1
|
Đuc NK, Khanh TN, Thang PNT, Hung TV, Thu PD, Chi LTB, Khuyen VTK, Tuan ND. Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry Method Development and Validation to Quantify Simultaneously Six Urinary DIALKYL Phosphate Metabolites of Organophosphorus Pesticides. JOURNAL OF MASS SPECTROMETRY : JMS 2025; 60:e5128. [PMID: 40289302 DOI: 10.1002/jms.5128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/06/2025] [Accepted: 03/16/2025] [Indexed: 04/30/2025]
Abstract
The exposure to chemical pesticides is one of the world's concerns, especially in Vietnam, which is becoming a key player in global agriculture. The chronic long-term exposure to pesticides, especially organophosphorus groups poses increased health risks such as cancer and related diseases due to their hazardous metabolites. The characterization of urinary pesticides is essential to understand the pesticide exposure patterns. Therefore, this research aims to develop a liquid chromatography-tandem mass spectrometry procedure for the quantification of six dialkyl phosphate metabolites of organophosphorus pesticides based on simulated human urine containing dialkyl phosphates and urine samples of organophosphorus pesticides-exposed farmers in An Giang province of Vietnam. As a result, a highly sensitive procedure with a negative ion atmospheric pressure chemical ionization source, fosfomycin as internal standard and multireaction monitoring, was successfully validated in compliance with international guidelines for simultaneous quantitative determination of six dialkyl phosphates in human urine samples. Molecular and fragmented ions for quantification were consistent with the standard spectrum. The linear ranges of DMP, DEP, DMTP, DETP, DMDTP, and DEDTP were 5.29-1000.58, 5.10-1000.19, 5.10-1000.20, 5.06-1000.11, 5.06-1000.11, 5.30-1000.60, and 5.06-1000.12 ng/mL, respectively. The validation results showed that the selectivity, intraday and interday precision and accuracy, matrix effect, carry over, dilution, and stability of all the analytes were in the acceptable range. In total, 383 spot urine samples from people working with pesticides were satisfactorily analyzed by the proposed procedure. Over 80% of farmers were detected with at least one organophosphate metabolite, especially DEDTP with high concentrations, up to 5015.0 ng/mL, which alerts the high likelihood of pesticide exposure in the community of rural areas in Vietnam.
Collapse
Affiliation(s)
- Ngo Kien Đuc
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Truong Nhat Khanh
- Institute of Drug Quality Control Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Tran Viet Hung
- Institute of Drug Quality Control Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Pham Diem Thu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Le Thi Bich Chi
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Vo Thi Kim Khuyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nguyen Duc Tuan
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
2
|
Grčman M, Pompe NR, Kočar D, Pompe M. Impact of Mobile Phase Composition on Separation Selectivity of Labeled Dextran Ladder in Hydrophilic Interaction Liquid Chromatography. Molecules 2025; 30:1327. [PMID: 40142102 PMCID: PMC11945105 DOI: 10.3390/molecules30061327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
The glycosylation process plays a crucial role in the structural integrity and biological activity of glycoproteins, where glycans are attached to a protein backbone. There are many kinds of glycans, the most common being N-glycans, which can be arranged into three classes, that is, complex, hybrid, and high mannoses, forming a structurally very diverse set of polar compounds that are difficult to detect and separate. Most commonly, N-glycans are labeled before separation by charged or fluorescence tags for better MS or fluorescence detection, respectively. This study examines the influence of ionic strength and organic modifier selection on the separation of fluorescently labeled dextran ladders in Hydrophilic Interaction Liquid Chromatography (HILIC). Using a Glycan BEH Amide column and varying the ammonium formate buffer concentration along with acetonitrile and methanol ratios, we investigated analyte retention, separation efficiency, and post-column conductivity changes. Our findings reveal that changes in the ionic strength of the mobile phase do not contribute to changes in selectivity, neither when acetonitrile nor methanol were used as organic modifiers to the mobile phase. However, the addition of methanol significantly changes the separation mechanism where two different prevailing separations mechanisms can be identified. It was assumed that the addition of methanol influences the folding pattern of dextrans around the permanent positive charge on the added tag, which influences the changes of separation selectivity. This work presents a systematic approach to altering mobile phase composition (buffer concentration, organic modifier type) to control retention and selectivity in complex glycan analysis. The discovery that methanol significantly alters separation behavior provides a potential new method for refining HILIC separations of polar compounds.
Collapse
Affiliation(s)
| | | | | | - Matevž Pompe
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.G.); (D.K.)
| |
Collapse
|
3
|
Onigbinde S, Gutierrez Reyes CD, Sandilya V, Chukwubueze F, Oluokun O, Sahioun S, Oluokun A, Mechref Y. Optimization of glycopeptide enrichment techniques for the identification of clinical biomarkers. Expert Rev Proteomics 2024; 21:431-462. [PMID: 39439029 PMCID: PMC11877277 DOI: 10.1080/14789450.2024.2418491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION The identification and characterization of glycopeptides through LC-MS/MS and advanced enrichment techniques are crucial for advancing clinical glycoproteomics, significantly impacting the discovery of disease biomarkers and therapeutic targets. Despite progress in enrichment methods like Lectin Affinity Chromatography (LAC), Hydrophilic Interaction Liquid Chromatography (HILIC), and Electrostatic Repulsion Hydrophilic Interaction Chromatography (ERLIC), issues with specificity, efficiency, and scalability remain, impeding thorough analysis of complex glycosylation patterns crucial for disease understanding. AREAS COVERED This review explores the current challenges and innovative solutions in glycopeptide enrichment and mass spectrometry analysis, highlighting the importance of novel materials and computational advances for improving sensitivity and specificity. It outlines the potential future directions of these technologies in clinical glycoproteomics, emphasizing their transformative impact on medical diagnostics and therapeutic strategies. EXPERT OPINION The application of innovative materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), functional nanomaterials, and online enrichment shows promise in addressing challenges associated with glycoproteomics analysis by providing more selective and robust enrichment platforms. Moreover, the integration of artificial intelligence and machine learning is revolutionizing glycoproteomics by enhancing the processing and interpretation of extensive data from LC-MS/MS, boosting biomarker discovery, and improving predictive accuracy, thus supporting personalized medicine.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | | | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Favour Chukwubueze
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Odunayo Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Sarah Sahioun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ayobami Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
4
|
Serafimov K, Knappe C, Li F, Sievers-Engler A, Lämmerhofer M. Solving the retention time repeatability problem of hydrophilic interaction liquid chromatography. J Chromatogr A 2024; 1730:465060. [PMID: 38861823 DOI: 10.1016/j.chroma.2024.465060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Hydrophilic interaction (liquid) chromatography (HILIC) has become the first choice LC mode for the separation of hydrophilic analytes. Numerous studies reported the poor retention time repeatability of HILIC. The problem was often ascribed to slow equilibration and insufficient re-equilibration time to establish the sensitive semi-immobilized water layer at the interface of the polar stationary phase and the bulk mobile phase. In this study, we compare retention time repeatability in HILIC for borosilicate glass and PFA (co-polymer of tetrafluoroethylene and perfluoroalkoxyethylene) solvent bottles. During this study, we observed peak patterns shifting towards higher retention times (for metabolites and peptides) and lower retention times (oligonucleotide sample) with ongoing analysis time when standard borosilicate glass bottles were used as solvent reservoirs. It was hypothesized that release of ions (sodium, potassium, borate, etc.) from the borosilicate glass bottles leads to alterations (thickness and electrostatic screening effects) in the semi-immobilized water layer which is adsorbed to the polar stationary phase surface under acetonitrile-rich eluents in HILIC with concomitant shifts in retention. When PFA solvent bottles were employed instead of borosilicate glass, retention time repeatability was greatly improved and changed from average 8.4 % RSD for the tested metabolites with borosilicate glass bottles to 0.14 % RSD for the PFA solvent bottles (30 injections over 12 h). Similar improvements were observed for peptides and oligonucleotides. This simple solution to the retention time repeatability problem in HILIC might contribute to a better acceptance of HILIC, especially in fields like targeted and untargeted metabolomics, peptide and oligonucleotide analysis.
Collapse
Affiliation(s)
- Kristian Serafimov
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Cornelius Knappe
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Feiyang Li
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Adrian Sievers-Engler
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
5
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
6
|
Girgis M, Petruncio G, Russo P, Peyton S, Paige M, Campos D, Sanda M. Analysis of N- and O-linked site-specific glycosylation by ion mobility mass spectrometry: State of the art and future directions. Proteomics 2024; 24:e2300281. [PMID: 38171879 DOI: 10.1002/pmic.202300281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Glycosylation, the major post-translational modification of proteins, significantly increases the diversity of proteoforms. Glycans are involved in a variety of pivotal structural and functional roles of proteins, and changes in glycosylation are profoundly connected to the progression of numerous diseases. Mass spectrometry (MS) has emerged as the gold standard for glycan and glycopeptide analysis because of its high sensitivity and the wealth of fragmentation information that can be obtained. Various separation techniques have been employed to resolve glycan and glycopeptide isomers at the front end of the MS. However, differentiating structures of isobaric and isomeric glycopeptides constitutes a challenge in MS-based characterization. Many reports described the use of various ion mobility-mass spectrometry (IM-MS) techniques for glycomic analyses. Nevertheless, very few studies have focused on N- and O-linked site-specific glycopeptidomic analysis. Unlike glycomics, glycoproteomics presents a multitude of inherent challenges in microheterogeneity, which are further exacerbated by the lack of dedicated bioinformatics tools. In this review, we cover recent advances made towards the growing field of site-specific glycosylation analysis using IM-MS with a specific emphasis on the MS techniques and capabilities in resolving isomeric peptidoglycan structures. Furthermore, we discuss commonly used software that supports IM-MS data analysis of glycopeptides.
Collapse
Affiliation(s)
- Michael Girgis
- Department of Bioengineering, College of Engineering & Computing, George Mason University, Fairfax, Virginia, USA
- Center for Molecular Engineering, George Mason University, Manassas, Virginia, USA
| | - Gregory Petruncio
- Center for Molecular Engineering, George Mason University, Manassas, Virginia, USA
- Department of Chemistry & Biochemistry, College of Science, George Mason University, Fairfax, Virginia, USA
| | - Paul Russo
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Steven Peyton
- Center for Molecular Engineering, George Mason University, Manassas, Virginia, USA
| | - Mikell Paige
- Center for Molecular Engineering, George Mason University, Manassas, Virginia, USA
- Department of Chemistry & Biochemistry, College of Science, George Mason University, Fairfax, Virginia, USA
| | - Diana Campos
- Max-Planck-Institut fuer Herz- und Lungenforschung, Bad Nauheim, Germany
| | - Miloslav Sanda
- Max-Planck-Institut fuer Herz- und Lungenforschung, Bad Nauheim, Germany
| |
Collapse
|
7
|
Gan Y, Lippold S, Stobaugh J, Schöneich C, Yang F. Expanding the structural resolution of glycosylation microheterogeneity in therapeutic proteins by salt-free hydrophilic interaction liquid chromatography tandem mass spectrometry. MAbs 2024; 16:2395503. [PMID: 39192481 PMCID: PMC11364061 DOI: 10.1080/19420862.2024.2395503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Glycosylation affects the safety and efficacy of therapeutic proteins and is often considered a critical quality attribute (CQA). Therefore, it is important to identify and quantify glycans during drug development. Glycosylation is a highly complex post-translational modification (PTM) due to its structural heterogeneity, i.e. glycosylation site occupancy, glycan compositions, modifications, and isomers. Current analytical tools compromise either structural resolution or site specificity. Hydrophilic interaction liquid chromatography-fluorescence-mass spectrometry (HILIC-FLR-MS) is the gold standard for structural analysis of released glycans, but lacks information on site specificity and occupation. However, HILIC-FLR-MS often uses salt in the solvent, which impairs analysis robustness and sensitivity. Site-specific glycosylation analysis via glycopeptides, upon proteolytic digestion, is commonly performed by reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS), but provides only compositional and limited structural glycan information. In this study, we introduce a salt-free, glycopeptide-based HILIC-tandem mass spectrometry (HILIC-MS/MS) method that provides glycan identification, glycan isomer separation and site-specific information simultaneously. Moreover, HILIC-MS/MS demonstrated comparable relative quantification results as released glycan HILIC-FLR-MS. Further, our new method improves the retention of hydrophilic peptides, allowing simultaneous analysis of important CQAs such as deamidation in antibodies. The developed method offers a valuable tool to streamline the site-specific glycosylation analysis of glycoproteins, which is particularly important for the expanding landscape of novel therapeutic formats in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Yutian Gan
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, USA
| | - Steffen Lippold
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, USA
| | - John Stobaugh
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Feng Yang
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, USA
| |
Collapse
|
8
|
Jiang P, Huang Y, Gutierrez Reyes CD, Zhong J, Mechref Y. Isomeric Separation of α2,3/α2,6-Linked 2-Aminobenzamide (2AB)-Labeled Sialoglycopeptides by C18-LC-MS/MS. Anal Chem 2023; 95:18388-18397. [PMID: 38069741 DOI: 10.1021/acs.analchem.3c03118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Determination of the relative expression levels of the α2,3/α2,6-sialic acid linkage isomers on glycoproteins is critical to the analysis of various human diseases such as cancer, inflammation, and viral infection. However, it remains a challenge to separate and differentiate site-specific linkage isomers at the glycopeptide level. Some derivatization methods on the carboxyl group of sialic acid have been developed to generate mass differences between linkage isomers. In this study, we utilized chemical derivatization that occurred on the vicinal diol of sialic acid to separate linkage isomers on a reverse-phase column using a relatively short time. 2-Aminobenzamide (2AB) labeling derivatization, including periodate oxidation and reductive amination, took only ∼3 h and achieved high labeling efficiency (>90%). Within a 66 min gradient, the sialic acid linkage isomers of 2AB-labeled glycopeptides from model glycoproteins can be efficiently resolved compared to native glycopeptides. Two different methods, neuraminidase digestion and higher-energy collision dissociation tandem mass spectrometry (HCD-MS2) fragmentation, were utilized to differentiate those isomeric peaks. By calculating the diagnostic oxonium ion ratio of Gal2ABNeuAc and 2ABNeuAc fragments, significant differences in chromatographic retention times and in mass spectral peak abundances were observed between linkage isomers. Their corresponding MS2 PCA plots also helped to elucidate the linkage information. This method was successfully applied to human blood serum. A total of 514 2AB-labeled glycopeptide structures, including 152 sets of isomers, were identified, proving the applicability of this method in linkage-specific structural characterization and relative quantification of sialic acid isomers.
Collapse
Affiliation(s)
- Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Cristian D Gutierrez Reyes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
9
|
Dong W, Chen L, Jia L, Chen Z, Shen J, Li P, Sun S. Maximal performance of intact N-glycopeptide enrichment using sequential HILIC and MAX columns. Anal Bioanal Chem 2023; 415:6431-6439. [PMID: 37644321 DOI: 10.1007/s00216-023-04919-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Low abundance and heterogeneity of N-glycosylation at the peptide level poses a great challenge to the structural and functional analysis of glycosylation in the field of glycobiology. Solving this conundrum requires a sufficient and specific method for intact N-glycopeptide enrichment. Using the C18 or HLB desalting column followed by the mixed-mode strong anion exchange (MAX) or hydrophilic interaction chromatography (HILIC) glycopeptide enrichment column are commonly applied approaches for sample preparation of intact N-glycopeptides from complex samples. Herein, we compared the effects of different combinations of two desalting columns and two enrichment columns using equal amounts of mouse brain tissues from the same source. The results revealed the C18 column was a bit superior to the HLB column, and the MAX and HILIC columns were complementary on intact N-glycopeptides enrichment. Additionally, the results also demonstrated that enriching glycopeptides using a HILIC column followed by a MAX column from the flow-through solution got a better enrichment performance than the reversed order. Based on these results, the sequential enrichment of glycopeptides using HILIC and then MAX columns could maximize the enrichment performance of intact N-glycopeptides, and therefore is an option for in-depth analysis of site-specific glycoproteome.
Collapse
Affiliation(s)
- Wenbo Dong
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi Province, China
| | - Lin Chen
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi Province, China
| | - Li Jia
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi Province, China
| | - Zexuan Chen
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi Province, China
| | - Jiechen Shen
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi Province, China
| | - Pengfei Li
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi Province, China
| | - Shisheng Sun
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi Province, China.
| |
Collapse
|
10
|
Atashi M, Reyes CDG, Sandilya V, Purba W, Ahmadi P, Hakim MA, Kobeissy F, Plazzi G, Moresco M, Lanuzza B, Ferri R, Mechref Y. LC-MS/MS Quantitation of HILIC-Enriched N-glycopeptides Derived from Low-Abundance Serum Glycoproteins in Patients with Narcolepsy Type 1. Biomolecules 2023; 13:1589. [PMID: 38002271 PMCID: PMC10669497 DOI: 10.3390/biom13111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Glycoproteomic analysis is always challenging because of low abundance and complex site-specific heterogeneity. Glycoproteins are involved in various biological processes such as cell signaling, adhesion, and cell-cell communication and may serve as potential biomarkers when analyzing different diseases. Here, we investigate glycoproteins in narcolepsy type 1 (NT1) disease, a form of narcolepsy characterized by cataplexy-the sudden onset of muscle paralysis that is typically triggered by intense emotions. In this study, 27 human blood serum samples were analyzed, 16 from NT1 patients and 11 from healthy individuals serving as controls. We quantified hydrophilic interaction liquid chromatography (HILIC)-enriched glycopeptides from low-abundance serum samples of controls and NT1 patients via LC-MS/MS. Twenty-eight unique N-glycopeptides showed significant changes between the two studied groups. The sialylated N-glycopeptide structures LPTQNITFQTESSVAEQEAEFQSPK HexNAc6, Hex3, Neu5Ac2 (derived from the ITIH4 protein) and the structure IVLDPSGSMNIYLVLDGSDSIGASNFTGAK HexNAc5, Hex4, Fuc1 (derived from the CFB protein), with p values of 0.008 and 0.01, respectively, were elevated in NT1 samples compared with controls. In addition, the N-glycopeptide protein sources Ceruloplasmin, Complement factor B, and ITH4 were observed to play an important role in the complement activation and acute-phase response signaling pathways. This may explain the possible association between the biomarkers and pathophysiological effects.
Collapse
Affiliation(s)
- Mojgan Atashi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Cristian D. Gutierrez Reyes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Waziha Purba
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Parisa Ahmadi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Md. Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Firas Kobeissy
- Department of biochemistry and molecular genetics, Faculty of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 11072020, Lebanon;
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GE 30310, USA
| | - Giuseppe Plazzi
- IRCCS, Instituto delle Scienze Neurologiche di Bologna, 40124 Bologna, Italy; (G.P.); (M.M.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Monica Moresco
- IRCCS, Instituto delle Scienze Neurologiche di Bologna, 40124 Bologna, Italy; (G.P.); (M.M.)
| | - Bartolo Lanuzza
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute-IRCCS, 94018 Tronia, Italy; (B.L.); (R.F.)
| | - Raffaele Ferri
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute-IRCCS, 94018 Tronia, Italy; (B.L.); (R.F.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| |
Collapse
|
11
|
Peng W, Reyes CDG, Gautam S, Yu A, Cho BG, Goli M, Donohoo K, Mondello S, Kobeissy F, Mechref Y. MS-based glycomics and glycoproteomics methods enabling isomeric characterization. MASS SPECTROMETRY REVIEWS 2023; 42:577-616. [PMID: 34159615 PMCID: PMC8692493 DOI: 10.1002/mas.21713] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is one of the most significant and abundant posttranslational modifications in mammalian cells. It mediates a wide range of biofunctions, including cell adhesion, cell communication, immune cell trafficking, and protein stability. Also, aberrant glycosylation has been associated with various diseases such as diabetes, Alzheimer's disease, inflammation, immune deficiencies, congenital disorders, and cancers. The alterations in the distributions of glycan and glycopeptide isomers are involved in the development and progression of several human diseases. However, the microheterogeneity of glycosylation brings a great challenge to glycomic and glycoproteomic analysis, including the characterization of isomers. Over several decades, different methods and approaches have been developed to facilitate the characterization of glycan and glycopeptide isomers. Mass spectrometry (MS) has been a powerful tool utilized for glycomic and glycoproteomic isomeric analysis due to its high sensitivity and rich structural information using different fragmentation techniques. However, a comprehensive characterization of glycan and glycopeptide isomers remains a challenge when utilizing MS alone. Therefore, various separation methods, including liquid chromatography, capillary electrophoresis, and ion mobility, were developed to resolve glycan and glycopeptide isomers before MS. These separation techniques were coupled to MS for a better identification and quantitation of glycan and glycopeptide isomers. Additionally, bioinformatic tools are essential for the automated processing of glycan and glycopeptide isomeric data to facilitate isomeric studies in biological cohorts. Here in this review, we discuss commonly employed MS-based techniques, separation hyphenated MS methods, and software, facilitating the separation, identification, and quantitation of glycan and glycopeptide isomers.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Kaitlyn Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
12
|
Yin H, Zhu J. Methods for quantification of glycopeptides by liquid separation and mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:887-917. [PMID: 35099083 PMCID: PMC9339036 DOI: 10.1002/mas.21771] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/14/2021] [Accepted: 01/13/2022] [Indexed: 05/05/2023]
Abstract
Recent advances in analytical techniques provide the opportunity to quantify even low-abundance glycopeptides derived from complex biological mixtures, allowing for the identification of glycosylation differences between healthy samples and those derived from disease states. Herein, we discuss the sample preparation procedures and the mass spectrometry (MS) strategies that have facilitated glycopeptide quantification, as well as the standards used for glycopeptide quantification. For sample preparation, various glycopeptide enrichment methods are summarized including the columns used for glycopeptide separation in liquid chromatography separation. For MS analysis strategies, MS1 level-based quantification and MS2 level-based quantification are described, either with or without labeling, where we have covered isotope labeling, TMT/iTRAQ labeling, data dependent acquisition, data independent acquisition, multiple reaction monitoring, and parallel reaction monitoring. The strengths and weaknesses of these methods are compared, particularly those associated with the figures of merit that are important for clinical biomarker studies and the pathological and functional studies of glycoproteins in various diseases. Possible future developments for glycopeptide quantification are discussed.
Collapse
Affiliation(s)
- Haidi Yin
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
- Correspondence to: Haidi Yin, Shenzhen Bay Laboratory, A1201, Shenzhen, Guangdong, 518132, China. Phone: 0755-26849276. , Jianhui Zhu, Department of Surgery, University of Michigan, 1150 West Medical Center Drive, Building MSRB1, Rm A500, Ann Arbor, MI 48109-0656, USA. Tel: 734-615-2567. Fax: 734-615-2088.
| | - Jianhui Zhu
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence to: Haidi Yin, Shenzhen Bay Laboratory, A1201, Shenzhen, Guangdong, 518132, China. Phone: 0755-26849276. , Jianhui Zhu, Department of Surgery, University of Michigan, 1150 West Medical Center Drive, Building MSRB1, Rm A500, Ann Arbor, MI 48109-0656, USA. Tel: 734-615-2567. Fax: 734-615-2088.
| |
Collapse
|
13
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Liu Z, Xu M, Zhang W, Miao X, Wang PG, Li S, Yang S. Recent development in hydrophilic interaction liquid chromatography stationary materials for glycopeptide analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4437-4448. [PMID: 36300821 DOI: 10.1039/d2ay01369j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein glycosylation is one of the most important post-translational modifications, and aberrant glycosylation is associated with the occurrence and development of diseases. Deciphering abnormal glycosylation changes can identify disease-specific signatures to facilitate the discovery of potential disease biomarkers. However, glycosylation analysis is challenging due to the diversity of glycans, heterogeneity of glycosites, and poor electrospray ionization of mass spectrometry. To overcome these obstacles, glycosylation is often elucidated using enriched glycopeptides by removing highly abundant non-glycopeptides. Hydrophilic interaction liquid chromatography (HILIC) is widely used for glycopeptide enrichment due to its excellent selectivity and specificity to hydrophilic glycans and compatibility with mass spectrometry. However, the development of HILIC has lagged far behind hydrophobic interaction chromatography, so efforts to further improve the performance of HILIC are beneficial for glycosylation analysis. This review discusses recent developments in HILIC materials and their advanced applications. Based on the physiochemical properties of glycopeptides, the use of amino acids or peptides as stationary phases showed improved enrichment and separation of glycopeptides. We can envision that the use of glycopeptides as stationary phases would definitely further improve the selectivity and specificity of HILIC for glycosylation analysis.
Collapse
Affiliation(s)
- Zhaoliang Liu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
| | - Mingming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
| | - Wenqi Zhang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu 210033, China.
| | - Xinyu Miao
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu 210033, China.
| | - Perry G Wang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA
| | - Shuwei Li
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu 210033, China.
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
| |
Collapse
|
15
|
Molnarova K, Cokrtova K, Tomnikova A, Krizek T, Kozlik P. Liquid chromatography and capillary electrophoresis in glycomic and glycoproteomic analysis. MONATSHEFTE FUR CHEMIE 2022; 153:659-686. [PMID: 35754790 PMCID: PMC9212196 DOI: 10.1007/s00706-022-02938-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022]
Abstract
Glycosylation is one of the most significant and abundant post-translational modifications in cells. Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycomic and glycoproteomic analysis is highly challenging because of the large diversity of structures, low abundance, site-specific heterogeneity, and poor ionization efficiency of glycans and glycopeptides in mass spectrometry (MS). MS is a key tool for characterization of glycans and glycopeptides. However, MS alone does not always provide full structural and quantitative information for many reasons, and thus MS is combined with some separation technique. This review focuses on the role of separation techniques used in glycomic and glycoproteomic analyses, liquid chromatography and capillary electrophoresis. The most important separation conditions and results are presented and discussed. Graphical abstract
Collapse
Affiliation(s)
- Katarina Molnarova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Katerina Cokrtova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alice Tomnikova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Krizek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Kozlik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
16
|
Prediction of Intact N-Glycopeptide Retention Time Windows in Hydrophilic Interaction Liquid Chromatography. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123723. [PMID: 35744847 PMCID: PMC9228347 DOI: 10.3390/molecules27123723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022]
Abstract
Analysis of protein glycosylation is challenging due to micro- and macro-heterogeneity of the attached glycans. Hydrophilic interaction liquid chromatography (HILIC) is a mode of choice for separation of intact glycopeptides, which are inadequately resolved by reversed phase chromatography. In this work, we propose an easy-to-use model to predict retention time windows of glycopeptides in HILIC. We constructed this model based on the parameters derived from chromatographic separation of six differently glycosylated peptides obtained from tryptic digests of three plasma proteins: haptoglobin, hemopexin, and sex hormone-binding globulin. We calculated relative retention times of different glycoforms attached to the same peptide to the bi-antennary form and showed that the character of the peptide moiety did not significantly change the relative retention time differences between the glycoforms. To challenge the model, we assessed chromatographic behavior of fetuin glycopeptides experimentally, and their retention times all fell within the calculated retention time windows, which suggests that the retention time window prediction model in HILIC is sufficiently accurate. Relative retention time windows provide complementary information to mass spectrometric data, and we consider them useful for reliable determination of protein glycosylation in a site-specific manner.
Collapse
|
17
|
Pujić I, Perreault H. Recent advancements in glycoproteomic studies: Glycopeptide enrichment and derivatization, characterization of glycosylation in SARS CoV2, and interacting glycoproteins. MASS SPECTROMETRY REVIEWS 2022; 41:488-507. [PMID: 33393161 DOI: 10.1002/mas.21679] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Proteomics studies allow for the determination of the identity, amount, and interactions of proteins under specific conditions that allow the biological state of an organism to ultimately change. These conditions can be either beneficial or detrimental. Diseases are due to detrimental changes caused by either protein overexpression or underexpression caused by as a result of a mutation or posttranslational modifications (PTM), among other factors. Identification of disease biomarkers through proteomics can be potentially used as clinical information for diagnostics. Common biomarkers to look for include PTM. For example, aberrant glycosylation of proteins is a common marker and will be a focus of interest in this review. A common way to analyze glycoproteins is by glycoproteomics involving mass spectrometry. Due to factors such as micro- and macroheterogeneity which result in a lower abundance of each version of a glycoprotein, it is difficult to obtain meaningful results unless rigorous sample preparation procedures are in place. Microheterogeneity represents the diversity of glycans at a single site, whereas macroheterogeneity depicts glycosylation levels at each site of a protein. Enrichment and derivatization of glycopeptides help to overcome these limitations. Over the time range of 2016 to 2020, several methods have been proposed in the literature and have contributed to drastically improve the outcome of glycosylation analysis, as presented in the sampling surveyed in this review. As a current topic in 2020, glycoproteins carried by pathogens can also cause disease and this is seen with SARS CoV2, causing the COVID-19 pandemic. This review will discuss glycoproteomic studies of the spike glycoprotein and interacting proteins such as the ACE2 receptor.
Collapse
Affiliation(s)
- Ivona Pujić
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hélène Perreault
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
18
|
Sanda M, Ahn J, Kozlik P, Goldman R. Analysis of site and structure specific core fucosylation in liver cirrhosis using exoglycosidase-assisted data-independent LC-MS/MS. Sci Rep 2021; 11:23273. [PMID: 34857845 PMCID: PMC8639754 DOI: 10.1038/s41598-021-02838-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Carbohydrates form one of the major groups of biological macromolecules in living organisms. Many biological processes including protein folding, stability, immune response, and receptor activation are regulated by glycosylation. Fucosylation of proteins regulates such processes and is associated with various diseases including autoimmunity and cancer. Mass spectrometry efficiently identifies structures of fucosylated glycans or sites of core fucosylated N-glycopeptides but quantification of the glycopeptides remains less explored. We performed experiments that facilitate quantitative analysis of the core fucosylation of proteins with partial structural resolution of the glycans and we present results of the mass spectrometric SWATH-type DIA analysis of relative abundances of the core fucosylated glycoforms of 45 glycopeptides to their nonfucosylated glycoforms derived from 18 serum proteins in liver disease of different etiologies. Our results show that a combination of soft fragmentation with exoglycosidases is efficient at the assignment and quantification of the core fucosylated N-glycoforms at specific sites of protein attachment. In addition, our results show that disease-associated changes in core fucosylation are peptide-dependent and further differ by branching of the core fucosylated glycans. Further studies are needed to verify whether tri- and tetra-antennary core fucosylated glycopeptides could be used as markers of liver disease progression.
Collapse
Affiliation(s)
- Miloslav Sanda
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA. .,Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC, 20057, USA.
| | - Jaeil Ahn
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Petr Kozlik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, 20057, USA.,Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC, 20057, USA
| |
Collapse
|
19
|
Gong Y, Qin S, Dai L, Tian Z. The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduct Target Ther 2021; 6:396. [PMID: 34782609 PMCID: PMC8591162 DOI: 10.1038/s41392-021-00809-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/10/2021] [Accepted: 10/24/2021] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 235 million individuals and led to more than 4.8 million deaths worldwide as of October 5 2021. Cryo-electron microscopy and topology show that the SARS-CoV-2 genome encodes lots of highly glycosylated proteins, such as spike (S), envelope (E), membrane (M), and ORF3a proteins, which are responsible for host recognition, penetration, binding, recycling and pathogenesis. Here we reviewed the detections, substrates, biological functions of the glycosylation in SARS-CoV-2 proteins as well as the human receptor ACE2, and also summarized the approved and undergoing SARS-CoV-2 therapeutics associated with glycosylation. This review may not only broad the understanding of viral glycobiology, but also provide key clues for the development of new preventive and therapeutic methodologies against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China
| | - Suideng Qin
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China.
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
20
|
Gutierrez-Reyes CD, Jiang P, Atashi M, Bennett A, Yu A, Peng W, Zhong J, Mechref Y. Advances in mass spectrometry-based glycoproteomics: An update covering the period 2017-2021. Electrophoresis 2021; 43:370-387. [PMID: 34614238 DOI: 10.1002/elps.202100188] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/30/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
Protein glycosylation is one of the most common posttranslational modifications, and plays an essential role in a wide range of biological processes such as immune response, intercellular signaling, inflammation, host-pathogen interaction, and protein stability. Glycoproteomics is a proteomics subfield dedicated to identifying and characterizing the glycans and glycoproteins in a given cell or tissue. Aberrant glycosylation has been associated with various diseases such as Alzheimer's disease, viral infections, inflammation, immune deficiencies, congenital disorders, and cancers. However, glycoproteomic analysis remains challenging because of the low abundance, site-specific heterogeneity, and poor ionization efficiency of glycopeptides during LC-MS analyses. Therefore, the development of sensitive and accurate approaches to efficiently characterize protein glycosylation is crucial. Methods such as metabolic labeling, enrichment, and derivatization of glycopeptides, coupled with different mass spectrometry techniques and bioinformatics tools, have been developed to achieve sophisticated levels of quantitative and qualitative analyses of glycoproteins. This review attempts to update the recent developments in the field of glycoproteomics reported between 2017 and 2021.
Collapse
Affiliation(s)
| | - Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mojgan Atashi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Andrew Bennett
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
21
|
Zhong L, Zhu L, Cai ZW. Mass Spectrometry-based Proteomics and Glycoproteomics in COVID-19 Biomarkers Identification: A Mini-review. JOURNAL OF ANALYSIS AND TESTING 2021; 5:298-313. [PMID: 34513131 PMCID: PMC8423835 DOI: 10.1007/s41664-021-00197-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022]
Abstract
The first corona-pandemic, coronavirus disease 2019 (COVID-19) caused a huge health crisis and incalculable damage worldwide. Knowledge of how to cure the disease is urgently needed. Emerging immune escaping mutants of the virus suggested that it may be potentially persistent in human society as a regular health threat as the flu virus. Therefore, it is imperative to identify appropriate biomarkers to indicate pathological and physiological states, and more importantly, clinic outcomes. Proteins are the performers of life functions, and their abundance and modification status can directly reflect the immune status. Protein glycosylation serves a great impact in modulating protein function. The use of both unmodified and glycosylated proteins as biomarkers has also been proved feasible in the studies of SARS, Zika virus, influenza, etc. In recent years, mass spectrometry-based glycoproteomics, as well as proteomics approaches, advanced significantly due to the evolution of mass spectrometry. We focus on the current development of the mass spectrometry-based strategy for COVID-19 biomarkers' investigation. Potential application of glycoproteomics approaches and challenges in biomarkers identification are also discussed.
Collapse
Affiliation(s)
- Li Zhong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, China
| | - Zong-Wei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
22
|
Quantitation of Acetyl Hexapeptide-8 in Cosmetics by Hydrophilic Interaction Liquid Chromatography Coupled to Photo Diode Array Detection. SEPARATIONS 2021. [DOI: 10.3390/separations8080125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bioactive peptides are gaining more and more popularity in the research and development of cosmetic products with anti-aging effect. Acetyl hexapeptide-8 is a hydrophilic peptide incorporated in cosmetics to reduce the under-eye wrinkles and the forehead furrows. Hydrophilic interaction liquid chromatography (HILIC) is the separation technique of choice for analyzing peptides. In this work, a rapid HILIC method coupled to photodiode array detection operated at 214 nm was developed, validated and used to determine acetyl-hexapeptide-8 in cosmetics. Chromatography was performed on a Xbridge® HILIC BEH analytical column using as mobile phase a 40 mM ammonium formate water solution (pH 6.5)-acetonitrile mixture 30:70, v/v at flow rate 0.25 mL min−1. The assay was linear over the concentration range 20 to 30 μg mL−1 for the cosmetic formulations and 0.004 to 0.007% (w/w) for the cosmetic cream. The limits of quantitation for acetyl hexapeptide-8 were 1.5 μg mL−1 and 0.002% (w/w) for the assay of cosmetic formulations and cosmetic creams, respectively. The method was applied to the analysis of cosmetic formulations and anti-wrinkle cosmetic creams.
Collapse
|
23
|
Kozlik P, Vaclova J, Kalikova K. Mixed-mode hydrophilic interaction/ion-exchange liquid chromatography – Separation potential in peptide analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Molnarova K, Duris A, Jecmen T, Kozlik P. Comparison of human IgG glycopeptides separation using mixed-mode hydrophilic interaction/ion-exchange liquid chromatography and reversed-phase mode. Anal Bioanal Chem 2021; 413:4321-4328. [PMID: 34002272 DOI: 10.1007/s00216-021-03388-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022]
Abstract
Glycoproteomics is a challenging branch of proteomics because of the micro- and macro-heterogeneity of protein glycosylation. Hydrophilic interaction liquid chromatography (HILIC) is an advantageous alternative to reversed-phase chromatography for intact glycopeptide separation prior to their identification by mass spectrometry. Nowadays, several HILIC columns differing in used chemistries are commercially available. However, there is a lack of comparative studies assessing their performance, and thus providing guidance for the selection of an adequate stationary phase for different glycoproteomics applications. Here, we compare three HILIC columns recently developed by Advanced Chromatography Technologies (ACE)- with unfunctionalized (HILIC-A), polyhydroxy functionalized (HILIC-N), and aminopropyl functionalized (HILIC-B) silica- with a C18 reversed-phase column in the separation of human immunoglobulin G glycopeptides. HILIC-A and HILIC-B exhibit mixed-mode separation combining hydrophilic and ion-exchange interactions for analyte retention. Expectably, reversed-phase mode successfully separated clusters of immunoglobulin G1 and immunoglobulin G2 glycopeptides, which differ in amino acid sequence, but was not able to adequately separate different glycoforms of the same peptide. All ACE HILIC columns showed higher separation power for different glycoforms, and we show that each column separates a different group of glycopeptides more effectively than the others. Moreover, HILIC-A and HILIC-N columns separated the isobaric A2G1F1 glycopeptides of immunoglobulin G, and thus showed the potential for the elucidation of the structure of isomeric glycoforms. Furthermore, the possible retention mechanism for the HILIC columns is discussed on the basis of the determined chromatographic parameters.
Collapse
Affiliation(s)
- Katarina Molnarova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Ales Duris
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Tomas Jecmen
- Department of Biochemistry, Faculty of Science, Charles University, 128 00, Prague 2, Czech Republic
| | - Petr Kozlik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic.
| |
Collapse
|
25
|
Nakić N, Tran TH, Novokmet M, Andreoletti O, Lauc G, Legname G. Site-specific analysis of N-glycans from different sheep prion strains. PLoS Pathog 2021; 17:e1009232. [PMID: 33600485 PMCID: PMC7891774 DOI: 10.1371/journal.ppat.1009232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/10/2020] [Indexed: 01/23/2023] Open
Abstract
Prion diseases are a group of neurodegenerative diseases affecting a wide range of mammalian species, including humans. During the course of the disease, the abnormally folded scrapie prion protein (PrPSc) accumulates in the central nervous system where it causes neurodegeneration. In prion disorders, the diverse spectrum of illnesses exists because of the presence of different isoforms of PrPSc where they occupy distinct conformational states called strains. Strains are biochemically distinguished by a characteristic three-band immunoblot pattern, defined by differences in the occupancy of two glycosylation sites on the prion protein (PrP). Characterization of the exact N-glycan structures attached on either PrPC or PrPSc is lacking. Here we report the characterization and comparison of N-glycans from two different sheep prion strains. PrPSc from both strains was isolated from brain tissue and enzymatically digested with trypsin. By using liquid chromatography coupled to electrospray mass spectrometry, a site-specific analysis was performed. A total of 100 structures were detected on both glycosylation sites. The N-glycan profile was shown to be similar to the one on mouse PrP, however, with additional 40 structures reported. The results presented here show no major differences in glycan composition, suggesting that glycans may not be responsible for the differences in the two analyzed prion strains. To date, prion diseases remain a controversy amongst scientists. Although we know now it is the abnormal form of the prion protein (PrPSc) that causes the disease, many questions are still left unanswered. To understand the cellular mechanism of these diseases, we should first and foremost try to fully understand the prion protein itself. Even though many findings have been made regarding the structure of the protein, a large part of it is still unknown. Since the prion protein is actually a glycoprotein, to resolve its structure we need to put our focus not only on the protein part of the glycoprotein but also on the glycan structures as well. Here we compared two different sheep prion strains and although no major differences have been found between the glycan structures, this analysis may help the understanding of the role glycans have in prion diseases.
Collapse
Affiliation(s)
- Natali Nakić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Thanh Hoa Tran
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,VNUK Institute for Research and Executive Education, The University of Danang, Da Nang, Vietnam
| | | | - Olivier Andreoletti
- UMR INRA ENVT 1225-IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,ELETTRA Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| |
Collapse
|
26
|
Towards structure-focused glycoproteomics. Biochem Soc Trans 2021; 49:161-186. [PMID: 33439247 PMCID: PMC7925015 DOI: 10.1042/bst20200222] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Facilitated by advances in the separation sciences, mass spectrometry and informatics, glycoproteomics, the analysis of intact glycopeptides at scale, has recently matured enabling new insights into the complex glycoproteome. While diverse quantitative glycoproteomics strategies capable of mapping monosaccharide compositions of N- and O-linked glycans to discrete sites of proteins within complex biological mixtures with considerable sensitivity, quantitative accuracy and coverage have become available, developments supporting the advancement of structure-focused glycoproteomics, a recognised frontier in the field, have emerged. Technologies capable of providing site-specific information of the glycan fine structures in a glycoproteome-wide context are indeed necessary to address many pending questions in glycobiology. In this review, we firstly survey the latest glycoproteomics studies published in 2018–2020, their approaches and their findings, and then summarise important technological innovations in structure-focused glycoproteomics. Our review illustrates that while the O-glycoproteome remains comparably under-explored despite the emergence of new O-glycan-selective mucinases and other innovative tools aiding O-glycoproteome profiling, quantitative glycoproteomics is increasingly used to profile the N-glycoproteome to tackle diverse biological questions. Excitingly, new strategies compatible with structure-focused glycoproteomics including novel chemoenzymatic labelling, enrichment, separation, and mass spectrometry-based detection methods are rapidly emerging revealing glycan fine structural details including bisecting GlcNAcylation, core and antenna fucosylation, and sialyl-linkage information with protein site resolution. Glycoproteomics has clearly become a mainstay within the glycosciences that continues to reach a broader community. It transpires that structure-focused glycoproteomics holds a considerable potential to aid our understanding of systems glycobiology and unlock secrets of the glycoproteome in the immediate future.
Collapse
|
27
|
Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics 2020; 20:100029. [PMID: 33583771 PMCID: PMC8724846 DOI: 10.1074/mcp.r120.002277] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography and its derivatives, porous graphitic carbon, reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as mass spectrometry instrumentation and software improve, so this review aims to help equip researchers with the necessary information to choose appropriate enrichment strategies that best complement these efforts.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|
28
|
Zhao Y, Raidas S, Mao Y, Li N. Glycine additive facilitates site-specific glycosylation profiling of biopharmaceuticals by ion-pairing hydrophilic interaction chromatography mass spectrometry. Anal Bioanal Chem 2020; 413:1267-1277. [PMID: 33244686 DOI: 10.1007/s00216-020-03089-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 11/28/2022]
Abstract
Many biotherapeutics such as monoclonal antibodies (mAb) and Fc-domain fusion proteins contain heterogeneous glycan contents at one or multiple glycosylation site(s). Site-specific glycan profile characterization is critical for monitoring the quality of these molecules during different stages of drug development. Hydrophilic interaction chromatography (HILIC) as an orthogonal separation method to reversed-phase liquid chromatography (RPLC) can achieve better glycopeptide identification due to the effective separation between individual glycoforms as well as the separation of glycopeptides from high-abundance non-glycosylated peptides, which can be further improved by modifying the mobile phases with ion-pairing agents (IP-HILIC). However, an online IP-HILIC coupled to mass spectrometry (MS) detection may suffer from the suppression of mass spectrometry signal during electrospray ionization due to the trifluoroacetic acid (TFA), commonly used as an ion-pairing agent. Here, we reported an optimized experimental condition for IP-HILIC-MS where glycine is added in the TFA-containing mobile phases to enhance the MS detection sensitivity for glycopeptides up to ~ 50-fold by eliminating the ion-suppression effect of an ion-pairing agent while still retaining excellent separation capacity. We demonstrated that with enhanced detection sensitivity, IP-HILIC-MS can confidently identify an increased number of site-specific N-linked glycans for IgG1, and IgG4 mAbs as well as an Fc-domain fusion protein (containing five N-glycosylation sites) through MS/MS-based search in the data-dependent acquisition mode, meanwhile, achieve comparable quantitative results compared with the traditional methods. We also demonstrated that IP-HILIC-MS can be used to identify low-level O-glycosylation and non-consensus N-glycosylation on mAbs without any enrichment prior to LC-MS analysis. Graphical abstract.
Collapse
Affiliation(s)
- Yunlong Zhao
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Shivkumar Raidas
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Yuan Mao
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA.
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| |
Collapse
|
29
|
Molnarova K, Kozlík P. Comparison of Different HILIC Stationary Phases in the Separation of Hemopexin and Immunoglobulin G Glycopeptides and Their Isomers. Molecules 2020; 25:E4655. [PMID: 33065988 PMCID: PMC7594091 DOI: 10.3390/molecules25204655] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 01/16/2023] Open
Abstract
Protein glycosylation analysis is challenging due to the structural variety of complex conjugates. However, chromatographically separating glycans attached to tryptic peptides enables their site-specific characterization. For this purpose, we have shown the importance of selecting a suitable hydrophilic interaction liquid chromatography (HILIC) stationary phase in the separation of glycopeptides and their isomers. Three different HILIC stationary phases, i.e., HALO® penta-HILIC, Glycan ethylene bridged hybrid (BEH) Amide, and ZIC-HILIC, were compared in the separation of complex N-glycopeptides of hemopexin and Immunoglobulin G glycoproteins. The retention time increased with the polarity of the glycans attached to the same peptide backbone in all HILIC columns tested in this study, except for the ZIC-HILIC column when adding sialic acid to the glycan moiety, which caused electrostatic repulsion with the negatively charged sulfobetaine functional group, thereby decreasing retention. The HALO® penta-HILIC column provided the best separation results, and the ZIC-HILIC column the worst. Moreover, we showed the potential of these HILIC columns for the isomeric separation of fucosylated and sialylated glycoforms. Therefore, HILIC is a useful tool for the comprehensive characterization of glycoproteins and their isomers.
Collapse
Affiliation(s)
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128-43 Prague, Czech Republic;
| |
Collapse
|
30
|
Kozlik P, Molnarova K, Jecmen T, Krizek T, Goldman R. Glycan-specific precipitation of glycopeptides in high organic content sample solvents used in HILIC. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1150:122196. [PMID: 32485649 DOI: 10.1016/j.jchromb.2020.122196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
The composition of a sample solvent has a crucial impact on separations in hydrophilic interaction liquid chromatography (HILIC). In this short communication, we studied the effect of an organic modifier in the sample solvent on the solubility of different tryptic glycopeptides of hemopexin and haptoglobin proteins. The results showed that the solubility of glycopeptides in solvents with a high acetonitrile content depends on the type of attached N-glycan. We observed lower solubility in larger glycans attached to the same peptide backbone, and we demonstrated that glycopeptides containing sialic acids precipitate more readily than those without sialic acid. Therefore, the sample solvent composition in HILIC must be carefully optimized for accurate quantitative data collection and for adequate separation.
Collapse
Affiliation(s)
- Petr Kozlik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic.
| | - Katarina Molnarova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Tomas Jecmen
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Tomas Krizek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center PSB GF9, Georgetown University, 3800 Reservoir Road NW, Washington, DC 20057, United States; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3800 Reservoir Road NW, Washington, DC 20057, United States; Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
31
|
Sanda M, Benicky J, Goldman R. Low Collision Energy Fragmentation in Structure-Specific Glycoproteomics Analysis. Anal Chem 2020; 92:8262-8267. [PMID: 32441515 DOI: 10.1021/acs.analchem.0c00519] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycosylation is a major post-translational modification of proteins that regulates many biological processes including protein folding, structure stability, receptor activation, and immune responses. The glycans attached to proteins represent an important determinant of the protein interaction-specificity and maintain the 3D structure of proteins. Mass spectrometry (MS) is one of the most efficient tools used in the current studies of glycoproteins and structure of their glycoforms. Collision energy (CE) is a crucial instrument parameter that can be exploited to improve structural resolution because different linkages of glycan units show different stabilities under CID/HCD fragmentation. Here we report the utility of CE modulation for qualitative and quantitative analysis of site- and structure-specific glycoforms of proteins. Using CE modulation, we were able to break selectively specific glycan linkages on intact glycopeptides and get, to some degree, structure-specific mass spectrometric signals. Structure- and CE-specific oxonium ions provide sufficient information for the resolution of outer arm structure motifs with recognized biological functions. The complementary Y-ions, generated under optimized low CE (soft) conditions, provide additional structural information including features specific to the chitobiose core. This methodology of multiple CE fragmentation without merging spectral information can significantly improve confidence of glycopeptide identification and structural resolution by providing additional information to the established glycopeptide-search algorithms and tools.
Collapse
Affiliation(s)
- Miloslav Sanda
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States.,Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, United States
| | - Julius Benicky
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States.,Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, United States
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, United States.,Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
32
|
van der Burgt YEM, Siliakus KM, Cobbaert CM, Ruhaak LR. HILIC-MRM-MS for Linkage-Specific Separation of Sialylated Glycopeptides to Quantify Prostate-Specific Antigen Proteoforms. J Proteome Res 2020; 19:2708-2716. [PMID: 32142289 PMCID: PMC8280738 DOI: 10.1021/acs.jproteome.0c00050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Elevated serum prostate-specific
antigen (PSA) levels in body fluids
may indicate prostate cancer (PCa), but it is noted that the clinical
performance is rather poor. Specificity and sensitivity values of
20 and 94% at a cutoff value of 4.1 ng/mL, respectively, result in
overdiagnosis and unnecessary interventions. Previous exploratory
studies have indicated that the glycosylation of PSA potentially leads
to improved PCa diagnosis based on qualitative analyses. However,
the applied methods are not suited for a quantitative evaluation or
implementation in a medical laboratory. Therefore, in this proof-of-principle
study, we have evaluated the use of hydrophilic interaction liquid
chromatography (HILIC) in combination with targeted quantitative mass
spectrometry for the sialic acid linkage-specific analysis of PSA
glyco-proteoforms based on either trypsin or ArgC peptides. The efficiency
of PSA proteolysis was optimized as well as the glycopeptide separation
conditions (buffer type, strength, and pH). The HILIC-based analysis
of PSA glyco-proteoforms presented here has the potential for the
clinical validation of patient cohorts. The method shows the feasibility
of the use of a HILIC stationary phase for the separation of isomeric
glycopeptides to detect specific glyco-proteoforms. This is the first
step toward the development and evaluation of PSA glyco-proteoforms
for use in a clinical chemistry setting aiming for improved PCa diagnosis
or screening.
Collapse
Affiliation(s)
- Yuri E M van der Burgt
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Kasper M Siliakus
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
33
|
Teclemariam ET, Pergande MR, Cologna SM. Considerations for mass spectrometry-based multi-omic analysis of clinical samples. Expert Rev Proteomics 2020; 17:99-107. [PMID: 31996049 DOI: 10.1080/14789450.2020.1724540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: The role of mass spectrometry in biomolecule analysis has become paramount over the last several decades ranging in the analysis across model systems and human specimens. Accordingly, the presence of mass spectrometers in clinical laboratories has also expanded alongside the number of researchers investigating the protein, lipid, and metabolite composition of an array of biospecimens. With this increase in the number of omic investigations, it is important to consider the entire experimental strategy from sample collection and storage, data collection and analysis.Areas covered: In this short review, we outline considerations for working with clinical (e.g. human) specimens including blood, urine, and cerebrospinal fluid, with emphasis on sample handling, profiling composition, targeted measurements and relevance to disease. Discussions of integrated genomic or transcriptomic datasets are not included. A brief commentary is also provided regarding new technologies with clinical relevance.Expert opinion: The role of mass spectrometry to investigate clinically related specimens is on the rise and the ability to integrate multiple omics datasets from mass spectrometry measurements will be crucial to further understanding human health and disease.
Collapse
Affiliation(s)
- Esei T Teclemariam
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Melissa R Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA.,Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
34
|
Bwanali L, Crihfield CL, Newton EO, Zeger VR, Gattu S, Holland LA. Quantification of the α2-6 Sialic Acid Linkage in Branched N-Glycan Structures with Capillary Nanogel Electrophoresis. Anal Chem 2020; 92:1518-1524. [PMID: 31829566 PMCID: PMC8631463 DOI: 10.1021/acs.analchem.9b04787] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sialylation and sialic acid linkage in N-glycans are markers of disease but are analytically challenging to quantify. A capillary electrophoresis method is reported that integrates a unique combination of enzymes and lectins to modify sialylated N-glycans in real time in the capillary so that N-glycan structures containing α2-6-linked sialic acid are easily separated, detected, and quantified. In this study, N-glycans were sequentially cleaved by enzymes at the head of the separation capillary so that the presence of α2-6-linked sialic acids corresponded to a shift in the analyte migration time in a manner that enabled interpretation of the N-glycan structure. Following injection, only afucosylated N-glycan structures were passed through enzyme zones that contained α2-3 sialidase, followed by β1-3,4 galactosidase, which cleaved any terminal α2-3-linked sialic acid and underlying galactose yielding a terminal N-acetyl glucosamine. With this treatment complete, a third zone of α2-3,6,8 sialidase converted the remaining α2-6-linked sialic acid to terminal galactose. With these enzyme processing steps the α2-6-linked sialic acid residues on an N-glycan correlated directly to the number of terminal galactose residues that remained. The number of terminal galactose residues could be interpreted as a stepwise decrease in the migration time. Complex N-glycans from α-1-acid glycoprotein were analyzed using this approach, revealing that a limited number of α2-6-linked sialic acids were present with biantennary, triantennary, and tetraantennary N-glycans of α-1-acid glycoprotein generally containing 0 or 1 α2-6-linked sialic acid.
Collapse
Affiliation(s)
- Lloyd Bwanali
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Cassandra L. Crihfield
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Ebenezer O. Newton
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Victoria R. Zeger
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Srikanth Gattu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lisa A. Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
35
|
Xiao K, Tian Z. Site‐ and Structure‐Specific Quantitative N‐Glycoproteomics Using RPLC‐pentaHILIC Separation and the Intact N‐Glycopeptide Search Engine GPSeeker. ACTA ACUST UNITED AC 2019; 97:e94. [DOI: 10.1002/cpps.94] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kaijie Xiao
- School of Chemical Science & Engineering and Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University Shanghai China
| | - Zhixin Tian
- School of Chemical Science & Engineering and Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University Shanghai China
| |
Collapse
|
36
|
Preparation of a hydrophilic interaction liquid chromatography material by sequential electrostatic deposition of layers of polyethyleneimine and hyaluronic acid for enrichment of glycopeptides. Mikrochim Acta 2019; 186:600. [DOI: 10.1007/s00604-019-3712-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
|
37
|
Xiao K, Tian Z. GPSeeker Enables Quantitative Structural N-Glycoproteomics for Site- and Structure-Specific Characterization of Differentially Expressed N-Glycosylation in Hepatocellular Carcinoma. J Proteome Res 2019; 18:2885-2895. [DOI: 10.1021/acs.jproteome.9b00191] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kaijie Xiao
- School of Chemical Science & Engineering and Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Zhixin Tian
- School of Chemical Science & Engineering and Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| |
Collapse
|
38
|
Ji ES, Lee HK, Park GW, Kim KH, Kim JY, Yoo JS. Isomer separation of sialylated O- and N-linked glycopeptides using reversed-phase LC-MS/MS at high temperature. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1110-1111:101-107. [PMID: 30798070 DOI: 10.1016/j.jchromb.2019.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 01/28/2023]
Abstract
Analyses of intact glycopeptides using mass spectrometry is challenging due to the numerous types of isomers of glycan moieties attached to the peptide backbone. Here, we demonstrate that high-temperature reversed-phase liquid chromatography (RPLC) can be used to separate isomeric O- and N-linked glycopeptides. In general, high column temperatures enhanced the resolution for separation of sialylated O- and N-linked glycopeptide isomers with decreased retention times. Using the high-temperature RPLC method, α2-6-linked sialylated N-glycopeptides were eluted first, followed by α2-3-linked isomers. However, highly sialylated N-glycopeptides containing hydrophobic amino acids exhibited increased retention times at high temperature. The separation of sialylated O- and N-glycopeptides with different glycan isoforms using a high-temperature RPLC method was demonstrated. This study indicates that reversed-phase chromatographic separation at high column temperatures is suitable for the separation of glycopeptide structural isomers.
Collapse
Affiliation(s)
- Eun Sun Ji
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Hyun Kyoung Lee
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Gun Wook Park
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Kwang Hoe Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Young Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea.
| | - Jong Shin Yoo
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
39
|
Ikegami T. Hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs and therapeutic peptides: A review based on the separation characteristics of the hydrophilic interaction chromatography phases. J Sep Sci 2019; 42:130-213. [DOI: 10.1002/jssc.201801074] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tohru Ikegami
- Faculty of Molecular Chemistry and Engineering; Kyoto Institute of Technology; Kyoto Japan
- Institute of Pharmaceutical Sciences; Pharmaceutical (Bio-) Analysis; Eberhard-Karls Universität Tübingen; Tübingen Germany
| |
Collapse
|
40
|
D’Atri V, Fekete S, Clarke A, Veuthey JL, Guillarme D. Recent Advances in Chromatography for Pharmaceutical Analysis. Anal Chem 2018; 91:210-239. [DOI: 10.1021/acs.analchem.8b05026] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Adrian Clarke
- Novartis Pharma AG, Technical Research and Development, Chemical and Analytical Development (CHAD), Basel, CH4056, Switzerland
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|