CNMs, particularly in professional phagocytes, as they play a central role in processing and eliminating foreign particles. The results of immunotoxic studies are also described in the context of the entry routes, impacts of contamination and means of possible elimination. Mechanisms of proinflammatory effect depending on endocytosis and intracellular distribution of CNMs are highlighted as well.
Collapse
Affiliation(s)
- Tereza Svadlakova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Correspondence:
| | - Drahomira Holmannova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Martina Kolackova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Andrea Malkova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Zdenek Fiala
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| |
Collapse
|
11
|
Hsiao WW, Le T, Chang H. Applications of Fluorescent Nanodiamond in Biology. ENCYCLOPEDIA OF ANALYTICAL CHEMISTRY 2022:1-43. [DOI: 10.1002/9780470027318.a9776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Abstract
Fluorescent nanodiamond (FND) has emerged as a promising material in several multidisciplinary areas, including biology, chemistry, physics, and materials science. Composed of sp
3
‐carbon atoms, FND offers superior biocompatibility, chemical inertness, a large surface area, tunable surface structure, and excellent mechanical characteristics. The nanoparticle is unique in that it comprises a high‐density ensemble of negatively charged nitrogen‐vacancy (NV
−
) centers that act as built‐in fluorophores and exhibit a number of remarkable optical and magnetic properties. These properties make FND particularly well suited for a wide range of applications, including cell labeling, long‐term cell tracking, super‐resolution imaging, nanoscale sensing, and drug delivery. This article discusses recent applications of FND‐enabled developments in biology.
Collapse
|
12
|
Liu W, Alam MNA, Liu Y, Agafonov VN, Qi H, Koynov K, Davydov VA, Uzbekov R, Kaiser U, Lasser T, Jelezko F, Ermakova A, Weil T. Silicon-Vacancy Nanodiamonds as High Performance Near-Infrared Emitters for Live-Cell Dual-Color Imaging and Thermometry. NANO LETTERS 2022; 22:2881-2888. [PMID: 35289621 PMCID: PMC9011402 DOI: 10.1021/acs.nanolett.2c00040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/09/2022] [Indexed: 05/28/2023]
Abstract
Nanodiamonds (NDs) with color centers are excellent emitters for various bioimaging and quantum biosensing applications. In our work, we explore new applications of NDs with silicon-vacancy centers (SiV) obtained by high-pressure high-temperature (HPHT) synthesis based on metal-catalyst-free growth. They are coated with a polypeptide biopolymer, which is essential for efficient cellular uptake. The unique optical properties of NDs with SiV are their high photostability and narrow emission in the near-infrared region. Our results demonstrate for the first time that NDs with SiV allow live-cell dual-color imaging and intracellular tracking. Also, intracellular thermometry and challenges associated with SiV atomic defects in NDs are investigated and discussed for the first time. NDs with SiV nanoemitters provide new avenues for live-cell bioimaging, diagnostic (SiV as a nanosized thermometer), and theranostic (nanodiamonds as drug carrier) applications.
Collapse
Affiliation(s)
- Weina Liu
- Max-Planck-Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Md Noor A. Alam
- Max-Planck-Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Yan Liu
- Beijing
Academy of Quantum Information Sciences, No.10 Xi-bei-wang East Road, 100193 Beijing, China
- Institute
for Quantum Optics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | - Haoyuan Qi
- Central
Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Center
for Advancing Electronics Dresden (cfaed) and Food Chemistry, Technical University of Dresden, 01069 Dresden, Germany
| | - Kaloian Koynov
- Max-Planck-Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Valery A. Davydov
- L.
F. Vereshchagin Institute for High Pressure Physics, The Russian Academy of Sciences, Troitsk, Moscow 108840, Russia
| | - Rustem Uzbekov
- Laboratoire
Biologie Cellulaire et Microscopie Electronique, Faculté de
Médecine, Université François
Rabelais, 37032 Tours, France
- Faculty
of Bioengineering and Bioinformatics, Moscow
State University, Leninskye
gory 73, Moscow 119992, Russia
| | - Ute Kaiser
- Central
Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Theo Lasser
- Max-Planck-Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Fedor Jelezko
- Institute
for Quantum Optics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Anna Ermakova
- Max-Planck-Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
for Physics, Johannes Gutenberg University
Mainz, Staudingerweg
7, 55128 Mainz, Germany
| | - Tanja Weil
- Max-Planck-Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
13
|
Liu W, Alam MNA, Liu Y, Agafonov VN, Qi H, Koynov K, Davydov VA, Uzbekov R, Kaiser U, Lasser T, Jelezko F, Ermakova A, Weil T. Silicon-Vacancy Nanodiamonds as High Performance Near-Infrared Emitters for Live-Cell Dual-Color Imaging and Thermometry. NANO LETTERS 2022; 22:2881-2888. [PMID: 35289621 DOI: 10.26434/chemrxiv-2022-2ssz2-v3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanodiamonds (NDs) with color centers are excellent emitters for various bioimaging and quantum biosensing applications. In our work, we explore new applications of NDs with silicon-vacancy centers (SiV) obtained by high-pressure high-temperature (HPHT) synthesis based on metal-catalyst-free growth. They are coated with a polypeptide biopolymer, which is essential for efficient cellular uptake. The unique optical properties of NDs with SiV are their high photostability and narrow emission in the near-infrared region. Our results demonstrate for the first time that NDs with SiV allow live-cell dual-color imaging and intracellular tracking. Also, intracellular thermometry and challenges associated with SiV atomic defects in NDs are investigated and discussed for the first time. NDs with SiV nanoemitters provide new avenues for live-cell bioimaging, diagnostic (SiV as a nanosized thermometer), and theranostic (nanodiamonds as drug carrier) applications.
Collapse
Affiliation(s)
- Weina Liu
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Md Noor A Alam
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Yan Liu
- Beijing Academy of Quantum Information Sciences, No.10 Xi-bei-wang East Road, 100193 Beijing, China
- Institute for Quantum Optics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | - Haoyuan Qi
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Center for Advancing Electronics Dresden (cfaed) and Food Chemistry, Technical University of Dresden, 01069 Dresden, Germany
| | - Kaloian Koynov
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Valery A Davydov
- L. F. Vereshchagin Institute for High Pressure Physics, The Russian Academy of Sciences, Troitsk, Moscow 108840, Russia
| | - Rustem Uzbekov
- Laboratoire Biologie Cellulaire et Microscopie Electronique, Faculté de Médecine, Université François Rabelais, 37032 Tours, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskye gory 73, Moscow 119992, Russia
| | - Ute Kaiser
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Theo Lasser
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Anna Ermakova
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute for Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Tanja Weil
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
14
|
Shulevitz HJ, Huang TY, Xu J, Neuhaus SJ, Patel RN, Choi YC, Bassett LC, Kagan CR. Template-Assisted Self-Assembly of Fluorescent Nanodiamonds for Scalable Quantum Technologies. ACS NANO 2022; 16:1847-1856. [PMID: 35025204 DOI: 10.1021/acsnano.1c09839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Milled nanodiamonds containing nitrogen-vacancy (NV) centers are nanoscale quantum sensors that form colloidal dispersions. However, variations in their size, shape, and surface chemistry limit the ability to position individual nanodiamonds and statistically study properties that affect their optical and quantum characteristics. Here, we present a scalable strategy to form ordered arrays of nanodiamonds using capillary-driven, template-assisted self-assembly. We demonstrate the precise spatial arrangement of isolated nanodiamonds with diameters below 50 nm across millimeter-scale areas. Measurements of over 200 assembled nanodiamonds yield a statistical understanding of their structural, optical, and quantum properties. The NV centers' spin and charge properties are uncorrelated with nanodiamond size but rather are consistent with heterogeneity in their nanoscale environment.
Collapse
Affiliation(s)
- Henry J Shulevitz
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tzu-Yung Huang
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jun Xu
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Steven J Neuhaus
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Raj N Patel
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yun Chang Choi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lee C Bassett
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cherie R Kagan
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
15
|
Li C, Soleyman R, Kohandel M, Cappellaro P. SARS-CoV-2 Quantum Sensor Based on Nitrogen-Vacancy Centers in Diamond. NANO LETTERS 2022; 22:43-49. [PMID: 34913700 PMCID: PMC8691455 DOI: 10.1021/acs.nanolett.1c02868] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/04/2021] [Indexed: 05/05/2023]
Abstract
The development of highly sensitive and rapid biosensing tools targeted to the highly contagious virus SARS-CoV-2 is critical to tackling the COVID-19 pandemic. Quantum sensors can play an important role because of their superior sensitivity and fast improvements in recent years. Here we propose a molecular transducer designed for nitrogen-vacancy (NV) centers in nanodiamonds, translating the presence of SARS-CoV-2 RNA into an unambiguous magnetic noise signal that can be optically read out. We evaluate the performance of the hybrid sensor, including its sensitivity and false negative rate, and compare it to widespread diagnostic methods. The proposed method is fast and promises to reach a sensitivity down to a few hundreds of RNA copies with false negative rate less than 1%. The proposed hybrid sensor can be further implemented with different solid-state defects and substrates, generalized to diagnose other RNA viruses, and integrated with CRISPR technology.
Collapse
Affiliation(s)
- Changhao Li
- Research Laboratory of Electronics and Department of
Nuclear Science and Engineering, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United
States
| | - Rouhollah Soleyman
- Department of Applied Mathematics,
University of Waterloo, Waterloo, Ontario N2L 3G1,
Canada
| | - Mohammad Kohandel
- Department of Applied Mathematics,
University of Waterloo, Waterloo, Ontario N2L 3G1,
Canada
| | - Paola Cappellaro
- Research Laboratory of Electronics and Department of
Nuclear Science and Engineering, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United
States
- Department of Physics, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United
States
| |
Collapse
|
16
|
Mzyk A, Ong Y, Ortiz Moreno AR, Padamati SK, Zhang Y, Reyes-San-Martin CA, Schirhagl R. Diamond Color Centers in Diamonds for Chemical and Biochemical Analysis and Visualization. Anal Chem 2022; 94:225-249. [PMID: 34841868 DOI: 10.1021/acs.analchem.1c04536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Aldona Mzyk
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
| | - Yori Ong
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Ari R Ortiz Moreno
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Sandeep K Padamati
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Yue Zhang
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Claudia A Reyes-San-Martin
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Romana Schirhagl
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| |
Collapse
|
17
|
Wang QY, Wang ZH, Du B, Chen XD, Guo GC, Sun FW. Charge state depletion nanoscopy with a nitrogen-vacancy center in nanodiamonds. OPTICS LETTERS 2022; 47:66-69. [PMID: 34951884 DOI: 10.1364/ol.447864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
The development of super-resolution imaging has driven research into biological labeling, new materials' characterization, and nanoscale sensing. Here, we studied the photoinduced charge state conversion of nitrogen-vacancy (NV) centers in nanodiamonds (NDs), which show the potential for multifunction sensing and labeling at the nanoscale. Charge state depletion (CSD) nanoscopy is subsequently demonstrated for the diffraction-unlimited imaging of NDs in biological cells. A resolution of 77 nm is obtained with 50 nm NDs. The depletion laser power of CSD nanoscopy is approximately 1/16 of stimulated emission depletion (STED) microscopy with the same resolution. The results can be used to improve the spatial resolution of biological labeling and sensing with NDs and other nanoparticles.
Collapse
|
18
|
Singh M, Mazumder B. Recent Advancements in Nanodiamond Mediated Brain Targeted Drug Delivery and Bioimaging of Brain Ailments: A Holistic Review. Pharm Nanotechnol 2021; 10:42-55. [PMID: 34951376 DOI: 10.2174/2211738510666211222111938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The brain is a vital and composite organ. By nature, the innate make-up of the brain is such that in anatomical parlance, it is highly protected by the "Blood-Brain Barrier", which is a nexus of capillary endothelial cells, basement membrane, neuroglial membrane and glialpodocytes. The same barrier, which protects and isolates the interstitial fluid of the brain from capillary circulation, also restricts the therapeutic intervention. Many standing pharmaceutical formulations are ineffective in the treatment of inimical brain ailments because of the inability of the API to surpass and subsist inside the Blood Brain Barrier. OBJECTIVE This is an integrated review that emphasizes on the recent advancements in brain-targeted drug delivery utilizing nanodiamonds (NDs) as a carrier of therapeutic agents. NDs are a novel nanoparticulate drug delivery system, having carbon moieties as their building blocks and their surface tenability is remarkable. These neoteric carbon-based carriers have exceptional, mechanical, electrical, chemical, optical, and biological properties, which can be further rationally modified and augmented. CONCLUSION NDs could be the next"revolution "in the field of nanoscience for the treatment of neurodegenerative disorders, brain tumors, and other pernicious brain ailments. What sets them apart from other nanocarriers is their versatile properties like diverse size range and surface modification potential, which makes them efficient enough to move across certain biological barriers and offer a plethora of brain targeting and bioimaging abilities. Lay Summary: The blood-brain barrier (BBB) poses a major hurdle in the way of treating many serious brain ailments. A range of nanoparticle based drug delivering systems have been formulated, including solid lipid nanoparticles, liposomes, dendrimers, nanogels, polymeric NPs, metallic NPs (gold, platinum, andironoxide) and diamondoids (carbonnanotubes). Despite this development, only a few of these formulations have shown the ability to cross the BBB. Nanodiamonds, because of their small size, shape, and surface characteristics, have a potential in moving beyond the diverse and intricate BBB, and offer a plethora of brain targeting capabilities.
Collapse
Affiliation(s)
- Mohini Singh
- Department of pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam. India
| | - Bhaskar Mazumder
- Department of pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam. India
| |
Collapse
|
19
|
Fujiwara M, Shikano Y. Diamond quantum thermometry: from foundations to applications. NANOTECHNOLOGY 2021; 32:482002. [PMID: 34416739 DOI: 10.1088/1361-6528/ac1fb1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Diamond quantum thermometry exploits the optical and electrical spin properties of colour defect centres in diamonds and, acts as a quantum sensing method exhibiting ultrahigh precision and robustness. Compared to the existing luminescent nanothermometry techniques, a diamond quantum thermometer can be operated over a wide temperature range and a sensor spatial scale ranging from nanometres to micrometres. Further, diamond quantum thermometry is employed in several applications, including electronics and biology, to explore these fields with nanoscale temperature measurements. This review covers the operational principles of diamond quantum thermometry for spin-based and all-optical methods, material development of diamonds with a focus on thermometry, and examples of applications in electrical and biological systems with demand-based technological requirements.
Collapse
Affiliation(s)
- Masazumi Fujiwara
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yutaka Shikano
- Graduate School of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
- Quantum Computing Center, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
- Institute for Quantum Studies, Chapman University, 1 University Dr, Orange, CA 92866, United States of America
- JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
20
|
Chen Y, Xu X, Li C, Bendavid A, Westerhausen MT, Bradac C, Toth M, Aharonovich I, Tran TT. Bottom-Up Synthesis of Hexagonal Boron Nitride Nanoparticles with Intensity-Stabilized Quantum Emitters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008062. [PMID: 33733581 DOI: 10.1002/smll.202008062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Fluorescent nanoparticles are widely utilized in a large range of nanoscale imaging and sensing applications. While ultra-small nanoparticles (size ≤10 nm) are highly desirable, at this size range, their photostability can be compromised due to effects such as intensity fluctuation and spectral diffusion caused by interaction with surface states. In this article, a facile, bottom-up technique for the fabrication of sub-10-nm hexagonal boron nitride (hBN) nanoparticles hosting photostable bright emitters via a catalyst-free hydrothermal reaction between boric acid and melamine is demonstrated. A simple stabilization protocol that significantly reduces intensity fluctuation by ≈85% and narrows the emission linewidth by ≈14% by employing a common sol-gel silica coating process is also implemented. This study advances a promising strategy for the scalable, bottom-up synthesis of high-quality quantum emitters in hBN nanoparticles.
Collapse
Affiliation(s)
- Yongliang Chen
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Xiaoxue Xu
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Chi Li
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Avi Bendavid
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, NSW, 2070, Australia
| | - Mika T Westerhausen
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Carlo Bradac
- Department of Physics and Astronomy, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Milos Toth
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- ARC Center of Excellence for Transformative Meta-Optical Systems (TMOS), Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- ARC Center of Excellence for Transformative Meta-Optical Systems (TMOS), Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Toan Trong Tran
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
21
|
Jović D, Jaćević V, Kuča K, Borišev I, Mrdjanovic J, Petrovic D, Seke M, Djordjevic A. The Puzzling Potential of Carbon Nanomaterials: General Properties, Application, and Toxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1508. [PMID: 32752020 PMCID: PMC7466546 DOI: 10.3390/nano10081508] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Being a member of the nanofamily, carbon nanomaterials exhibit specific properties that mostly arise from their small size. They have proved to be very promising for application in the technical and biomedical field. A wide spectrum of use implies the inevitable presence of carbon nanomaterials in the environment, thus potentially endangering their whole nature. Although scientists worldwide have conducted research investigating the impact of these materials, it is evident that there are still significant gaps concerning the knowledge of their mechanisms, as well as the prolonged and chronic exposure and effects. This manuscript summarizes the most prominent representatives of carbon nanomaterial groups, giving a brief review of their general physico-chemical properties, the most common use, and toxicity profiles. Toxicity was presented through genotoxicity and the activation of the cell signaling pathways, both including in vitro and in vivo models, mechanisms, and the consequential outcomes. Moreover, the acute toxicity of fullerenol, as one of the most commonly investigated members, was briefly presented in the final part of this review. Thinking small can greatly help us improve our lives, but also obliges us to deeply and comprehensively investigate all the possible consequences that could arise from our pure-hearted scientific ambitions and work.
Collapse
Affiliation(s)
- Danica Jović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Vesna Jaćević
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, Crnotravska 17, 11040 Belgrade, Serbia
- Department of Pharmacological Science, Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Ivana Borišev
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jasminka Mrdjanovic
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Danijela Petrovic
- Department of Natural Sciences and Management in Education, Faculty of Education Sombor, University of Novi Sad, Podgorička 4, 25101 Sombor, Serbia
| | - Mariana Seke
- Institute of Nuclear Sciences "Vinca", University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Vinča, Belgrade, Serbia
| | - Aleksandar Djordjevic
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
22
|
Probing and manipulating embryogenesis via nanoscale thermometry and temperature control. Proc Natl Acad Sci U S A 2020; 117:14636-14641. [PMID: 32541064 DOI: 10.1073/pnas.1922730117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding the coordination of cell-division timing is one of the outstanding questions in the field of developmental biology. One active control parameter of the cell-cycle duration is temperature, as it can accelerate or decelerate the rate of biochemical reactions. However, controlled experiments at the cellular scale are challenging, due to the limited availability of biocompatible temperature sensors, as well as the lack of practical methods to systematically control local temperatures and cellular dynamics. Here, we demonstrate a method to probe and control the cell-division timing in Caenorhabditis elegans embryos using a combination of local laser heating and nanoscale thermometry. Local infrared laser illumination produces a temperature gradient across the embryo, which is precisely measured by in vivo nanoscale thermometry using quantum defects in nanodiamonds. These techniques enable selective, controlled acceleration of the cell divisions, even enabling an inversion of division order at the two-cell stage. Our data suggest that the cell-cycle timing asynchrony of the early embryonic development in C. elegans is determined independently by individual cells rather than via cell-to-cell communication. Our method can be used to control the development of multicellular organisms and to provide insights into the regulation of cell-division timings as a consequence of local perturbations.
Collapse
|
23
|
Foy C, Zhang L, Trusheim ME, Bagnall KR, Walsh M, Wang EN, Englund DR. Wide-Field Magnetic Field and Temperature Imaging Using Nanoscale Quantum Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26525-26533. [PMID: 32321237 DOI: 10.1021/acsami.0c01545] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The simultaneous imaging of magnetic fields and temperature (MT) is important in a range of applications, including studies of carrier transport and semiconductor device characterization. Techniques exist for separately measuring temperature (e.g., infrared (IR) microscopy, micro-Raman spectroscopy, and thermo-reflectance microscopy) and magnetic fields (e.g., scanning probe magnetic force microscopy and superconducting quantum interference devices). However, these techniques cannot measure magnetic fields and temperature simultaneously. Here, we use the exceptional temperature and magnetic field sensitivity of nitrogen vacancy (NV) spins in conformally coated nanodiamonds to realize simultaneous wide-field MT imaging at the device level. Our "quantum conformally attached thermo-magnetic" (Q-CAT) imaging enables (i) wide-field, high-frame rate imaging (100-1000 Hz); (ii) high sensitivity; and (iii) compatibility with standard microscopes. We apply this technique to study the industrially important problem of characterizing multifinger gallium nitride high-electron mobility transistors (GaN HEMTs). We spatially and temporally resolve the electric current distribution and resulting temperature rise, elucidating functional device behavior at the microscopic level. The general applicability of Q-CAT imaging serves as an important tool for understanding complex MT phenomena in material science, device physics, and related fields.
Collapse
Affiliation(s)
- Christopher Foy
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Lenan Zhang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass Avenue, Cambridge, Massachusetts 02139, United States
| | - Matthew E Trusheim
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Kevin R Bagnall
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael Walsh
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Evelyn N Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass Avenue, Cambridge, Massachusetts 02139, United States
| | - Dirk R Englund
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Basso L, Sacco M, Bazzanella N, Cazzanelli M, Barge A, Orlandi M, Bifone A, Miotello A. Laser-Synthesis of NV-Centers-Enriched Nanodiamonds: Effect of Different Nitrogen Sources. MICROMACHINES 2020; 11:mi11060579. [PMID: 32527055 PMCID: PMC7344492 DOI: 10.3390/mi11060579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 01/15/2023]
Abstract
Due to the large number of possible applications in quantum technology fields—especially regarding quantum sensing—of nitrogen-vacancy (NV) centers in nanodiamonds (NDs), research on a cheap, scalable and effective NDs synthesis technique has acquired an increasing interest. Standard production methods, such as detonation and grinding, require multistep post-synthesis processes and do not allow precise control in the size and fluorescence intensity of NDs. For this reason, a different approach consisting of pulsed laser ablation of carbon precursors has recently been proposed. In this work, we demonstrate the synthesis of NV-fluorescent NDs through pulsed laser ablation of an N-doped graphite target. The obtained NDs are fully characterized in the morphological and optical properties, in particular with optically detected magnetic resonance spectroscopy to unequivocally prove the NV origin of the NDs photoluminescence. Moreover, to compare the different fluorescent NDs laser-ablation-based synthesis techniques recently developed, we report an analysis of the effect of the medium in which laser ablation of graphite is performed. Along with it, thermodynamic aspects of the physical processes occurring during laser irradiation are analyzed. Finally, we show that the use of properly N-doped graphite as a target for laser ablation can lead to precise control in the number of NV centers in the produced NDs.
Collapse
Affiliation(s)
- Luca Basso
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Italy; (N.B.); (M.C.); (M.O.); (A.M.)
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, corso Bettini 31, 38068 Rovereto, Italy; (M.S.); (A.B.)
- Correspondence:
| | - Mirko Sacco
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, corso Bettini 31, 38068 Rovereto, Italy; (M.S.); (A.B.)
- Department of Drug Science and Technology, University of Torino, corso Raffaello 30, 10125 Torino, Italy;
| | - Nicola Bazzanella
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Italy; (N.B.); (M.C.); (M.O.); (A.M.)
| | - Massimo Cazzanelli
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Italy; (N.B.); (M.C.); (M.O.); (A.M.)
| | - Alessandro Barge
- Department of Drug Science and Technology, University of Torino, corso Raffaello 30, 10125 Torino, Italy;
| | - Michele Orlandi
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Italy; (N.B.); (M.C.); (M.O.); (A.M.)
| | - Angelo Bifone
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, corso Bettini 31, 38068 Rovereto, Italy; (M.S.); (A.B.)
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, via Nizza 52, 10126 Torino, Italy
| | - Antonio Miotello
- Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Italy; (N.B.); (M.C.); (M.O.); (A.M.)
| |
Collapse
|
25
|
Plasma Treatments and Light Extraction from Fluorinated CVD-Grown (400) Single Crystal Diamond Nanopillars. Mol Vis 2020. [DOI: 10.3390/c6020037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We investigate the possibilities to realize light extraction from single crystal diamond (SCD) nanopillars. This was achieved by dedicated 519 nm laser-induced spin-state initiation of negatively charged nitrogen vacancies (NV−). We focus on the naturally-generated by chemical vapor deposition (CVD) growth of NV−. Applied diamond was neither implanted with 14N+, nor was the CVD synthesized SCD annealed. To investigate the possibility of light extraction by the utilization of NV−’s bright photoluminescence at room temperature and ambient conditions with the waveguiding effect, we have performed a top-down nanofabrication of SCD by electron beam lithography (EBL) and dry inductively-coupled plasma/reactive ion etching (ICP-RIE) to generate light focusing nanopillars. In addition, we have fluorinated the diamond’s surface by dedicated 0 V SF6 ICP plasma. Light extraction and spin manipulations were performed with photoluminescence (PL) spectroscopy and optically detected magnetic resonance (ODMR) at room temperature. We have observed a remarkable effect based on the selective 0 V SF6 plasma etching and surprisingly, in contrast to literature findings, deactivation of NV− centers. We discuss the possible deactivation mechanism in detail.
Collapse
|
26
|
|
27
|
Reina G, Zhao L, Bianco A, Komatsu N. Chemical Functionalization of Nanodiamonds: Opportunities and Challenges Ahead. Angew Chem Int Ed Engl 2019; 58:17918-17929. [DOI: 10.1002/anie.201905997] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/20/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Giacomo Reina
- University of StrasbourgCNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 67000 Strasbourg France
| | - Li Zhao
- Graduate School of Human and Environmental StudiesKyoto University, Sakyo-ku Kyoto 606-8501 Japan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow University Suzhou Jiangsu 215123 China
| | - Alberto Bianco
- University of StrasbourgCNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 67000 Strasbourg France
- Graduate School of Human and Environmental StudiesKyoto University, Sakyo-ku Kyoto 606-8501 Japan
| | - Naoki Komatsu
- Graduate School of Human and Environmental StudiesKyoto University, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
28
|
Torelli MD, Nunn NA, Shenderova OA. A Perspective on Fluorescent Nanodiamond Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902151. [PMID: 31215753 PMCID: PMC6881523 DOI: 10.1002/smll.201902151] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Indexed: 05/28/2023]
Abstract
The field of fluorescent nanodiamonds (FNDs) has advanced greatly over the past few years. Though historically limited primarily to red fluorescence, the wavelengths available for nanodiamonds have increased due to continuous technical advancement. This Review summarizes the strides made in the synthesis, functionalization, and application of FNDs to bioimaging. Highlights range from super-resolution microscopy, through cellular and whole animal imaging, up to constantly emerging fields including sensing and hyperpolarized magnetic resonance imaging.
Collapse
Affiliation(s)
- Marco D. Torelli
- Adámas Nanotechnologies, Inc., 8100 Brownleigh Dr, Suite 120, Raleigh, NC 27617
| | - Nicholas A. Nunn
- Adámas Nanotechnologies, Inc., 8100 Brownleigh Dr, Suite 120, Raleigh, NC 27617
| | - Olga A. Shenderova
- Adámas Nanotechnologies, Inc., 8100 Brownleigh Dr, Suite 120, Raleigh, NC 27617
| |
Collapse
|
29
|
Reina G, Zhao L, Bianco A, Komatsu N. Chemical Functionalization of Nanodiamonds: Opportunities and Challenges Ahead. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Giacomo Reina
- University of StrasbourgCNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 67000 Strasbourg France
| | - Li Zhao
- Graduate School of Human and Environmental StudiesKyoto University, Sakyo-ku Kyoto 606-8501 Japan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow University Suzhou Jiangsu 215123 China
| | - Alberto Bianco
- University of StrasbourgCNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 67000 Strasbourg France
- Graduate School of Human and Environmental StudiesKyoto University, Sakyo-ku Kyoto 606-8501 Japan
| | - Naoki Komatsu
- Graduate School of Human and Environmental StudiesKyoto University, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
30
|
Harvey S, Raabe M, Ermakova A, Wu Y, Zapata T, Chen C, Lu H, Jelezko F, Ng DYW, Weil T. Transferrin‐Coated Nanodiamond–Drug Conjugates for Milliwatt Photothermal Applications. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sean Harvey
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry IUlm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - Marco Raabe
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry IUlm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - Anna Ermakova
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Yingke Wu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Todd Zapata
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Chaojian Chen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry IUlm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - Hao Lu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Fedor Jelezko
- Institute for Quantum OpticsUlm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - David Y. W. Ng
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry IUlm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| |
Collapse
|
31
|
Abstract
Protein analysis of potential disease markers in blood is complicated by the fact that proteins in plasma show very different abundances. As a result, high-abundance proteins dominate the analysis, which often render the analysis of low-abundance proteins impossible. Depleting high-abundance proteins is one strategy to solve this problem. Here, we present, for the first time, a very simple approach based on selective binding of serum proteins to the surface of nanodiamonds. In our first proof-of-principle experiments, we were able to detect, on average, eight proteins that are present at a concentration of 1 ng/mL (instead of 0.5 ng/mL in the control without sample preparation). Remarkably, we detect proteins down to a concentration of 400 pg/mL after only one simple depletion step. Among the proteins we could analyze are also numerous disease biomarkers, including markers for multiple cancer forms, cardiovascular diseases, or Alzheimer's disease. Remarkably, many of the biomarkers we find also could not be detected with a state-of-the-art ultrahigh-performance liquid chromatography column (which depletes the 64 most-abundant serum proteins).
Collapse
Affiliation(s)
- Felipe Perona Martinez
- Groningen University, University Medical Center Groningen , Antonius Deusinglaan 1 , 9713 AW Groningen , The Netherlands
| | - Andreas Nagl
- Groningen University, University Medical Center Groningen , Antonius Deusinglaan 1 , 9713 AW Groningen , The Netherlands
| | - Sona Guluzade
- Groningen University, University Medical Center Groningen , Antonius Deusinglaan 1 , 9713 AW Groningen , The Netherlands
| | - Romana Schirhagl
- Groningen University, University Medical Center Groningen , Antonius Deusinglaan 1 , 9713 AW Groningen , The Netherlands
| |
Collapse
|
32
|
Johnstone GE, Cairns GS, Patton BR. Nanodiamonds enable adaptive-optics enhanced, super-resolution, two-photon excitation microscopy. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190589. [PMID: 31417755 PMCID: PMC6689623 DOI: 10.1098/rsos.190589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Particles of diamond in the 5-100 nm size range, known as nanodiamond (ND), have shown promise as robust fluorophores for optical imaging. We demonstrate here that, due to their photostability, they are not only suitable for two-photon imaging, but also allow significant resolution enhancement when combined with computational super-resolution techniques. We observe a resolution of 42.5 nm when processing two-photon images with the Super-Resolution Radial Fluctuations algorithm. We show manipulation of the point-spread function of the microscope using adaptive optics. This demonstrates how the photostability of ND can also be of use when characterizing adaptive optics technologies or testing the resilience of super-resolution or aberration correction algorithms.
Collapse
Affiliation(s)
| | | | - Brian R. Patton
- Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, UK
| |
Collapse
|
33
|
Ryazanova AI, Lvova NA. Adsorption Properties of the C(100)-(2×1) Diamond Surface with Vacancy Defects and “Nitrogen + Vacancy” Complexes. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s003602441904023x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Shenderova OA, Shames AI, Nunn NA, Torelli MD, Vlasov I, Zaitsev A. Review Article: Synthesis, properties, and applications of fluorescent diamond particles. JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY. B, NANOTECHNOLOGY & MICROELECTRONICS : MATERIALS, PROCESSING, MEASUREMENT, & PHENOMENA : JVST B 2019; 37:030802. [PMID: 31032146 PMCID: PMC6461556 DOI: 10.1116/1.5089898] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 05/21/2023]
Abstract
Diamond particles containing color centers-fluorescent crystallographic defects embedded within the diamond lattice-outperform other classes of fluorophores by providing a combination of unmatched photostability, intriguing coupled magneto-optical properties, intrinsic biocompatibility, and outstanding mechanical and chemical robustness. This exceptional combination of properties positions fluorescent diamond particles as unique fluorophores with emerging applications in a variety of fields, including bioimaging, ultrasensitive metrology at the nanoscale, fluorescent tags in industrial applications, and even potentially as magnetic resonance imaging contrast agents. However, production of fluorescent nanodiamond (FND) is nontrivial, since it requires irradiation with high-energy particles to displace carbon atoms and create vacancies-a primary constituent in the majority color centers. In this review, centrally focused on material developments, major steps of FND production are discussed with emphasis on current challenges in the field and possible solutions. The authors demonstrate how the combination of fluorescent spectroscopy and electron paramagnetic resonance provides valuable insight into the types of radiation-induced defects formed and their evolution upon thermal annealing, thereby guiding FND performance optimization. A recent breakthrough process allowing for production of fluorescent diamond particles with vibrant blue, green, and red fluorescence is also discussed. Finally, the authors conclude with demonstrations of a few FND applications in the life science arena and in industry.
Collapse
Affiliation(s)
- Olga A Shenderova
- Adámas Nanotechnologies, 8100 Brownleigh Dr., Raleigh, North California 27617
| | - Alexander I Shames
- Department of Physics, Ben-Gurion University of the Negev, Be'er-Sheva 8410501, Israel
| | - Nicholas A Nunn
- Adámas Nanotechnologies, 8100 Brownleigh Dr., Raleigh, North California 27617
| | - Marco D Torelli
- Adámas Nanotechnologies, 8100 Brownleigh Dr., Raleigh, North California 27617
| | - Igor Vlasov
- General Physics Institute, RAS, Vavilov Street 38, 119991 Moscow, Russia
| | - Alexander Zaitsev
- College of Staten Island, CUNY, 2800 Victory Blvd., Staten Island, New York 10312
| |
Collapse
|
35
|
Fujiwara M, Tsukahara R, Sera Y, Yukawa H, Baba Y, Shikata S, Hashimoto H. Monitoring spin coherence of single nitrogen-vacancy centers in nanodiamonds during pH changes in aqueous buffer solutions. RSC Adv 2019; 9:12606-12614. [PMID: 35515823 PMCID: PMC9063689 DOI: 10.1039/c9ra02282a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/15/2019] [Indexed: 12/05/2022] Open
Abstract
We report on the sensing stability of quantum nanosensors in aqueous buffer solutions for the two detection schemes of quantum decoherence spectroscopy and nanoscale thermometry. The electron spin properties of single nitrogen-vacancy (NV) centers in 25 nm-sized nanodiamonds have been characterized by observing individual nanodiamonds during a continuous pH change from 4 to 11. We have determined the stability of the NV quantum sensors during the pH change as the fluctuations of ±12% and ±0.2 MHz for the spin coherence time (T 2) and the resonance frequency (ω 0) of their mean values, which are comparable to the instrument error of the measurement system. We discuss the importance of characterizing the sensing stability during the pH change and how the present observation affects the measurement scheme of nanodiamond-based NV quantum sensing.
Collapse
Affiliation(s)
- Masazumi Fujiwara
- Department of Chemistry, Graduate School of Science, Osaka City University Sumiyoshi-ku Osaka 558-8585 Japan
- School of Science and Technology, Kwansei Gakuin University Sanda Hyogo 669-1337 Japan
| | - Ryuta Tsukahara
- School of Science and Technology, Kwansei Gakuin University Sanda Hyogo 669-1337 Japan
| | - Yoshihiko Sera
- School of Science and Technology, Kwansei Gakuin University Sanda Hyogo 669-1337 Japan
| | - Hiroshi Yukawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology Anagawa 4-9-1, Inage-ku 263-8555 Chiba Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology Anagawa 4-9-1, Inage-ku 263-8555 Chiba Japan
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Takamatsu 761-0395 Japan
- College of Pharmacy, Kaohsiung Medical University Kaohsiung 807 Taiwan Republic of China
| | - Shinichi Shikata
- School of Science and Technology, Kwansei Gakuin University Sanda Hyogo 669-1337 Japan
| | - Hideki Hashimoto
- School of Science and Technology, Kwansei Gakuin University Sanda Hyogo 669-1337 Japan
| |
Collapse
|
36
|
Liu D, Fyta M. Hybrids made of defective nanodiamonds interacting with DNA nucleobases. NANOTECHNOLOGY 2019; 30:065601. [PMID: 30524020 DOI: 10.1088/1361-6528/aaf127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The characteristics of hybrids made of a defective nanodiamond and a biomolecule unit are investigated in this work. Focus is given on the interaction between the nanodiamond and a DNA nucleobase. The latter is placed close to the former in two different arrangements, realizing different bonding types. The nanodiamond includes a negatively charged nitrogen-vacancy center and is hydrogen terminated. Using quantum-mechanical calculations, we could elucidate the structural and electronic properties of such hybrids. Our study clearly identifies the importance of the relative orientation of the two components, the nanodiamond and the nucleobase, in the complex in controlling the electronic properties of the resulting hybrid. The position of the defect at the center or closer to its interface with the nucleobase further controls the electronic orbitals around the defect center, hence its optical activity. In the end, we discuss the relevance of our work in biosensing.
Collapse
Affiliation(s)
- Di Liu
- Institute for Computational Physics, Universität Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| | | |
Collapse
|
37
|
Havlik J, Petrakova V, Kucka J, Raabova H, Panek D, Stepan V, Zlamalova Cilova Z, Reineck P, Stursa J, Kucera J, Hruby M, Cigler P. Extremely rapid isotropic irradiation of nanoparticles with ions generated in situ by a nuclear reaction. Nat Commun 2018; 9:4467. [PMID: 30367036 PMCID: PMC6203839 DOI: 10.1038/s41467-018-06789-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 09/24/2018] [Indexed: 12/28/2022] Open
Abstract
Energetic ions represent an important tool for the creation of controlled structural defects in solid nanomaterials. However, the current preparative irradiation techniques in accelerators show significant limitations in scaling-up, because only very thin layers of nanoparticles can be efficiently and homogeneously irradiated. Here, we show an easily scalable method for rapid irradiation of nanomaterials by light ions formed homogeneously in situ by a nuclear reaction. The target nanoparticles are embedded in B2O3 and placed in a neutron flux. Neutrons captured by 10B generate an isotropic flux of energetic α particles and 7Li+ ions that uniformly irradiates the surrounding nanoparticles. We produced 70 g of fluorescent nanodiamonds in an approximately 30-minute irradiation session, as well as fluorescent silicon carbide nanoparticles. Our method thus increased current preparative yields by a factor of 102-103. We envision that our technique will increase the production of ion-irradiated nanoparticles, facilitating their use in various applications.
Collapse
Affiliation(s)
- Jan Havlik
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nam. 2, 166 10 Prague 6, Prague, Czech Republic
- Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Prague, Czech Republic
| | - Vladimira Petrakova
- Faculty of Biomedical Engineering, Czech Technical University in Prague, nam. Sitna 3105, 272 01, Kladno, Czech Republic
| | - Jan Kucka
- Institute of Macromolecular Chemistry of the CAS, Heyrovskeho nam. 2, 162 06 Prague 6, Prague, Czech Republic
| | - Helena Raabova
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nam. 2, 166 10 Prague 6, Prague, Czech Republic
- University of Chemistry and Technology, Prague, Technicka 5, 166 28 Prague 6, Prague, Czech Republic
| | - Dalibor Panek
- Faculty of Biomedical Engineering, Czech Technical University in Prague, nam. Sitna 3105, 272 01, Kladno, Czech Republic
| | - Vaclav Stepan
- Nuclear Physics Institute of the CAS, 250 68 Husinec-Rez 130, Prague, Czech Republic
| | - Zuzana Zlamalova Cilova
- University of Chemistry and Technology, Prague, Technicka 5, 166 28 Prague 6, Prague, Czech Republic
| | - Philipp Reineck
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Jan Stursa
- Nuclear Physics Institute of the CAS, 250 68 Husinec-Rez 130, Prague, Czech Republic
| | - Jan Kucera
- Nuclear Physics Institute of the CAS, 250 68 Husinec-Rez 130, Prague, Czech Republic
| | - Martin Hruby
- Institute of Macromolecular Chemistry of the CAS, Heyrovskeho nam. 2, 162 06 Prague 6, Prague, Czech Republic.
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nam. 2, 166 10 Prague 6, Prague, Czech Republic.
| |
Collapse
|
38
|
Zhang Y, Wu M, Wu M, Zhu J, Zhang X. Multifunctional Carbon-Based Nanomaterials: Applications in Biomolecular Imaging and Therapy. ACS OMEGA 2018; 3:9126-9145. [PMID: 31459047 PMCID: PMC6644613 DOI: 10.1021/acsomega.8b01071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/27/2018] [Indexed: 05/30/2023]
Abstract
Molecular imaging has been widely used not only as an important detection technology in the field of medical imaging for cancer diagnosis but also as a theranostic approach for cancer in recent years. Multifunctional carbon-based nanomaterials (MCBNs), characterized by unparalleled optical, electronic, and thermal properties, have attracted increasing interest and demonstrably hold the greatest promise in biomolecular imaging and therapy. As such, it should come as no surprise that MCBNs have already revealed a great deal of potential applications in biomedical areas, such as bioimaging, drug delivery, and tumor therapy. Carbon nanomaterials can be categorized as graphene, single-walled carbon nanotubes, mesoporous carbon, nanodiamonds, fullerenes, or carbon dots on the basis of their morphologies. In this article, reports of the use of MCBNs in various chemical conjugation/functionalization strategies, focusing on their applications in cancer molecular imaging and imaging-guided therapy, will be comprehensively summarized. MCBNs show the possibility to serve as optimal candidates for precise cancer biotheranostics.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department
of Medical Imaging, Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Minghao Wu
- Department
of Radiology, Tianjin Medical University
Cancer Institute and Hospital, National Clinical Research Center for
Cancer, Tianjin’s Clinical Research Center for Cancer Key Laboratory
of Cancer Prevention and Therapy, Tianjin 300060, P. R.
China
| | - Mingjie Wu
- Institut
National de la Recherche Scientifique-Énergie Matériaux
et Télécommunications, Varennes, Quebec J3X 1S2, Canada
| | - Jingyi Zhu
- School
of Pharmaceutical Science, Nanjing Tech
University, Nanjing 211816, P. R. China
| | - Xuening Zhang
- Department
of Medical Imaging, Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| |
Collapse
|
39
|
Morales-Zavala F, Casanova-Morales N, Gonzalez RB, Chandía-Cristi A, Estrada LD, Alvizú I, Waselowski V, Guzman F, Guerrero S, Oyarzún-Olave M, Rebolledo C, Rodriguez E, Armijo J, Bhuyan H, Favre M, Alvarez AR, Kogan MJ, Maze JR. Functionalization of stable fluorescent nanodiamonds towards reliable detection of biomarkers for Alzheimer's disease. J Nanobiotechnology 2018; 16:60. [PMID: 30097010 PMCID: PMC6085760 DOI: 10.1186/s12951-018-0385-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/20/2018] [Indexed: 01/01/2023] Open
Abstract
Background Stable and non-toxic fluorescent markers are gaining attention in molecular diagnostics as powerful tools for enabling long and reliable biological studies. Such markers should not only have a long half-life under several assay conditions showing no photo bleaching or blinking but also, they must allow for their conjugation or functionalization as a crucial step for numerous applications such as cellular tracking, biomarker detection and drug delivery. Results We report the functionalization of stable fluorescent markers based on nanodiamonds (NDs) with a bifunctional peptide. This peptide is made of a cell penetrating peptide and a six amino acids long β-sheet breaker peptide that is able to recognize amyloid β (Aβ) aggregates, a biomarker for the Alzheimer disease. Our results indicate that functionalized NDs (fNDs) are not cytotoxic and can be internalized by the cells. The fNDs allow ultrasensitive detection (at picomolar concentrations of NDs) of in vitro amyloid fibrils and amyloid aggregates in AD mice brains. Conclusions The fluorescence of functionalized NDs is more stable than that of fluorescent markers commonly used to
stain Aβ aggregates such as Thioflavin T. These results pave the way for performing ultrasensitive and reliable detection of Aβ aggregates involved in the pathogenesis of the Alzheimer disease. Electronic supplementary material The online version of this article (10.1186/s12951-018-0385-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francisco Morales-Zavala
- Department of Pharmacological and Toxicological Chemistry, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | | | - Raúl B Gonzalez
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - América Chandía-Cristi
- Department of Cellular & Molecular Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Ignacio Alvizú
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Victor Waselowski
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Fanny Guzman
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Simón Guerrero
- Department of Pharmacological and Toxicological Chemistry, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Marisol Oyarzún-Olave
- Department of Cellular & Molecular Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian Rebolledo
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Enrique Rodriguez
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Julien Armijo
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile.,Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Heman Bhuyan
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Mario Favre
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Alejandra R Alvarez
- Department of Cellular & Molecular Biology, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Center for Nanoscale Technology and Advanced Materials, Pontificia Universidad Catolica de Chile, Santiago, Chile. .,CARE-Chile-UC, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Marcelo J Kogan
- Department of Pharmacological and Toxicological Chemistry, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile. .,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.
| | - Jerónimo R Maze
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile. .,Center for Nanoscale Technology and Advanced Materials, Pontificia Universidad Catolica de Chile, Santiago, Chile.
| |
Collapse
|
40
|
Chipaux M, van der Laan KJ, Hemelaar SR, Hasani M, Zheng T, Schirhagl R. Nanodiamonds and Their Applications in Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704263. [PMID: 29573338 DOI: 10.1002/smll.201704263] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/25/2018] [Indexed: 05/21/2023]
Abstract
Diamonds owe their fame to a unique set of outstanding properties. They combine a high refractive index, hardness, great stability and inertness, and low electrical but high thermal conductivity. Diamond defects have recently attracted a lot of attention. Given this unique list of properties, it is not surprising that diamond nanoparticles are utilized for numerous applications. Due to their hardness, they are routinely used as abrasives. Their small and uniform size qualifies them as attractive carriers for drug delivery. The stable fluorescence of diamond defects allows their use as stable single photon sources or biolabels. The magnetic properties of the defects make them stable spin qubits in quantum information. This property also allows their use as a sensor for temperature, magnetic fields, electric fields, or strain. This Review focuses on applications in cells. Different diamond materials and the special requirements for the respective applications are discussed. Methods to chemically modify the surface of diamonds and the different hurdles one has to overcome when working with cells, such as entering the cells and biocompatibility, are described. Finally, the recent developments and applications in labeling, sensing, drug delivery, theranostics, antibiotics, and tissue engineering are critically discussed.
Collapse
Affiliation(s)
- Mayeul Chipaux
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - Kiran J van der Laan
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - Simon R Hemelaar
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - Masoumeh Hasani
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital & Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, 518036, Shenzhen, China
| | - Romana Schirhagl
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| |
Collapse
|
41
|
van der Laan K, Hasani M, Zheng T, Schirhagl R. Nanodiamonds for In Vivo Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703838. [PMID: 29424097 DOI: 10.1002/smll.201703838] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/19/2017] [Indexed: 05/21/2023]
Abstract
Due to their unique optical properties, diamonds are the most valued gemstones. However, beyond the sparkle, diamonds have a number of unique properties. Their extreme hardness gives them outstanding performance as abrasives and cutting tools. Similar to many materials, their nanometer-sized form has yet other unique properties. Nanodiamonds are very inert but still can be functionalized on the surface. Additionally, they can be made in very small sizes and a narrow size distribution. Nanodiamonds can also host very stable fluorescent defects. Since they are protected in the crystal lattice, they never bleach. These defects can also be utilized for nanoscale sensing since they change their optical properties, for example, based on temperature or magnetic fields in their surroundings. In this Review, in vivo applications are focused upon. To this end, how different diamond materials are made and how this affects their properties are discussed first. Next, in vivo biocompatibility studies are reviewed. Finally, the reader is introduced to in vivo applications of diamonds. These include drug delivery, aiding radiology, labeling, and use in cosmetics. The field is critically reviewed and a perspective on future developments is provided.
Collapse
Affiliation(s)
- KiranJ van der Laan
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, Netherlands
| | - Masoumeh Hasani
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital & Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, 518036, Shenzhen, China
| | - Romana Schirhagl
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, Netherlands
| |
Collapse
|
42
|
Kwiatkowski G, Jähnig F, Steinhauser J, Wespi P, Ernst M, Kozerke S. Direct hyperpolarization of micro- and nanodiamonds for bioimaging applications - Considerations on particle size, functionalization and polarization loss. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 286:42-51. [PMID: 29183003 DOI: 10.1016/j.jmr.2017.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Due to the inherently long relaxation time of 13C spins in diamond, the nuclear polarization enhancement obtained with dynamic nuclear polarization can be preserved for a time on the order of about one hour, opening up an opportunity to use diamonds as a new class of long-lived contrast agents. The present communication explores the feasibility of using 13C spins in directly hyperpolarized diamonds for MR imaging including considerations for potential in vivo applications.
Collapse
Affiliation(s)
| | - Fabian Jähnig
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| | - Jonas Steinhauser
- Institute for Biomedical Engineering, University and ETH Zurich, Switzerland
| | - Patrick Wespi
- Institute for Biomedical Engineering, University and ETH Zurich, Switzerland
| | - Matthias Ernst
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Switzerland.
| |
Collapse
|
43
|
Zheng T, Perona Martínez F, Storm IM, Rombouts W, Sprakel J, Schirhagl R, de Vries R. Recombinant Protein Polymers for Colloidal Stabilization and Improvement of Cellular Uptake of Diamond Nanosensors. Anal Chem 2017; 89:12812-12820. [PMID: 29111679 DOI: 10.1021/acs.analchem.7b03236] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Fluorescent nanodiamonds are gaining increasing attention as fluorescent labels in biology in view of the fact that they are essentially nontoxic, do not bleach, and can be used as nanoscale sensors for various physical and chemical properties. To fully realize the nanosensing potential of nanodiamonds in biological applications, two problems need to be addressed: their limited colloidal stability, especially in the presence of salts, and their limited ability to be taken up by cells. We show that the physical adsorption of a suitably designed recombinant polypeptide can address both the colloidal stability problem and the problem of the limited uptake of nanodiamonds by cells in a very straightforward way, while preserving both their spectroscopic properties and their excellent biocompatibility.
Collapse
Affiliation(s)
- Tingting Zheng
- Physical Chemistry and Soft Matter, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands.,Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital & Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center , 518036 Shenzhen, China
| | - Felipe Perona Martínez
- Department of Biomedical Engineering, University Medical Center Groningen, Groningen University , Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Ingeborg Maria Storm
- Physical Chemistry and Soft Matter, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Wolf Rombouts
- Physical Chemistry and Soft Matter, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, Groningen University , Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
44
|
Hemelaar SR, van der Laan KJ, Hinterding SR, Koot MV, Ellermann E, Perona-Martinez FP, Roig D, Hommelet S, Novarina D, Takahashi H, Chang M, Schirhagl R. Generally Applicable Transformation Protocols for Fluorescent Nanodiamond Internalization into Cells. Sci Rep 2017; 7:5862. [PMID: 28724919 PMCID: PMC5517665 DOI: 10.1038/s41598-017-06180-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/07/2017] [Indexed: 11/09/2022] Open
Abstract
Fluorescent nanodiamonds (FNDs) are promising nanoprobes, owing to their stable and magnetosensitive fluorescence. Therefore they can probe properties as magnetic resonances, pressure, temperature or strain. The unprecedented sensitivity of diamond defects can detect the faint magnetic resonance of a single electron or even a few nuclear spins. However, these sensitivities are only achieved if the diamond probe is close to the molecules that need to be detected. In order to utilize its full potential for biological applications, the diamond particle has to enter the cell. Some model systems, like HeLa cells, readily ingest particles. However, most cells do not show this behavior. In this article we show for the first time generally applicable methods, which are able to transport fluorescent nanodiamonds into cells with a thick cell wall. Yeast cells, in particular Saccharomyces cerevisiae, are a favored model organism to study intracellular processes including aging on a cellular level. In order to introduce FNDs in these cells, we evaluated electrical transformation and conditions of chemical permeabilization for uptake efficiency and viability. 5% DMSO (dimethyl sulfoxide) in combination with optimized chemical transformation mix leads to high uptake efficiency in combination with low impact on cell biology. We have evaluated all steps in the procedure.
Collapse
Affiliation(s)
- Simon R Hemelaar
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Kiran J van der Laan
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Sophie R Hinterding
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Manon V Koot
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Else Ellermann
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Felipe P Perona-Martinez
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - David Roig
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Severin Hommelet
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Daniele Novarina
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Hiroki Takahashi
- Department of Physics, ETH-Zurich, Otto Stern Weg 1, Zurich, Switzerland
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands.
| |
Collapse
|
45
|
Hemelaar SR, de Boer P, Chipaux M, Zuidema W, Hamoh T, Martinez FP, Nagl A, Hoogenboom JP, Giepmans BNG, Schirhagl R. Nanodiamonds as multi-purpose labels for microscopy. Sci Rep 2017; 7:720. [PMID: 28389652 PMCID: PMC5429637 DOI: 10.1038/s41598-017-00797-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/13/2017] [Indexed: 11/09/2022] Open
Abstract
Nanodiamonds containing fluorescent nitrogen-vacancy centers are increasingly attracting interest for use as a probe in biological microscopy. This interest stems from (i) strong resistance to photobleaching allowing prolonged fluorescence observation times; (ii) the possibility to excite fluorescence using a focused electron beam (cathodoluminescence; CL) for high-resolution localization; and (iii) the potential use for nanoscale sensing. For all these schemes, the development of versatile molecular labeling using relatively small diamonds is essential. Here, we show the direct targeting of a biological molecule with nanodiamonds as small as 70 nm using a streptavidin conjugation and standard antibody labelling approach. We also show internalization of 40 nm sized nanodiamonds. The fluorescence from the nanodiamonds survives osmium-fixation and plastic embedding making them suited for correlative light and electron microscopy. We show that CL can be observed from epon-embedded nanodiamonds, while surface-exposed nanoparticles also stand out in secondary electron (SE) signal due to the exceptionally high diamond SE yield. Finally, we demonstrate the magnetic read-out using fluorescence from diamonds prior to embedding. Thus, our results firmly establish nanodiamonds containing nitrogen-vacancy centers as unique, versatile probes for combining and correlating different types of microscopy, from fluorescence imaging and magnetometry to ultrastructural investigation using electron microscopy.
Collapse
Affiliation(s)
- S R Hemelaar
- Groningen University, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - P de Boer
- Groningen University, University Medical Center Groningen, Department of Cell Biology, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - M Chipaux
- Groningen University, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - W Zuidema
- Delft University of Technology, Dept. Imaging Physics, Lorentzweg 1, 2628, CJ, Delft, The Netherlands
| | - T Hamoh
- Groningen University, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - F Perona Martinez
- Groningen University, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - A Nagl
- Groningen University, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - J P Hoogenboom
- Delft University of Technology, Dept. Imaging Physics, Lorentzweg 1, 2628, CJ, Delft, The Netherlands
| | - B N G Giepmans
- Groningen University, University Medical Center Groningen, Department of Cell Biology, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - R Schirhagl
- Groningen University, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands.
| |
Collapse
|
46
|
Hemelaar SR, Nagl A, Bigot F, Rodríguez-García MM, de Vries MP, Chipaux M, Schirhagl R. The interaction of fluorescent nanodiamond probes with cellular media. Mikrochim Acta 2017; 184:1001-1009. [PMID: 28344361 PMCID: PMC5346409 DOI: 10.1007/s00604-017-2086-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/10/2017] [Indexed: 01/01/2023]
Abstract
Fluorescent nanodiamonds (FNDs) are promising tools to image cells, bioanalytes and physical quantities such as temperature, pressure, and electric or magnetic fields with nanometer resolution. To exploit their potential for intracellular applications, the FNDs have to be brought into contact with cell culture media. The interactions between the medium and the diamonds crucially influence sensitivity as well as the ability to enter cells. The authors demonstrate that certain proteins and salts spontaneously adhere to the FNDs and may cause aggregation. This is a first investigation on the fundamental questions on how (a) FNDs interact with the medium, and (b) which proteins and salts are being attracted. A differentiation between strongly binding and weakly binding proteins is made. Not all proteins participate in the formation of FND aggregates. Surprisingly, some main components in the medium seem to play no role in aggregation. Simple strategies to prevent aggregation are discussed. These include adding the proteins, which are naturally present in the cell culture to the diamonds first and then inserting them in the full medium. Graphical abstractSchematic of the interaction of nanodiamonds with cell culture medium. Certain proteins and salts adhere to the diamond surface and lead to aggregation or to formation of a protein corona.
Collapse
Affiliation(s)
- Simon R. Hemelaar
- Department of Biomedical Engineering Antonius Deusinglaan 1, University Medical Center Groningen, Groningen University, 9713 AW Groningen, Netherlands
| | - Andreas Nagl
- Department of Biomedical Engineering Antonius Deusinglaan 1, University Medical Center Groningen, Groningen University, 9713 AW Groningen, Netherlands
| | - François Bigot
- Department of Biomedical Engineering Antonius Deusinglaan 1, University Medical Center Groningen, Groningen University, 9713 AW Groningen, Netherlands
| | - Melissa M. Rodríguez-García
- Department of Biomedical Engineering Antonius Deusinglaan 1, University Medical Center Groningen, Groningen University, 9713 AW Groningen, Netherlands
| | - Marcel P. de Vries
- Department of Biomedical Engineering Antonius Deusinglaan 1, University Medical Center Groningen, Groningen University, 9713 AW Groningen, Netherlands
| | - Mayeul Chipaux
- Department of Biomedical Engineering Antonius Deusinglaan 1, University Medical Center Groningen, Groningen University, 9713 AW Groningen, Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering Antonius Deusinglaan 1, University Medical Center Groningen, Groningen University, 9713 AW Groningen, Netherlands
| |
Collapse
|
47
|
Chen X, Zhang W. Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem Soc Rev 2017; 46:734-760. [DOI: 10.1039/c6cs00109b] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the superior properties of diamond nanoparticles and vertically aligned diamond nanoneedles and their applications in biosensing, bioimaging and drug delivery.
Collapse
Affiliation(s)
- Xianfeng Chen
- Institute for Bioengineering
- School of Engineering
- The University of Edinburgh
- Edinburgh EH9 3JL
- UK
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science
- City University of Hong Kong
- China
| |
Collapse
|
48
|
Combinatorial nanodiamond in pharmaceutical and biomedical applications. Int J Pharm 2016; 514:41-51. [DOI: 10.1016/j.ijpharm.2016.06.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 12/11/2022]
|