1
|
Zhang D, Zhang H, Yang Y, Jin Y, Chen Y, Wu C. Advancing tissue analysis: Integrating mass tags with mass spectrometry imaging and immunohistochemistry. J Proteomics 2025; 316:105436. [PMID: 40180154 DOI: 10.1016/j.jprot.2025.105436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/28/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
In biological and biomedical research, it's a crucial task to detect or quantify proteins or proteomes accurately across multiple samples. Immunohistochemistry (IHC) and spatial proteomics based on mass spectrometry imaging (MSI) are used to detect proteins in tissue samples. IHC can detect precisely but has a limited throughput, whereas MSI can simultaneously visualize thousands of specific chemical components but hindered by detailed protein annotation. Thereby, the introduction of mass tags may be adopted to expand the potential for integrating MSI and IHC. By enriching optical information for IHC and enhancing MS signals, mass tags can boost the accuracy of qualitative, localization, and quantitative detection of specific proteins in tissue sections, thereby widening the scope of protein detection and annotation results. Consequently, more comprehensive information regarding biological processes and disease states can be obtained, which aids in understanding complex biological processes and disease mechanisms and provides additional perspectives for clinical diagnosis and treatment. In the current review, we aim to discuss the role of different mass tags (e.g., mass tags based on inorganic molecules and organic molecules) in the combined application of MSI and IHC.
Collapse
Affiliation(s)
- Dandan Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Hairong Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Yuexin Yang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Jin
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yingjie Chen
- Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, Xiamen University, Xiamen 361102, China.
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Zhou F, Liu Y, Xie W, Huang J, Liu F, Kong W, Zhao Z, Peng J. Recent advances and applications of laser-based imaging techniques in food crops and products: a critical review. Crit Rev Food Sci Nutr 2023; 65:896-912. [PMID: 37983168 DOI: 10.1080/10408398.2023.2283579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
To meet the growing demand for food quality and safety, there is a pressing need for fast and visible techniques to monitor the food crop and product production processing, and to understand the chemical changes that occur during these processes. Herein, the fundamental principles, instruments, and characteristics of three major laser-based imaging techniques (LBITs), namely, laser-induced breakdown spectroscopy, Raman spectroscopy, and laser ablation-inductively coupled plasma-mass spectrometry, are introduced. Additionally, the advances, challenges, and prospects for the application of LBITs in food crops and products are discussed. In recent years, LBITs have played a crucial role in mapping primary metabolites, secondary metabolites, nanoparticles, toxic metals, and mineral elements in food crops, as well as visualizing food adulteration, composition changes, pesticide residue, microbial contamination, and elements in food products. However, LBITs are still facing challenges in achieving accurate and sensitive quantification of compositions due to the complex sample matrix and minimal laser sampling quantity. Thus, further research is required to develop comprehensive data processing strategies and signal enhancement methods. With the continued development of imaging methods and equipment, LBITs have the potential to further explore chemical distribution mechanisms and ensure the safety and quality of food crops and products.
Collapse
Affiliation(s)
- Fei Zhou
- College of Standardization, China Jiliang University, Hangzhou, China
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Yifan Liu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Weiyue Xie
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jing Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Wenwen Kong
- College of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou, China
| | - Zhangfeng Zhao
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jiyu Peng
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
3
|
Deng H, Xu H, Zhou J, Tang D, Yang W, Hu M, Zhang Y, Ke Y. Multi-element imaging of urinary stones by LA-ICP-MS with a homogeneous co-precipitation CaC 2O 4-matrix calibration standard. Anal Bioanal Chem 2023; 415:1751-1764. [PMID: 36764938 DOI: 10.1007/s00216-023-04576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/29/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) studies on trace element concentration and their spatial distribution in CaC2O4-matrix urinary stones are important but powerfully rely on matrix-matched external calibration. In this work, CaC2O4 precipitate CaOx-1 which was doped with Mg, Cr, Mn, Fe, Co, Cu, Zn, and Sr was prepared by the homogeneous co-precipitation method. It had a homogeneous distribution of major (RSD of 0.46%) and trace elements (RSD of 1.83-6.92%) due to the negligible concentration difference compared with that prepared by the heterogeneous co-precipitation method. Based on this, an analytical method for quantitative determination of elemental concentration in CaC2O4-matrix samples was established using CaOx-1 as a calibration standard, and the accuracy of this method was assessed by calibrating the elemental concentration in another synthetic CaC2O4 precipitate CaOx-2 with relative deviation (Dr) from - 11.43% (Mn) to 9.76% (Mg). Finally, a methodology for quantitative imaging of Mg, Cr, Mn, Fe, Co, Cu, Zn, and Sr in urinary stones via LA-ICP-MS was developed. From the elemental distributional maps, an annular texture can be found for Mg, Cu, Zn, and Sr, which corresponds to the annular white and brown texture in the real urinary stone. A homogeneous distribution of Fe and low concentrations of Cr and Co were found throughout the stone, while Mn was highly concentrated in the margin of the stone. All these results demonstrate that quantitative distribution patterns of Mg, Cr, Mn, Fe, Co, Cu, Zn, and Sr can be obtained by LA-ICP-MS using CaOx-1 as a calibration standard, which can provide potential evidence for urological and other medical studies.
Collapse
Affiliation(s)
- Hao Deng
- Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, People's Republic of China
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, People's Republic of China
| | - Hui Xu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Jianzong Zhou
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Disheng Tang
- Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, People's Republic of China
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, People's Republic of China
| | - Wanqing Yang
- Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, People's Republic of China
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, People's Republic of China
| | - Mian Hu
- Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, People's Republic of China
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, People's Republic of China
| | - Yuqiu Ke
- Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, People's Republic of China.
| |
Collapse
|
4
|
Chen Y, Xie Y, Li L, Wang Z, Yang L. Advances in mass spectrometry imaging for toxicological analysis and safety evaluation of pharmaceuticals. MASS SPECTROMETRY REVIEWS 2022:e21807. [PMID: 36146929 DOI: 10.1002/mas.21807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Safety issues caused by pharmaceuticals have frequently occurred worldwide, posing a tremendous threat to human health. As an essential part of drug development, the toxicological analysis and safety evaluation is of great significance. In addition, the risk of pharmaceuticals accumulation in the environment and the monitoring of the toxicity from natural medicines have also received ongoing concerns. Due to a lack of spatial distribution information provided by common analytical methods, analyses that provide spatial dimensions could serve as complementary safety evaluation methods for better prediction and evaluation of drug toxicity. With advances in technical solutions and software algorithms, mass spectrometry imaging (MSI) has received increasing attention as a popular analytical tool that enables the simultaneous implementation of qualitative, quantitative, and localization without complex sample pretreatment and labeling steps. In recent years, MSI has become more attractive, powerful, and sensitive and has been applied in several scientific fields that can meet the safety assessment requirements. This review aims to cover a detailed summary of the various MSI technologies utilized in the biomedical and pharmaceutical area, including technical principles, advantages, current status, and future trends. Representative applications and developments in the safety-related issues of different pharmaceuticals and natural medicines are also described to provide a reference for pharmaceutical research, improve rational clinical medicine use, and ensure public safety.
Collapse
Affiliation(s)
- Yilin Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqiao Xie
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Chen J, Wang R, Ma M, Gao L, Zhao B, Xu M. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)-based strategies applied for the analysis of metal-binding protein in biological samples: an update on recent advances. Anal Bioanal Chem 2022; 414:7023-7033. [PMID: 35790569 DOI: 10.1007/s00216-022-04185-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/21/2022] [Accepted: 06/17/2022] [Indexed: 11/01/2022]
Abstract
New analytical strategies for metal-binding protein facilitate researchers learning about how metals play a significant role in life. Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) offers many advantages for the metal analysis of biological samples and shows a promising future in protein analysis, but recent advances in LA-ICP-MS-based strategies for identifying metal-binding proteins via endogenous metals remain less updated yet. To present the current status in this field, the main analytical strategies for metal-binding proteins with LA-ICP-MS are reviewed here, including in situ analysis of biospecimens and ex situ analysis with gel electrophoresis. A critical discussion of challenges and future perspectives is also given. Multifarious laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS)-based strategies have been developed and applied to investigate the metal-binding proteins in biospecimens in situ or through gel electrophoresis ex situ over the past decades, facilitating researchers disclosing how essential metals are implicated in life or what proteins toxic metals will target.
Collapse
Affiliation(s)
- Jiahao Chen
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lirong Gao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zhao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China. .,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Subasinghe SAAS, Pautler RG, Samee MAH, Yustein JT, Allen MJ. Dual-Mode Tumor Imaging Using Probes That Are Responsive to Hypoxia-Induced Pathological Conditions. BIOSENSORS 2022; 12:478. [PMID: 35884281 PMCID: PMC9313010 DOI: 10.3390/bios12070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 05/02/2023]
Abstract
Hypoxia in solid tumors is associated with poor prognosis, increased aggressiveness, and strong resistance to therapeutics, making accurate monitoring of hypoxia important. Several imaging modalities have been used to study hypoxia, but each modality has inherent limitations. The use of a second modality can compensate for the limitations and validate the results of any single imaging modality. In this review, we describe dual-mode imaging systems for the detection of hypoxia that have been reported since the start of the 21st century. First, we provide a brief overview of the hallmarks of hypoxia used for imaging and the imaging modalities used to detect hypoxia, including optical imaging, ultrasound imaging, photoacoustic imaging, single-photon emission tomography, X-ray computed tomography, positron emission tomography, Cerenkov radiation energy transfer imaging, magnetic resonance imaging, electron paramagnetic resonance imaging, magnetic particle imaging, and surface-enhanced Raman spectroscopy, and mass spectrometric imaging. These overviews are followed by examples of hypoxia-relevant imaging using a mixture of probes for complementary single-mode imaging techniques. Then, we describe dual-mode molecular switches that are responsive in multiple imaging modalities to at least one hypoxia-induced pathological change. Finally, we offer future perspectives toward dual-mode imaging of hypoxia and hypoxia-induced pathophysiological changes in tumor microenvironments.
Collapse
Affiliation(s)
| | - Robia G. Pautler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Md. Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Jason T. Yustein
- Integrative Molecular and Biomedical Sciences and the Department of Pediatrics in the Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA;
| |
Collapse
|
7
|
Lores-Padín A, Fernández B, García M, González-Iglesias H, Pereiro R. Real matrix-matched standards for quantitative bioimaging of cytosolic proteins in individual cells using metal nanoclusters as immunoprobes-label: A case study using laser ablation ICP-MS detection. Anal Chim Acta 2022; 1221:340128. [DOI: 10.1016/j.aca.2022.340128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/19/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022]
|
8
|
Xu S, Liu H, Bai Y. Highly sensitive and multiplexed mass spectrometric immunoassay techniques and clinical applications. Anal Bioanal Chem 2022; 414:5121-5138. [PMID: 35165779 DOI: 10.1007/s00216-022-03945-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
Immunoassay is one of the most important clinical techniques for disease/pathological diagnosis. Mass spectrometry (MS) has been a popular and powerful readout technique for immunoassays, generating the mass spectrometric immunoassays (MSIAs) with unbeatable channels for multiplexed detection. The sensitivity of MSIAs has been greatly improved with the development of mass labels from element labels to small-molecular labels. MSIAs are also expended from the representative element MS-based methods to the laser-based organic MS and latest ambient MS, improving in both technology and methodology. Various MSIAs present high potential for clinical applications, including the biomarker screening, the immunohistochemistry, and the advanced single-cell analysis. Here, we give an overall review of the development of MSIAs in recent years, highlighting the latest improvement of mass labels and MS techniques for clinical immunoassays.
Collapse
Affiliation(s)
- Shuting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Boyraz B, Saatz J, Pompös IM, Gad M, Dernedde J, Maier AKB, Moscovitz O, Seeberger PH, Traub H, Tauber R. Imaging Keratan Sulfate in Ocular Tissue Sections by Immunofluorescence Microscopy and LA-ICP-MS. ACS APPLIED BIO MATERIALS 2022; 5:853-861. [PMID: 35076201 DOI: 10.1021/acsabm.1c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbohydrate-specific antibodies can serve as valuable tools to monitor alterations in the extracellular matrix resulting from pathologies. Here, the keratan sulfate-specific monoclonal antibody MZ15 was characterized in more detail by immunofluorescence microscopy as well as laser ablation ICP-MS using tissue cryosections and paraffin-embedded samples. Pretreatment with keratanase II prevented staining of samples and therefore demonstrated efficient enzymatic keratan sulfate degradation. Random fluorescent labeling and site-directed introduction of a metal cage into MZ15 were successful and allowed for a highly sensitive detection of the keratan sulfate landscape in the corneal stroma from rats and human tissue.
Collapse
Affiliation(s)
- Burak Boyraz
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany.,Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Arnimallee 22, Berlin 14195, Germany
| | - Jessica Saatz
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse, 11, Berlin 12489, Germany
| | - Inga-Marie Pompös
- Klinik für Augenheilkunde, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Michel Gad
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse, 11, Berlin 12489, Germany.,Department Chemie und Biologie, Universität Siegen, Adolf-Reichwein-Strasse 2, Siegen 57076, Germany
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Anna-Karina B Maier
- Klinik für Augenheilkunde, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Oren Moscovitz
- Biomolecular Systems Department, Max-Planck-Institute for Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Peter H Seeberger
- Biomolecular Systems Department, Max-Planck-Institute for Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Heike Traub
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse, 11, Berlin 12489, Germany
| | - Rudolf Tauber
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| |
Collapse
|
10
|
Kertesz V, Cahill JF. Spatially resolved absolute quantitation in thin tissue by mass spectrometry. Anal Bioanal Chem 2021; 413:2619-2636. [PMID: 33140126 DOI: 10.1007/s00216-020-02964-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass spectrometry (MS) has become the de facto tool for routine quantitative analysis of biomolecules. MS is increasingly being used to reveal the spatial distribution of proteins, metabolites, and pharmaceuticals in tissue and interest in this area has led to a number of novel spatially resolved MS technologies. Most spatially resolved MS measurements are qualitative in nature due to a myriad of potential biases, such as sample heterogeneity, sampling artifacts, and ionization effects. As applications of spatially resolved MS in the pharmacological and clinical fields increase, demand has become high for quantitative MS imaging and profiling data. As a result, several varied technologies now exist that provide differing levels of spatial and quantitative information. This review provides an overview of MS profiling and imaging technologies that have demonstrated quantitative analysis from tissue. Focus is given on the fundamental processes affecting quantitative analysis in an array of MS imaging and profiling technologies and methods to address these biases.Graphical abstract.
Collapse
Affiliation(s)
- Vilmos Kertesz
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA.
| | - John F Cahill
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA.
| |
Collapse
|
11
|
Torregrosa D, Grindlay G, Gras L, Mora J. Immunoassays based on inductively coupled plasma mass spectrometry detection: So far so good, so what? Microchem J 2021. [DOI: 10.1016/j.microc.2021.106200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Pisonero J, Traub H, Cappella B, Álvarez-Llamas C, Méndez A, Richter S, Encinar JR, Costa-Fernandez JM, Bordel N. Exploring quantitative cellular bioimaging and assessment of CdSe/ZnS quantum dots cellular uptake in single cells, using ns-LA-ICP-SFMS. Talanta 2021; 227:122162. [PMID: 33714466 DOI: 10.1016/j.talanta.2021.122162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 01/25/2023]
Abstract
Quantitative bioimaging of Quantum Dots (QDs) uptake in single cells by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a challenging task due to the high sensitivity and high spatial resolution required, and to the lack of matrix-matched reference materials. In this work, high spatially resolved quantitative bioimaging of CdSe/ZnS QDs uptake in single HT22 mouse hippocampal neuronal cells and in single HeLa human cervical carcinoma cells is novelty investigated combining: (a) the use of a ns-LA-ICP-Sector Field (SF)MS unit with mono-elemental fast and sensitive single pulse response for 114Cd+; and (b) the spatially resolved analysis of dried pL-droplets from a solution with a known concentration of these QDs to obtain a response factor that allows quantification of elemental bioimages. Single cells and dried pL-droplets are morphologically characterized by Atomic Force Microscopy (AFM) to determine their volume and thickness distribution. Moreover, operating conditions (e.g. spot size, energy per laser pulse, etc.) are optimized to completely ablate the cells and pL droplets at high spatial resolution. Constant operating conditions for the analysis of the single cells and calibrating samples is employed to reduce potential fractionation effects related to mass load effects in the ICP. A number concentration of CdSe/ZnS QDs between 3.5 104 and 48 104 is estimated to be uptaken by several selected single HT22 and HeLa cells, after being incubated in the presence of a QDs suspension added to a standard cell culture medium. Mono-elemental bioimaging at subcellular resolution seems to show a higher number concentration of the CdSe/ZnS QDs in the cytosol around the cell nucleus.
Collapse
Affiliation(s)
- J Pisonero
- Department of Physics, University of Oviedo, C/ Federico García Lorca, Nº18, 33007, Oviedo, Spain.
| | - H Traub
- Bundesanstalt für Materialforschung und -prüfung, (BAM), Unter Den Eichen 87, 12205, Berlin, Germany
| | - B Cappella
- Bundesanstalt für Materialforschung und -prüfung, (BAM), Unter Den Eichen 87, 12205, Berlin, Germany
| | - C Álvarez-Llamas
- Department of Analytical Chemistry, University of Malaga, 29071, Málaga, Spain
| | - A Méndez
- Department of Physics, University of Oviedo, C/ Federico García Lorca, Nº18, 33007, Oviedo, Spain
| | - S Richter
- Bundesanstalt für Materialforschung und -prüfung, (BAM), Unter Den Eichen 87, 12205, Berlin, Germany
| | - J Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julian Claveria, 8, 33006, Oviedo, Spain
| | - J M Costa-Fernandez
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julian Claveria, 8, 33006, Oviedo, Spain
| | - N Bordel
- Department of Physics, University of Oviedo, C/ Federico García Lorca, Nº18, 33007, Oviedo, Spain
| |
Collapse
|
13
|
Gao X, Pan H, Han Y, Feng L, Xiong J, Luo S, Li H. Quantitative imaging of amyloid beta peptide (Aβ) in Alzheimer's brain tissue by laser ablation ICP-MS using gold nanoparticles as labels. Anal Chim Acta 2021; 1148:238197. [PMID: 33516374 DOI: 10.1016/j.aca.2020.12.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/06/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022]
Abstract
Quantitative imaging of amyloid beta (Aβ) in brain is of great significance for pathological study and follow-up drug development of Alzheimer's disease (AD). In this work, a method using antibody-conjugated gold nanoparticles (AuNPs) was established for quantitative imaging of Aβ peptide in the brain of AD mouse by Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Aβ antibody (Anti-Aβ) was labeled with AuNPs to form the conjugate AuNPs-Anti-Aβ which was immunoreactive with Aβ in the brain slice of mouse. Quantitative imaging of Au was acquired with homogenized brain slice matrix-matched standards as external calibrants which were made by immersing in gold standard solution with different concentrations. Furthermore, the stoichiometric ratios between metal conjugates and Aβ were optimized, and the immunoreaction efficiency after labeling was also investigated. According to the molar relationship between AuNPs and Anti-Aβ (1:4.3) and the ratio of Anti-Aβ to Aβ (1:1), quantitative imaging of Aβ in brain was accomplished. The method intuitively displayed the location and concentration of Aβ aggregation, which was consistent with traditional immunohistochemical staining. Since the numerous gold atoms contained in AuNPs can enhance the signal of Aβ, the method is more intuitive and sensitive. The proposed methodology is potential in investigating the quantitative imaging of biomarker heterogeneity, and is useful to understand such complex brain mechanisms in the future.
Collapse
Affiliation(s)
- Xue Gao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, China
| | - Huijie Pan
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, China; Beijing University of Chemical Technology, Beijing, China
| | - Yachen Han
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, China; Beijing University of Chemical Technology, Beijing, China
| | - Liuxing Feng
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, China.
| | - Jinping Xiong
- Beijing University of Chemical Technology, Beijing, China
| | - Shizhong Luo
- Beijing University of Chemical Technology, Beijing, China
| | - Hongmei Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, China.
| |
Collapse
|
14
|
A novel calibration strategy for the analysis of airborne particulate matter by direct solid sampling ETV-ICP-MS. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Amais RS, Donati GL, Zezzi Arruda MA. ICP-MS and trace element analysis as tools for better understanding medical conditions. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116094] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Zhu Y, Gonzalez JJ, Yang X, Chan GCY, He X, Kostecki R, Mao X, Russo RE, Zorba V. Calcium fluoride as a dominating matrix for quantitative analysis by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS): A feasibility study. Anal Chim Acta 2020; 1129:24-30. [PMID: 32891387 DOI: 10.1016/j.aca.2020.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/25/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
Calcium fluoride formed by the reaction between ammonium bifluoride and calcium chloride was investigated as a dominating matrix for quantitative analysis by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Transformation from a solid sample to the calcium fluoride-based matrix permitted quantitative analysis based on calibration standards made from elemental standards. A low abundance stable calcium isotope, i.e. 44Ca+, was monitored as the internal standard for quantitative analysis by LA-ICP-MS. Correlation coefficient factors for multiple elements were obtained with values over 0.999. The results for multiple elements in a certified reference material of soil (NIST SRM 2710a) agreed with the certified values in the range of expanded uncertainty, indicating the present method was valid for quantitation of elements in solid samples.
Collapse
Affiliation(s)
- Yanbei Zhu
- Laser Technologies Group, Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA; National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan.
| | - Jhanis J Gonzalez
- Laser Technologies Group, Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA; Applied Spectra, 46665 Fremont Blvd., Fremont, CA, 94538, USA
| | - Xinyan Yang
- Laser Technologies Group, Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA; Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, JiuHua South Road No.189, Wuhu, Anhui, 241002, China
| | - George C-Y Chan
- Laser Technologies Group, Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA
| | - Xin He
- Energy Storage Group, Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA
| | - Robert Kostecki
- Energy Storage Group, Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA
| | - Xianglei Mao
- Laser Technologies Group, Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA
| | - Richard E Russo
- Laser Technologies Group, Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA; Applied Spectra, 46665 Fremont Blvd., Fremont, CA, 94538, USA
| | - Vassilia Zorba
- Laser Technologies Group, Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA.
| |
Collapse
|
17
|
Nanoparticles as labels of specific-recognition reactions for the determination of biomolecules by inductively coupled plasma-mass spectrometry. Anal Chim Acta 2020; 1128:251-268. [DOI: 10.1016/j.aca.2020.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/08/2023]
|
18
|
Lores-Padín A, Fernández B, Álvarez L, González-Iglesias H, Lengyel I, Pereiro R. Multiplex bioimaging of proteins-related to neurodegenerative diseases in eye sections by laser ablation - Inductively coupled plasma - Mass spectrometry using metal nanoclusters as labels. Talanta 2020; 221:121489. [PMID: 33076097 DOI: 10.1016/j.talanta.2020.121489] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022]
Abstract
Simultaneous determination of proteins with micrometric resolution is a significant challenge. In this study, laser ablation (LA) inductively coupled plasma - mass spectrometry (ICP-MS) was employed to quantify the distribution of proteins associated to the eye disease age-related macular degeneration (AMD) using antibodies labelled with three different metal nanoclusters (MNCs). PtNCs, AuNCs and AgNCs contain hundreds of metal atoms and were used to detect metallothionein 1/2 (MT1/2), complement factor H (CFH) and amyloid precursor protein (APP) in retina, ciliary body, retinal pigment epithelium (RPE), choroid and sclera from human cadaveric eye sections. First, the labelling of MNCs bioconjugated primary antibodies (Ab) was optimised following an immunolabelling protocol to avoid the non-specific interaction of MNCs with the tissue. Then, the LA and ICP-MS conditions were studied to obtain high-resolution images for the simultaneous detection of the three labels at the same tissue section. A significant signal amplification was found when using AuNCs, AgNCs and PtNCs labelled Ab of 310, 723 and 1194 respectively. After the characterisation of MNCs labelled immunoprobes, the Ab labelling was used for determination of MT1/2, CFH and APP in the RPE-choroid-sclera, where accumulation of extracellular deposits related to AMD was observed. Experimental results suggest that this method is fully suitable for the simultaneous detection of at least three different proteins.
Collapse
Affiliation(s)
- Ana Lores-Padín
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain
| | - Beatriz Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain; Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain.
| | - Lydia Álvarez
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain; Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012, Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain; Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012, Oviedo, Spain.
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain; Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
19
|
Su D, Gao L, Gao F, Zhang X, Gao X. Peptide and protein modified metal clusters for cancer diagnostics. Chem Sci 2020; 11:5614-5629. [PMID: 32874504 PMCID: PMC7444476 DOI: 10.1039/d0sc01201g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
The biomedical features of metal clusters have been explored in tumor diagnostic applications in recent years. Peptide or protein protected metal clusters with low toxicity, ultra-small size and good biocompatibility are ideal bioanalytical tools, and exhibit better cancer diagnostic properties that have been attractive to oncologists. This perspective provides a rigorous but succinct overview of cancer diagnosis as a working concept for metal clusters by reporting the latest significant advances in the applications of metal clusters in tumor-related bioanalysis and diagnosis. The materials design principles, bioanalytical mechanisms and biomedical applications of metal clusters are described, and then the potential challenges and prospects of metal clusters in cancer diagnosis are discussed. A perspective addressing the role of metal clusters in this field is required to understand their effects and functions, as well as for the scientific community to further advance the development of metal clusters for broader diagnostic applications.
Collapse
Affiliation(s)
- Dongdong Su
- Department of Chemistry and Chemical Engineering , Beijing University of Technology , Beijing 100124 , China .
| | - Liang Gao
- Department of Chemistry and Chemical Engineering , Beijing University of Technology , Beijing 100124 , China .
| | - Fuping Gao
- Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiangchun Zhang
- Tea Research Institute , Chinese Academy of Agricultural Sciences , Hangzhou , 310008 , China
| | - Xueyun Gao
- Department of Chemistry and Chemical Engineering , Beijing University of Technology , Beijing 100124 , China .
| |
Collapse
|
20
|
Van Acker T, Buckle T, Van Malderen SJM, van Willigen DM, van Unen V, van Leeuwen FWB, Vanhaecke F. High-resolution imaging and single-cell analysis via laser ablation-inductively coupled plasma-mass spectrometry for the determination of membranous receptor expression levels in breast cancer cell lines using receptor-specific hybrid tracers. Anal Chim Acta 2019; 1074:43-53. [PMID: 31159938 DOI: 10.1016/j.aca.2019.04.064] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
This work evaluates the possibility of placement of high-resolution imaging and single-cell analysis via laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) within precision medicine by assessing the suitability of LA-ICP-MS as a micro-analytical technique for the localization and quantification of membranous receptors in heterogeneous cell samples that express both the membrane-bound receptors C-X-C chemokine receptor type 4 (CXCR4) and epidermal growth factor receptor (EGFR). Staining of the breast cancer cell lines MDA-MB-231 X4 and MDA-MB-468 was achieved using receptor-specific hybrid tracers, containing both a fluorophore and a DTPA single-lanthanide chelate. Prior to LA-ICP-MS imaging, fluorescence confocal microscopy (FCM) imaging was performed to localize the receptors, hereby enabling direct comparison. Based on the different expression levels of CXCR4 and EGFR, a distinction could be made between the cell lines using both imaging modalities. Furthermore, FCM and LA-ICP-MS demonstrated complementary characteristics, as a more distinct discrimination could be made between both cell lines based on the EGFR-targeting hybrid tracer via LA-ICP-MS, due to the intrinsic CXCR4-related green fluorescent protein (GFP) signal present in the MDA-MB-231 X4 cells. Employing state-of-the-art LA-ICP-MS instrumentation in bidirectional area scanning mode for sub-cellular imaging of MDA-MB-231 X4 cells enabled the specific binding of the CXCR4-targeting hybrid tracer to the cell membrane to be clearly demonstrated. The stretching of cells over the glass substrate led to a considerably higher signal response for pixels at the cell edges, relative to the more central pixels. The determination of the expression levels of CXCR4 and EGFR for the MDA-MB-468 cell line was performed using LA-ICP-MS single-cell analysis (sc-LA-ICP-MS) and external calibration, based on the quantitative ablation of Ho-spiked dried gelatin droplet standards. Additionally, a second calibration approach was applied based on spot ablation of highly homogeneous dried gelatin gels in combination with the determination of the ablated volume using atomic force microscopy (AFM) and yielded results which were in good agreement with the expression levels determined via flow cytometry (FC) and mass cytometry (MC). Hybrid tracers enable a direct comparison between (i) FCM and LA-ICP-MS imaging for the evaluation of the microscopic binding pattern and between (ii) FC, MC and sc-LA-ICP-MS for the quantification of receptor expression levels in single cells.
Collapse
Affiliation(s)
- Thibaut Van Acker
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium.
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, the Netherlands.
| | - Stijn J M Van Malderen
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium; Ghent University, Department of Chemistry, X-ray Microspectroscopy and Imaging Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium.
| | - Danny M van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, the Netherlands.
| | - Vincent van Unen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, the Netherlands.
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, the Netherlands.
| | - Frank Vanhaecke
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium.
| |
Collapse
|