1
|
Lv Q, Xu W, Yang F, Wei W, Chen X, Zhang Z, Liu Y. Reproductive Toxicity of Zearalenone and Its Molecular Mechanisms: A Review. Molecules 2025; 30:505. [PMID: 39942610 PMCID: PMC11821083 DOI: 10.3390/molecules30030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Zearalenone (ZEA) is one of the common mycotoxins in feeds. ZEA and its metabolites have estrogen-like activity and can competitively bind to estrogen receptors, causing reproductive dysfunction and damage to reproductive organs. The toxicity mechanism of ZEA mainly inhibits the antioxidant pathway and antioxidant enzyme activity, induces cell cycle arrest and DNA damage, and blocks the process of cellular autophagy to produce toxic effects. In animal husbandry practice, when animals ingest ZEA-contaminated feed, it is likely to lead to abortion in females, abnormal sperm viability in males with inflammatory reactions in various organs, and cancerous changes in the reproductive organs of humans when they ingest contaminated animal products. In this paper, we reviewed in detail how ZEA induces oxidative damage by inducing the generation of reactive oxygen species (ROS) and regulating the expression of genes related to oxidative pathways, induces germ cell apoptosis through the mitochondrial and death receptor pathways, and activates the expression of genes related to autophagy in order to induce cellular autophagy. In addition, the molecular detoxification mechanism of ZEA is also explored in this paper, aiming to provide a new direction and theoretical basis for the development of new ZEA detoxification methods to better reduce the global pollution and harm caused by ZEA.
Collapse
Affiliation(s)
- Qiongxia Lv
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luoyang 471023, China; (W.X.); (W.W.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Lu Z, Zhang R, Wu P, Zhao D, Chen J, Pan X, Wang J, Zhang H, Qi X, Weng Q, Ye S, Zhou B. Occurrence and Exposure Assessment of Zearalenone in the Zhejiang Province, China. Toxins (Basel) 2024; 17:9. [PMID: 39852962 PMCID: PMC11769038 DOI: 10.3390/toxins17010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025] Open
Abstract
This study aims to examine the hazards of zearalenone (ZEN) to humans and assess the risk of dietary exposure to ZEN, particularly in relation to precocious puberty in children from the Zhejiang Province. The test results from five types of food from the Zhejiang Province show that corn oil has the highest detection rate of 87.82%. The levels of ZEN do not exceed the existing safety standards in any sample investigated in this study. According to the data from the Food Consumption Survey of Zhejiang Province residents, rice is the primary source of ZEN exposure, accounting for 55.85% of total exposure among all age groups. Based on the 50th exposure percentile, it would take 6.25 years of rice consumption to reach 1 year of safe ZEN exposure. Overall, the majority of the residents in the Zhejiang Province have a low risk of exposure to ZEN. In an extreme case (based on the 95th exposure percentile), the total ZEN exposure from the studied foods with respect to children aged ≤6 years and 7-12 years is 0.38 μg/kg b.w. and 0.26 μg/kg b.w., respectively-both exceeding the safety limit of 0.25 μg/kg b.w. set by the European Food Safety Authority, indicating a potential risk of exposure. Precocious puberty assessments show that ZEN exposure levels in children in the Zhejiang Province are significantly lower than those associated with precocious puberty; thus, precocious puberty is unlikely to occur in this area. Given ZEN's estrogenic effect, it is necessary to monitor the level of ZEN in different food items, revise the relevant standards as needed, and focus on exposure to ZEN in younger age groups.
Collapse
Affiliation(s)
- Zijie Lu
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China; (Z.L.); (Q.W.)
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Ronghua Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Pinggu Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Dong Zhao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Jiang Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Xiaodong Pan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Jikai Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Hexiang Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Xiaojuan Qi
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Qin Weng
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China; (Z.L.); (Q.W.)
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Shufeng Ye
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
- School of Public Health, Ningbo University, Ningbo 315211, China
| | - Biao Zhou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| |
Collapse
|
3
|
Orso PB, Evangelista AG, de Melo Nazareth T, Luz C, Bordin K, Meca G, Luciano FB. Bacillus velezensis CL197: a zearalenone detoxifying strain isolated from wheat with potential to be used in animal production. Vet Res Commun 2024; 48:3847-3857. [PMID: 39316351 PMCID: PMC11538190 DOI: 10.1007/s11259-024-10552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Zearalenone (ZEA) is a mycotoxin produced by Fusarium species, and cause contamination of food and feed, with impacts in animal production and in food production chain. Effective detoxifying methods, such as biodegradation, are therefore required. This study aimed to isolate microorganisms and screen ZEA detoxifying strains. As a result, 197 microorganisms were isolated, and six were initially selected after colorimetric screening. ZEA (1 µg/mL) was added to culture media, and after 24 h, all six microorganisms were able to degrade ZEA, without the formation of α-ZOL. One isolate eliminated ~ 99% of ZEA and was identified as Bacillus velezensis CL197. ZEA metabolites produced by the bacteria were evaluated, and no metabolites with greater or similar toxicity than ZEA were detected. This strain was applied to swine in vitro digestion, and up to 64% of ZEA was degraded. B. velezensis CL197 significantly degraded ZEA, demonstrating potential to be used as a detoxifying agent in the food production chain as a biocontrol agent.
Collapse
Affiliation(s)
- Paloma Bianca Orso
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155 - Prado Velho , Curitiba, PR, 80215-901, Brazil
| | - Alberto Gonçalves Evangelista
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155 - Prado Velho , Curitiba, PR, 80215-901, Brazil
| | - Tiago de Melo Nazareth
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155 - Prado Velho , Curitiba, PR, 80215-901, Brazil.
- Departament Medicina Preventiva i Salut Pública, Ciències de l'Alimentació, Toxicologia i Medicina Legal, Facultad de Farmàcia, Universitat de València, Av. de Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| | - Carlos Luz
- Departament Medicina Preventiva i Salut Pública, Ciències de l'Alimentació, Toxicologia i Medicina Legal, Facultad de Farmàcia, Universitat de València, Av. de Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Keliani Bordin
- Polytechnic School, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Giuseppe Meca
- Departament Medicina Preventiva i Salut Pública, Ciències de l'Alimentació, Toxicologia i Medicina Legal, Facultad de Farmàcia, Universitat de València, Av. de Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Fernando Bittencourt Luciano
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155 - Prado Velho , Curitiba, PR, 80215-901, Brazil.
| |
Collapse
|
4
|
Gachowska M, Dąbrowska A, Wilczyński B, Kuźnicki J, Sauer N, Szlasa W, Kobierzycki C, Łapińska Z, Kulbacka J. The Influence of Environmental Exposure to Xenoestrogens on the Risk of Cancer Development. Int J Mol Sci 2024; 25:12363. [PMID: 39596429 PMCID: PMC11594813 DOI: 10.3390/ijms252212363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Xenoestrogens (XEs) are a group of exogenous substances that may interfere with the functioning of the endocrine system. They may mimic the function of estrogens, and their sources are plants, water or dust, plastic, chemical agents, and some drugs. Thus, people are highly exposed to their actions. Together with the development of industry, the number of XEs in our environment increases. They interact directly with estrogen receptors, disrupting the transmission of cellular signals. It is proven that XEs exhibit clinical application in e.g., menopause hormone therapy, but some studies observed that intense exposure to XEs leads to the progression of various cancers. Moreover, these substances exhibit the ability to cross the placental barrier, therefore, prenatal exposure may disturb fetus development. Due to the wide range of effects resulting from the biological activity of these substances, there is a need for this knowledge to be systematized. This review aims to comprehensively assess the environmental sources of XEs and their role in increasing cancer risk, focusing on current evidence of their biological and pathological impacts.
Collapse
Affiliation(s)
- Martyna Gachowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (M.G.); (A.D.); (B.W.); (J.K.)
| | - Alicja Dąbrowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (M.G.); (A.D.); (B.W.); (J.K.)
| | - Bartosz Wilczyński
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (M.G.); (A.D.); (B.W.); (J.K.)
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (M.G.); (A.D.); (B.W.); (J.K.)
| | - Natalia Sauer
- Department of Clinical Pharmacology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Wojciech Szlasa
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Christopher Kobierzycki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Zofia Łapińska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| |
Collapse
|
5
|
Marhaba, Anjum S, Mandal P, Agrawal S, Ansari KM. Zearalenone promotes endometrial cancer cell migration and invasion via activation of estrogen receptor-mediated Rho/ROCK/PMLC signaling pathway. Food Chem Toxicol 2024; 193:115017. [PMID: 39306225 DOI: 10.1016/j.fct.2024.115017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Zearalenone (ZEA), has emerged as a potential endocrine-disrupting chemical (EDC). Previous results show ZEA effects on endometrial stromal cell apoptosis, migration, and growth of endometriosis. Despite the reported presence of ZEA in Endometrial Cancer (EC) patient's blood and tissues, ZEA-induced EC promotion and its mechanism/s remain elusive. In this study, Ishikawa cells were used to investigate the ZEA effects on Ishikawa cell migration, invasion, and the underlying mechanism involved in these events. Ishikawa cells were exposed to low concentrations of ZEA (5, 25, and 125 nM) for 48 h, and morphological alterations, migration, invasion, markers associated with epithelial-mesenchymal transition (EMT), E-cadherin, Vimentin, RhoA/ROCK/PMLC pathway activation were analyzed. ZEA (25 nM) exposure caused morphological alterations like stress fiber, filopodia formation, loss of cell adhesion, and a significant increase in migration and invasive potential in extracellular matrix-coated porous membranes. Moreover, ZEA exposure also increases the Rho-GTPase activity and expression of pathway mediators, GEFH1, RhoA, ROCK1+2, CDC42, and PMLC/MLC. Furthermore, pre-treatment with specific pharmacological inhibitors for Estrogen receptor-alpha (ER-α) and ROCK attenuate the ZEA-induced stress fiber formation and altered expression of E-cadherin, Vimentin, and Rho/ROCK/PMLC pathway mediators. These findings suggest that Rho/ROCK/PMLC signaling pathways are involved in ZEA-induced Ishikawa cell migration and invasion.
Collapse
Affiliation(s)
- Marhaba
- Food Toxicology Laboratory, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Saria Anjum
- Food Toxicology Laboratory, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Payal Mandal
- Food Toxicology Laboratory, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Smriti Agrawal
- Department of Obstetrics & Gynaecology, Dr. Ram Manohar Lohia Institute of Medical Science, Lucknow, Uttar Pradesh, India
| | - Kausar Mahmood Ansari
- Food Toxicology Laboratory, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
6
|
Unicsovics M, Molnár Z, Mézes M, Posta K, Nagyéri G, Várbíró S, Ács N, Sára L, Szőke Z. The Possible Role of Mycotoxins in the Pathogenesis of Endometrial Cancer. Toxins (Basel) 2024; 16:236. [PMID: 38922131 PMCID: PMC11209310 DOI: 10.3390/toxins16060236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/04/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Endometrial cancer is one of the most common cancer types among women. Many factors can contribute to the development of this disease, including environmental factors and, thus, eating habits. Our study aims to determine the levels of various mycotoxins and their metabolites in the blood serum and endometrial tissue samples of participants with previously proven endometrial cancer and to find possible contributions to cancer development. In the cohort clinical trial, 52 participants aged between 44 and 86 were studied. The participants were divided into two groups: patients or matched controls. All patients had previously histologically diagnosed endometrial cancer. The cancer patients were divided into low-grade endometrioid and low- plus high-grade endometrioid groups. Controls had no history of endometrial malignancy or premalignancy. Blood serum and endometrial tissue samples were obtained from all study patients. We compared the concentrations of total Aflatoxins (Afs), Deoxynivalenol (DON), Ochratoxin-A (OTA), T2-toxin and HT2 toxin (T2/HT2 toxin), Zearalenone (ZEN), alpha-Zearalenol (α-ZOL), and Fumonisin B1 (FB1) in the serum and endometrium between the different study groups. As a result, we can see a significant correlation between the higher levels of Afs and zearalenone and the presence of endometrial cancer. In the case of Afs, DON, OTA, T2/HT2 toxins, ZEN, and alpha-ZOL, we measured higher endometrial concentrations than in serum. Considering the effect of mycotoxins and eating habits on cancer development, our results might lead to further research exploring the relationship between certain mycotoxins and endometrium cancer.
Collapse
Affiliation(s)
- Márkó Unicsovics
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary; (S.V.); (N.Á.); (L.S.)
| | - Zsófia Molnár
- Department of Animal Biotechnology, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.M.); (G.N.); (Z.S.)
| | - Miklós Mézes
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Katalin Posta
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - György Nagyéri
- Department of Animal Biotechnology, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.M.); (G.N.); (Z.S.)
| | - Szabolcs Várbíró
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary; (S.V.); (N.Á.); (L.S.)
- Department of Obstetrics and Gynecology, University of Szeged, 6725 Szeged, Hungary
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary; (S.V.); (N.Á.); (L.S.)
| | - Levente Sára
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary; (S.V.); (N.Á.); (L.S.)
| | - Zsuzsanna Szőke
- Department of Animal Biotechnology, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.M.); (G.N.); (Z.S.)
| |
Collapse
|
7
|
Singh V, Mandal P, Chauhan SS, Saifi IJ, Marhaba, Sandeep PV, Jagdale P, Ayanur A, Ansari KM. Chronic exposure to Zearalenone leads to endometrial hyperplasia in CD-1 mice by altering the inflammatory markers. Toxicol Res (Camb) 2024; 13:tfae055. [PMID: 38645625 PMCID: PMC11031408 DOI: 10.1093/toxres/tfae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Background Zearalenone (ZEA), a natural food contaminant, is reported to act as a mycoestrogen due to its estrogen-mimicking properties. According to studies, ZEA has a greater potential for estrogenic activity compared to any other naturally occurring non-steroidal estrogen. ZEA has been found in the endometrium of individuals with reproductive problems and the serum of children facing early puberty. These studies suggested a possible link between ZEA exposure and endometrial toxicity; nonetheless, no thorough research has been done. This study assessed the endometrium's response to chronic ZEA exposure. Methods Four groups of CD-1 female mice were exposed to control, estradiol (E2), and two different doses of ZEA for 90 days. At the end of treatment, blood and uterus were collected, and samples were used for inflammatory cytokines level, immunochemical, histopathological, and biophysical analysis. Results Our data indicated that the uterus showed a change in body/organ weight ratio, while other organs did not have any notable changes. Immunochemical and histological studies showed hyperplasia and a higher number of glands in the endometrium after ZEA and E2 exposure. Similarly, proliferation markers such as proliferative cell nuclear antigen (PCNA), Ki-67, and inflammatory cytokines such as interleukin 6 (IL-6), interleukin 8 (IL-8), and interferon-gamma (IFN-?) levels were found to be higher in the E2 and ZEA-exposed groups. Conclusion Our finding conclude that ZEA targets the uterus and cause inflammation due to increased levels of inflammatory cytokines and proliferation mediators, as well as systemic toxicity denoted by a strong binding affinity with serum proteins.
Collapse
Affiliation(s)
- Varsha Singh
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Payal Mandal
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Shweta Singh Chauhan
- Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
- Computational Toxicology Facility, Toxicoinformatics and Industrial Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ishrat Jahan Saifi
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Marhaba
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - P V Sandeep
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Pankaj Jagdale
- Central Pathology Facility, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Anjaneya Ayanur
- Central Pathology Facility, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Kausar Mahmood Ansari
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
8
|
Ruan H, Zhang J, Wang Y, Huang Y, Wu J, He C, Ke T, Luo J, Yang M. 27-Hydroxycholesterol/liver X receptor/apolipoprotein E mediates zearalenone-induced intestinal immunosuppression: A key target potentially linking zearalenone and cancer. J Pharm Anal 2024; 14:371-388. [PMID: 38618245 PMCID: PMC11010457 DOI: 10.1016/j.jpha.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 04/16/2024] Open
Abstract
Zearalenone (ZEN) is a mycotoxin that extensively contaminates food and feed, posing a significant threat to public health. However, the mechanisms behind ZEN-induced intestinal immunotoxicity remain unclear. In this study, Sprague-Dawley (SD) rats were exposed to ZEN at a dosage of 5 mg/kg/day b.w. for a duration of 14 days. The results demonstrated that ZEN exposure led to notable pathological alterations and immunosuppression within the intestine. Furthermore, ZEN exposure caused a significant reduction in the levels of apolipoprotein E (ApoE) and liver X receptor (LXR) (P < 0.05). Conversely, it upregulated the levels of myeloid-derived suppressor cells (MDSCs) markers (P < 0.05) and decreased the presence of 27-hydroxycholesterol (27-HC) in the intestine (P < 0.05). It was observed that ApoE or LXR agonists were able to mitigate the immunosuppressive effects induced by ZEN. Additionally, a bioinformatics analysis highlighted that the downregulation of ApoE might elevate the susceptibility to colorectal, breast, and lung cancers. These findings underscore the crucial role of the 27-HC/LXR/ApoE axis disruption in ZEN-induced MDSCs proliferation and subsequent inhibition of T lymphocyte activation within the rat intestine. Notably, ApoE may emerge as a pivotal target linking ZEN exposure to cancer development.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jing Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Yunyun Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jiashuo Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Chunjiao He
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Tongwei Ke
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
9
|
Kościelecka K, Kuć A, Kubik-Machura D, Męcik-Kronenberg T, Włodarek J, Radko L. Endocrine Effect of Some Mycotoxins on Humans: A Clinical Review of the Ways to Mitigate the Action of Mycotoxins. Toxins (Basel) 2023; 15:515. [PMID: 37755941 PMCID: PMC10535190 DOI: 10.3390/toxins15090515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Fungi such as Aspergillus spp. and Fusarium spp., which are commonly found in the environment, pose a serious global health problem. This study aims to present the results of epidemiological studies, including clinical cases, on the relationship between human exposure to some mycotoxins, especially zearalenone and aflatoxin, and the occurrence of reproductive disorders. In addition, examples of methods to reduce human exposure to mycotoxins are presented. In March 2023, various databases (PubMed, Google Scholar, EMBASE and Web of Science) were systematically searched using Google Chrome to identify studies evaluating the association between exposure to mycotoxins and the occurrence of complications related to impaired fertility or cancer incidence. The analysed data indicate that exposure to the evaluated mycotoxins is widespread and correlates strongly with precocious puberty, reduced fertility and increased cancer incidence in women and men worldwide. There is evidence to suggest that exposure to the Aspergillus mycotoxin aflatoxin (AF) during pregnancy can impair intrauterine foetal growth, promote neonatal jaundice and cause perinatal death and preterm birth. In contrast, exposure to the Fusarium mycotoxin zearalenone (ZEA) leads to precocious sexual development, infertility, the development of malformations and the development of breast cancer. Unfortunately, the development of methods (biological, chemical or physical) to completely eliminate exposure to mycotoxins has limited practical application. The threat to human health from mycotoxins is real and further research is needed to improve our knowledge and specific public health interventions.
Collapse
Affiliation(s)
- Klaudia Kościelecka
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, 3 Maja St. 13, 41-800 Zabrze, Poland; (K.K.); (A.K.); (D.K.-M.)
| | - Aleksandra Kuć
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, 3 Maja St. 13, 41-800 Zabrze, Poland; (K.K.); (A.K.); (D.K.-M.)
| | - Daria Kubik-Machura
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, 3 Maja St. 13, 41-800 Zabrze, Poland; (K.K.); (A.K.); (D.K.-M.)
| | - Tomasz Męcik-Kronenberg
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, 3 Maja St. 13, 41-800 Zabrze, Poland; (K.K.); (A.K.); (D.K.-M.)
| | - Jan Włodarek
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wolynska St. 35, 60-637 Poznan, Poland;
| | - Lidia Radko
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wolynska St. 35, 60-637 Poznan, Poland;
| |
Collapse
|
10
|
Li Q, Wang X, Wang X, Zheng L, Chen P, Zhang B. Novel insights into versatile nanomaterials integrated bioreceptors toward zearalenone ultrasensitive discrimination. Food Chem 2023; 410:135435. [PMID: 36641913 DOI: 10.1016/j.foodchem.2023.135435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Detrimental contamination of zearalenone (ZEN) in crops and foodstuffs has drawn intensive public attention since it poses an ongoing threat to global food security and human health. Highly sensitive and rapid response ZEN trace analysis suitable for complex matrices at different processing stages is an indispensable part of food production. Conventional detection methods for ZEN encounter many deficiencies and demerits such as sophisticated equipment and heavy labor intensity. Alternatively, the nanomaterial-based biosensors featured with high sensitivity, portability, and miniaturization are springing up and emerging as superb substitutes to monitor ZEN in recent years. Herein, we predominantly devoted to overview the progress in the fabrication strategies and applications of various nanomaterial-based biosensors, highlighting rationales on sensing mechanisms, response types, and practical analytical performance. Synchronously, the versatile nanomaterials integrating with diverse recognition elements for augmenting sensing capabilities are emphasized. Finally, critical challenges and perspectives to expedite ZEN detection are outlooked.
Collapse
Affiliation(s)
- Quanliang Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xiyu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xiaomeng Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Lin Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Ping Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Biying Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
11
|
Tang Y, Liao S, Nie Z, Kuang G, Ji C, Wan D, He L, Li F, Kong X, Zhan K, Tan B, Wu X, Yin Y. CRISPR-activation screen identified potassium channels for protection against mycotoxins through cell cycle progression and mitochondrial function. Cell Stress 2023; 7:34-45. [PMID: 37152664 PMCID: PMC10157994 DOI: 10.15698/cst2023.05.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/02/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Zearalenone (ZEA) exposure has carcinogenic effects on human and animal health by exhibiting intestinal, hepatic, and renal toxicity. At present, the underlying mechanisms on how ZEA induces apoptosis and damage to tissues still remain unclear. In this study, we aimed to identify genes that modulate the cellular response to ZEA using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 screening, and further validate novel gene functions to elucidate molecular mechanisms underlying particular biological processes in vivo and in vitro. Two ZEA-resistant cell lines, designated Ov-KCNJ4 and Ov-KCNJ12, were yielded by CRISPR activation screening which had significant changes in ZEA resistance and growth rates. Results showed that ZEA could interact with the cell membrane proteins KCNJ4 and KCNJ12, inducing cell cycle arrest, disruption of DNA replication and base excision repair. Overexpression of KCNJ4 and KCNJ12 was involved in ZEA resistance by regulating cell cycle to neutralize toxicity, sustaining mitochondrial morphology and function via attenuating the damage from oxidative stress in the KCNJ4-mitoKATP pathway. In vivo experiments showed that AAV-KCNJ4 delivery significantly improved ZEA-induced renal impairment and increased antioxidative enzyme activity by improving mitochondrial function. Our findings suggest that increasing potassium channel levels may be a putative therapeutic target for mycotoxin-induced damage.
Collapse
Affiliation(s)
- Yulong Tang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, 230001, China
- * Corresponding Author: Yulong Tang, Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; E-mail:
| | - Simeng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Zhuyuan Nie
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Guangwei Kuang
- Hunan Provincial Institute of Animal Drug and Feed Supervision, Changsha, 410006, China
| | - Chunxiao Ji
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Liuqin He
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Fengna Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xiangfeng Kong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Kai Zhan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, 230001, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xin Wu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- * Corresponding Author: Xin Wu, Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; E-mail:
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
12
|
Bian Y, Zhang Y, Zhou Y, Wei B, Feng X. Recent Insights into Sample Pretreatment Methods for Mycotoxins in Different Food Matrices: A Critical Review on Novel Materials. Toxins (Basel) 2023; 15:toxins15030215. [PMID: 36977106 PMCID: PMC10053610 DOI: 10.3390/toxins15030215] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Mycotoxins pollution is a global concern, and can pose a serious threat to human health. People and livestock eating contaminated food will encounter acute and chronic poisoning symptoms, such as carcinogenicity, acute hepatitis, and a weakened immune system. In order to prevent or reduce the exposure of human beings and livestock to mycotoxins, it is necessary to screen mycotoxins in different foods efficiently, sensitively, and selectively. Proper sample preparation is very important for the separation, purification, and enrichment of mycotoxins from complex matrices. This review provides a comprehensive summary of mycotoxins pretreatment methods since 2017, including traditionally used methods, solid-phase extraction (SPE)-based methods, liquid-liquid extraction (LLE)-based methods, matrix solid phase dispersion (MSPD), QuEChERS, and so on. The novel materials and cutting-edge technologies are systematically and comprehensively summarized. Moreover, we discuss and compare the pros and cons of different pretreatment methods and suggest a prospect.
Collapse
Affiliation(s)
- Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Binbin Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China
- Correspondence: (B.W.); (X.F.); Fax: +86-18900911582 (B.W.); +86-18240005807 (X.F.)
| | - Xuesong Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
- Correspondence: (B.W.); (X.F.); Fax: +86-18900911582 (B.W.); +86-18240005807 (X.F.)
| |
Collapse
|
13
|
Cai P, Feng N, Zou H, Gu J, Liu X, Liu Z, Yuan Y, Bian J. Zearalenone damages the male reproductive system of rats by destroying testicular focal adhesion. ENVIRONMENTAL TOXICOLOGY 2023; 38:278-288. [PMID: 36288102 DOI: 10.1002/tox.23694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Zearalenone (ZEA), a common mycotoxin in animal feed, is harmful to public health and causes huge economic losses. The potential target proteins of ZEA and its derivatives were screened using the PharmMapper database and the related genes (proteins) of the testis were obtained from Genecards. We obtained 144 potential targets of ZEA and its derivatives related to the testis using Venn diagrams. The PPI analysis showed that ZEA had the most targets in testis, followed by ZAN, α-ZAL, β-ZEL, α-ZEL, and β-ZAL. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses evaluated the metabolic and cancer pathways. We further screened four hub genes: RAC3, CCND1, EP300, and CTNNB1. Eight key biological processes were obtained by GO analysis, and four important pathways were identified by KEGG analysis. Animal and cell experimental results confirmed that ZEA could inhibit the expression of four key KEGG pathway protein components and four hub proteins that interfere with cell adhesion by inhibiting the focal adhesion structure of the testis, Leydig cells, and Sertoli cells. Collectively, our findings reveal that the destruction of the focal adhesion structure in the testis is the mechanism through which ZEA damages the male reproductive system.
Collapse
Affiliation(s)
- Peirong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Nannan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Castell A, Arroyo-Manzanares N, Campillo N, Torres C, Fenoll J, Viñas P. Bioaccumulation of mycotoxins in human forensic liver and animal liver samples using a green sample treatment. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Quantitative Proteomic Analysis of Zearalenone Exposure on Uterine Development in Weaned Gilts. Toxins (Basel) 2022; 14:toxins14100692. [PMID: 36287961 PMCID: PMC9610722 DOI: 10.3390/toxins14100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022] Open
Abstract
The aim of this study was to explore the effect of zearalenone (ZEA) exposure on uterine development in weaned gilts by quantitative proteome analysis with tandem mass spectrometry tags (TMT). A total of 16 healthy weaned gilts were randomly divided into control (basal diet) and ZEA3.0 treatments groups (basal diet supplemented with 3.0 mg/kg ZEA). Results showed that vulva size and uterine development index were increased (p < 0.05), whereas serum follicle stimulation hormone, luteinizing hormone and gonadotropin-releasing hormone were decreased in gilts fed the ZEA diet (p < 0.05). ZEA, α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL) were detected in the uteri of gilts fed a 3.0 mg/kg ZEA diet (p < 0.05). The relative protein expression levels of creatine kinase M-type (CKM), atriopeptidase (MME) and myeloperoxidase (MPO) were up-regulated (p < 0.05), whereas aldehyde dehydrogenase 1 family member (ALDH1A2), secretogranin-1 (CHGB) and SURP and G-patch domain containing 1 (SUGP1) were down-regulated (p < 0.05) in the ZEA3.0 group by western blot, which indicated that the proteomics data were dependable. In addition, the functions of differentially expressed proteins (DEPs) mainly involved the cellular process, biological regulation and metabolic process in the biological process category. Some important signaling pathways were changed in the ZEA3.0 group, such as extracellular matrix (ECM)-receptor interaction, focal adhesion and the phosphoinositide 3-kinase−protein kinase B (PI3K-AKT) signaling pathway (p < 0.01). This study sheds new light on the molecular mechanism of ZEA in the uterine development of gilts.
Collapse
|
16
|
Endocrine Disruptors and Endometrial Cancer: Molecular Mechanisms of Action and Clinical Implications, a Systematic Review. Int J Mol Sci 2022; 23:ijms23062956. [PMID: 35328379 PMCID: PMC8953483 DOI: 10.3390/ijms23062956] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
It has been widely demonstrated that endocrine disruptors play a central role in various physiopathological processes of human health. In the literature, various carcinogenic processes have been associated with endocrine disruptors. A review of the molecular mechanisms underlying the interaction between endocrine disruptors and the endometrial cancer has been poorly developed. A systematic review was performed using PubMed®/MEDLINE. A total of 25 in vivo and in vitro works were selected. Numerous endocrine disruptors were analyzed. The most relevant results showed how Bisphenol A (BPA) interacts with the carcinogenesis process on several levels. It has been demonstrated how BPA can interact with hormonal receptors and with different transcription proliferative and antiproliferative factors. Furthermore, the effect of Polycyclic aromatic hydrocarbons on Aryl hydrocarbon receptors was investigated, and the role of flame retardants in promoting proliferation and metastasis was confirmed. The results obtained demonstrate how the mechanisms of action of endocrine disruptors are manifold in the pathophysiology of endometrial cancer, acting on different levels of the cancerogenesis process.
Collapse
|
17
|
Hassani S, Maghsoudi AS, Akmal MR, Shoeibi S, Ghadipasha F, Mousavi T, Ganjali MR, Hosseini R, Abdollahi M. A novel approach to design electrochemical aptamer-based biosensor for ultrasensitive detecting of zearalenone as a prevalent estrogenic mycotoxin. Curr Med Chem 2021; 29:5881-5894. [PMID: 34906054 DOI: 10.2174/0929867328666211214165814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Zearalenone is a well-known estrogenic mycotoxin produced by Fusarium species, a serious threat to the agricultural and food industries worldwide. Zearalenone, with its known metabolites, are biomarkers of exposure to certain fungi, primarily through food. It has considerable toxic effects on biological systems due to its carcinogenicity, mutagenicity, renal toxicity, teratogenicity, and immunotoxicity. INTRODUCTION This study aims to design a simple, quick, precise, and cost-effective method on a biosensor platform to evaluate the low levels of this toxin in foodstuffs and agricultural products. METHODS An aptamer-based electrochemical biosensor was introduced that utilizes screen-printed gold electrodes instead of conventional electrodes. The electrode position process was employed to develop a gold nanoparticle-modified surface to enhance the electroactive surface area. Thiolated aptamers were immobilized on the surface of gold nanoparticles, and subsequently, the blocker and analyte were added to the modified surface. In the presence of a redox probe, electrochemical characterization of differential pulse voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy were used to investigate the various stages of aptasensor fabrication. RESULTS The proposed aptasensor for zearalenone concentration had a wide linear dynamic range covering the 0.5 pg/mL to 100 ng/mL with a 0.14 pg/mL detection limit. Moreover, this aptasensor had high specificity so that a non-specific analyte cannot negatively affect the selectivity of the aptasensor. CONCLUSION Overall, due to its simple design, high sensitivity, and fast performance, this aptasensor showed a high potential for assessing zearalenone in real samples, providing a clear perspective for designing a portable and cost-effective device.
Collapse
Affiliation(s)
- Shokoufeh Hassani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran. Iran
| | - Armin Salek Maghsoudi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran. Iran
| | - Milad Rezaei Akmal
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran. Iran
| | - Shahram Shoeibi
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran. Iran
| | - Fatemeh Ghadipasha
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran. Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran. Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran. Iran
| | - Rohollah Hosseini
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran. Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran. Iran
| |
Collapse
|
18
|
Bavlovič Piskáčková H, Kollárová-Brázdová P, Kučera R, Macháček M, Pedersen-Bjergaard S, Štěrbová-Kovaříková P. The electromembrane extraction of pharmaceutical compounds from animal tissues. Anal Chim Acta 2021; 1177:338742. [PMID: 34482886 DOI: 10.1016/j.aca.2021.338742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022]
Abstract
The reliable analysis of various compounds from tissue requires a tedious sample preparation. The sample pretreatment usually involves proper homogenization that facilitates extraction of target analytes, followed by an appropriate sample clean-up preventing matrix effects. Electromembrane extraction (EME) seems to have a significant potential to streamline the whole procedure. In this study, the applicability of EME for direct isolation of analytes from animal tissues was investigated for the first time. Extraction conditions were systematically optimized to isolate model analytes (daunorubicin and its metabolite daunorubicinol) from various tissues (myocardium, skeletal muscle and liver) coming from a pharmacokinetic study in rabbits. The relative recoveries of daunorubicin and its metabolite in all tissues, determined by the UHPLC-MS/MS method, were higher than 66 and 75%, respectively. Considerably low matrix effects (0 ± 8% with CV lower than 6%) and negligible content of phospholipids detected in EME extracts demonstrate the exceptional effectiveness of this microextraction approach in purification of tissue samples. The difference in the concentrations of the analytes determined after EME and reference liquid-liquid extraction of real tissue samples was lower than 12%, which further emphasized the trustworthiness of EME. Moreover, the considerable time reduction needed for sample treatment in case of EME must be emphasized. This study proved that EME is a simple, effective and reliable microextraction technique capable of direct extraction of the analytes from pulverized tissues without the need for an additional homogenization or purification step.
Collapse
Affiliation(s)
- Hana Bavlovič Piskáčková
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petra Kollárová-Brázdová
- Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Radim Kučera
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Miloslav Macháček
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O.Box 1068 Blindern, 0316, Oslo, Norway; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Petra Štěrbová-Kovaříková
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
19
|
High-resolution mass spectrometry for the determination of mycotoxins in biological samples. A review. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Sawikowska A, Piasecka A, Kachlicki P, Krajewski P. Separation of Chromatographic Co-Eluted Compounds by Clustering and by Functional Data Analysis. Metabolites 2021; 11:metabo11040214. [PMID: 33807374 PMCID: PMC8065729 DOI: 10.3390/metabo11040214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022] Open
Abstract
Peak overlapping is a common problem in chromatography, mainly in the case of complex biological mixtures, i.e., metabolites. Due to the existence of the phenomenon of co-elution of different compounds with similar chromatographic properties, peak separation becomes challenging. In this paper, two computational methods of separating peaks, applied, for the first time, to large chromatographic datasets, are described, compared, and experimentally validated. The methods lead from raw observations to data that can form inputs for statistical analysis. First, in both methods, data are normalized by the mass of sample, the baseline is removed, retention time alignment is conducted, and detection of peaks is performed. Then, in the first method, clustering is used to separate overlapping peaks, whereas in the second method, functional principal component analysis (FPCA) is applied for the same purpose. Simulated data and experimental results are used as examples to present both methods and to compare them. Real data were obtained in a study of metabolomic changes in barley (Hordeum vulgare) leaves under drought stress. The results suggest that both methods are suitable for separation of overlapping peaks, but the additional advantage of the FPCA is the possibility to assess the variability of individual compounds present within the same peaks of different chromatograms.
Collapse
Affiliation(s)
- Aneta Sawikowska
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznań, Poland;
- Correspondence: or ; Tel.: +48-61-848-75-45
| | - Anna Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznań, Poland;
| | - Piotr Kachlicki
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (P.K.); (P.K.)
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (P.K.); (P.K.)
| |
Collapse
|
21
|
Transmission of Zearalenone, Deoxynivalenol, and Their Derivatives from Sows to Piglets during Lactation. Toxins (Basel) 2021; 13:toxins13010037. [PMID: 33419041 PMCID: PMC7825292 DOI: 10.3390/toxins13010037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/25/2022] Open
Abstract
Sows were fed naturally contaminated diets containing: (i) 100 ppb zearalenone (ZEN) one week before farrowing and during the lactation period (at 26 days), (ii) 100 ppb ZEN one week before farrowing and 300 ppb ZEN during the lactation period, or (iii) 300 ppb ZEN one week before farrowing and during the lactation period. All diets contained 250 ppb deoxynivalenol (DON). The highest levels of ZEN, α-ZEL, or β-ZEL were observed in the serum of sows fed 300 ppb ZEN before farrowing and during lactation. However, only α-ZEL was significantly increased in the colostrum and milk of these sows. Sows fed the 300 ppb ZEN during the complete trial presented a significant decrease in backfat thickness before farrowing. This effect was accompanied by a decrease in serum leptin levels. These sows also presented a decrease in estradiol levels and this effect was observed in their piglets exposed during lactation, which presented increased glucagon-like peptide 1, but no changes in serum levels of ZEN, α-ZEL, or β-ZEL. Although all sows were fed the same levels of DON, the serum levels of DON and de-epoxy-DON were increased only in the serum of piglets from the sows fed a diet with the highest ZEN levels during the whole experimental period. Moreover, these piglets presented gut inflammation, as indicated by significantly increased calprotectin levels in their serum.
Collapse
|
22
|
Márton É, Varga A, Széles L, Göczi L, Penyige A, Nagy B, Szilágyi M. The Cell-Free Expression of MiR200 Family Members Correlates with Estrogen Sensitivity in Human Epithelial Ovarian Cells. Int J Mol Sci 2020; 21:ijms21249725. [PMID: 33419253 PMCID: PMC7766742 DOI: 10.3390/ijms21249725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Exposure to physiological estrogens or xenoestrogens (e.g., zearalenone or bisphenol A) increases the risk for cancer. However, little information is available on their significance in ovarian cancer. We present a comprehensive study on the effect of estradiol, zearalenone and bisphenol A on the phenotype, mRNA, intracellular and cell-free miRNA expression of human epithelial ovarian cell lines. Estrogens induced a comparable effect on the rate of cell proliferation and migration as well as on the expression of estrogen-responsive genes (GREB1, CA12, DEPTOR, RBBP8) in the estrogen receptor α (ERα)-expressing PEO1 cell line, which was not observable in the absence of this receptor (in A2780 cells). The basal intracellular and cell-free expression of miR200s and miR203a was higher in PEO1, which was accompanied with low ZEB1 and high E-cadherin expression. These miRNAs showed a rapid but intermittent upregulation in response to estrogens that was diminished by an ERα-specific antagonist. The role of ERα in the regulation of the MIR200B-MIR200A-MIR429 locus was further supported by publicly available ChIP-seq data. MiRNA expression of cell lysates correlated well with cell-free miRNA expression. We conclude that cell-free miR200s might be promising biomarkers to assess estrogen sensitivity of ovarian cells.
Collapse
Affiliation(s)
- Éva Márton
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - Alexandra Varga
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - Lajos Széles
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - Lóránd Göczi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
- Faculty of Pharmacology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
- Correspondence:
| |
Collapse
|
23
|
Zearalenone and Metabolites in Livers of Turkey Poults and Broiler Chickens Fed with Diets Containing Fusariotoxins. Toxins (Basel) 2020; 12:toxins12080525. [PMID: 32824220 PMCID: PMC7472091 DOI: 10.3390/toxins12080525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022] Open
Abstract
Zearalenone (ZEN) and metabolites were measured in livers of turkeys and broilers fed a control diet free of mycotoxins, a diet that contained 0.5 mg/kg ZEN (ZEN diet), and a diet that contained 0.5, 5, and 20 mg/kg of ZEN, fumonisins, and deoxynivalenol, respectively (ZENDONFB diet). The feed was individually distributed to male Grade Maker turkeys from the 55th to the 70th day of age and to male Ross chickens from the 1st to the 35th day of age, without any signs of toxicity. Together, the free and conjugated forms of ZEN, α- and β-zearalenols (ZOLs), zearalanone (ZAN), and α- and β-zearalanols (ZALs) were measured by UHPLC-MS/MS with [13C18]-ZEN as an internal standard and immunoaffinity clean-up of samples. ZAN and ZALs were not detected. ZEN and ZOLs were mainly found in their conjugated forms. α-ZOL was the most abundant and was found at a mean concentration of 2.23 and 1.56 ng/g in turkeys and chickens, respectively. Consuming the ZENDONFB diet significantly increased the level of total metabolites in the livers of chickens. Furthermore, this increase was more pronounced for the free forms of α-ZOL than for the conjugated forms. An investigation of the presence of ZEN and metabolites in muscle with the methods validated for the liver failed to reveal any traces of these contaminants in this tissue. These results suggest that concomitant dietary exposure to deoxynivalenol (DON) and fumonisins (FB) may alter the metabolism and persistence of ZEN and its metabolites in the liver.
Collapse
|
24
|
Buszewska-Forajta M. Mycotoxins, invisible danger of feedstuff with toxic effect on animals. Toxicon 2020; 182:34-53. [PMID: 32423889 DOI: 10.1016/j.toxicon.2020.04.101] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 04/25/2020] [Indexed: 12/22/2022]
Abstract
Mycotoxins are low-molecular weight compounds produced mainly by fungi, with Fusarium and Aspergillus origin. Secondary, metabolites, are mostly found on plants. However, the contamination of the feed and forage has been also reported. Because of their pharmacological activity, mycotoxins can be used as chemical warfare agents, drugs or growth promotants. Additionally, mycotoxins are found as one of the most dangerous genotoxic factors which cause the damage of DNA and lead to disease development. This review includes the knowledge of mycotoxins as both, an invisible danger of forage and as food additives. Special emphasis shall be given on mycotoxins with proven cancerogenic activity; including aflatoxins, fumonisins, ochratoxins, trichothecenes, and zearalenone. Factors such as species, mechanisms/modes of action, metabolism, and defense mechanisms were taken into account. The main concern was focused on zearalenone characterization, because of its estrogenic activity, caused by structural similarity to estrogens, naturally occurring in cells. By binding to estrogenic receptors, toxins are, accumulated in organisms and long-term exposure may cause the disturbances, especially in the reproductive system. The next part of this paper contains the description of main strategies of toxins determination. Finally, in the review, several potential methods for the dioxins neutralization were discussed.
Collapse
|
25
|
Imtiaz S, Alam A, Salman B. The role of the poultry industry on kidney and genitourinary health in Pakistan. Pak J Med Sci 2020; 36:S67-S74. [PMID: 31933610 PMCID: PMC6943112 DOI: 10.12669/pjms.36.icon-suppl.1718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/16/2019] [Indexed: 11/15/2022] Open
Abstract
Pakistan is experiencing a "double burden'' of disease. Under-development is associated with illnesses like infections and nutritional deficiency, and is accompanied with diseases linked with development, such as diabetes, hypertension, cancer and chronic kidney disease. In Pakistan, renal and genitourinary diseases are an important, unaddressed health issues. Chronic kidney disease of unknown etiology (CKDu) is a recognized form of renal failure in Pakistan. A possible cause of CKDu is toxins such as arsenic, cadmium, lead and other heavy metals associated with renal and genitourinary diseases. The poultry industry is an important source of both heavy metal toxins and also mycotoxins spread in the process of farming. Of the numerous mycotoxins, zearalenone and ochratoxin are well-known for their hazardous effects on genitourinary and renal parenchyma respectively. We reviewed the literature using PubMed and Google Scholar databases for levels of these toxins in various constituents of chicken farming like chicken feed, meat, litter and human drinking water contamination in various parts of the country. We found that these toxins are in higher levels than recommended.
Collapse
Affiliation(s)
- Salman Imtiaz
- Prof. Dr. Salman Imtiaz Senior Consultant Nephrologist, Department of Nephrology, The Indus Hospital Karachi, Korangi Crossing 75190, Pakistan
| | - Ashar Alam
- Dr. Ashar Alam Senior Consultant Nephrologist and Medical Director, Department of Nephrology, The Indus Hospital Karachi, Korangi Crossing 75190, Pakistan
| | - Beena Salman
- Dr. Beena Salman, Head of the Department of Biostatistics and Epidemiology, Department of biostatistics and epidemiology, Dorab Patel Post Graduate Training & Research Center, The Kidney Center Post Graduate Training Institute, Karachi, Pakistan
| |
Collapse
|
26
|
Fu Q, Tong C, Guo Y, Xu J, Shi F, Shi S, Xiao Y. Flavonoid aglycone-oriented data-mining in high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry: efficient and targeted profiling of flavonoids in Scutellaria barbata. Anal Bioanal Chem 2019; 412:321-333. [PMID: 31786643 DOI: 10.1007/s00216-019-02238-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
The high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF-MS/MS) technique is a powerful tool for compound identification in complex natural products. However, untargeted MS/MS data analysis needs skillful experience and sometimes neglects minor compounds, which are co-eluted with major ones or overshadowed by the matrix. Flavonoids are the main bioactive components in Scutellaria barbata, and the total flavonoid content is 47.02 ± 3.23 mg QE/g DW. Although some flavonoid aglycones and their O-glycosides have been found in S. barbata, comprehensive profiling of flavonoids is unknown. Therefore, we report a flavonoid aglycone-oriented data-mining strategy for efficient and targeted profiling of flavonoids in S. barbata. The strategy includes four steps: (1) HPLC-QTOF-MS analysis of S. barbata; (2) construction of a flavonoid aglycone-based database according to biosynthetic pathway analysis and reported data; (3) extraction of through flavonoid aglycone-based ion chromatography; (4) identification of targeted flavonoids by MS/MS analysis. As a result, 45 flavonoids, including 24 flavones, 1 flavonol, 13 flavanones, and 7 flavanonols, were unambiguously or tentatively identified, while 20 of them were reported in S. barbata for the first time. Moreover, 14 available flavonoids were sensitively, precisely, and accurately determined by standard calibration curves, with limit of detection at 0.06 to 1.55 μg/g, limit of quantification at 0.16 to 3.70 μg/g, relative standard deviation (RSD) less than 9.0% for intra- and inter-day variations, and recovery at 92.6-108.1%. The matrix did not obviously suppress or enhance the ionization of 14 flavonoids, and finally their contents ranging from 0.04 to 4.49 mg/g in S. barbata were successfully achieved. Collectively, our results demonstrate that an efficient, reliable, and valuable strategy has been provided to rapidly and sensitively screen, profile, and quantify chemical components of complex natural products. Graphical abstract.
Collapse
Affiliation(s)
- Qiachi Fu
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Chaoying Tong
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital; Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, China.
| | - Jinju Xu
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Fangyin Shi
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Shuyun Shi
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China. .,Department of Clinical Pharmacology, Xiangya Hospital; Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, China.
| | - Yecheng Xiao
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China.,Lianyuan Kanglu Biotech Co., Ltd., Lianyuan, 417100, Hunan, China
| |
Collapse
|
27
|
Equol: A Microbiota Metabolite Able to Alleviate the Negative Effects of Zearalenone during In Vitro Culture of Ovine Preantral Follicles. Toxins (Basel) 2019; 11:toxins11110652. [PMID: 31717534 PMCID: PMC6891317 DOI: 10.3390/toxins11110652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 12/18/2022] Open
Abstract
The impact of zearalenone (ZEN) on female reproduction remains an issue, since its effects may differ among exposed cell types. Besides the use of decontaminants in animal diet, other approaches should be considered to minimise ZEN effects after exposure. Since the first organ in contact with ZEN is the gastrointestinal tract, we hypothesise that products of microbiota metabolism may play a role in ZEN detoxification. We aimed to evaluate the effect of 1 µmol/L ZEN and 1 µmol/L equol (a microbial metabolite), alone or in combination, on the survival and morphology of in vitro cultured ovarian preantral follicles. Ovaries from 12 sheep were collected at a local abattoir and fragmented, and the ovarian pieces were submitted to in vitro culture for three days in the presence or absence of the test compounds. The follicular morphology was impaired by ZEN, but equol could alleviate the observed degeneration rates. While ZEN decreased cell proliferation in primary and secondary follicles, as well as induced DNA double-strand breaks in primordial follicles, all these observations disappeared when equol was added to a culture medium containing ZEN. In the present culture conditions, equol was able to counteract the negative effects of ZEN on ovarian preantral follicles.
Collapse
|
28
|
Rogowska A, Pomastowski P, Rafińska K, Railean-Plugaru V, Złoch M, Walczak J, Buszewski B. A study of zearalenone biosorption and metabolisation by prokaryotic and eukaryotic cells. Toxicon 2019; 169:81-90. [PMID: 31493420 DOI: 10.1016/j.toxicon.2019.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 11/30/2022]
Abstract
A study of the mechanism responsible for the zearalenone (ZEA) neutralization by lactic acid bacteria Lactococcus lactis 56 and L929 cell line was carried out by determination of the kinetics of the binding process. In the case of prokaryotic cells the biosorption process was non-linear and three steps were identified. The maximum efficiency of zearalenone binding to L. lactis was almost 30% and no metabolites were observed. In turn, for eukaryotic cells only two steps of the binding process were differentiated, and the efficiency of zearalenone binding was 53.99%. Furthermore, L929 cell line metabolizes zearalenone to α-ZOL and β-ZOL. Additionally, Fourier transform infrared spectroscopy (FTIR) was used for description of the structural changes at the protein and lipid level, while Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF-MS) was applied to detect changes at the molecular level.
Collapse
Affiliation(s)
- Agnieszka Rogowska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Paweł Pomastowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Viorica Railean-Plugaru
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Michał Złoch
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Justyna Walczak
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland.
| |
Collapse
|
29
|
Perestrelo R, Silva P, Porto-Figueira P, Pereira JAM, Silva C, Medina S, Câmara JS. QuEChERS - Fundamentals, relevant improvements, applications and future trends. Anal Chim Acta 2019; 1070:1-28. [PMID: 31103162 DOI: 10.1016/j.aca.2019.02.036] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/16/2019] [Accepted: 02/24/2019] [Indexed: 12/15/2022]
Abstract
The Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method is a simple and straightforward extraction technique involving an initial partitioning followed by an extract clean-up using dispersive solid-phase extraction (d-SPE). Originally, the QuEChERS approach was developed for recovering pesticide residues from fruits and vegetables, but rapidly gained popularity in the comprehensive isolation of analytes from different matrices. According to PubMed, since its development in 2003 up to November 2018, about 1360 papers have been published reporting QuEChERS as extraction method. Several papers have reported different improvements and modifications to the original QuEChERS protocol to ensure more efficient extractions of pH-dependent analytes and to minimize the degradation of labile analytes. This analytical approach shows several advantages over traditional extraction techniques, requiring low sample and solvent volumes, as well as less time for sample preparation. Furthermore, most of the published studies show that the QuEChERS protocol provides higher recovery rate and a better analytical performance than conventional extraction procedures. This review proposes an updated overview of the most recent developments and applications of QuEChERS beyond its original application to pesticides, mycotoxins, veterinary drugs and pharmaceuticals, forensic analysis, drugs of abuse and environmental contaminants. Their pros and cons will be discussed, considering the factors influencing the extraction efficiency. Whenever possible, the performance of the QuEChERS is compared to other extraction approaches. In addition to the evolution of this technique, changes and improvements to the original method are discussed.
Collapse
Affiliation(s)
- Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Pedro Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Priscilla Porto-Figueira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Jorge A M Pereira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Catarina Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Sonia Medina
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal; Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|