1
|
Plavchak CL, Liu J, Wang Y, Xu X, Faustino PJ, Qu H, Smith WC. Utilization of AF4 for characterizing complex nanomaterial drug products: Reexamining sample recovery and its impact on particle size distribution as a quality attribute. J Chromatogr A 2025; 1743:465703. [PMID: 39874741 DOI: 10.1016/j.chroma.2025.465703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
Asymmetrical flow field-flow fractionation (AF4) with multi-detection has continued to gain wider acceptance for characterizing complex drug products. An important quality attribute for these products is the measurement of the particle size distribution (PSD). Current limitations of established procedures (e.g., dynamic light scattering) for accurately determining PSD can be overcome by AF4. However, while gaining acceptance this technique has not been fully adopted within the pharmaceutical industry. A technical understanding of fundamental operational factors is necessary for the successful application of utilizing any emerging technology. For example, recovery (R% = AS/AD*100, where AS and AD are the peak areas from the concentration detector with and without the crossflow field, respectively) is one factor that is used to assess the robustness during AF4 method development, but currently little is known about the interplay between analyte recovery and PSD. This work highlights factors that impact calculated AF4 recovery, and how differences in analyte and absolute recovery ultimately influence the PSD of nanoparticle size standards and complex drug product formulations such as emulsions and liposomes. Factors like ionic strength, buffer composition, and analyte chemistries, which are the most common factors associated with changes to R% in AF4, contributed to changes in AS. While AD is not typically examined in detail, the selection of the concentration detector (UV or dRI) along with their instrumental parameters (e.g., wavelength, attenuation value, linear range) and sample preparation was shown to under- or over-estimate AD thus changing R%. Examining both components of R% and their contributions to analyte and absolute recovery show that decreases in analyte recovery may not be exclusively due to sample loss but could be influenced by changes in analyte-membrane interactions or analyte instability. Because of this, four relationships between recovery and PSD were defined. While R% is used as a tool for assessing AF4 methodology, the factors investigated through this work warrant further considerations when establishing an appropriate R% threshold.
Collapse
Affiliation(s)
- Christine L Plavchak
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Joanne Liu
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Yan Wang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Xiaoming Xu
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Patrick J Faustino
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Haiou Qu
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA.
| | - William C Smith
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA.
| |
Collapse
|
2
|
Zia S, Pizzuti V, Paris F, Alviano F, Bonsi L, Zattoni A, Reschiglian P, Roda B, Marassi V. Emerging technologies for quality control of cell-based, advanced therapy medicinal products. J Pharm Biomed Anal 2024; 246:116182. [PMID: 38772202 DOI: 10.1016/j.jpba.2024.116182] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
Advanced therapy medicinal products (ATMP) are complex medicines based on gene therapy, somatic cell therapy, and tissue engineering. These products are rapidly arising as novel and promising therapies for a wide range of different clinical applications. The process for the development of well-established ATMPs is challenging. Many issues must be considered from raw material, manufacturing, safety, and pricing to assure the quality of ATMPs and their implementation as innovative therapeutic tools. Among ATMPs, cell-based ATMPs are drugs altogether. As for standard drugs, technologies for quality control, and non-invasive isolation and production of cell-based ATMPs are then needed to ensure their rapidly expanding applications and ameliorate safety and standardization of cell production. In this review, emerging approaches and technologies for quality control of innovative cell-based ATMPs are described. Among new techniques, microfluid-based systems show advantages related to their miniaturization, easy implementation in analytical process and automation which allow for the standardization of the final product.
Collapse
Affiliation(s)
| | - Valeria Pizzuti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesca Paris
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Sciences (DiBiNem), University of Bologna, Bologna, Italy
| | - Laura Bonsi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Andrea Zattoni
- Stem Sel srl, Bologna, Italy; Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy; National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy
| | - Pierluigi Reschiglian
- Stem Sel srl, Bologna, Italy; Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy; National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy
| | - Barbara Roda
- Stem Sel srl, Bologna, Italy; Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy; National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy.
| | - Valentina Marassi
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy; National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy
| |
Collapse
|
3
|
Ding M, Moreira-Álvarez B, Celis FC, Costa-Fernández JM, Encinar JR, Gref R. An in-depth physicochemical investigation of drug-loaded core-shell UiO66 nanoMOFs. RSC Adv 2024; 14:1676-1685. [PMID: 38187455 PMCID: PMC10767622 DOI: 10.1039/d3ra07098k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
Nanosized UiO66 are among the most studied MOF materials. They have been extensively applied in various areas, such as catalysis, gas absorption, electrochemistry, chemical sensing, and biomedical applications. However, the preparation of stable nano-sized UiO66 for drug delivery applications is challenging because of the high tendency of UiO66 to aggregate during storage. To address this issue, we coated UiO66 with oligomers made of crosslinked cyclodextrins. The coated UiO66 exhibited a good stability upon storage for more than three weeks, even for low quantities of coating materials. The resulting core-shell UiO66 were characterized using a set of complementary methods including microscopies, spectroscopies, X-ray diffraction, and thermogravimetric investigations. Size distribution was assessed by orthogonal methods. Cisplatin was loaded in the core-shell nanoparticles, followed by an in-depth analysis by asymmetric flow field-flow fractionation (AF4) hyphenated with inductively coupled plasma-mass spectrometry (ICP-MS). This method combines the extremely high elemental selectivity and ultratrace detection limits of mass spectrometry with the capacity of AF4 to differentiate the diverse populations present in the sample. Free cisplatin and UiO66-associated cisplatin could be well separated by AF4. AF4-ICP-MS/MS analysis provided the exact drug loading, without the need of separating the nanoparticles from their suspension media. These data suggest the potential of AF4-ICP-MS/MS in the optimization of drug delivery systems.
Collapse
Affiliation(s)
- Mengli Ding
- Institut des Sciences Moléculaires d'Orsay, Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay 91405 Orsay France
| | - Borja Moreira-Álvarez
- Department of Physical and Analytical Chemistry, University of Oviedo Avenida Julian Claveria 8 33006 Oviedo Spain
| | - Francisco Calderón Celis
- Department of Physical and Analytical Chemistry, University of Oviedo Avenida Julian Claveria 8 33006 Oviedo Spain
| | - Jose Manuel Costa-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo Avenida Julian Claveria 8 33006 Oviedo Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo Avenida Julian Claveria 8 33006 Oviedo Spain
| | - Ruxandra Gref
- Institut des Sciences Moléculaires d'Orsay, Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay 91405 Orsay France
| |
Collapse
|
4
|
Mavridi-Printezi A, Giordani S, Menichetti A, Mordini D, Zattoni A, Roda B, Ferrazzano L, Reschiglian P, Marassi V, Montalti M. The dual nature of biomimetic melanin. NANOSCALE 2023; 16:299-308. [PMID: 38059484 DOI: 10.1039/d3nr04696f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Melanin-inspired nanomaterials offer unique photophysical, electronic and radical scavenging properties that are widely explored for health and environmental preservation, or energy conversion and storage. The incorporation of functional melanin building blocks in more complex nanostructures or surfaces is typically achieved via a bottom-up approach starting from a molecular precursor, in most cases dopamine. Here we demonstrate that indeed, the oxidative polymerization of dopamine, for the synthesis of melanin-like polydopamine (PDA), leads to the simultaneous formation of more than one nanosized species with different compositions, morphologies and properties. In particular, a low-density polymeric structure and dense nanoparticles (NP) are simultaneously formed. The two populations could be separated and analyzed in real time using a chromatographic technique free of any stationary phase (flow field fractionation, FFF). The results following the synthesis of melanin-like PDA showed that the NP are formed only during the first 6 hours as a result of a supramolecular self-assembly-driven polymerization, while the formation of the polymer continues for about 36 hours. The two populations were also separated and characterized using TEM, UV-vis absorption spectroscopy, fluorescence and light scattering spectroscopy, DLS, FTIR, ζ-potential measurements, gel electrophoresis and pH titrations. Interestingly, very different properties between the two populations were observed: in particular the polymer contains a higher number of catechol units (8 mmol g-1 -OH) with respect to the NP (1 mmol g-1 -OH) and presents a much higher antioxidant activity. The attenuation of light by NP is more efficient than that by the polymer especially in the Vis-NIR region. Moreover, while the NP scatter light with an efficiency up to 27% they are not fluorescent, and the polymer does not scatter light but shows an excitation wavelength-dependent fluorescence typical of multi-fluorophoric uncoupled systems.
Collapse
Affiliation(s)
| | - Stefano Giordani
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
| | - Arianna Menichetti
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
- Tecnopolo di Rimini, Via Dario Campana, 71, 47922 Rimini, Italy
| | - Dario Mordini
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
| | - Andrea Zattoni
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
| | - Barbara Roda
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
| | - Lucia Ferrazzano
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
| | | | - Valentina Marassi
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
| | - Marco Montalti
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
- Tecnopolo di Rimini, Via Dario Campana, 71, 47922 Rimini, Italy
| |
Collapse
|
5
|
Virlley S, Shukla S, Arora S, Shukla D, Nagdiya D, Bajaj T, Kujur S, Garima, Kumar A, Bhatti JS, Singh A, Singh C. Recent advances in microwave-assisted nanocarrier based drug delivery system: Trends and technologies. J Drug Deliv Sci Technol 2023; 87:104842. [DOI: 10.1016/j.jddst.2023.104842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
6
|
Giordani S, Marassi V, Placci A, Zattoni A, Roda B, Reschiglian P. Field-Flow Fractionation in Molecular Biology and Biotechnology. Molecules 2023; 28:6201. [PMID: 37687030 PMCID: PMC10488451 DOI: 10.3390/molecules28176201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Field-flow fractionation (FFF) is a family of single-phase separative techniques exploited to gently separate and characterize nano- and microsystems in suspension. These techniques cover an extremely wide dynamic range and are able to separate analytes in an interval between a few nm to 100 µm size-wise (over 15 orders of magnitude mass-wise). They are flexible in terms of mobile phase and can separate the analytes in native conditions, preserving their original structures/properties as much as possible. Molecular biology is the branch of biology that studies the molecular basis of biological activity, while biotechnology deals with the technological applications of biology. The areas where biotechnologies are required include industrial, agri-food, environmental, and pharmaceutical. Many species of biological interest belong to the operational range of FFF techniques, and their application to the analysis of such samples has steadily grown in the last 30 years. This work aims to summarize the main features, milestones, and results provided by the application of FFF in the field of molecular biology and biotechnology, with a focus on the years from 2000 to 2022. After a theoretical background overview of FFF and its methodologies, the results are reported based on the nature of the samples analyzed.
Collapse
Affiliation(s)
- Stefano Giordani
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
| | - Valentina Marassi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
- byFlow srl, 40129 Bologna, Italy
| | - Anna Placci
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
| | - Andrea Zattoni
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
- byFlow srl, 40129 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
- byFlow srl, 40129 Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
- byFlow srl, 40129 Bologna, Italy
| |
Collapse
|
7
|
Bian J, Gobalasingham N, Purchel A, Lin J. The Power of Field-Flow Fractionation in Characterization of Nanoparticles in Drug Delivery. Molecules 2023; 28:molecules28104169. [PMID: 37241911 DOI: 10.3390/molecules28104169] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Asymmetric-flow field-flow fractionation (AF4) is a gentle, flexible, and powerful separation technique that is widely utilized for fractionating nanometer-sized analytes, which extend to many emerging nanocarriers for drug delivery, including lipid-, virus-, and polymer-based nanoparticles. To ascertain quality attributes and suitability of these nanostructures as drug delivery systems, including particle size distributions, shape, morphology, composition, and stability, it is imperative that comprehensive analytical tools be used to characterize the native properties of these nanoparticles. The capacity for AF4 to be readily coupled to multiple online detectors (MD-AF4) or non-destructively fractionated and analyzed offline make this technique broadly compatible with a multitude of characterization strategies, which can provide insight on size, mass, shape, dispersity, and many other critical quality attributes. This review will critically investigate MD-AF4 reports for characterizing nanoparticles in drug delivery, especially those reported in the last 10-15 years that characterize multiple attributes simultaneously downstream from fractionation.
Collapse
Affiliation(s)
- Juan Bian
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nemal Gobalasingham
- Wyatt Technology Corporation, 6330 Hollister Ave, Santa Barbara, CA 93117, USA
| | - Anatolii Purchel
- Wyatt Technology Corporation, 6330 Hollister Ave, Santa Barbara, CA 93117, USA
| | - Jessica Lin
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
8
|
Nanoscale Iron-Based Metal-Organic Frameworks: Incorporation of Functionalized Drugs and Degradation in Biological Media. Int J Mol Sci 2023; 24:ijms24043362. [PMID: 36834775 PMCID: PMC9965190 DOI: 10.3390/ijms24043362] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Metal-organic frameworks (MOFs) attract growing interest in biomedical applications. Among thousands of MOF structures, the mesoporous iron(III) carboxylate MIL-100(Fe) (MIL stands for the Materials of Lavoisier Institute) is among the most studied MOF nanocarrier, owing to its high porosity, biodegradability, and lack of toxicity. Nanosized MIL-100(Fe) particles (nanoMOFs) readily coordinate with drugs leading to unprecedented payloads and controlled release. Here, we show how the functional groups of the challenging anticancer drug prednisolone influence their interactions with the nanoMOFs and their release in various media. Molecular modeling enabled predicting the strength of interactions between prednisolone-bearing or not phosphate or sulfate moieties (PP and PS, respectively) and the oxo-trimer of MIL-100(Fe) as well as understanding the pore filling of MIL-100(Fe). Noticeably, PP showed the strongest interactions (drug loading up to 30 wt %, encapsulation efficiency > 98%) and slowed down the nanoMOFs' degradation in simulated body fluid. This drug was shown to bind to the iron Lewis acid sites and was not displaced by other ions in the suspension media. On the contrary, PS was entrapped with lower efficiencies and was easily displaced by phosphates in the release media. Noticeably, the nanoMOFs maintained their size and faceted structures after drug loading and even after degradation in blood or serum after losing almost the totality of the constitutive trimesate ligands. Scanning electron microscopy with high annular dark field (STEM-HAADF) in conjunction with X-Ray energy-dispersive spectrometry (XEDS) was a powerful tool enabling the unraveling of the main elements to gain insights on the MOF structural evolution after drug loading and/or upon degradation.
Collapse
|
9
|
Marassi V, Zanoni I, Ortelli S, Giordani S, Reschiglian P, Roda B, Zattoni A, Ravagli C, Cappiello L, Baldi G, Costa AL, Blosi M. Native Study of the Behaviour of Magnetite Nanoparticles for Hyperthermia Treatment during the Initial Moments of Intravenous Administration. Pharmaceutics 2022; 14:2810. [PMID: 36559302 PMCID: PMC9782478 DOI: 10.3390/pharmaceutics14122810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Magnetic nanoparticles (MNPs) present outstanding properties making them suitable as therapeutic agents for hyperthermia treatments. Since the main safety concerns of MNPs are represented by their inherent instability in a biological medium, strategies to both achieve long-term stability and monitor hazardous MNP degradation are needed. We combined a dynamic approach relying on flow field flow fractionation (FFF)-multidetection with conventional techniques to explore frame-by-frame changes of MNPs injected in simulated biological medium, hypothesize the interaction mechanism they are subject to when surrounded by a saline, protein-rich environment, and understand their behaviour at the most critical point of intravenous administration. In the first moments of MNPs administration in the patient, MNPs change their surrounding from a favorable to an unfavorable medium, i.e., a complex biological fluid such as blood; the particles evolve from a synthetic identity to a biological identity, a transition that needs to be carefully monitored. The dynamic approach presented herein represents an optimal alternative to conventional batch techniques that can monitor only size, shape, surface charge, and aggregation phenomena as an averaged information, given that they cannot resolve different populations present in the sample and cannot give accurate information about the evolution or temporary instability of MNPs. The designed FFF method equipped with a multidetection system enabled the separation of the particle populations providing selective information on their morphological evolution and on nanoparticle-proteins interaction in the very first steps of infusion. Results showed that in a dynamic biological setting and following interaction with serum albumin, PP-MNPs retain their colloidal properties, supporting their safety profile for intravenous administration.
Collapse
Affiliation(s)
- Valentina Marassi
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Stem Sel srl, University of Bologna, 40129 Bologna, Italy
| | - Ilaria Zanoni
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics (Former ISTEC), Via Granarolo 64, 48018 Faenza, Italy
| | - Simona Ortelli
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics (Former ISTEC), Via Granarolo 64, 48018 Faenza, Italy
| | - Stefano Giordani
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Stem Sel srl, University of Bologna, 40129 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Stem Sel srl, University of Bologna, 40129 Bologna, Italy
| | - Andrea Zattoni
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Stem Sel srl, University of Bologna, 40129 Bologna, Italy
| | - Costanza Ravagli
- Ce.Ri.Col, Colorobbia Consulting S.R.L., 50059 Sovigliana Vinci, Italy
| | - Laura Cappiello
- Ce.Ri.Col, Colorobbia Consulting S.R.L., 50059 Sovigliana Vinci, Italy
| | - Giovanni Baldi
- Ce.Ri.Col, Colorobbia Consulting S.R.L., 50059 Sovigliana Vinci, Italy
| | - Anna L. Costa
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics (Former ISTEC), Via Granarolo 64, 48018 Faenza, Italy
| | - Magda Blosi
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics (Former ISTEC), Via Granarolo 64, 48018 Faenza, Italy
| |
Collapse
|
10
|
Zappi A, Marassi V, Kassouf N, Giordani S, Pasqualucci G, Garbini D, Roda B, Zattoni A, Reschiglian P, Melucci D. A Green Analytical Method Combined with Chemometrics for Traceability of Tomato Sauce Based on Colloidal and Volatile Fingerprinting. Molecules 2022; 27:molecules27175507. [PMID: 36080273 PMCID: PMC9457838 DOI: 10.3390/molecules27175507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Tomato sauce is a world famous food product. Despite standards regulating the production of tomato derivatives, the market suffers frpm fraud such as product adulteration, origin mislabelling and counterfeiting. Methods suitable to discriminate the geographical origin of food samples and identify counterfeits are required. Chemometric approaches offer valuable information: data on tomato sauce is usually obtained through chromatography (HPLC and GC) coupled to mass spectrometry, which requires chemical pretreatment and the use of organic solvents. In this paper, a faster, cheaper, and greener analytical procedure has been developed for the analysis of volatile organic compounds (VOCs) and the colloidal fraction via multivariate statistical analysis. Tomato sauce VOCs were analysed by GC coupled to flame ionisation (GC-FID) and to ion mobility spectrometry (GC-IMS). Instead of using HPLC, the colloidal fraction was analysed by asymmetric flow field-fractionation (AF4), which was applied to this kind of sample for the first time. The GC and AF4 data showed promising perspectives in food-quality control: the AF4 method yielded comparable or better results than GC-IMS and offered complementary information. The ability to work in saline conditions with easy pretreatment and no chemical waste is a significant advantage compared to environmentally heavy techniques. The method presented here should therefore be taken into consideration when designing chemometric approaches which encompass a large number of samples.
Collapse
Affiliation(s)
- Alessandro Zappi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Valentina Marassi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
- byFlow srl, 40129 Bologna, Italy
- Correspondence:
| | - Nicholas Kassouf
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Stefano Giordani
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Gaia Pasqualucci
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Davide Garbini
- COOP ITALIA Soc. Cooperativa, Casalecchio di Reno, 40033 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
- byFlow srl, 40129 Bologna, Italy
| | - Andrea Zattoni
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
- byFlow srl, 40129 Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
- byFlow srl, 40129 Bologna, Italy
| | - Dora Melucci
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
- CIRI Agrifood, University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
11
|
Application of Af4-Multidetection to Liraglutide in Its Formulation: Preserving and Representing Native Aggregation. Molecules 2022; 27:molecules27175485. [PMID: 36080254 PMCID: PMC9457993 DOI: 10.3390/molecules27175485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Aggregation is among the most critical parameters affecting the pharmacological and safety profile of peptide Active Pharmaceutical Ingredients (APIs). For this reason, it is of utmost importance to define the exact aggregation state of peptide drugs, particularly when the API is marketed as a ready-to-use solution. Consequently, appropriate non-destructive techniques able to replicate the peptide environment must be employed. In our work, we exploited Asymmetrical Flow Field-Flow Fractionation (AF4), connected to UV, dRI, fluorescence, and MALS detectors, to fully characterize the aggregation state of Liraglutide, a peptide API used for the treatment of diabetes type 2 and chronic obesity. In previous studies, Liraglutide was hypothesized to assemble into hexa-octamers in phosphate buffer, but no information on its behavior in the formulation medium was provided up to now. The method used allowed researchers to work using formulation as the mobile phase with excellent recoveries and LoQ/LoD, discerning between stable and degraded samples, and detecting, when present, aggregates up to 108 Da. The native state of Liraglutide was assessed and found to be an association into pentamers, with a non-spherical conformation. Combined to benchmark analyses, the sameness study was complete and descriptive, also giving insight on the aggregation process and covalent/non-covalent aggregate types.
Collapse
|
12
|
Tracking Heme-Protein Interactions in Healthy and Pathological Human Serum in Native Conditions by Miniaturized FFF-Multidetection. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136762] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The interaction of heme with blood serum proteins plays an important role in many physiological and pathological processes involving enzyme activity, gene expression and cell proliferation. The mechanisms underlying these interactions are; however, not yet fully understood. New analytical methods able to investigate protein-heme binding in native, biologically representative conditions are thus required. In this work, we present a method based on miniaturized, hollow-fiber flow field-flow fractionation with multiple spectrophotometric and light-scattering detection for size separation of high-abundance serum proteins and selective detection of heme-bound subpopulations. Heme is found to mainly interact with serum albumin, whereas a low amount also binds to other proteins such as IgM. The ability to bind heme in physiological conditions is also investigated for individual serum proteins. IgG is found unable to bind heme at clinically relevant concentrations. The proposed method allows separation, quantitation, and mass/size characterization of serum high-abundance proteins, providing information of heme-protein complex stability and preferred heme-clearing pathways. The same approach could be in perspective extended to the investigation of specific heme-antibody binding, and to further studies involving other molecules of pharmaceutical/clinical interest.
Collapse
|
13
|
Synthesis Monitoring, Characterization and Cleanup of Ag-Polydopamine Nanoparticles Used as Antibacterial Agents with Field-Flow Fractionation. Antibiotics (Basel) 2022; 11:antibiotics11030358. [PMID: 35326821 PMCID: PMC8944547 DOI: 10.3390/antibiotics11030358] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Advances in nanotechnology have opened up new horizons in nanomedicine through the synthesis of new composite nanomaterials able to tackle the growing drug resistance in bacterial strains. Among these, nanosilver antimicrobials sow promise for use in the treatment of bacterial infections. The use of polydopamine (PDA) as a biocompatible carrier for nanosilver is appealing; however, the synthesis and functionalization steps used to obtain Ag-PDA nanoparticles (NPs) are complex and require time-consuming cleanup processes. Post-synthesis treatment can also hinder the stability and applicability of the material, and dry, offline characterization is time-consuming and unrepresentative of real conditions. The optimization of Ag-PDA preparation and purification together with well-defined characterization are fundamental goals for the safe development of these new nanomaterials. In this paper, we show the use of field-flow fractionation with multi-angle light scattering and spectrophotometric detection to improve the synthesis and quality control of the production of Ag-PDA NPs. An ad hoc method was able to monitor particle growth in a TLC-like fashion; characterize the species obtained; and provide purified, isolated Ag-PDA nanoparticles, which proved to be biologically active as antibacterial agents, while achieving a short analysis time and being based on the use of green, cost-effective carriers such as water.
Collapse
|
14
|
Marassi V, Mattarozzi M, Toma L, Giordani S, Ronda L, Roda B, Zattoni A, Reschiglian P, Careri M. FFF-based high-throughput sequence shortlisting to support the development of aptamer-based analytical strategies. Anal Bioanal Chem 2022; 414:5519-5527. [PMID: 35182166 PMCID: PMC9242963 DOI: 10.1007/s00216-022-03971-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/13/2023]
Abstract
Aptamers are biomimetic receptors that are increasingly exploited for the development of optical and electrochemical aptasensors. They are selected in vitro by the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) procedure, but although they are promising recognition elements, for their reliable applicability for analytical purposes, one cannot ignore sample components that cause matrix effects. This particularly applies when different SELEX-selected aptamers and related truncated sequences are available for a certain target, and the choice of the aptamer should be driven by the specific downstream application. In this context, the present work aimed at investigating the potentialities of asymmetrical flow field-flow fractionation (AF4) with UV detection for the development of a screening method of a large number of anti-lysozyme aptamers towards lysozyme, including randomized sequences and an interfering agent (serum albumin). The possibility to work in native conditions and selectively monitor the evolution of untagged aptamer signal as a result of aptamer-protein binding makes the devised method effective as a strategy for shortlisting the most promising aptamers both in terms of affinity and in terms of selectivity, to support subsequent development of aptamer-based analytical devices.
Collapse
Affiliation(s)
- Valentina Marassi
- Department of Chemistry, University of Bologna, Via Selmi 2, Bologna, Italy. .,byFlow Srl, Bologna, Italy.
| | - Monica Mattarozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy.
| | - Lorenzo Toma
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Stefano Giordani
- Department of Chemistry, University of Bologna, Via Selmi 2, Bologna, Italy
| | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, Parco Area delle Scienze, 23/A, 43124, Parma, Italy.,Institute of Biophysics, CNR, 56124, Pisa, Italy
| | - Barbara Roda
- Department of Chemistry, University of Bologna, Via Selmi 2, Bologna, Italy.,byFlow Srl, Bologna, Italy
| | - Andrea Zattoni
- Department of Chemistry, University of Bologna, Via Selmi 2, Bologna, Italy.,byFlow Srl, Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry, University of Bologna, Via Selmi 2, Bologna, Italy.,byFlow Srl, Bologna, Italy
| | - Maria Careri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
15
|
Ventouri IK, Loeber S, Somsen GW, Schoenmakers PJ, Astefanei A. Field-flow fractionation for molecular-interaction studies of labile and complex systems: A critical review. Anal Chim Acta 2022; 1193:339396. [DOI: 10.1016/j.aca.2021.339396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/11/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022]
|
16
|
Plavchak CL, Smith WC, Bria CRM, Williams SKR. New Advances and Applications in Field-Flow Fractionation. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:257-279. [PMID: 33770457 DOI: 10.1146/annurev-anchem-091520-052742] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Field-flow fractionation (FFF) is a family of techniques that was created especially for separating and characterizing macromolecules, nanoparticles, and micrometer-sized analytes. It is coming of age as new nanomaterials, polymers, composites, and biohybrids with remarkable properties are introduced and new analytical challenges arise due to synthesis heterogeneities and the motivation to correlate analyte properties with observed performance. Appreciation of the complexity of biological, pharmaceutical, and food systems and the need to monitor multiple components across many size scales have also contributed to FFF's growth. This review highlights recent advances in FFF capabilities, instrumentation, and applications that feature the unique characteristics of different FFF techniques in determining a variety of information, such as averages and distributions in size, composition, shape, architecture, and microstructure and in investigating transformations and function.
Collapse
Affiliation(s)
- Christine L Plavchak
- Laboratory for Advanced Separation Technologies, Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA;
| | - William C Smith
- Laboratory for Advanced Separation Technologies, Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA;
| | | | - S Kim Ratanathanawongs Williams
- Laboratory for Advanced Separation Technologies, Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA;
| |
Collapse
|
17
|
Eleamen Oliveira E, Barendji M, Vauthier C. Understanding Nanomedicine Size and Biological Response Dependency: What Is the Relevance of Previous Relationships Established on Only Batch-Mode DLS-Measured Sizes? Pharm Res 2020; 37:161. [DOI: 10.1007/s11095-020-02869-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
|
18
|
Wang S, Xu D, Ma L, Qiu J, Wang X, Dong Q, Zhang Q, Pan J, Liu Q. Ultrathin ZIF-67 nanosheets as a colorimetric biosensing platform for peroxidase-like catalysis. Anal Bioanal Chem 2018; 410:7145-7152. [DOI: 10.1007/s00216-018-1317-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/29/2018] [Accepted: 08/09/2018] [Indexed: 01/08/2023]
|