1
|
Wang W, Sun Y, Cao R, Luo W, Beng S, Zhang J, Wang X, Peng C. Illustrate the metabolic regulatory effects of Ganoderma Lucidum polysaccharides on cognitive dysfunction in formaldehyde-exposed mouse brain by mass spectrometry imaging. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118060. [PMID: 40120485 DOI: 10.1016/j.ecoenv.2025.118060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Long-term formaldehyde (FA) exposure causes cognitive dysfunction, often associated with metabolic disorders. While some studies suggest Ganoderma lucidum polysaccharides (GLP) can improve cognitive function, such as Alzheimer's disease. However, the effects of GLP on FA-exposed cognitive dysfunction and the regulation of GLP on brain metabolic disturbances caused by FA remain unclear. In our study, we revealed that GLP significantly reversed FA-exposed spatial cognitive deficits in mice by using Morris Water Maze and Histological analysis. Furthermore, desorption electrospray ionization mass spectrometry imaging (DESI-MSI) found that exposure of FA can caused dysregulated expression of 35 metabolites. Following GLP treatment, there was a significant restoration of the imbalance of choline and acetylcholine, carnitine and acetylcarnitine, and spermidine and spermine, which were all involved in choline metabolism, carnitine metabolism, and polyamine metabolism. Our results suggested that GLP alleviated FA-exposed cognitive dysfunction, likely through modulation of metabolic pathways, providing a potential therapeutic approach for FA-related cognitive dysfunction.
Collapse
Affiliation(s)
- Wen Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Yuanyuan Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Renting Cao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Wenhui Luo
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Shujuan Beng
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Jing Zhang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Xiaoqun Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Can Peng
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Generic Technology Research center for Anhui TCM Industry, Anhui University of Chinese Medicine, Hefei 230012, China; Rural Revitalization Collaborative Technical Service Center of Anhui Province, Anhui University of Chinese Medicine, Hefei 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
2
|
Molnár A, Horkovics-Kováts GS, Kucsma N, Szegő Z, Tauber B, Egri A, Szkupien Z, Deák BA, McKenzie JS, Thuróczy J, Schäffer R, Schlosser G, Szakács G, Balog J. Characterisation of Canine and Feline Breast Tumours, Their Metastases, and Corresponding Primary Cell Lines Using LA-REIMS and DESI-MS Imaging. Int J Mol Sci 2024; 25:7752. [PMID: 39062995 PMCID: PMC11277125 DOI: 10.3390/ijms25147752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer, a complex disease with a significant prevalence to form metastases, necessitates novel therapeutic strategies to improve treatment outcomes. Here, we present the results of a comparative molecular study of primary breast tumours, their metastases, and the corresponding primary cell lines using Desorption Electrospray Ionisation (DESI) and Laser-Assisted Rapid Evaporative Ionisation Mass Spectrometry (LA-REIMS) imaging. Our results show that ambient ionisation mass spectrometry technology is suitable for rapid characterisation of samples, providing a lipid- and metabolite-rich spectrum within seconds. Our study demonstrates that the lipidomic fingerprint of the primary tumour is not significantly distinguishable from that of its metastasis, in parallel with the similarity observed between their respective primary cell lines. While significant differences were observed between tumours and the corresponding cell lines, distinct lipidomic signatures and several phospholipids such as PA(36:2), PE(36:1), and PE(P-38:4)/PE(O-38:5) for LA-REIMS imaging and PE(P-38:4)/PE(O-38:5), PS(36:1), and PI(38:4) for DESI-MSI were identified in both tumours and cells. We show that the tumours' characteristics can be found in the corresponding primary cell lines, offering a promising avenue for assessing tumour responsiveness to therapeutic interventions. A comparative analysis by DESI-MSI and LA-REIMS imaging revealed complementary information, demonstrating the utility of LA-REIMS in the molecular imaging of cancer.
Collapse
Affiliation(s)
- Adrienn Molnár
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary; (A.M.); (G.S.H.-K.)
- Waters Research Center, H-1031 Budapest, Hungary; (Z.S.); (A.E.); (R.S.)
- MTA-ELTE Lendület (Momentum) Ion Mobility Mass Spectrometry Research Group, Faculty of Science, Institute of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary;
| | - Gabriel Stefan Horkovics-Kováts
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary; (A.M.); (G.S.H.-K.)
- Waters Research Center, H-1031 Budapest, Hungary; (Z.S.); (A.E.); (R.S.)
| | - Nóra Kucsma
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (N.K.); (G.S.)
| | - Zsuzsanna Szegő
- Waters Research Center, H-1031 Budapest, Hungary; (Z.S.); (A.E.); (R.S.)
| | | | - Attila Egri
- Waters Research Center, H-1031 Budapest, Hungary; (Z.S.); (A.E.); (R.S.)
| | | | - Bálint András Deák
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, H-1085 Budapest, Hungary;
| | - James S. McKenzie
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, UK;
| | | | - Richard Schäffer
- Waters Research Center, H-1031 Budapest, Hungary; (Z.S.); (A.E.); (R.S.)
| | - Gitta Schlosser
- MTA-ELTE Lendület (Momentum) Ion Mobility Mass Spectrometry Research Group, Faculty of Science, Institute of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary;
| | - Gergely Szakács
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (N.K.); (G.S.)
- Center for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Júlia Balog
- Waters Research Center, H-1031 Budapest, Hungary; (Z.S.); (A.E.); (R.S.)
| |
Collapse
|
3
|
Chen X, Li Y, Zhou Z, Zhang Y, Chang L, Gao X, Li Q, Luo H, Westover KD, Zhu J, Wei X. Dynamic ultrasound molecular-targeted imaging of senescence in evaluation of lapatinib resistance in HER2-positive breast cancer. Cancer Med 2023; 12:19904-19920. [PMID: 37792675 PMCID: PMC10587953 DOI: 10.1002/cam4.6607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/21/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Prolonged treatment of HER2+ breast cancer with lapatinib (LAP) causes cellular senescence and acquired drug resistance, which often associating with poor prognosis for patients. We aim to explore the correlation between cellular senescence and LAP resistance in HER2+ breast cancer, screen for molecular marker of reversible senescence, and construct targeted nanobubbles for ultrasound molecular imaging to dynamically evaluate LAP resistance. METHODS AND RESULTS In this study, we established a new cellular model of reversible cellular senescence using LAP and HER2+ breast cancer cells and found that reversible senescence contributed to LAP resistance in HER2+ breast cancer. Then, we identified ecto-5'-nucleotidase (NT5E) as a marker of reversible senescence in HER2+ breast cancer. Based on this, we constructed NT5E-targeted nanobubbles (NT5E-FITC-NBs) as a new molecular imaging modality which could both target reversible senescent cells and be used for ultrasound imaging. NT5E-FITC-NBs showed excellent physical and imaging characteristics. As an ultrasound contrast agent, NT5E-FITC-NBs could accurately identify reversible senescent cells both in vitro and in vivo. CONCLUSIONS Our data demonstrate that cellular senescence-based ultrasound-targeted imaging can identify reversible senescence and evaluate LAP resistance effectively in HER2+ breast cancer cells, which has the potential to improve cancer treatment outcomes by altering therapeutic strategies ahead of aggressive recurrences.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Diagnostic and Therapeutic UltrasonographyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
- Department of UltrasoundTianjin HospitalTianjinChina
| | - Ying Li
- Breast Cancer CenterTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Zhiwei Zhou
- Department of Radiation Oncology and BiochemistryUniversity of Texas Southwestern Medical CenterTexasDallasUSA
| | - Yanqiu Zhang
- Department of Diagnostic and Therapeutic UltrasonographyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Luchen Chang
- Department of Diagnostic and Therapeutic UltrasonographyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Xiujun Gao
- School of Biomedical Engineering and Technology, Tianjin Medical UniversityTianjinChina
| | - Qing Li
- Cancer CenterDaping Hospital, Third Military Medical UniversityChongqingChina
| | - Hao Luo
- Cancer CenterDaping Hospital, Third Military Medical UniversityChongqingChina
| | - Kenneth D. Westover
- Department of Radiation Oncology and BiochemistryUniversity of Texas Southwestern Medical CenterTexasDallasUSA
| | - Jialin Zhu
- Department of Diagnostic and Therapeutic UltrasonographyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Xi Wei
- Department of Diagnostic and Therapeutic UltrasonographyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| |
Collapse
|
4
|
Xia D, Jin R, Pan R, Chen HY, Jiang D. In Situ Spatial Analysis of Metabolic Heterogeneity in Single Living Tumor Spheroids Using Nanocapillary-Based Electrospray Ionization Mass Spectroscopy. Anal Chem 2023. [PMID: 37358923 DOI: 10.1021/acs.analchem.3c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Spatial metabolomic analysis of individual tumor spheroids can help investigate metabolic rearrangements in different cellular regions of a spheroid. In this work, a nanocapillary-based electrospray ionization mass spectroscopy (ESI-MS) method is established that could realize the spatial sampling of cellular components in different regions of a single living tumor spheroid and the subsequent MS analysis for a metabolic study. During the penetration of the nanocapillary into the spheroid for sampling, this "wound surface" at the outer layer of the spheroid takes only 0.1% of the whole area that maximally maintains the cellular activity inside the spheroid for the metabolic analysis. Using the ESI-MS analysis, different metabolic activities in the inner and outer (upper and lower) layers of a single spheroid are revealed, giving a full investigation of the metabolic heterogeneity inside one living tumor spheroid for the first time. In addition, the metabolic activities between the outer layer of the spheroid and two-dimensional (2D)-cultured cells show obvious differences, which suggests more frequent cell-cell and cell-extracellular environment interactions during the culture of the spheroid. This observation not only establishes a powerful tool for the in situ spatial analysis of the metabolic heterogeneity in single living tumor spheroids but also provides molecular information to elucidate the metabolic heterogeneity in this three-dimensional (3D)-cultured cell model.
Collapse
Affiliation(s)
- Dandan Xia
- The State Key Lab of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Rong Jin
- The State Key Lab of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Rongrong Pan
- The State Key Lab of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Hong-Yuan Chen
- The State Key Lab of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Dechen Jiang
- The State Key Lab of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| |
Collapse
|
5
|
Flint L. Multimodal Mass Spectrometry Imaging of an Aggregated 3D Cell Culture Model. Methods Mol Biol 2023; 2688:147-159. [PMID: 37410291 DOI: 10.1007/978-1-0716-3319-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Multimodal mass spectrometry imaging (MSI) is a leading approach for investigating the molecular processes within biological samples. The parallel detection of compounds including metabolites, lipids, proteins, and metal isotopes allows for a more holistic understanding of tissue microenvironments. Universal sample preparation is a primary enabler for samples of the same set to be run across multiple modalities. Using the same method and materials for a cohort of samples reduces any potential variability during sample preparation and allows for comparable analysis across analytical imaging techniques. Here, the MSI workflow is describing a sample preparation protocol for the analysis of three-dimensional (3D) cell culture models. The analysis of biologically relevant cultures by multimodal MSI offers a method in which models of cancer and disease can be studied for the use in early-stage drug development.
Collapse
Affiliation(s)
- Lucy Flint
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre, Sheffield Hallam University, Sheffield, UK.
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
6
|
Zhao K, Fu W, Huang Z, Chen R, Lin W, Lin Z. Target recognition assisted-primer exchange reaction (Ta-PER) for sensitive analysis of p53 gene and its application in analyzing amatoxin-treated samples. Anal Bioanal Chem 2023; 415:405-410. [PMID: 36370202 DOI: 10.1007/s00216-022-04420-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/10/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Sensitive and reliable detection of the p53 gene plays a significant role in precise cancer targeting and in fundamental research. However, the sensitivity of existing p53 gene detection approaches remains to be improved. Herein, we develop a target recognition assisted-primer exchange reaction (Ta-PER) for sensitive analysis of the p53 gene. Ta-PER was initiated by the recognition of a designed dumbbell structure probe by the p53 gene. In Ta-PER, the primer exchange reaction (PER) was combined with molecular beacon-based chain recycling to construct the signal amplification process. Through integrating target recognition with PER-based signal amplification, Ta-PER was established and exhibited a high detection sensitivity, with a limit of detection as low as 56 fM. In addition, the approach was also used to detect the p53 gene in normal HeLa cells and amatoxin-treated HeLa cells. The high level of the p53 gene in amatoxin-treated HeLa cells, which was approximately 1.67 times higher than that in HeLa cell extract, indicated the apoptosis of cells and suggested the promising prospect of the approach.
Collapse
Affiliation(s)
- Kangtao Zhao
- Fujian Provincial Center for Disease Control and Prevention, Fujian Academy of Preventive Medicine, Fuzhou City, 350012, Fujian Province, China.
| | - Wusheng Fu
- Fujian Provincial Center for Disease Control and Prevention, Fujian Academy of Preventive Medicine, Fuzhou City, 350012, Fujian Province, China
| | - Zongxiu Huang
- Fujian Provincial Center for Disease Control and Prevention, Fujian Academy of Preventive Medicine, Fuzhou City, 350012, Fujian Province, China
| | - Run Chen
- Fujian Provincial Center for Disease Control and Prevention, Fujian Academy of Preventive Medicine, Fuzhou City, 350012, Fujian Province, China
| | - Wei Lin
- Fujian Provincial Center for Disease Control and Prevention, Fujian Academy of Preventive Medicine, Fuzhou City, 350012, Fujian Province, China
| | - Zhong Lin
- Fujian Provincial Center for Disease Control and Prevention, Fujian Academy of Preventive Medicine, Fuzhou City, 350012, Fujian Province, China
| |
Collapse
|
7
|
Shi L, Habib A, Bi L, Hong H, Begum R, Wen L. Ambient Ionization Mass Spectrometry: Application and Prospective. Crit Rev Anal Chem 2022; 54:1584-1633. [PMID: 36206159 DOI: 10.1080/10408347.2022.2124840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Mass spectrometry (MS) is a formidable analytical tool for the analysis of non-polar to polar compounds individually and/or from mixtures, providing information on the molecular weights and chemical structures of the analytes. During the last more than one-decade, ambient ionization mass spectrometry (AIMS) has developed quickly, producing a wide range of platforms and proving scientific improvements in a variety of domains, from biological imaging to quick quality control. These methods have made it possible to detect target analytes in real time without sample preparation in an open environment, and they can be connected to any MS system with an atmospheric pressure interface. They also have the ability to analyze explosives, illicit drugs, disease diagnostics, drugs in biological samples, adulterants in food and agricultural products, reaction progress, and environmental monitoring. The development of novel ambient ionization techniques, such as probe electrospray ionization, paper spray ionization, and fiber spray ionization, employed even at picolitre to femtolitre solution levels to provide femtogram to attogram levels of the target analytes. The special characteristic of this ambient ion source, which has been extensively used, is the noninvasive property of PESI of examination of biological real samples. The results in the current review supports the idea that AIMS has emerged as a pioneer in MS-based approaches and that methods will continue to be developed along with improvements to existing ones in the near future.
Collapse
Affiliation(s)
- Lulu Shi
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Lei Bi
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| | - Huanhuan Hong
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| | - Rockshana Begum
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Luhong Wen
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
8
|
[Mass spectrometry imaging technology and its application in breast cancer research]. Se Pu 2021; 39:578-587. [PMID: 34227318 PMCID: PMC9404019 DOI: 10.3724/sp.j.1123.2020.10005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
乳腺癌是女性最常见的恶性肿瘤,其发病率在世界范围内呈现上升趋势,是威胁女性健康的重要疾病之一。随着现代医学技术的快速发展,早期有效的诊断和筛查方法能够改善乳腺癌患者生存率和提高其生活质量。由于乳腺癌肿瘤具有非常显著的异质性,这对于诊断和筛查带来了较大困难,亟须在肿瘤演进时间信息中,继续引入生物分子的空间信息,从而对其异质性、肿瘤微环境等进行准确的追踪。质谱成像技术,可在免标记的前提下利用离子质荷比的特性发现生物组织中的各种分子,并研究这些分子的时间和空间信息,对其进行准确的定性、定量和空间定位。目前,通过质谱成像技术可直接获取药物及其代谢物、内源性代谢物、脂质、多肽和蛋白质等在组织中的空间分布信息,为肿瘤分子分型诊断和确认以及相关抗肿瘤药物的筛选提供了新的思路和研究方向。该综述以乳腺癌相关的生物样品制备和研究进展为主要内容,从小分子样本、大分子样本、石蜡包埋样本、基质喷涂方式、常用离子源等方面阐述质谱成像中样本制备的重要性以及样品制备过程中存在的难点问题。同时,以细胞模型、动物模型和临床肿瘤标本为研究对象,汇总了质谱成像技术在乳腺癌方面的应用进展,并进行了展望,为开展癌症精准分型研究和药物药效的快速筛查提供了重要依据。
Collapse
|
9
|
Rankin‐Turner S, Heaney LM. Applications of ambient ionization mass spectrometry in 2020: An annual review. ANALYTICAL SCIENCE ADVANCES 2021; 2:193-212. [PMID: 38716454 PMCID: PMC10989608 DOI: 10.1002/ansa.202000135] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 06/26/2024]
Abstract
Recent developments in mass spectrometry (MS) analyses have seen a concerted effort to reduce the complexity of analytical workflows through the simplification (or removal) of sample preparation and the shortening of run-to-run analysis times. Ambient ionization mass spectrometry (AIMS) is an exemplar MS-based technology that has swiftly developed into a popular and powerful tool in analytical science. This increase in interest and demonstrable applications is down to its capacity to enable the rapid analysis of a diverse range of samples, typically in their native state or following a minimalistic sample preparation approach. The field of AIMS is constantly improving and expanding, with developments of powerful and novel techniques, improvements to existing instrumentation, and exciting new applications added with each year that passes. This annual review provides an overview of applications of AIMS techniques over the past year (2020), with a particular focus on the application of AIMS in a number of key fields of research including biomedical sciences, forensics and security, food sciences, the environment, and chemical synthesis. Novel ambient ionization techniques are introduced, including picolitre pressure-probe electrospray ionization and fiber spray ionization, in addition to modifications and improvements to existing techniques such as hand-held devices for ease of use, and USB-powered ion sources for on-site analysis. In all, the information provided in this review supports the view that AIMS has become a leading approach in MS-based analyses and that improvements to existing methods, alongside the development of novel approaches, will continue across the foreseeable future.
Collapse
Affiliation(s)
- Stephanie Rankin‐Turner
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Liam M. Heaney
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughLeicestershireUK
| |
Collapse
|