1
|
Mehrdad SA, Cucchiarini A, Mergny JL, Kazemi Noureini S. Heavy metal ions interactions with G-quadruplex-prone DNA sequences. Biochimie 2024; 225:146-155. [PMID: 38821199 DOI: 10.1016/j.biochi.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
The industrial world exposes living organisms to a variety of metal pollutants. Here we investigated whether such elements affect G-rich sequences susceptible to fold into G-quadruplex (GQ) structures. Thermal stability and conformation of these oligoncleotides was studied at various molar ratios of a variety of heavy metal salts using thermal FRET, transition-FRET (t-FRET) and circular dichroism. Metal ions affected the thermal stability of the GQs to different extents; some metals had no effect on Tm while other metals caused small to moderate changes in Tm at 1:1 or 1:10 molar ratio. While most of the metals had no major effect, Al3+, Cd2+, Pb2+, Hg2+ and Zn2+ altered the thermal stability and structural features of the GQs. Some metals such as Pb2+ and Hg2+ exhibit differential interactions with telomere, c-myc and c-kit GQs. Overall, toxic heavy metals affect G-quadruplex stability in a sequence and topology dependent manner. This study provides new insight into how heavy metal exposure may affect gene expression and cellular responses.
Collapse
Affiliation(s)
- Seyyed-Ali Mehrdad
- Department of Biology, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Anne Cucchiarini
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Sakineh Kazemi Noureini
- Department of Biology, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar, Iran.
| |
Collapse
|
2
|
Mizunuma M, Suzuki M, Kobayashi T, Hara Y, Kaneko A, Furukawa K, Chuman Y. Development of Mn 2+-Specific Biosensor Using G-Quadruplex-Based DNA. Int J Mol Sci 2023; 24:11556. [PMID: 37511324 PMCID: PMC10380348 DOI: 10.3390/ijms241411556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Metal ions are used in various situations in living organisms and as a part of functional materials. Since the excessive intake of metal ions can cause health hazards and environmental pollution, the development of new molecules that can monitor metal ion concentrations with high sensitivity and selectivity is strongly desired. DNA can form various structures, and these structures and their properties have been used in a wide range of fields, including materials, sensors, and drugs. Guanine-rich sequences respond to metal ions and form G-quadruplex structures and G-wires, which are the self-assembling macromolecules of G-quadruplex structures. Therefore, guanine-rich DNA can be applied to a metal ion-detection sensor and functional materials. In this study, the IRDAptamer library originally designed based on G-quadruplex structures was used to screen for Mn2+, which is known to induce neurodegenerative diseases. Circular dichroism and fluorescence analysis using Thioflavin T showed that the identified IRDAptamer sequence designated MnG4C1 forms a non-canonical G-quadruplex structure in response to low concentrations of Mn2+. A serum resistance and thermostability analysis revealed that MnG4C1 acquired stability in a Mn2+-dependent manner. A Förster resonance energy transfer (FRET) system using fluorescent molecules attached to the termini of MnG4C1 showed that FRET was effectively induced based on Mn2+-dependent conformational changes, and the limit of detection (LOD) was 0.76 µM for Mn2+. These results suggested that MnG4C1 can be used as a novel DNA-based Mn2+-detecting molecule.
Collapse
Affiliation(s)
- Masataka Mizunuma
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Mirai Suzuki
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Tamaki Kobayashi
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Yuki Hara
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Atsushi Kaneko
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Kazuhiro Furukawa
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Yoshiro Chuman
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
3
|
Xia J, Li W, Sun M, Wang H. Application of SERS in the Detection of Fungi, Bacteria and Viruses. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3572. [PMID: 36296758 PMCID: PMC9609009 DOI: 10.3390/nano12203572] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/12/2023]
Abstract
In this review, we report the recent advances of SERS in fungi, bacteria, and viruses. Firstly, we briefly introduce the advantage of SERS over fluorescence on virus identification and detection. Secondly, we review the feasibility analysis of Raman/SERS spectrum analysis, identification, and fungal detection on SERS substrates of various nanostructures with a signal amplification mechanism. Thirdly, we focus on SERS spectra for nucleic acid, pathogens for the detection of viruses and bacteria, and furthermore introduce SERS-based microdevices, including SERS-based microfluidic devices, and three-dimensional nanostructured plasmonic substrates.
Collapse
Affiliation(s)
- Jiarui Xia
- Institute of Health Sciences, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang 110001, China
| | - Wenwen Li
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Huiting Wang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
4
|
Zonjić I, Radić Stojković M, Crnolatac I, Tomašić Paić A, Pšeničnik S, Vasilev A, Kandinska M, Mondeshki M, Baluschev S, Landfester K, Glavaš-Obrovac L, Jukić M, Kralj J, Brozovic A, Horvat L, Tumir LM. Styryl dyes with N-Methylpiperazine and N-Phenylpiperazine Functionality: AT-DNA and G-quadruplex binding ligands and theranostic agents. Bioorg Chem 2022; 127:105999. [DOI: 10.1016/j.bioorg.2022.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
|
5
|
Revealing the specific interactions between G-quadruplexes and ligands by surface-enhanced Raman spectroscopy. Int J Biol Macromol 2022; 222:2948-2956. [DOI: 10.1016/j.ijbiomac.2022.10.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
6
|
Jiang C, Liu Y, Wang L, Lu F. Interaction between Heavy Water and Single-Strand DNA: A SERS Study. Molecules 2022; 27:molecules27186023. [PMID: 36144761 PMCID: PMC9505314 DOI: 10.3390/molecules27186023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The structure and function of biological macromolecules change due to intermolecular deuterium bond formation or deuterium substitution with environmental D2O. In this study, surface-enhanced Raman spectroscopy (SERS) was used to detect interaction sites between D2O and ssDNA and their action mechanisms. SERS peaks of ssDNA changed with increasing D2O proportions, and the site of action mainly involved A and G bases, whose number strengthened the interaction between sequences and D2O and hence the SERS peak intensities. Fixing the number of A and G bases prevented changes in their positions from significantly altering the map. We also identified the interaction between ssDNA sequences that easily formed a G-quadruplex structure and D2O. The amplitude of the SERS peak intensity change reflected the ssDNA structural stability and number of active sites. These findings are highly significant for exploring genetic exchanges and mutations and could be used to determine the stability and structural changes of biological macromolecules.
Collapse
Affiliation(s)
- Chengshun Jiang
- College of Pharmacy, Naval Medical University, Shanghai 200433, China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yan Liu
- College of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Lianghua Wang
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| | - Feng Lu
- College of Pharmacy, Naval Medical University, Shanghai 200433, China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Naval Medical University, Shanghai 200433, China
- Correspondence:
| |
Collapse
|
7
|
Optimization of Gonyautoxin1/4-Binding G-Quadruplex Aptamers by Label-Free Surface-Enhanced Raman Spectroscopy. Toxins (Basel) 2022; 14:toxins14090622. [PMID: 36136560 PMCID: PMC9505997 DOI: 10.3390/toxins14090622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Nucleic acids with G-quadruplex (G4) structures play an important role in physiological function, analysis and detection, clinical diagnosis and treatment, and new drug research and development. Aptamers obtained using systematic evolution of ligands via exponential enrichment (SELEX) screening technology do not always have the best affinity or binding specificity to ligands. Therefore, the establishment of a structure-oriented experimental method is of great significance. To study the potential of surface-enhanced Raman spectroscopy (SERS) in aptamer optimization, marine biotoxin gonyautoxin (GTX)1/4 and its G4 aptamer obtained using SELEX were selected. The binding site and the induced fit of the aptamer to GTX1/4 were confirmed using SERS combined with two-dimensional correlation spectroscopy. The intensity of interaction between GTX1/4 and G4 was also quantified by measuring the relative intensity of SERS bands corresponding to intramolecular hydrogen bonds. Furthermore, the interaction between GTX1/4 and optimized aptamers was analyzed. The order of intensity change in the characteristic bands of G4 aptamers was consistent with the order of affinity calculated using microscale thermophoresis and molecular dynamics simulations. SERS provides a rapid, sensitive, and economical post-SELEX optimization of aptamers. It is also a reference for future research on other nucleic acid sequences containing G4 structures.
Collapse
|
8
|
Xiang X, Bao Y, Zhang Y, Xu G, Zhao B, Guo X. Accurate assembly and direct characterization of DNA nanogels crosslinked by G-quadruplex, i-motif and duplex with surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121161. [PMID: 35306309 DOI: 10.1016/j.saa.2022.121161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The direct characterization of DNA nanogels at the atomic level is desirable and of great significance, however, has been challenging because of structural complexity and the larger size of nanogels. Herein, we demonstrated a simple, sensitive and reliable SERS (Surface-enhanced Raman spectroscopy)-based approach towards direct monitoring microstructures, such as three types of nanogels crosslinked by DNA G-quadruplex, i-motif and GC duplex. The achievement is attributed to the detection of featured Raman bands corresponding to the formation of Watson-Crick and Hoogsteen hydrogen bonds as well as C·C+ base pairs. Importantly, this work reveals that the silver nanoparticles attaching on the surface of nanogels can form local 'hotspots' and produce high-quality of Raman spectra under the assistance of iodide, aluminum ions and dichloromethane, therefore, shows great potential for wide applications in accurate characterization of various DNA nanostructures.
Collapse
Affiliation(s)
- Xiaoxuan Xiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ying Bao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yujing Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Guantong Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China.
| |
Collapse
|
9
|
Bao Y, Zhang X, Xiang X, Zhang Y, Zhao B, Guo X. Revealing the effect of intramolecular interactions on DNA SERS detection: SERS capability for structural analysis. Phys Chem Chem Phys 2022; 24:10311-10317. [PMID: 35437563 DOI: 10.1039/d1cp05607g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Intramolecular interactions are key factors for constructing the secondary conformations of biomolecules and they are also vital for biomolecular functions. Their effect on the surface-enhanced Raman spectroscopy (SERS) spectra is also important for reliable label-free detection. The current work focuses on three GCGC-quadruplexes as model molecules for SERS studies, which contain both the G-quartet and the GCGC-quartet. Their spectra are compared with the ones of the G-quadruplex and the duplex. The present work presents the specific effect of intramolecular interactions, including various Watson-Crick and Hoogsteen hydrogen bonds as well as base stacking, on the SERS signals of closely-related secondary conformations. The overall results indicated a significant influence on the direct label-free detection of DNA molecules and the SERS capability for secondary structural analysis.
Collapse
Affiliation(s)
- Ying Bao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Xiaonong Zhang
- Key Laboratory of Polymer Ecomaterials Jilin Biomedical Polymers Engineering Laboratory Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Xiaoxuan Xiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Yujing Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China. .,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
10
|
Li P, Wang L, Sun M, Yao J, Li W, Lu W, Zhou Y, Zhang G, Hu C, Zheng W, Wei F. Binding affinity and conformation of a conjugated AS1411 aptamer at a cationic lipid bilayer interface. Phys Chem Chem Phys 2022; 24:9018-9028. [PMID: 35381056 DOI: 10.1039/d1cp05753g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aptamers have been widely used in the detection, diagnosis, and treatment of cancer. Owing to their special binding affinity toward cancer-related biomarkers, aptamers can be used for targeted drug delivery or bio-sensing/bio-imaging in various scenarios. The interfacial properties of aptamers play important roles in controlling the surface charge, recognition efficiency, and binding affinity of drug-delivering lipid-based carriers. In this research, the interfacial behaviors, such as surface orientation, molecular conformation, and adsorption kinetics of conjugated AS1411 molecules at different cationic lipid bilayer interfaces were investigated by sum frequency generation vibrational spectroscopy (SFG-VS) in situ and in real-time. It is shown that the conjugated AS1411 molecules at the DMTAP bilayer interface show a higher binding affinity but with slower binding kinetics compared to the DMDAP bilayer interface. The analysis results also reveal that the thymine residues of cholesteryl conjugated AS1411 molecules show higher conformational ordering compared to the thymine residues of the alkyl chain conjugated AS1411 molecules. These understandings provide unique molecular insight into the aptamer-lipid membrane interactions, which may help researchers to improve the efficiency and safety of aptamer-related drug delivery systems.
Collapse
Affiliation(s)
- Penghua Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, & School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China.
| | - Liqun Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, & School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China.
| | - Meng Sun
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, & School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China.
| | - Jiyuan Yao
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, & School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China.
| | - Wenhui Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, & School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China. .,Institution for Interdisciplinary Research, Jianghan University, Wuhan, Hubei, 430056, China
| | - Wangting Lu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, & School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China. .,Institution for Interdisciplinary Research, Jianghan University, Wuhan, Hubei, 430056, China
| | - Youhua Zhou
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, & School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China.
| | - Geng Zhang
- Department of Chemistry, College of Science, Huazhong Agricultural University, No. 1, Shizishan Street, Wuhan 430070, China
| | - Chenglong Hu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, & School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China.
| | - Wanquan Zheng
- Institution for Interdisciplinary Research, Jianghan University, Wuhan, Hubei, 430056, China.,Institut des Sciences Moléculaires d'Orsay, Université Paris-Sud, 91405 Orsay Cedex, France
| | - Feng Wei
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, & School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China. .,Institution for Interdisciplinary Research, Jianghan University, Wuhan, Hubei, 430056, China
| |
Collapse
|
11
|
Zhang Y, Sun L, Xiang X, Bao Y, Guo X. Adenine shares the plane with G-quartet detected by surface-enhanced Raman spectroscopy. Talanta 2021; 235:122777. [PMID: 34517634 DOI: 10.1016/j.talanta.2021.122777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 11/19/2022]
Abstract
DNA G-quadruplexes (G4s) formed by guanine(G)-rich sequences show diversity of structural topologies. The detection of structural details is of great significance for understanding of their functions and for the target drug design, but is very challenging. Herein, we demonstrate that the surface-enhanced Raman spectroscopy (SERS) via Ag IANPs as substrates is able to identify the numbers of Adenine (A) located on the G-quartet of the G4s. Eight G4s are selected for SERS studies. Besides the detection of series of characteristic bands indicating the formation of G4s, the intensity of the band represented A base ring breath (νA, ~733 cm-1) is observed particularly enhanced when there are A bases coplanar with G-quartet, and which is higher than the intensity of the band corresponding to G base ring breath (νG, ~655 cm-1). Furthermore, the band intensity ratio of νA to νG versus the ratio of the numbers of A on the plane to the sum of numbers of A and G shows very good linear relationship. Thus, based on the band intensities of νA to νG and their ratio in the SERS spectrum, the G-quadruplexes with or without a coplanar A base and numbers of A bases on the plane of G-quartet can be facilely identified. The method is simple, fast, low cost and sensitive to provide particular details of the structure in aqueous solution, therefore, implies widespread applications.
Collapse
Affiliation(s)
- Yujing Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Likang Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Xiaoxuan Xiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Ying Bao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
12
|
Molnár OR, Végh A, Somkuti J, Smeller L. Characterization of a G-quadruplex from hepatitis B virus and its stabilization by binding TMPyP4, BRACO19 and PhenDC3. Sci Rep 2021; 11:23243. [PMID: 34853392 PMCID: PMC8636512 DOI: 10.1038/s41598-021-02689-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/12/2021] [Indexed: 12/22/2022] Open
Abstract
Specific guanine rich nucleic acid sequences can form non-canonical structures, like the four stranded G-quadruplex (GQ). We studied the GQ-forming sequence (named HepB) found in the genome of the hepatitis B virus. Fluorescence-, infrared- and CD-spectroscopy were used. HepB shows a hybrid form in presence of K+, but Na+, Li+, and Rb+ induce parallel structure. Higher concentrations of metal ions increase the unfolding temperature, which was explained by a short thermodynamic calculation. Temperature stability of the GQ structure was determined for all these ions. Na+ has stronger stabilizing effect on HepB than K+, which is highly unusual. The transition temperatures were 56.6, 53.8, 58.5 and 54.4 °C for Na+, K+, Li+, and Rb+ respectively. Binding constants for Na+ and K+ were 10.2 mM and 7.1 mM respectively. Study of three ligands designed in cancer research for GQ targeting (TMPyP4, BRACO19 and PhenDC3) showed unequivocally their binding to HepB. Binding was proven by the increased stability of the bound form. The stabilization was higher than 20 °C for TMPyP4 and PhenDC3, while it was considerably lower for BRACO19. These results might have medical importance in the fight against the hepatitis B virus.
Collapse
Affiliation(s)
- Orsolya Réka Molnár
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, 1094, Hungary
| | - András Végh
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, 1094, Hungary.,Department of Ophthalmology, Semmelweis University, Budapest, 1085, Hungary
| | - Judit Somkuti
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, 1094, Hungary
| | - László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, 1094, Hungary.
| |
Collapse
|
13
|
Gao C, Zhang Q, Ma L, Lu X, Wu S, Song P, Xia L. Dual‐spectroscopic real‐time monitoring of the reduction reaction between aristolochic acid I and Fe
2+
and its bio‐application. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ce Gao
- Department of Chemistry Liaoning University Shenyang China
| | - Qijia Zhang
- Department of Chemistry Liaoning University Shenyang China
| | - Liping Ma
- Department of Chemistry Liaoning University Shenyang China
| | - Xuemei Lu
- Department of Physics Liaoning University Shenyang China
| | - Shiwei Wu
- Department of Chemistry Liaoning University Shenyang China
- Experimental Center Shenyang Normal University Shenyang China
| | - Peng Song
- Department of Physics Liaoning University Shenyang China
| | - Lixin Xia
- Department of Chemistry Liaoning University Shenyang China
- College of Chemistry and Environmental Engineering Yingkou Institute of Technology Yingkou China
| |
Collapse
|
14
|
Metabolite profiling of human blood by surface-enhanced Raman spectroscopy for surgery assessment and tumor screening in breast cancer. Anal Bioanal Chem 2020; 412:1611-1618. [DOI: 10.1007/s00216-020-02391-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/26/2019] [Accepted: 01/06/2020] [Indexed: 01/11/2023]
|
15
|
Kim N, Thomas MR, Bergholt MS, Pence IJ, Seong H, Charchar P, Todorova N, Nagelkerke A, Belessiotis-Richards A, Payne DJ, Gelmi A, Yarovsky I, Stevens MM. Surface enhanced Raman scattering artificial nose for high dimensionality fingerprinting. Nat Commun 2020; 11:207. [PMID: 31924755 PMCID: PMC6954179 DOI: 10.1038/s41467-019-13615-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/11/2019] [Indexed: 01/12/2023] Open
Abstract
Label-free surface-enhanced Raman spectroscopy (SERS) can interrogate systems by directly fingerprinting their components' unique physicochemical properties. In complex biological systems however, this can yield highly overlapping spectra that hinder sample identification. Here, we present an artificial-nose inspired SERS fingerprinting approach where spectral data is obtained as a function of sensor surface chemical functionality. Supported by molecular dynamics modeling, we show that mildly selective self-assembled monolayers can influence the strength and configuration in which analytes interact with plasmonic surfaces, diversifying the resulting SERS fingerprints. Since each sensor generates a modulated signature, the implicit value of increasing the dimensionality of datasets is shown using cell lysates for all possible combinations of up to 9 fingerprints. Reliable improvements in mean discriminatory accuracy towards 100% are achieved with each additional surface functionality. This arrayed label-free platform illustrates the wide-ranging potential of high-dimensionality artificial-nose based sensing systems for more reliable assessment of complex biological matrices.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Michael R Thomas
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Mads S Bergholt
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Isaac J Pence
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Hyejeong Seong
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Patrick Charchar
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Nevena Todorova
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Anika Nagelkerke
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Alexis Belessiotis-Richards
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - David J Payne
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Amy Gelmi
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria, Australia.
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
16
|
Papi F, Kenđel A, Ratkaj M, Piantanida I, Gratteri P, Bazzicalupi C, Miljanić S. Effect of structure levels on surface-enhanced Raman scattering of human telomeric G-quadruplexes in diluted and crowded media. Anal Bioanal Chem 2019; 411:5197-5207. [PMID: 31119345 DOI: 10.1007/s00216-019-01894-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Human telomeric G-quadruplexes are emerging targets in anticancer drug discovery since they are able to efficiently inhibit telomerase, an enzyme which is greatly involved in telomere instability and immortalization process in malignant cells. G-quadruplex (G4) DNA is highly polymorphic and can adopt different topologies upon addition of electrolytes, additives, and ligands. The study of G-quadruplex forms under various conditions, however, might be quite challenging. In this work, surface-enhanced Raman scattering (SERS) spectroscopy has been applied to study G-quadruplexes formed by human telomeric sequences, d[A3G3(TTAGGG)3A2] (Tel26) and d[(TTAGGG)4T2] (wtTel26), under dilute and crowding conditions. The SERS spectra distinctive of hybrid-1 and hybrid-2 G-quadruplexes of Tel26 and wtTel26, respectively, were observed for the sequences folded in the presence of K+ ions (110 mM) in a buffered solution, representing the diluted medium. Polyethylene glycol (5, 10, 15, 20, and 40% v/v PEG) was used to create a molecular-crowded environment, resulting in the formation of the parallel G-quadruplexes of both studied human telomeric sequences. Despite extensive overlap by the crowding agent bands, the SERS spectral features indicative of parallel G4 form of Tel26 were recognized. The obtained results implied that SERS of G-quadruplexes reflected not only the primary structure of the studied human telomeric sequence, including its nucleobase composition and sequence, but also its secondary structure in the sense of Hoogsteen hydrogen bonds responsible for the guanine tetrad formation, and finally its tertiary structure, defining a three-dimensional DNA shape, positioned close to the enhancing metallic surface. Graphical abstract.
Collapse
Affiliation(s)
- Francesco Papi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy. .,Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Adriana Kenđel
- Division of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - Marina Ratkaj
- Teva Pharmaceutical Industries Ltd., Research and Development, PLIVA Croatia, Prilaz baruna Filipovića 29, 10000, Zagreb, Croatia
| | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10002, Zagreb, Croatia
| | - Paola Gratteri
- Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Carla Bazzicalupi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Snežana Miljanić
- Division of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia.
| |
Collapse
|
17
|
Villani G. Quantum Mechanical Investigation of the G-Quadruplex Systems of Human Telomere. ACS OMEGA 2018; 3:9934-9944. [PMID: 31459122 PMCID: PMC6644616 DOI: 10.1021/acsomega.8b01678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/09/2018] [Indexed: 05/17/2023]
Abstract
The three G-quadruplexes involved in the human telomere have been studied with an accurate quantum mechanical approach, and the possibility of reducing them to a simpler model has been tested. The similarities and the differences of these three systems are shown and discussed. Each system has been analyzed through different properties and compared to the others. In particular, we have considered: (1) the shape of the cavity and the atomic charges around it; (2) the electric field in and out of the cavity; (3) the stabilization energy due to the stacking of G-tetrads, to the H-bonds and to the ion interactions; and, finally, (4) to study the mechanism of the process of the ion inclusion in the cavity, the curves of potential energy due to the movement of the Na+ and K+ ions toward the cavity. The results suggest that a detailed study is essential in order to obtain the quantitative properties of these complex systems, but also that some qualitative behaviors can be schematized. Our study makes it clear that the entry of an ion in the cavity of these systems is a complex process, where it is possible to find stable structures with the ion out and in the cavity. Moreover, it is possible that more than one diabatic state is involved in this process.
Collapse
Affiliation(s)
- Giovanni Villani
- Istituto di Chimica dei Composti OrganoMetallici, ICCOM—CNR
(UOS Pisa), Area della Ricerca di Pisa, Via G. Moruzzi, 1, I-56124 Pisa, Italy
| |
Collapse
|
18
|
Joseph MM, Narayanan N, Nair JB, Karunakaran V, Ramya AN, Sujai PT, Saranya G, Arya JS, Vijayan VM, Maiti KK. Exploring the margins of SERS in practical domain: An emerging diagnostic modality for modern biomedical applications. Biomaterials 2018; 181:140-181. [PMID: 30081304 DOI: 10.1016/j.biomaterials.2018.07.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022]
Abstract
Excellent multiplexing capability, molecular specificity, high sensitivity and the potential of resolving complex molecular level biological compositions augmented the diagnostic modality of surface-enhanced Raman scattering (SERS) in biology and medicine. While maintaining all the merits of classical Raman spectroscopy, SERS provides a more sensitive and selective detection and quantification platform. Non-invasive, chemically specific and spatially resolved analysis facilitates the exploration of SERS-based nano probes in diagnostic and theranostic applications with improved clinical outcomes compared to the currently available so called state-of-art technologies. Adequate knowledge on the mechanism and properties of SERS based nano probes are inevitable in utilizing the full potential of this modality for biomedical applications. The safety and efficiency of metal nanoparticles and Raman reporters have to be critically evaluated for the successful translation of SERS in to clinics. In this context, the present review attempts to give a comprehensive overview about the selected medical, biomedical and allied applications of SERS while highlighting recent and relevant outcomes ranging from simple detection platforms to complicated clinical applications.
Collapse
Affiliation(s)
- Manu M Joseph
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Nisha Narayanan
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Jyothi B Nair
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Varsha Karunakaran
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Adukkadan N Ramya
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Palasseri T Sujai
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Giridharan Saranya
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Jayadev S Arya
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Vineeth M Vijayan
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India.
| |
Collapse
|
19
|
Li Y, Han X, Zhou S, Yan Y, Xiang X, Zhao B, Guo X. Structural Features of DNA G-Quadruplexes Revealed by Surface-Enhanced Raman Spectroscopy. J Phys Chem Lett 2018; 9:3245-3252. [PMID: 29847941 DOI: 10.1021/acs.jpclett.8b01353] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been successfully used for the label-free detection of single-stranded oligonucleotides. However, the detection of complex DNA secondary structures remains a challenge. Structural features of diverse DNA G-quadruplexes were investigated via a novel SERS method. As a result, a series of highly reproducible and sensitive SERS signatures featuring the structures of G-quadruplexes were obtained. For the first time, we reported remarkably enhanced SERS bands corresponding to purine ring breathing vibrations. Moreover, we observed that by measuring the intensity of the bands corresponding to intramolecular hydrogen bonds, we could quantitatively assess the stability of the G-quadruplexes. Because no labels on DNA strands were present as the experiments were carried out in the solution, the fingerprint peaks reflect the native, internal structure of the G-quadruplexes accurately. The method here detailed provides new insights into the promising applications of diverse DNA structural studies.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Xiaoxia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Shan Zhou
- School of Future Technology , University of Chinese Academy of Sciences , Beijing 100000 , P. R. China
| | - Yuting Yan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Xiaoxuan Xiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science , Jilin University , Changchun 130012 , P. R. China
| |
Collapse
|
20
|
Zheng XS, Jahn IJ, Weber K, Cialla-May D, Popp J. Label-free SERS in biological and biomedical applications: Recent progress, current challenges and opportunities. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 197:56-77. [PMID: 29395932 DOI: 10.1016/j.saa.2018.01.063] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 05/04/2023]
Abstract
To achieve an insightful look within biomolecular processes on the cellular level, the development of diseases as well as the reliable detection of metabolites and pathogens, a modern analytical tool is needed that is highly sensitive, molecular-specific and exhibits fast detection. Surface-enhanced Raman spectroscopy (SERS) is known to meet these requirements and, within this review article, the recent progress of label-free SERS in biological and biomedical applications is summarized and discussed. This includes the detection of biomolecules such as metabolites, nucleic acids and proteins. Further, the characterization and identification of microorganisms has been achieved by label-free SERS-based approaches. Eukaryotic cells can be characterized by SERS in order to gain information about the outer cell wall or to detect intracellular molecules and metabolites. The potential of SERS for medically relevant detection schemes is emphasized by the label-free detection of tissue, the investigation of body fluids as well as applications for therapeutic and illicit drug monitoring. The review article is concluded with an evaluation of the recent progress and current challenges in order to highlight the direction of label-free SERS in the future.
Collapse
Affiliation(s)
- Xiao-Shan Zheng
- Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Izabella Jolan Jahn
- Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Karina Weber
- Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Str. 9, 07745 Jena, Germany; Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07745 Jena, Germany; Research Campus Infectognostic, Philosophenweg 7, 07743 Jena, Germany
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Str. 9, 07745 Jena, Germany; Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07745 Jena, Germany; Research Campus Infectognostic, Philosophenweg 7, 07743 Jena, Germany.
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Str. 9, 07745 Jena, Germany; Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07745 Jena, Germany; Research Campus Infectognostic, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|