1
|
Traiphothon D, Awang T, Kuntip N, Japrung D, Pongprayoon P. How a mixture of microRNA-29a (miR-29a) and microRNA-144 (miR-144) cancer biomarkers interacts with a graphene quantum dot. J Mol Graph Model 2025; 134:108881. [PMID: 39418887 DOI: 10.1016/j.jmgm.2024.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
MicroRNAs (miRNAs) which are small non-coding RNAs have been reported to be potential cancer biomarker. However, it is difficult to extract such short RNA from a sample matrix. New effective strategies are required. Recently, graphene quantum dots (GQDs) have been used to detect nucleotides in many biosensor platforms, but their applications for miRNA extraction remain limited. GQD was reported to be able to collect short miRNA, but its performance to collect miRNAs with different structure remains unknown. Thus, in this work, the capability of GQD to interact with two different miRNAs is investigated. A mixture of hairpin-like miR-29a and circular miR-144 molecules are used as a representative of two miRNA morphologies. Two systems (a miRNA mixture, comprising 4 of miR-29a and 4 of miR-144, with (miR_GQD) and without GQD (miR)) were studied in comparison. MiRNAs in a mixture (miR) can aggregate, but no permanent miRNA assembly is captured. In contrast, the presence of GQD can rapidly and spontaneously activate the permanent miRNA/GQD clustering. This finding highlights the ability of GQD to be a miRNA collector. Interestingly, all GQD-bound miRNAs do not unfold. This allows the easy accessibility for probes. Also, nano-sized GQD seems to prefer hairpin miR-29a. The free 5' terminus of miR-29a acts as the sticky end to adhere on GQD. This work highlights the importance of RNA secondary structure on GQD/miRNA aggregation capability. An insight obtained here will be useful for further design of miRNA isolation strategies.
Collapse
Affiliation(s)
- Darunee Traiphothon
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Tadsanee Awang
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Nattapon Kuntip
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Deanpen Japrung
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, 12120, Thailand.
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studied in Nanotechnology for Chemical, Food, and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900 Thailand.
| |
Collapse
|
2
|
Raymond P, St-Germain F, Paul S, Chabot D, Deschênes L. Impact of Nanoparticle-Based TiO 2 Surfaces on Norovirus Capsids and Genome Integrity. Foods 2024; 13:1527. [PMID: 38790828 PMCID: PMC11121413 DOI: 10.3390/foods13101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Human noroviruses (HuNoVs) are among the main causes of acute gastroenteritis worldwide. HuNoVs can survive for several days up to weeks at room temperature in the environment, on food, and on food handling and processing surfaces. As a result, this could lead to viral spread through the ingestion of food in contact with contaminated surfaces. The development of stable surface materials with antiviral activity might be useful to reduce viral outbreaks. Metal-based compounds, including photoactivated titanium nanoparticles (TiO2 NPs), are known for their antiviral activity. In this study, we tested the impact of 2000 µg/mL TiO2 NPs, with or without UV activation, on HuNoV GII and murine norovirus. Their recovery rates were reduced by 99.6%. We also evaluated a new TiO2 NP-coating process on a polystyrene surface. This process provided a homogenous coated surface with TiO2 NPs ranging between 5 nm and 15 nm. Without photoactivation, this TiO2 NP-coated polystyrene surface reduced the recovery rates of intact HuNoV GII by more than 94%. When a capsid integrity treatment with PtCl4 or a longer reverse transcription polymerase chain detection approach was used to evaluate virus integrity following contact with the TiO2 NP-coated polystyrene, the HuNoV GII recovery yield reduction varied between 97 and 100%. These results support the hypothesis that TiO2 NP-coated surfaces have the potential to prevent viral transmission associated with contaminated food surfaces.
Collapse
Affiliation(s)
- Philippe Raymond
- Canadian Food Inspection Agency (CFIA), St-Hyacinthe Laboratory—Food Virology National Reference Centre, St-Hyacinthe, QC J2S 8E3, Canada
| | - François St-Germain
- Agriculture and Agri-Food Canada (AAFC), St-Hyacinthe Food Research and Development Centre, 3600 Casavant W, St-Hyacinthe, QC J2S 8E3, Canada
| | - Sylvianne Paul
- Canadian Food Inspection Agency (CFIA), St-Hyacinthe Laboratory—Food Virology National Reference Centre, St-Hyacinthe, QC J2S 8E3, Canada
| | - Denise Chabot
- Agriculture and Agri-Food Canada (AAFC), Ottawa Food Research and Development Centre, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
| | - Louise Deschênes
- Agriculture and Agri-Food Canada (AAFC), St-Hyacinthe Food Research and Development Centre, 3600 Casavant W, St-Hyacinthe, QC J2S 8E3, Canada
| |
Collapse
|
3
|
MacLeay M, Banos G, Donadeu FX. Association of plasma miRNAs with early life performance and aging in dairy cattle. PLoS One 2023; 18:e0288343. [PMID: 37428722 DOI: 10.1371/journal.pone.0288343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023] Open
Abstract
Early life performance traits in dairy cattle can have important influences on lifetime productivity. Poor health and fertility are of great economical and animal welfare concern. Circulating miRNAs have been linked to several livestock traits, including resistance to infection, fertility, and muscle development. This study aimed to identify circulating miRNAs associated with early life performance traits and aging in dairy cattle. Plasma samples from female calves (n = 12) identified retrospectively as differing in health, growth, and fertility outcomes prior to first calving were analyzed using PCR arrays detecting 378 miRNAs. Levels of 6 miRNAs differed significantly in calves with poor growth/fertility relative to controls (t-test: P<0.05). Additionally, general(ized) (non)linear mixed models identified 1 miRNA associated with average daily gain until weaning, 22 with live bodyweight at one year of age, 47 with age at first service, and 19 with number of infections before first calving. Out of 85 distinct miRNAs that were associated with at least one animal trait, 9 miRNAs were validated by RT-qPCR in a larger cohort (n = 91 animals), which included longitudinal plasma samples (calf, heifer, first lactation cow). Significant associations (P<0.05) involving individual miRNAs or ratios between miRNAs and early-life performance traits were identified, but did not retain significance after multiple testing adjustment. However, levels of 8 plasma miRNAs (miR-126-3p, miR-127, miR-142-5p, miR-154b, miR-27b, miR-30c-5p, miR-34a, miR-363) changed significantly with age, most prominently during the calf-to-heifer transition. Comparative RT-qPCR analyses of these miRNAs across 19 calf tissues showed that most were ubiquitously expressed. Online database mining identified several pathways involved in metabolism and cell signaling as putative biological targets of these miRNAs. These results suggest that miR-126-3p, miR-127, miR-142-5p, miR-154b, miR-27b, miR-30c-5p, miR-34a, miR-363 are involved in regulating growth and development from birth to first lactation (~2 years old) and could provide useful biomarkers of aging in cattle.
Collapse
Affiliation(s)
- Madison MacLeay
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Georgios Banos
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
- Department of Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian, United Kingdom
| | - Francesc Xavier Donadeu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
4
|
Zhang B, Li H, Kong L, Yang N, Yang S, Qi L, Liu T, Wang X, Qin W. Tandem enrichment of serum exosomes and exosomal RNA with titanium dioxide. J Chromatogr A 2023; 1693:463882. [PMID: 36857982 DOI: 10.1016/j.chroma.2023.463882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
Exosomes have great potential as biomarker carriers for disease diagnosis and prognosis. In recent years, exosomal RNA (exoRNA) has become a promising candidate for the early diagnosis and prognosis of cancers, and its pathophysiological roles in various diseases have been revealed. For example, exosome-derived mRNAs, miRNAs, circRNAs, and lncRNAs function as signalling molecules to regulate tumour growth, angiogenesis, invasion, metastasis, and the response to chemotherapy. However, the isolation of exosomes and exoRNA with high quality and purity remains challenging due to the relatively small size of exosomes and the limited amount of RNA in exosomes. In this work, we developed a novel tandem enrichment method to isolate exoRNA from serum based on the specific interaction between titanium dioxide (TiO2) and the phosphate groups on the lipid bilayer of exosomes and of the exoRNA. TiO2-based RNA isolation was first demonstrated and optimized in HeLa cells. A total of 130.9 ± 8.34 µg of RNA was rapidly enriched from approximately 5 × 106 HeLa cells within 10 min. This was a 41.5% higher yield than that using a commercial Ultrapure RNA Kit. TiO2-based tandem enrichment of exoRNA was then performed using human serum, obtaining 64.53±3.41 ng of exoRNA from 500 µL of human serum within 30 min. A total of 2,137,902 reads, including seven types of exoRNAs, were identified from the exosomes. This method is compatible with various downstream RNA processing techniques and does not use toxic or irritating reagents, such as phenol or chloroform, providing a simple, economical, rapid, and safe approach for exoRNA extraction from biological samples.
Collapse
Affiliation(s)
- Baoying Zhang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China; National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Hang Li
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Linlin Kong
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Ningli Yang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Shengjie Yang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China
| | - Lu Qi
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China
| | - Tong Liu
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, PR China.
| | - Xinghe Wang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China.
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, PR China.
| |
Collapse
|
5
|
Natmai S, Kuntip N, Japrung D, Pongprayoon P. The aggregation of multiple miR-29a cancer biomarkers induced by graphene quantum dots: Molecular dynamics simulations. J Mol Graph Model 2022; 116:108267. [PMID: 35849900 DOI: 10.1016/j.jmgm.2022.108267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a role in regulating gene expression. MiRNAs are focused on as potential cancer biomarkers due to their involvement in the cancer development. New effective techniques for extracting miRNA from a biological matrix is important. Recently, graphene quantum dots (GQDs) have been used to detect DNA/RNA in many sensor platforms, but the application in miRNA extraction remains limited. To extract miRNAs, the miRNA adsorption and desorption on GQD are the key. Thus, in this work, the adsorption mechanism of excess miRNA on GQD in solution is revealed using Molecular dynamics simulations. The miRNA assemblies on one and two GQDs were studied to explore the possibility of using GQD for miRNA extraction. The folded miR-29a molecule, one of key cancer biomarkers, is used as an miRNA model. Three systems with one (6miR) and two GQDs (with parallel (6miR_2GP) and sandwich (6miR_2GS) organisations) in six-miR-29a solution were set. The data show excess miR-29a can reduce the miR-29a-GQD binding efficiency. The opening of intrabase pairing of GQD-absorbed miR-29a facilitates the interbase coupling resulting in the self-aggregation of miR-29a. The GQD organisation also affects the miR-29a adsorption ability. The additional GQDs result in the tighter miR-29a adsorption which can retard the miR-29a desorption. The proper GQD concentration is thus important to successfully collect all miR-29a and accommodate the easy miR-29a dissociation. Our results can be useful for a design of DNA probe and choosing decent nanosized GRA concentration for experimental setups.
Collapse
Affiliation(s)
- Saowalak Natmai
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Nattapon Kuntip
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Deanpen Japrung
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, 12120, Thailand
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studied in Nanotechnology for Chemical, Food, and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
6
|
Phenol/Chloroform-Free TiO2-Based miRNA Extraction from Cell Lysate. Int J Mol Sci 2022; 23:ijms23168848. [PMID: 36012112 PMCID: PMC9407779 DOI: 10.3390/ijms23168848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
While microRNAs are considered as excellent biomarkers of various diseases, there are still several remaining challenges regarding their isolation. In this study, we aimed to design a novel RNA isolation method that would help to overcome those challenges. Therefore, we present a novel phenol/chloroform-free, low-cost method for miRNA extraction. Within this method, RNA is extracted from cell lysate with an isopropanol/water/NaCl system, followed by solid-phase extraction using TiO2 microspheres to effectively separate short RNAs from long RNA molecules. We also demonstrated the pH-dependent selectivity of TiO2 microspheres towards different sizes of RNA. We were able to regulate the size range of extracted RNAs with simple adjustments in binding conditions used during the solid-phase extraction.
Collapse
|
7
|
Salim H, Pero-Gascon R, Pont L, Giménez E, Benavente F. A review of sample preparation for purification of microRNAs and analysis by mass spectrometry methods. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Zhao X, Li Y, Sun R, Fan Y, Mu X, Wang Y, Shi C, Ma C. Electrical potential-assisted DNA-RNA hybridization for rapid microRNA extraction. Anal Bioanal Chem 2022; 414:3529-3539. [PMID: 35229173 DOI: 10.1007/s00216-022-03979-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 01/15/2023]
Abstract
Analysis of microRNAs (miRNAs) is important in cancer diagnostics and therapy. Conventional methods used to extract miRNA for analysis are generally time-consuming. A novel approach for rapid and sensitive extraction of miRNAs is urgently need for clinical applications. Herein, a novel strategy based on electrical potential-assisted DNA-RNA hybridization was designed for miRNA extraction. The entire extraction process was accomplished in approximately 3 min, which is much shorter than the commercial adsorption column method, at more than 60 min, or the TRIzol method, at more than 90 min. Additionally, the method offered the advantages of simplicity and specificity during the extraction process by electrical potential-assisted hybridization of single-stranded DNA and RNA. Taking let-7a as an example, satisfactory results were achieved for miRNA extraction in serum, demonstrating the applicability in miRNA nucleic acid amplification.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Shandong, 266042, Qingdao, People's Republic of China
| | - Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Shandong, 266042, Qingdao, People's Republic of China
| | - Ritong Sun
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Shandong, 266042, Qingdao, People's Republic of China
| | - Yaofang Fan
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Shandong, 266042, Qingdao, People's Republic of China
| | - Xiaofeng Mu
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Ye Wang
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, the Clinical Laboratory Department of the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Shandong, 266042, Qingdao, People's Republic of China.
| |
Collapse
|
9
|
Petrou L, Ladame S. On-chip miRNA extraction platforms: recent technological advances and implications for next generation point-of-care nucleic acid tests. LAB ON A CHIP 2022; 22:463-475. [PMID: 35048934 DOI: 10.1039/d1lc00868d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Circulating microRNAs (or miRNAs) in bodily fluids, are increasingly being highlighted as promising diagnostic and predictive biomarkers for a broad range of pathologies. Although nucleic acid sensors have been developed that can detect minute concentrations of biomarkers with high sensitivity and sequence specificity, their robustness is often compromised by sample collection and processing prior to analysis. Such steps either (i) involve complex, multi-step procedures and toxic chemicals unsuitable for incorporation into portable devices or (ii) are inefficient and non-standardised therefore affecting the reliability/reproducibility of the test. The development of point-of-care nucleic acid tests based on the detection of miRNAs is therefore highly dependent on the development of an automated, on-chip, sample processing platform that would enable extraction or pre-purification of the biological specimen prior to reaching the sensing platform. In this review we categorise and critically discuss the most promising technologies that have been developed to facilitate the transition of nucleic acid tests based on miRNA detection from bench to bedside.
Collapse
Affiliation(s)
- Loukia Petrou
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK.
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK.
| |
Collapse
|
10
|
Kuntip N, Japrung D, Pongprayoon P. What Happens When a Complementary DNA Meets miR-29a Cancer Biomarker in Complex with a Graphene Quantum Dot. ACS APPLIED BIO MATERIALS 2021; 4:8368-8376. [PMID: 35005926 DOI: 10.1021/acsabm.1c00943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs), short single-stranded noncoding RNA molecules, serve as potential cancer biomarkers due to their involvement in cancer development. One of the strategies to extract miRNAs is to perform the miRNA adsorption on nanomaterials and dissociation by a complementary DNA strand (DNA probe). Recently, graphene quantum dots (GQDs) were found to show a good ability to absorb miRNAs. Thus, in this work, the mechanism of the GQD-adhered miRNA capture by its complementary DNA is revealed using molecular dynamics simulations. miR-29a, a potential cancer biomarker, is used as a miRNA model. Three systems containing one and four chains of miR-29a in addition to one and four complementary DNA probes (1R1D, 1R4D, and 4R4D) were studied. GQDs are the prime targets of a DNA attack. The full coverage of GQDs is required to protect the adsorption of DNA probes on the GQD face. The nucleobase-backbone interactions are the main contributors to miR-DNA interactions in this work. The interbase paring becomes small because most nucleobases of miR-29a and their probe are stacked to maintain their secondary structures, and some are absorbed on the GQD surface. Apparently, weakening of the nucleobase-GQD π-π stacking and the intrabase-pairing strength is needed for extracting miR-29a by a probe. Although no GQD-absorbed miR-29a desorption is found here, the basic principles obtained can be useful for further utilization of GQDs and their derivatives for miRNA extraction and detection.
Collapse
Affiliation(s)
- Nattapon Kuntip
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Deanpen Japrung
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani 12120, Thailand
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.,Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
11
|
Kuntip N, Japrung D, Pongprayoon P. Modeling the Adsorption of the miR-29a Cancer Biomarker on a Graphene Quantum Dot. ACS OMEGA 2021; 6:21764-21772. [PMID: 34471778 PMCID: PMC8388069 DOI: 10.1021/acsomega.1c03404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/30/2021] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules associated with the regulation of gene expression in organisms. MiRNAs are focused on as potential cancer biomarkers due to their involvement in cancer development. New potential techniques for miRNA detection are rapidly developed, while there is a lack of effective extraction approaches, especially for miRNAs. Recently, graphene quantum dots (GQDs) have been involved in many disease biosensor platforms including miRNA detection, but no application in miRNA extraction is studied. To extract miRNAs, miRNA adsorption and desorption on GQDs are the key. Thus, in this work, the adsorption mechanism of miRNA on GQDs in solution is revealed using molecular dynamics simulations. The aim is to explore the possibility of using GQDs for miRNA extraction. The folded miR-29a molecule, one of the key cancer biomarkers, is used as a miRNA model. Two systems with one (1miR) and four (4miR) chains of miR-29a were set. MiR-29a molecules in all systems are simultaneously adsorbed on the GQD surface. Our finding highlights the ability of the GQD in collecting miRNAs in solution. In 1miR, the whole miR-29a chain sits on the GQD face, whereas all miR-29a molecules in 4miR show the "clamping" conformation. No "lying flat" orientation of miR-29a is observed due to the existence of the preserved hairpin region. Interestingly, the 5' end shows tighter binding than the 3' terminus. A design of complementary DNA with the recognition segment involving the sequences close to the 3' end can promote effective miR-29a desorption.
Collapse
Affiliation(s)
- Nattapon Kuntip
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
| | - Deanpen Japrung
- National
Nanotechnology Center, National Science
and Technology Development Agency, Thailand Science Park, Pathumthani 12120, Thailand
- . Phone:+66-2564-6665. Fax:+66-25647000
| | - Prapasiri Pongprayoon
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
- Center
for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural
Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
- . Phone: +66-2562-5555. Fax:+66-2579-3955
| |
Collapse
|
12
|
Bryzgunova O, Konoshenko M, Zaporozhchenko I, Yakovlev A, Laktionov P. Isolation of Cell-Free miRNA from Biological Fluids: Influencing Factors and Methods. Diagnostics (Basel) 2021; 11:865. [PMID: 34064927 PMCID: PMC8151063 DOI: 10.3390/diagnostics11050865] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
A vast wealth of recent research has seen attempts of using microRNA (miRNA) found in biological fluids in clinical research and medicine. One of the reasons behind this trend is the apparent their high stability of cell-free miRNA conferred by small size and packaging in supramolecular complexes. However, researchers in both basic and clinical settings often face the problem of selecting adequate methods to extract appropriate quality miRNA preparations for use in specific downstream analysis pipelines. This review outlines the variety of different methods of miRNA isolation from biofluids and examines the key determinants of their efficiency, including, but not limited to, the structural properties of miRNA and factors defining their stability in the extracellular environment.
Collapse
Affiliation(s)
- Olga Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Maria Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Ivan Zaporozhchenko
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
| | - Alexey Yakovlev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| |
Collapse
|
13
|
|
14
|
Wang QS, Luo XY, Fu H, Luo Q, Wang MQ, Zou DY. MiR-139 protects against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced nerve injury through targeting c-Jun to inhibit NLRP3 inflammasome activation. J Stroke Cerebrovasc Dis 2020; 29:105037. [PMID: 32807449 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105037] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cerebral ischemia/reperfusion (I/R) injury after ischemic stroke is usually accompanied with the activation of inflammasome which seriously impairs neurological function. MiR-139 has been reported to be associated with inflammatory regulation in multiple diseases. However, its effect and mechanism on inflammation regulation after cerebral I/R injury are still poorly understood. METHODS An in vitro model of cerebral I/R injury was constructed with oxygen-glucose deprivation/reoxygenation (OGD/R) treatment. TargetScan bioinformatics analysis and dual luciferase reporter assay were utilized to confirm the targeted relationship between miR-139 and c-Jun. Cell pyroptosis was verified by flow cytometry and Caspase-1 Detection Kit. qRT-PCR assay was performed to detect the expression levels of miR-139, c-Jun, NLRP3 and ASC. Western blotting was applied to measure the protein levels of c-Jun and pyroptosis-related markers NLRP3, ASC, caspase-1, GSDMDNterm. The ELISA assay was applied to measure the release of IL-1β, IL-18 and LDH. RESULTS MiR-139 was significantly downregulated whereas c-Jun was obviously upregulated after OGD/R treatment. TargetScan analysis predicted that c-Jun was a potential target of miR-139, which was verified by the dual-luciferase reporter assay. Also, overexpression of miR-139 repressed c-Jun expression. Furthermore, miR-139 inhibited OGD/R-induced cell pyroptosis and the upregulation of NLRP3, caspase-1, ASC, GSDMDNterm, and the release of IL-1β, IL-18 and LDH, while miR-139 inhibition exerted the opposite effects. However, overexpression of c-Jun aggravated OGD/R-induced nerve injury and partly abolished the neuroprotective effect of miR-139. CONCLUSION Upregulation of miR-139 exerted neuroprotection against OGD/R-induced nerve injury by negatively regulating c-Jun/NLRP3 inflammasome signaling. This study offered insights for providing potential therapeutic targets for treating cerebral I/R injury.
Collapse
Affiliation(s)
- Qiao-Sheng Wang
- Department of Critical Care Medicine, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, PR China.
| | - Xiao-Yan Luo
- Department of Medical service, Affiliated Nanhua Hospital, University of South China, Hengyang 421001, Hunan Province, PR China.
| | - Hui Fu
- Department of Critical Care Medicine, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, PR China.
| | - Qiong Luo
- Department of Critical Care Medicine, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, PR China.
| | - Mei-Qiu Wang
- Department of Critical Care Medicine, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, PR China; Graduate School of University of South China, Hengyang 421101, Hunan Province, PR China.
| | - Dian-Yi Zou
- Department of Critical Care Medicine, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, PR China; Graduate School of University of South China, Hengyang 421101, Hunan Province, PR China.
| |
Collapse
|
15
|
Wang L, Lee JY, Gao L, Yin J, Duan Y, Jimenez LA, Adkins GB, Ren W, Li L, Fang J, Wang Y, Song J, Zhong W. A DNA aptamer for binding and inhibition of DNA methyltransferase 1. Nucleic Acids Res 2019; 47:11527-11537. [PMID: 31733056 PMCID: PMC7145629 DOI: 10.1093/nar/gkz1083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 01/10/2023] Open
Abstract
DNA methyltransferases (DNMTs) are enzymes responsible for establishing and maintaining DNA methylation in cells. DNMT inhibition is actively pursued in cancer treatment, dominantly through the formation of irreversible covalent complexes between small molecular compounds and DNMTs that suffers from low efficacy and high cytotoxicity, as well as no selectivity towards different DNMTs. Herein, we discover aptamers against the maintenance DNA methyltransferase, DNMT1, by coupling Asymmetrical Flow Field-Flow Fractionation (AF4) with Systematic Evolution of Ligands by EXponential enrichment (SELEX). One of the identified aptamers, Apt. #9, contains a stem-loop structure, and can displace the hemi-methylated DNA duplex, the native substrate of DNMT1, off the protein on sub-micromolar scale, leading for effective enzymatic inhibition. Apt. #9 shows no inhibition nor binding activity towards two de novo DNMTs, DNMT3A and DNMT3B. Intriguingly, it can enter cancer cells with over-expression of DNMT1, colocalize with DNMT1 inside the nuclei, and inhibit the activity of DNMT1 in cells. This study opens the possibility of exploring the aptameric DNMT inhibitors being a new cancer therapeutic approach, by modulating DNMT activity selectively through reversible interaction. The aptamers could also be valuable tools for study of the functions of DNMTs and the related epigenetic mechanisms.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Ju Yong Lee
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Linfeng Gao
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, CA 92521, USA
| | - Jiekai Yin
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, CA 92521, USA
| | - Yaokai Duan
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Luis A Jimenez
- Program in Biomedical Sciences, University of California-Riverside, Riverside, CA 92521, USA
| | - Gary Brent Adkins
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Wendan Ren
- Department of Biochemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Linhui Li
- Department of Biochemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Jian Fang
- Department of Biochemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, CA 92521, USA
| | - Jikui Song
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, CA 92521, USA
- Department of Biochemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, CA 92521, USA
| |
Collapse
|
16
|
Zhang C, Sun G, Senapati S, Chang HC. A bifurcated continuous field-flow fractionation (BCFFF) chip for high-yield and high-throughput nucleic acid extraction and purification. LAB ON A CHIP 2019; 19:3853-3861. [PMID: 31621762 PMCID: PMC6982425 DOI: 10.1039/c9lc00818g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We report a bifurcated continuous field-flow fractionation (BCFFF) chip for high-yield and high-throughput (20 min) extraction of nucleic acids from physiological samples. The design uses a membrane ionic transistor to sustain low-ionic strength in a localized region at a junction, such that the resulting high field can selectively isolate high-charge density nucleic acids from the main flow channel and insert them into a standardized buffer in a side channel that bifurcates from the junction. The high local electric field and the bifurcated field-flow design facilitate concentration reduction of both divalent cation (Ca2+) and molecular PCR inhibitors by more than two orders of magnitude, even with high-throughput continuous loading. The unique design with a large (>20 mM mm-1) on-chip ionic-strength gradient allows miniaturization into a high-throughput field-flow fractionation chip that can be integrated with upstream lysing and downstream PCR/sensor modules for various nucleic acid detection/quantification applications. A concentration-independent 85% yield for extraction and an overall post-PCR yield exceeding 60% are demonstrated for a 111 bp dsDNA in 10 μL of human plasma, compared to no amplification with the raw sample. A net yield four times larger than a commercial extraction kit is demonstrated for miR-39 in human plasma.
Collapse
Affiliation(s)
- Chenguang Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. and Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gongchen Sun
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. and Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556, USA and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. and Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556, USA and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA and Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
17
|
Ndika J, Seemab U, Poon WL, Fortino V, El-Nezami H, Karisola P, Alenius H. Silver, titanium dioxide, and zinc oxide nanoparticles trigger miRNA/isomiR expression changes in THP-1 cells that are proportional to their health hazard potential. Nanotoxicology 2019; 13:1380-1395. [PMID: 31519129 DOI: 10.1080/17435390.2019.1661040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
After over a decade of nanosafety research, it is indisputable that the vast majority of nano-sized particles induce a plethora of adverse cellular responses - the severity of which is linked to the material's physicochemical properties. Differentiated THP-1 cells were previously exposed for 6 h and 24 h to silver, titanium dioxide, and zinc oxide nanoparticles at the maximum molar concentration at which no more than 15% cellular cytotoxicity was observed. All three nanoparticles differed in extent of induction of biological pathways corresponding to immune response signaling and metal ion homeostasis. In this study, we integrated gene and miRNA expression profiles from the same cells to propose miRNA biomarkers of adverse exposure to metal-based nanoparticles. We employed RNA sequencing together with a quantitative strategy that also enables analysis of the overlooked repertoire of length and sequence miRNA variants called isomiRs. Whilst only modest changes in expression were observed within the first 6 h of exposure, the miRNA/isomiR (miR) profiles of each nanoparticle were unique. Via canonical correlation and pathway enrichment analyses, we identified a co-regulated miR-mRNA cluster, predicted to be highly relevant for cellular response to metal ion homeostasis. These miRs were annotated to be canonical or variant isoforms of hsa-miR-142-5p, -342-3p, -5100, -6087, -6894-3p, and -7704. Hsa-miR-5100 was differentially expressed in response to each nanoparticle in both the 6 h and 24 h exposures. Taken together, this co-regulated miR-mRNA cluster could represent potential biomarkers of sub-toxic metal-based nanoparticle exposure.
Collapse
Affiliation(s)
- Joseph Ndika
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Umair Seemab
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wing-Lam Poon
- School of Biological Sciences, the University of Hong Kong, Hong Kong, Hong Kong
| | - Vittorio Fortino
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Hani El-Nezami
- School of Biological Sciences, the University of Hong Kong, Hong Kong, Hong Kong.,Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Piia Karisola
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Harri Alenius
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Wang YM, Trinh MP, Zheng Y, Guo K, Jimenez LA, Zhong W. Analysis of circulating non-coding RNAs in a non-invasive and cost-effective manner. Trends Analyt Chem 2019; 117:242-262. [PMID: 32292220 PMCID: PMC7156030 DOI: 10.1016/j.trac.2019.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs (ncRNAs) participate in regulation of gene expression, and are highly relevant to pathological development. They are found to be stably present in diverse body fluids, including those in the circulatory system, which can be sampled non-invasively for clinical tests. Thus, circulating ncRNAs have great potential to be disease biomarkers. However, tremendous efforts are desired to discover and utilize ncRNAs as biomarkers in clinical diagnosis, calling for technological advancement in analysis of circulating ncRNAs in biospecimens. Hence, this review summarizes the recent developments in this area, highlighting the works devoted to cancer diagnosis and prognosis. Three main directions are focused: 1) Extraction and purification of ncRNAs from body fluids; 2) Quantification of the purified circulating ncRNAs; and 3) Microfluidic platforms for integration of both steps to enable point-of-care diagnostics. These technologies have laid a solid foundation to move forward the applications of circulating ncRNAs in disease diagnosis and cure.
Collapse
Affiliation(s)
- Yu-Min Wang
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry and Environment, South China Normal University, Guangzhou, Guangdong 510006, P. R. China
| | - Michael Patrick Trinh
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Yongzan Zheng
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Kaizhu Guo
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Luis A. Jimenez
- Program in Biomedical Sciences, University of California at Riverside, Riverside, California 92521, United States
| | - Wenwan Zhong
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| |
Collapse
|