1
|
Qian X, Xia L, Ji B, Huang Y, Xia Z. Chiral Separation Enhancement in Capillary Electrophoresis by Electrophoretic Mobility Differences without Electroosmosis. Anal Chem 2025. [PMID: 40358127 DOI: 10.1021/acs.analchem.5c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
To improve separation efficiency and address the adverse effects of electro-osmosis, a coated capillary was used to shield the electroosmosis. A nanoflow pump was used to control the flow of the electrophoretic medium, thereby extending the time of the electrophoretic action. Furthermore, by using a coated capillary that is only 10 cm long as the separation column, the electric field strength could reach as high as 250 V/mm. These strategies strengthened the interaction between the enantiomers and the chiral selector, thus enhancing the resolution of enantiomers. As a result, complete separation of the amlodipine enantiomers could be achieved by halting the electrophoretic medium. Further extending the duration of flow stoppage can increase the resolution several-fold. The method established in this study exhibits excellent accuracy and precision. Despite experiencing a long period of flow stoppage, the relative standard deviations of both migration time and resolution remain less than 2%. This method not only remarkably enhanced the resolution of amlodipine enantiomers but also demonstrated broad applicability in separating other chiral enantiomers, particularly for those substances that are difficult to separate using conventional capillary electrophoresis.
Collapse
Affiliation(s)
- Xin Qian
- Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Lan Xia
- Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Baian Ji
- Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yike Huang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zhining Xia
- Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
2
|
Zhu Q, Xu X, Xu J, Ma X. Cyclodextrins-based deep eutectic supramolecules as chiral selectors for enhanced enantioseparation in capillary electrophoresis. J Chromatogr A 2025; 1740:465599. [PMID: 39706136 DOI: 10.1016/j.chroma.2024.465599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
The joint use of deep eutectic solvents (DESs) and cyclodextrins (CDs) has been well demonstrated to have a promoting effect on chiral separation in capillary electrophoresis (CE). These studies focused on constructing synergistic separation systems by adding DESs and CDs to the buffer solution respectively. In this work, for the first time, β-cyclodextrin (β-CD), methyl-β-cyclodextrin (M-β-CD), and hydroxypropyl-β-cyclodextrin (HP-β-CD) were directly used as precursors to prepare several CDs-based deep eutectic supramolecules (DESUPs) by assembling with two organic acids (L-lactic acid and L-malic acid) in different ratios through a simple two-phase mixing. These CDs-based DESUPs were further employed as chiral selectors in CE to separate six racemic chiral drugs. Compared with the unmodified CDs systems, the separations of model drugs in the DESUPs separation systems were significantly improved. We calculated the binding constants of HP-β-CD with enantiomers before and after preparation as DESUPs, and investigated the chiral recognition mechanism of DESUPs chiral selectors using UV spectroscopy and nuclear magnetic resonance method. The enhanced enantioselectivity of CDs-based DESUPs was attributed to several factors. This study has opened up a new path for the exploration of high-performance chiral materials.
Collapse
Affiliation(s)
- Qiuyan Zhu
- Department of Pharmacy, Affiliated Hospital of Nantong University, No.20 Xisi Road, Nantong, Jiangsu 226001, PR China
| | - Xin Xu
- Department of Pharmacy, Affiliated Hospital of Nantong University, No.20 Xisi Road, Nantong, Jiangsu 226001, PR China
| | - Jinqiu Xu
- Department of Pharmacy, Affiliated Hospital of Nantong University, No.20 Xisi Road, Nantong, Jiangsu 226001, PR China
| | - Xiaofei Ma
- Department of Pharmacy, Affiliated Hospital of Nantong University, No.20 Xisi Road, Nantong, Jiangsu 226001, PR China.
| |
Collapse
|
3
|
Yun X, Wang L, Wang J. Enantioseparation of six profenoid drugs by capillary electrophoresis with bovine serum albumin-modified gold nanoparticles as quasi-stationary phases. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124228. [PMID: 38959706 DOI: 10.1016/j.jchromb.2024.124228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Profenoid drugs are a kind of common non-steroidal anti-inflammatory drugs and their chiral enantiomers often have huge differences in pharmacological activities. In this work, a novel chiral separation system by capillary electrophoresis (CE) was constructed using gold nanoparticles (AuNPs) functionalized with bovine serum albumin (BSA) as a quasi-stationary phase (QSP), and the enantioseparation of six profenoid drugs was efficiently accomplished. Under optimal chromatographic conditions, the enantioseparation performance of the AuNP@BSA-based chiral separation system was greatly improved compared with that of free BSA (Resolutions, Ibuprofen: 0.89 → 8.15; Ketoprofen: 0 → 10.02; Flurbiprofen:0.56 → 9.83; Indoprofen: 0.88 → 13.83; Fenoprofen: 0 → 15.21; Pyranoprofen: 0.59 → 5.34). Such high Rs are exciting and satisfying and it is in the leading position in the reported papers. Finally, through molecular docking, it was also found that the difference in binding energy between BSA and enantiomers was closely related to the resolutions of CE systems, revealing the chiral selection mechanism of BSA. This work significantly improves the CE chiral separation performance through a simple strategy, providing a simple and efficient idea for the chiral separation method.
Collapse
Affiliation(s)
- Xiao Yun
- Shanxi Eye Hospital, Taiyuan 030002, PR China
| | - Lele Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, PR China; Key Laboratory of Forensic Medicine in Shanxi Province, Jinzhong 030600, Shanxi, PR China; Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, Shanxi, PR China
| | - Jing Wang
- Shanxi Eye Hospital, Taiyuan 030002, PR China.
| |
Collapse
|
4
|
Zhang L, Xiao J, Xu X, Li K, Li D, Li J. Functionalized Chiral Materials for Use in Chiral Sensors. Crit Rev Anal Chem 2024:1-20. [PMID: 39012839 DOI: 10.1080/10408347.2024.2376233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Chirality represents a fundamental attribute within living systems and is a pervasive phenomenon in the natural world. The identification and analysis of chiral materials within natural environments and biological systems hold paramount importance in clinical, chemical, and biological sciences. Within chiral analysis, there is a burgeoning focus on developing chiral sensors exhibiting exceptional selectivity, sensitivity, and stability, marking it as a forefront area of research. In the past decade (2013-2023), approximately 1990 papers concerning the application of various chiral materials in chiral sensors have been published. Biological materials and nanomaterials have important applications in the development of chiral sensors, which accounting for 26.67% and 45.24% of the material-related applications in these sensors, respectively; moreover, the development of chiral nanomaterials is closely related to the development of portable and stable chiral sensors. Natural chiral materials, utilized as selective recognition units, are combined with carriers characterized by good physical and chemical properties through functionalization to form various functional chiral materials, which improve the recognition efficiency of chiral sensors. In this article, from the perspective of biological materials, polymer materials, nanomaterials, and other functional chiral materials, the applications of chiral sensors are summarized and the research prospects of chiral sensors are discussed.
Collapse
Affiliation(s)
- Lianming Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jiaxi Xiao
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Xuemei Xu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Kaiting Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Dan Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
5
|
Zhang C, Ma X, Gu Y. Amino acids-based deep eutectic solvents as additives for improved enantioseparation in capillary electrophoresis. J Sep Sci 2024; 47:e2400122. [PMID: 38772731 DOI: 10.1002/jssc.202400122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/23/2024]
Abstract
In this study, several amino acids deep eutectic solvents were prepared using L-valine and L-leucine as hydrogen bond acceptors, and L-lactic acid and glycerol as hydrogen bond donors. These amino acids' deep eutectic solvents were first used as buffer additives to construct several synergistic systems along with maltodextrin in capillary electrophoresis for the enantioseparations of four racemic drugs. Compared with single maltodextrin system, the separations of model drugs in the synergistic systems were significantly improved. Some key parameters affecting chiral separation such as maltodextrin concentration, deep eutectic solvent concentration, buffer pH, and applied voltage were optimized. In order to further understand the specific mechanism of the amino acids deep eutectic solvents in improving chiral separation, we first calculated the binding constants of maltodextrin with enantiomers using the capillary electrophoresis method in the two separation modes, respectively. We also used molecular simulation to calculate the binding free energy of maltodextrin with enantiomers. It is the first time that amino acids deep eutectic solvents were used for enantioseparation in capillary electrophoresis, which will greatly promote the development of deep eutectic solvents in the field of chiral separation.
Collapse
Affiliation(s)
- Chengchen Zhang
- Department of Geriatrics, Nantong First People's Hospital and Nantong Hospital of Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Nantong, P. R. China
| | - Xiaofei Ma
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, P. R. China
| | - Yan Gu
- Department of Geriatrics, Nantong First People's Hospital and Nantong Hospital of Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Nantong, P. R. China
| |
Collapse
|
6
|
Zhang L, Gao J, Luo K, Li J, Zeng Y. Protein synergistic action-based development and application of a molecularly imprinted chiral sensor for highly stereoselective recognition of S-fluoxetine. Biosens Bioelectron 2023; 223:115027. [PMID: 36580815 DOI: 10.1016/j.bios.2022.115027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
In order to improve the recognition performance of MIPs sensors in chiral drug enantiomers, a novel a highly selective molecular recognition method based on protein-assisted immobilization of chiral molecular conformation was developed. S-fluoxetine (S-FLX) as the target chiral molecule, human serum albumin (HSA), which has a high affinity and strong interactions with S-FLX, was screened from 11 proteins to serve as an auxiliary recognition unit for the fixation of chiral conformation. By incorporating HSA into the preparation of molecularly imprinted polymers (MIPs), the natural chirality and high stereoselectivity of the protein were leveraged for the induction and fixation of the stereo conformation of S-FLX, refinement of internal structures of the imprinted cavities. The sensor exhibited excellent chiral recognition ability and high detection sensitivity. The changes of probe signal intensity of the MIPs/HSA sensor were positively correlated with the logarithmic concentration of S-FLX in the range of 1.0 × 10-16-1.0 × 10-11 mol L-1, where a detection limit of 6.43 × 10-17 mol L-1 was achieved (DL = 3δb/K). The selectivity of MIPs/HSA sensor in recognizing S-FLX was increased by 18.5 times and the sensitivity was increased by 2.6 times after the incorporation of HSA. The developed sensor was successfully used for the analysis of S-FLX in fluoxetine hydrochloride capsules.
Collapse
Affiliation(s)
- Lianming Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China; College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610000, China.
| | - Jingxia Gao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Kui Luo
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Jianping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Ying Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610000, China
| |
Collapse
|
7
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
8
|
Recent Advances on Chiral Mobile Phase Additives: A Critical Review. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Gao Z, Zhong W. Recent (2018-2020) development in capillary electrophoresis. Anal Bioanal Chem 2022; 414:115-130. [PMID: 33754195 PMCID: PMC7984737 DOI: 10.1007/s00216-021-03290-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
Development of new capillary electrophoresis (CE) methodology and instrumentation, as well as application of CE to solve new problems, remains an active research area because of the attractive features of CE compared to other separation techniques. In this review, we focus on the representative works about sample preconcentration, separation media or capillary coating development, detector construction, and multidimensional separation in CE, which are judiciously selected from the papers published in 2018-2020.
Collapse
Affiliation(s)
- Ziting Gao
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
10
|
El Deeb S, Silva CF, Junior CSN, Hanafi RS, Borges KB. Chiral Capillary Electrokinetic Chromatography: Principle and Applications, Detection and Identification, Design of Experiment, and Exploration of Chiral Recognition Using Molecular Modeling. Molecules 2021; 26:2841. [PMID: 34064769 PMCID: PMC8151978 DOI: 10.3390/molecules26102841] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
This work reviews the literature of chiral capillary electrokinetic chromatography from January 2016 to March 2021. This is done to explore the state-of-the-art approach and recent developments carried out in this field. The separation principle of the technique is described and supported with simple graphical illustrations, showing migration under normal and reversed polarity modes of the separation voltage. The most relevant applications of the technique for enantioseparation of drugs and other enantiomeric molecules in different fields using chiral selectors in single, dual, or multiple systems are highlighted. Measures to improve the detection sensitivity of chiral capillary electrokinetic chromatography with UV detector are discussed, and the alternative aspects are explored, besides special emphases to hyphenation compatibility to mass spectrometry. Partial filling and counter migration techniques are described. Indirect identification of the separated enantiomers and the determination of enantiomeric migration order are mentioned. The application of Quality by Design principles to facilitate method development, optimization, and validation is presented. The elucidation and explanation of chiral recognition in molecular bases are discussed with special focus on the role of molecular modeling.
Collapse
Affiliation(s)
- Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Camilla Fonseca Silva
- Departamento de Ciências Naturais, Campus Dom Bosco, Universidade Federal de São João del-Rei (UFSJ), Praça Dom Helvécio 74, Fábricas, São João del-Rei 36301-160, Minas Gerais, Brazil; (C.F.S.); (C.S.N.J.); (K.B.B.)
| | - Clebio Soares Nascimento Junior
- Departamento de Ciências Naturais, Campus Dom Bosco, Universidade Federal de São João del-Rei (UFSJ), Praça Dom Helvécio 74, Fábricas, São João del-Rei 36301-160, Minas Gerais, Brazil; (C.F.S.); (C.S.N.J.); (K.B.B.)
| | - Rasha Sayed Hanafi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| | - Keyller Bastos Borges
- Departamento de Ciências Naturais, Campus Dom Bosco, Universidade Federal de São João del-Rei (UFSJ), Praça Dom Helvécio 74, Fábricas, São João del-Rei 36301-160, Minas Gerais, Brazil; (C.F.S.); (C.S.N.J.); (K.B.B.)
| |
Collapse
|
11
|
Peluso P, Chankvetadze B. Native and substituted cyclodextrins as chiral selectors for capillary electrophoresis enantioseparations: Structures, features, application, and molecular modeling. Electrophoresis 2021; 42:1676-1708. [PMID: 33956995 DOI: 10.1002/elps.202100053] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
CDs are cyclic oligosaccharides consisting of α-d-glucopyranosyl units linked through 1,4-linkages, which are obtained from enzymatic degradation of starch. The coexistence of hydrophilic and hydrophobic regions in the same structure makes these macrocycles extremely versatile as complexing host with application in food, cosmetics, environmental, agriculture, textile, pharmaceutical, and chemical industries. Due to their inherent chirality, CDs have been also successfully used as chiral selectors in enantioseparation science, in particular, for CE enantioseparations. In the last decades, multidisciplinary approaches based on CE, NMR spectroscopy, X-ray crystallography, microcalorimetry, and molecular modeling have shed light on some aspects of recognition mechanisms underlying enantiodiscrimination. With the ever growing improvement of computer facilities, hardware and software, computational techniques have become a useful tool to model at molecular level the dynamics of diastereomeric associate formation to sample low-energy conformations, the binding energies between the enantiomer and the CD, and to profile noncovalent interactions contributing to the stability of CD/enantiomer association. On this basis, the aim of this review is to provide the reader with a critical overview on the applications of CDs in CE. In particular, the contemporary theory of the electrophoretic technique and the main structural features of CDs are described, with a specific focus on techniques, methods, and approaches to model CE enantioseparations promoted by native and substituted CDs. A systematic compilation of all published literature has not been attempted.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Li Punti, Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Tbilisi, Georgia
| |
Collapse
|
12
|
Krait S, Konjaria ML, Scriba GKE. Advances of capillary electrophoresis enantioseparations in pharmaceutical analysis (2017-2020). Electrophoresis 2021; 42:1709-1725. [PMID: 33433919 DOI: 10.1002/elps.202000359] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Capillary electrophoresis is a powerful technique for the analysis of polar chiral compounds and has been widely accepted for analytical enantioseparations of drug compounds in pharmaceuticals and biological media. In addition, many mechanistic studies have been conducted in an attempt to rationalize enantioseparations in combination with spectroscopic and computational techniques. The present review will focus on recent examples of mechanistic aspects and summarize recent applications of stereoselective pharmaceutical and biomedical analysis published between January 2017 and November 2020. Various separation modes including electrokinetic chromatography in combination with several detection modes including laser-induced fluorescence, mass spectrometry and contactless conductivity detection will be discussed. A general trend also observed in other analytical techniques is the application of quality by design principles in method development and optimization.
Collapse
Affiliation(s)
- Sulaiman Krait
- Department of Pharmaceutical/Medicinal Chemistry, Philosophenweg 14, Friedrich Schiller University, Jena, Germany
| | - Mari-Luiza Konjaria
- Department of Pharmaceutical/Medicinal Chemistry, Philosophenweg 14, Friedrich Schiller University, Jena, Germany
| | - Gerhard K E Scriba
- Department of Pharmaceutical/Medicinal Chemistry, Philosophenweg 14, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
13
|
Negatively charged cyclodextrins: Synthesis and applications in chiral analysis-A review. Carbohydr Polym 2020; 256:117517. [PMID: 33483038 DOI: 10.1016/j.carbpol.2020.117517] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
The negatively charged cyclodextrins (CDs) play an important role in chiral analysis due to the additional electrostatic effect beyond the host-guest inclusion, especially in enantioanalysis of positively charged and electrically neutral analytes. This review presents recent advances in application of anionic CDs for enantioanalysis during the past five years. Firstly, the synthesis approaches of random substitution and single isomers of anionic CDs are briefly discussed. The main part focuses on the chiral analysis using anionic CDs in various analytical techniques, including capillary electrophoresis, high-performance liquid chromatography, capillary electrochromatography, counter current chromatography, nuclear magnetic resonance, etc. Particular attention is given to the capillary electrophoresis application since charged CDs could be used as a carrier of enantiomers by virtue of their self-mobility and offer an easy adjustment of the enantiomer migration order. Finally, future opportunities are also discussed in the conclusion of this review.
Collapse
|
14
|
Zhang Z, Su H, Wang X, Tang L, Hu J, Yu W, Han F. Cloning and characterization of a novel chondroitinase ABC categorized into a new subfamily of polysaccharide lyase family 8. Int J Biol Macromol 2020; 164:3762-3770. [PMID: 32871123 DOI: 10.1016/j.ijbiomac.2020.08.210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022]
Abstract
Chondroitinases degrade chondroitin sulfate (CS) into oligosaccharides, of which the biological activities have vital roles in various fields. Some chondroitinases in polysaccharide lyase family 8 (PL8) have been classified into four subfamilies (PL8_1, PL8_2, PL8_3, and PL8_4) based on their sequence similarity and substrate specificities. In this study, a gene, vpa_0049, was cloned from marine bacterium Vibrio sp. QY108. The encoded protein, Vpa_0049, did not belong to the four existing subfamilies in PL8 based on phylogenetic analysis. Vpa_0049 could degrade various glycosaminoglycans (CS-A, CS-B, CS-C, CS-D, and HA) into unsaturated disaccharides in an endolytic manner, which was different from PL8 lyases of four existing subfamilies. The maximum activity of Vpa_0049 on different glycosaminoglycan substrates appeared at 30-37 °C and pH 7.0-8.0 in the presence of NaCl. Vpa_0049 showed approximately 50% of maximum activity towards CS-B and HA at 0 °C. It was stable in alkaline conditions (pH 8.0-10.6) and 0-30 °C. Our study provides a new broad-substrate chondroitinase and presents an in-depth understanding of PL8.
Collapse
Affiliation(s)
- Zhelun Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, 5 Yushan Road, Qingdao 266003, PR China; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, 5 Yushan Road, Qingdao 266003, PR China; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China
| | - Hang Su
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, 5 Yushan Road, Qingdao 266003, PR China; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, 5 Yushan Road, Qingdao 266003, PR China; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China
| | - Xiaoyi Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, 5 Yushan Road, Qingdao 266003, PR China; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, 5 Yushan Road, Qingdao 266003, PR China; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China
| | - Luyao Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, 5 Yushan Road, Qingdao 266003, PR China; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, 5 Yushan Road, Qingdao 266003, PR China; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China
| | - Jingyang Hu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, 5 Yushan Road, Qingdao 266003, PR China; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, 5 Yushan Road, Qingdao 266003, PR China; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, 5 Yushan Road, Qingdao 266003, PR China; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, 5 Yushan Road, Qingdao 266003, PR China; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China
| | - Feng Han
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, 5 Yushan Road, Qingdao 266003, PR China; Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, 5 Yushan Road, Qingdao 266003, PR China; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China..
| |
Collapse
|
15
|
Bernardo-Bermejo S, Sánchez-López E, Castro-Puyana M, Marina ML. Chiral capillary electrophoresis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115807] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Gu L, Chen Q, Li X, Meng C, Liu H. Enantioseparation processes and mechanisms in functionalized graphene membranes: Facilitated or retarded transport? Chirality 2020; 32:842-853. [PMID: 32073697 DOI: 10.1002/chir.23190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/24/2022]
Abstract
Up to date, functionalized graphene-based membranes have exhibited a promising potential in the enantioseparation. However, since precisely controlling the interlayer distance of two-dimensional materials is a great challenge in practical experiments, the transport mechanism of chiral guests in such membranes, together with various critical parameters that play a controlling role in the transport behaviors of the preferentially binding enantiomer in narrow channels, remains to be explored. The molecular dynamics (MD) simulation, especially using the steered MD (SMD) method, might be an alternative way to investigate the enantioseparation processes and mechanisms of layered membranes with different interlayer distances. In this work, D-alanine modified graphene sheets with different interlayer distances were built as membrane models, whereas D- and L-phenylalanine were selected as chiral probes. The effect of the interlayer distance and the applied external force on the enantioseparation performance was examined. Results show that such two parameters exert a significant influence on the enantioseparation performance: (a) Increasing the interlayer distance would result in a conversion from the retarded to the facilitated mechanism at a proper external force (medium); (b) both the large and small driving forces would only lead to the appearance of the retarded transport for the preferential enantiomer, unlike the moderate force; (c) the interaction energy of L-phenylalanine with D-isomer selector decreases with the rising interlayer distances studied in this work, regardless of what the external force is. Our findings can provide guidance on the practical applications in the membrane-based chiral separation.
Collapse
Affiliation(s)
- Liangning Gu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Qibin Chen
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaoxiao Li
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Chenchen Meng
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
17
|
Kristoff CJ, Bwanali L, Veltri LM, Gautam GP, Rutto PK, Newton EO, Holland LA. Challenging Bioanalyses with Capillary Electrophoresis. Anal Chem 2020; 92:49-66. [PMID: 31698907 PMCID: PMC6995690 DOI: 10.1021/acs.analchem.9b04718] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Courtney J. Kristoff
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lloyd Bwanali
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lindsay M. Veltri
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Gayatri P. Gautam
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Patrick K. Rutto
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Ebenezer O. Newton
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lisa A. Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
18
|
Gu L, Chen Q, Li X, Meng C, Liu H. Amino acid modified carbon nanotubes with optimal pore size for chiral separation. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1630737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Liangning Gu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Qibin Chen
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Xiaoxiao Li
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Chenchen Meng
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| |
Collapse
|
19
|
Huang Z, Du Y, Li X, Sun X, Feng Z, Ma X. Enantioseparation of basic drugs by capillary electrochromatography using a stationary phase of transfersomes. SEPARATION SCIENCE PLUS 2019. [DOI: 10.1002/sscp.201900013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zhifeng Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing P. R. China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing P. R. China
| | - Xiaoqi Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing P. R. China
| | - Xiaodong Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing P. R. China
| | - Zijie Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing P. R. China
| | - Xiaofei Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing P. R. China
| |
Collapse
|
20
|
Chiral Selectors in Capillary Electrophoresis: Trends During 2017⁻2018. Molecules 2019; 24:molecules24061135. [PMID: 30901973 PMCID: PMC6471358 DOI: 10.3390/molecules24061135] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023] Open
Abstract
Chiral separation is an important process in the chemical and pharmaceutical industries. From the analytical chemistry perspective, chiral separation is required for assessing the fit-for-purpose and the safety of chemical products. Capillary electrophoresis, in the electrokinetic chromatography mode is an established analytical technique for chiral separations. A water-soluble chiral selector is typically used. This review therefore examines the use of various chiral selectors in electrokinetic chromatography during 2017–2018. The chiral selectors were both low and high (macromolecules) molecular mass molecules as well as molecular aggregates (supramolecules). There were 58 papers found by search in Scopus, indicating continuous and active activity in this research area. The macromolecules were sugar-, amino acid-, and nucleic acid-based polymers. The supramolecules were bile salt micelles. The low molecular mass selectors were mainly ionic liquids and complexes with a central ion. A majority of the papers were on the use or preparation of sugar-based macromolecules, e.g., native or derivatised cyclodextrins. Studies to explain chiral recognition of macromolecular and supramolecular chiral selectors were mainly done by molecular modelling and nuclear magnetic resonance spectroscopy. Demonstrations were predominantly on drug analysis for the separation of racemates.
Collapse
|
21
|
Peluso P, Dessì A, Dallocchio R, Mamane V, Cossu S. Recent studies of docking and molecular dynamics simulation for liquid-phase enantioseparations. Electrophoresis 2019; 40:1881-1896. [PMID: 30710444 DOI: 10.1002/elps.201800493] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/16/2022]
Abstract
Liquid-phase enantioseparations have been fruitfully applied in several fields of science. Various applications along with technical and theoretical advancements contributed to increase significantly the knowledge in this area. Nowadays, chromatographic techniques, in particular HPLC on chiral stationary phase, are considered as mature technologies. In the last thirty years, CE has been also recognized as one of the most versatile technique for analytical scale separation of enantiomers. Despite the huge number of papers published in these fields, understanding mechanistic details of the stereoselective interaction between selector and selectand is still an open issue, in particular for high-molecular weight chiral selectors like polysaccharide derivatives. With the ever growing improvement of computer facilities, hardware and software, computational techniques have become a basic tool in enantioseparation science. In this field, molecular docking and dynamics simulations proved to be extremely adaptable to model and visualize at molecular level the spatial proximity of interacting molecules in order to predict retention, selectivity, enantiomer elution order, and profile noncovalent interaction patterns underlying the recognition process. On this basis, topics and trends in using docking and molecular dynamics as theoretical complement of experimental LC and CE chiral separations are described herein. The basic concepts of these computational strategies and seminal studies performed over time are presented, with a specific focus on literature published between 2015 and November 2018. A systematic compilation of all published literature has not been attempted.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB CNR - Sede Secondaria di Sassari, Sassari, Sardegna, Italy
| | - Alessandro Dessì
- Istituto di Chimica Biomolecolare ICB CNR - Sede Secondaria di Sassari, Sassari, Sardegna, Italy
| | - Roberto Dallocchio
- Istituto di Chimica Biomolecolare ICB CNR - Sede Secondaria di Sassari, Sassari, Sardegna, Italy
| | - Victor Mamane
- Institut de Chimie de Strasbourg, Strasbourg, Alsace, France
| | - Sergio Cossu
- Dipartimento di Scienze Molecolari e Nanosistemi DSMN, Università Ca' Foscari Venezia, Mestre Venezia, Veneto, Italy
| |
Collapse
|
22
|
Study of the enantioselectivity and recognition mechanism of sulfhydryl-compound-functionalized gold nanochannel membranes. Anal Bioanal Chem 2018; 411:471-478. [DOI: 10.1007/s00216-018-1464-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/11/2018] [Accepted: 10/30/2018] [Indexed: 10/27/2022]
|