1
|
Mohan A, Roy I. Exploring the diagnostic landscape: Portable aptasensors in point-of-care testing. Anal Biochem 2025; 700:115788. [PMID: 39884526 DOI: 10.1016/j.ab.2025.115788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/31/2024] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Aptamers, discovered in the 1990s, have marked a significant milestone in the fields of therapeutics and diagnostics. This review provides a comprehensive survey of aptamers, focusing on their diagnostic applications. It especially encapsulates a decade of aptamer, encompassing research, patents, and market trends. The unique properties and inherent stability of aptamers are discussed, highlighting their potential for various clinical applications. It goes on to introduce biosensor design, emphasizing the advantages of aptamers over antibodies as conventional molecular recognition interface. The operation and design of aptasensors are examined, with a focus on single- and dual-site binding configurations and their respective recognition modes. Paper-based sensors are highlighted as cost-effective, user-friendly alternatives that are gaining widespread adoption, particularly in point-of-care platforms.
Collapse
Affiliation(s)
- Anu Mohan
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab, 160062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab, 160062, India.
| |
Collapse
|
2
|
Pandey M, Bhaiyya M, Rewatkar P, Zalke JB, Narkhede NP, Haick H. Advanced Materials for Biological Field-Effect Transistors (Bio-FETs) in Precision Healthcare and Biosensing. Adv Healthc Mater 2025; 14:e2500400. [PMID: 40207741 PMCID: PMC12083444 DOI: 10.1002/adhm.202500400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/09/2025] [Indexed: 04/11/2025]
Abstract
Biological Field Effect Transistors (Bio-FETs) are redefining the standard of biosensing by enabling label-free, real-time, and extremely sensitive detection of biomolecules. At the center of this innovation is the fundamental empowering role of advanced materials, such as graphene, molybdenum disulfide, carbon nanotubes, and silicon. These materials, when harnessed with the downstream biomolecular probes like aptamers, antibodies, and enzymes, allow Bio-FETs to offer unrivaled sensitivity and precision. This review is an exposition of how advancements in materials science have permitted Bio-FETs to detect biomarkers in extremely low concentrations, from femtomolar to attomolar levels, ensuring device stability and reliability. Specifically, the review examines how the incorporation of cutting-edge materials architectures, like flexible / stretchable and multiplexed designs, is expanding the frontiers of biosensing and contributing to the development of more adaptable and user-friendly Bio-FET platforms. A key focus is placed on the synergy of Bio-FETs with artificial intelligence (AI), the Internet of Things (IoT), and sustainable materials approaches as fast-tracking toward transition from research into practical healthcare applications. The review also explores current challenges such as material reproducibility, operational durability, and cost-effectiveness. It outlines targeted strategies to address these hurdles and facilitate scalable manufacturing. By emphasizing the transformative role played by advanced materials and their cementing position in Bio-FETs, this review positions Bio-FETs as a cornerstone technology for the future healthcare solution for precision applications. These advancements would lead to an era where material innovation would herald massive strides in biomedical diagnostics and subsume.
Collapse
Affiliation(s)
- Minal Pandey
- Department of Electronics EngineeringRamdeobaba UniversityNagpur440013India
| | - Manish Bhaiyya
- Department of Electronics EngineeringRamdeobaba UniversityNagpur440013India
- Department of Chemical Engineering and the Russell Berrie Nanotechnology InstituteTechnionIsrael Institute of TechnologyHaifa3200003Israel
| | - Prakash Rewatkar
- Department of Mechanical EngineeringIsrael Institute of Technology, TechnionHaifa3200003Israel
| | - Jitendra B. Zalke
- Department of Electronics EngineeringRamdeobaba UniversityNagpur440013India
| | - Nitin P. Narkhede
- Department of Electronics EngineeringRamdeobaba UniversityNagpur440013India
| | - Hossam Haick
- Department of Chemical Engineering and the Russell Berrie Nanotechnology InstituteTechnionIsrael Institute of TechnologyHaifa3200003Israel
- Life Science Technology (LiST) GroupDanube Private University, Fakultät Medizin/ZahnmedizinSteiner Landstraße 124Krems‐Stein3500Austria
| |
Collapse
|
3
|
Yue Y, Liu M, Ma M, Xu Z, Zhang H, Wang Q, Liu R. CRISPR/Cas14a integrated with DNA walker based on magnetic self-assembly for human papillomavirus type 16 oncoprotein E7 ultrasensitive detection. Biosens Bioelectron 2025; 272:117135. [PMID: 39764982 DOI: 10.1016/j.bios.2025.117135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
To enhance the biomarker diagnostics sensitivity and selectivity of human papillomavirus type 16 oncoprotein E7 (HPV16 E7) in serum, a label/enzyme-free electrochemical detection platform was developed. This platform featured a type of "Super-turn-off" nanobiosensor monitored through differential pulse voltammetry (DPV). It integrated the magnetic self-assembly property of the α-Fe2O3/Fe3O4@Au/Sub/BSA signal transport nano-medium with the high specificity of CRISPR/Cas14a and the amplification capability of the bipedal walker (DNA walker composed of two ssDNA strands), resulting in the enhanced specificity and anti-interference performance while remaining stable at 4 °C for over 30 days. The results demonstrated that the combination of walker and CRISPR yielded superior sensitivity and analytical capability compared with using either technology alone, achieving a detection limit of 67.17 fg mL-1, a quantification limit of 0.22 pg mL-1, and serum sample recovery rates of 98.46%-115.78%. Additionally, this platform was applied to detect serum and tissue samples from mouse models at various stages of cervical cancer, significantly improving the accuracy and effectiveness of early diagnosis and prognostic evaluation. This novel approach held promise as an efficient tool for point-of-care clinical detection of HPV16 E7, potentially reducing cervical cancer mortality.
Collapse
Affiliation(s)
- Yao Yue
- School of Pharmacy, Jiangsu University, 212013, Zhenjiang, PR China
| | - Min Liu
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, 212300, Zhenjiang, PR China
| | - Mingyi Ma
- School of Pharmacy, Jiangsu University, 212013, Zhenjiang, PR China
| | - Zhihao Xu
- School of Pharmacy, Jiangsu University, 212013, Zhenjiang, PR China
| | - Haoda Zhang
- School of Pharmacy, Jiangsu University, 212013, Zhenjiang, PR China
| | - Qingxiang Wang
- School of Pharmacy, Jiangsu University, 212013, Zhenjiang, PR China
| | - Ruijiang Liu
- School of Pharmacy, Jiangsu University, 212013, Zhenjiang, PR China.
| |
Collapse
|
4
|
Mirsian S, Hilber W, Khodadadian E, Parvizi M, Khodadadian A, Khoshfetrat SM, Heitzinger C, Jakoby B. Graphene-based FETs for advanced biocatalytic profiling: investigating heme peroxidase activity with machine learning insights. Mikrochim Acta 2025; 192:199. [PMID: 40029395 PMCID: PMC11876242 DOI: 10.1007/s00604-025-06955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/04/2025] [Indexed: 03/05/2025]
Abstract
Graphene-based field-effect transistors (GFETs) are rapidly gaining recognition as powerful tools for biochemical analysis due to their exceptional sensitivity and specificity. In this study, we utilize a GFET system to explore the peroxidase-based biocatalytic behavior of horseradish peroxidase (HRP) and the heme molecule, the latter serving as the core component responsible for HRP's enzymatic activity. Our primary objective is to evaluate the effectiveness of GFETs in analyzing the peroxidase activity of these compounds. We highlight the superior sensitivity of graphene-based FETs in detecting subtle variations in enzyme activity, which is critical for accurate biochemical analysis. Using the transconductance measurement system of GFETs, we investigate the mechanisms of enzymatic reactions, focusing on suicide inactivation in HRP and heme bleaching under two distinct scenarios. In the first scenario, we investigate the inactivation of HRP in the presence of hydrogen peroxide and ascorbic acid as cosubstrate. In the second scenario, we explore the bleaching of the heme molecule under conditions of hydrogen peroxide exposure, without the addition of any cosubstrate. Our findings demonstrate that this advanced technique enables precise monitoring and comprehensive analysis of these enzymatic processes. Additionally, we employed a machine learning algorithm based on a multilayer perceptron deep learning architecture to detect the enzyme parameters under various chemical and environmental conditions. Integrating machine learning and probabilistic methods significantly enhances the accuracy of enzyme behavior predictions.
Collapse
Affiliation(s)
- Samaneh Mirsian
- Institute of Microelectronics and Microsensors, Johannes Kepler University, Linz, Austria
| | - Wolfgang Hilber
- Institute of Microelectronics and Microsensors, Johannes Kepler University, Linz, Austria
| | - Ehsan Khodadadian
- Research Unit Machine Learning, Institute of Information Systems Engineering, Department of Informatics, TU Wien, Vienna, Austria
| | - Maryam Parvizi
- Research Unit Machine Learning, Institute of Information Systems Engineering, Department of Informatics, TU Wien, Vienna, Austria
- School of Mathematics, University of Birmingham, Birmingham, UK
| | - Amirreza Khodadadian
- Research Unit Machine Learning, Institute of Information Systems Engineering, Department of Informatics, TU Wien, Vienna, Austria.
- School of Computer Science and Mathematics, Keele University, Newcastle-under-Lyme, UK.
| | - Seyyed Mehdi Khoshfetrat
- Department of Chemistry, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran
| | - Clemens Heitzinger
- Research Unit Machine Learning, Institute of Information Systems Engineering, Department of Informatics, TU Wien, Vienna, Austria
| | - Bernhard Jakoby
- Institute of Microelectronics and Microsensors, Johannes Kepler University, Linz, Austria
| |
Collapse
|
5
|
Rana N, Narang J, Chauhan A. Advancing Frontiers: Graphene-Based Nano-biosensor Platforms for Cutting-Edge Research and Future Innovations. Indian J Microbiol 2025; 65:453-476. [PMID: 40371023 PMCID: PMC12069184 DOI: 10.1007/s12088-024-01318-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/20/2024] [Indexed: 05/16/2025] Open
Abstract
Graphene and its derivatives have excellent electrical, mechanical, and optical capabilities, making it the perfect foundation for sensing living things. Graphene-based nano biosensors have shown exceptional sensitivity, selectivity, and quick response times when used to detect a range of analytes, such as biomolecules, cells, and pathogens. The main uses of graphene-based nano biosensors are disease diagnosis, environmental monitoring, food safety, and drug development. It also explores prospective future strategies, such as methods for functionalizing nanomaterials, their incorporation with other nanomaterials, and the creation of wearable and implantable gadgets. Various signalling techniques, such as fluorescence, electrochemistry, surface plasmon resonance, surface-enhanced Raman scattering, etc., can be coupled with graphene-based biosensors to quantitatively detect disease-associated DNA, RNA, and protein biomarkers quantitatively. Graphene-based nano biosensors, combined with cutting-edge innovations like artificial intelligence and the Internet of Things, can completely transform industries like healthcare and environmental monitoring. Developing these biosensors with high sensitivity and low detection limits provides a new direction in medical and personal care. The later portion of the review covers the difficulties, prospective fixes, and opportunities of graphene-based biosensors.
Collapse
Affiliation(s)
- Niket Rana
- Department of Biotechnology, Panjab University, Sector 25, Chandigarh, 160014 India
| | - Jasjeet Narang
- University Institute of Biotechnology, Chandigarh University, Punjab, 140413 India
| | - Arjun Chauhan
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh 281406 India
| |
Collapse
|
6
|
Navarro Chica CE, Alfonso Tobón LL, López Abella JJ, Valencia Piedrahita MP, Neira Acevedo D, Bermúdez PC, Arrivillaga M, Jaramillo-Botero A. Nanoparticle-based colorimetric assays for early and rapid screening of the oncogenic HPV variants 16 and 18. Clin Chim Acta 2025; 568:120144. [PMID: 39837403 DOI: 10.1016/j.cca.2025.120144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
Cervical cancer is predominantly caused by human papillomavirus (HPV), with oncogenic strains HPV 16 and 18 accounting for most cases worldwide. Prompt and precise identification of these high-risk HPV types is essential for enhancing patient outcomes as it enables timely intervention and management. However, the existing HPV detection techniques are time-consuming, expensive, and require highly skilled personnel. This study presents the development and evaluation of a colorimetric nanosensor for the rapid detection of high-risk human papillomavirus (HPV) variants 16 and 18. Gold nanoparticles (AuNPs) were synthesized using an optimized method based on response surface methodology and then functionalized with monoclonal antibodies specific to HPV16-L1 and HPV18-L1 proteins. The nanosensor exhibited a visible color shift from red to violet upon the detection of the target proteins. The analytical validation demonstrated good linearity, sensitivity, precision, accuracy, robustness, and selectivity for detecting recombinant HPV16-L1 and HPV18-L1 proteins. The nanosensor remained stable for at least 90 days when stored at 4 °C. Clinical evaluation of 173 patients, obtained from cervical samples, showed high specificity (77.8 % for HPV16 and 87.3 % for HPV18) and excellent negative predictive value (>96 % for both). Several false-positive results have been associated with other HPV variants or cervical abnormalities. While the sensitivity was limited by the low prevalence of positive samples, the simple, rapid, and equipment-free nature of this colorimetric nanosensor makes it a promising tool for HPV screening, especially in resource-limited settings.
Collapse
Affiliation(s)
- Carlos E Navarro Chica
- iÓMICAS Research Institute, Pontificia Universidad Javeriana, Calle 17 # 121B - 155, Cali, Valle del Cauca 760031, Colombia
| | - Leslie L Alfonso Tobón
- iÓMICAS Research Institute, Pontificia Universidad Javeriana, Calle 17 # 121B - 155, Cali, Valle del Cauca 760031, Colombia
| | - Juan José López Abella
- iÓMICAS Research Institute, Pontificia Universidad Javeriana, Calle 17 # 121B - 155, Cali, Valle del Cauca 760031, Colombia
| | | | - Daniela Neira Acevedo
- Red de Salud Ladera ESE, Alcaldía de Cali, Calle 5C # 39-51, Cali, Valle del Cauca 760031, Colombia
| | - Paula C Bermúdez
- Faculty of Health Sciences, Pontificia Universidad Javeriana, Calle 18 # 118-250, Cali, Valle del Cauca 760031, Colombia
| | - Marcela Arrivillaga
- Faculty of Health Sciences, Pontificia Universidad Javeriana, Calle 18 # 118-250, Cali, Valle del Cauca 760031, Colombia
| | - Andres Jaramillo-Botero
- iÓMICAS Research Institute, Pontificia Universidad Javeriana, Calle 17 # 121B - 155, Cali, Valle del Cauca 760031, Colombia; Chemistry and Chemical Engineering Division, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
7
|
Fashedemi O, Ozoemena OC, Peteni S, Haruna AB, Shai LJ, Chen A, Rawson F, Cruickshank ME, Grant D, Ola O, Ozoemena KI. Advances in human papillomavirus detection for cervical cancer screening and diagnosis: challenges of conventional methods and opportunities for emergent tools. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1428-1450. [PMID: 39775553 PMCID: PMC11706323 DOI: 10.1039/d4ay01921k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Human papillomavirus (HPV) infection is the main cause of cervical cancer and other cancers such as anogenital and oropharyngeal cancers. The prevention screening and treatment of cervical cancer has remained one of the top priorities of the World Health Organization (WHO). In 2020, the WHO came up with the 90-70-90 strategy aimed at eliminating cervical cancers as a public health problem by the year 2030. One of the key priorities of this strategy is the recommendation for countries to ensure that 70% of their women are screened using a high-performance test by the age of 35, and again by the age of 45. Over the years, several traditional methods (notably, Pap smear and nucleic acid-based techniques) have been used for the detection of cervical cancer. While these methods have significantly reduced the incidence of cervical cancer and death, they still come short of excellence for the total eradication of HPV infection. The challenges include low sensitivity, low specificity, poor reproducibility, the need for high-level specialists, and the high cost of access to the facilities, to mention a few. Interestingly, however, several efforts are being made today to mitigate these challenges. In this review, we discussed the pros and cons of the traditional screening and testing of HPV infections, the efforts being made to improve their performances, and the emergent tools (especially, the electrochemical methods) that promise to revolutionize the screening and testing of HPV infections. The main aim of the review is to provide some novel clues to researchers that would allow for the development of high-performance, affordable, and triage-suitable electrochemical-based diagnostic tools for HPV and cervical cancer.
Collapse
Affiliation(s)
- O Fashedemi
- Advanced Materials Group, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, UK.
| | | | - Siwaphiwe Peteni
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Aderemi B Haruna
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Leshweni J Shai
- Department of Biomedical Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Aicheng Chen
- Department of Chemistry, University of Guelph, Ontario, Canada
| | - Frankie Rawson
- Advanced Materials Group, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, UK.
| | - Maggie E Cruickshank
- Aberdeen Centre for Women's Health Research, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - David Grant
- Advanced Materials Group, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, UK.
| | - Oluwafunmilola Ola
- Advanced Materials Group, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, UK.
| | - Kenneth I Ozoemena
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
8
|
Zhang Y, Xing H, Li R, Andersson J, Bozdogan A, Strassl R, Draphoen B, Lindén M, Henkel M, Knippschild U, Hasler R, Kleber C, Knoll W, Kissmann A, Rosenau F. Specific gFET-Based Aptasensors for Monitoring of Microbiome Quality: Quantification of the Enteric Health-Relevant Bacterium Roseburia Intestinalis. Adv Healthc Mater 2025; 14:e2403827. [PMID: 39663689 PMCID: PMC11804837 DOI: 10.1002/adhm.202403827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/29/2024] [Indexed: 12/13/2024]
Abstract
Roseburia intestinalis, enriched in the gut, is closely associated with obesity, intestinal inflammation, and other diseases. A novel detection method for R. intestinalis to replace the commonly used 16S rRNA sequencing technique is aim to developed, thus enabling real-time and low-cost monitoring of gut microbiota. The optimal solution is to utilize rGO-FET (reduced graphene oxide field-effect transistor) functionalized with aptamers. Due to the high sensitivity of graphene sensors to electronic changes in the system, it is anticipated to achieve detection sensitivity that traditional fluorescence detection techniques cannot attain. The previous work reported a nucleic acid aptamer library, Ri 7_2, capable of quantitatively tracking R. intestinalis in complex systems. However, due to the complexity of the aptamer library itself, large-scale industrial synthesis is challenging, significantly limiting its further commercial application potential. Therefore, in this study, through Next-Generation Sequencing analysis, four representative single aptamers from the aptamer library is strategically selected, named A-Rose 1, A-Rose 2, A-Rose 3, and A-Rose 4, and confirmed their excellent performance similar to the aptamer library Ri 7_2. Furthermore, aptamer-modified rGO-FET demonstrated universality in detecting R. intestinalis in a series of biochemical analyses, providing a novel and powerful diagnostic tool for the clinical diagnosis of R. intestinalis.
Collapse
Affiliation(s)
- Yiting Zhang
- Institute of Pharmaceutical BiotechnologyUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Hu Xing
- Institute of Pharmaceutical BiotechnologyUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Runliu Li
- Institute of Pharmaceutical BiotechnologyUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Jakob Andersson
- AIT Austrian Institute of Technology GmbHGiefinggasse 4Vienna1210Austria
| | - Anil Bozdogan
- Division of Clinical VirologyMedical University of Vienna – Spitalgasse 23Vienna1090Austria
| | - Robert Strassl
- Division of Clinical VirologyMedical University of Vienna – Spitalgasse 23Vienna1090Austria
| | - Bastian Draphoen
- Institute of Inorganic Chemistry IIUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Mika Lindén
- Institute of Inorganic Chemistry IIUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Marius Henkel
- Cellular AgricultureTUM School of Life SciencesTechnical University of MunichGregor‐Mendel‐Str. 485354FreisingGermany
| | - Uwe Knippschild
- Department of General and Visceral SurgerySurgery CenterUlm UniversityAlbert‐Einstein‐Allee 2389081UlmGermany
| | - Roger Hasler
- Danube Private UniversitySteiner Landstraße 124Krems an der Donau3500Austria
| | - Christoph Kleber
- Danube Private UniversitySteiner Landstraße 124Krems an der Donau3500Austria
| | - Wolfgang Knoll
- Danube Private UniversitySteiner Landstraße 124Krems an der Donau3500Austria
| | - Ann‐Kathrin Kissmann
- Institute of Pharmaceutical BiotechnologyUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Frank Rosenau
- Institute of Pharmaceutical BiotechnologyUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| |
Collapse
|
9
|
Fatkullin M, Petrov I, Dogadina E, Kogolev D, Vorobiev A, Postnikov P, Chen JJ, de Oliveira RF, Kanoun O, Rodriguez RD, Sheremet E. Electrochemical Switching of Laser-Induced Graphene/Polymer Composites for Tunable Electronics. Polymers (Basel) 2025; 17:192. [PMID: 39861264 PMCID: PMC11768407 DOI: 10.3390/polym17020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes show severely limited performance. To overcome these challenges, we report on a post-processing redox treatment that allows the tuning of the electrochemical properties of laser-induced rGO/polymer composite electrodes. We show that the polymer substrate plays a crucial role in the electrochemical modulation of the composites' properties, such as the electrode impedance, charge transfer resistance, and areal capacitance. The mechanism behind the reversible control of electrochemical properties of the rGO/polymer composites is the cleavage of polymer chains in the vicinity of rGO flakes during redox cycling, which exposes rGO active sites to interact with the electrolyte. Sequential redox cycling improves composite performance, allowing the development of devices such as electrolyte-gated transistors, which are widely used in chemical sensing applications. Our strategy enables the engineering of the electrochemical properties of rGO/polymer composites by post-treatment with dynamic switching, opening up new possibilities for flexible electronics and electrochemical applications having tunable properties.
Collapse
Affiliation(s)
- Maxim Fatkullin
- Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Lenin Ave. 30, 634050 Tomsk, Russia; (M.F.); (I.P.); (E.D.); (D.K.); (A.V.); (P.P.); (E.S.)
| | - Ilia Petrov
- Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Lenin Ave. 30, 634050 Tomsk, Russia; (M.F.); (I.P.); (E.D.); (D.K.); (A.V.); (P.P.); (E.S.)
| | - Elizaveta Dogadina
- Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Lenin Ave. 30, 634050 Tomsk, Russia; (M.F.); (I.P.); (E.D.); (D.K.); (A.V.); (P.P.); (E.S.)
| | - Dmitry Kogolev
- Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Lenin Ave. 30, 634050 Tomsk, Russia; (M.F.); (I.P.); (E.D.); (D.K.); (A.V.); (P.P.); (E.S.)
| | - Alexandr Vorobiev
- Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Lenin Ave. 30, 634050 Tomsk, Russia; (M.F.); (I.P.); (E.D.); (D.K.); (A.V.); (P.P.); (E.S.)
| | - Pavel Postnikov
- Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Lenin Ave. 30, 634050 Tomsk, Russia; (M.F.); (I.P.); (E.D.); (D.K.); (A.V.); (P.P.); (E.S.)
| | - Jin-Ju Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Rafael Furlan de Oliveira
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil;
| | - Olfa Kanoun
- Measurement and Sensor Technology, Faculty of Electrical Engineering and Information Technology, Technische Universität Chemnitz, 09126 Chemnitz, Germany
| | - Raul D. Rodriguez
- Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Lenin Ave. 30, 634050 Tomsk, Russia; (M.F.); (I.P.); (E.D.); (D.K.); (A.V.); (P.P.); (E.S.)
| | - Evgeniya Sheremet
- Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Lenin Ave. 30, 634050 Tomsk, Russia; (M.F.); (I.P.); (E.D.); (D.K.); (A.V.); (P.P.); (E.S.)
| |
Collapse
|
10
|
Wang Q, Liu M, Zhao J, Yuan J, Li S, Liu R. Development of a magnetic α-Fe 2O 3/Fe 3O 4 heterogeneous nanorod-based electrochemical biosensing platform for HPV16 E7 oncoprotein detection. Int J Biol Macromol 2025; 284:138085. [PMID: 39603292 DOI: 10.1016/j.ijbiomac.2024.138085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/09/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
The prevention, diagnosis and treatment of cancer have always been the focus of medical research. In this study, a label-free, rapid, simple, sensitive, and specific method for the detection of HPV16 E7 oncoprotein was developed. The electrochemical biosensor platform was constructed by magnetic self-assembly of α-Fe2O3/Fe3O4@Au nanocomposites onto the surface of magnetic glass carbon electrode (MGCE), and the nanocomposite was connected to aptamer through AuS bond to construct a probe to capture HPV16 E7. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were applied to verify the performance of the constructed biosensor. The condition optimization and performance analysis were carried out by differential pulse voltammetry (DPV). Under optimal conditions, the biosensor exhibited a strong linearity between current value and the logarithm of HPV16 E7 oncoprotein concentration in the range of 10 pg/mL - 0.1 μg/mL, with a limit of detection (LOD) of 159 fg/mL and a limit of quantification (LOQ) of 530 fg/mL, and it also revealed excellent reproducibility, long-term stability, and anti-interference ability. In a word, the biosensor would contribute to the early diagnosis of oncoprotein HPV16 E7 and had promising application prospects.
Collapse
Affiliation(s)
- Qingxiang Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Min Liu
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, PR China
| | - Jihong Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiahao Yuan
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Shasha Li
- Affiliated Kunshan Hospital, Jiangsu University, Suzhou 215300, PR China.
| | - Ruijiang Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
11
|
Veg E, Hashmi K, Raza S, Joshi S, Rahman Khan A, Khan T. The Role of Nanomaterials in Diagnosis and Targeted Drug Delivery. Chem Biodivers 2025; 22:e202401581. [PMID: 39313849 DOI: 10.1002/cbdv.202401581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Nanomaterials have evolved into the most useful resources in all spheres of life. Their small size imparts them with unique properties and they can also be designed and engineered according to the specific need. The use of nanoparticles (NPs) in medicine is particularly quite revolutionary as it has opened new therapeutic avenues to diagnose, treat and manage diseases in an efficient and timely manner. The review article presents the biomedical applications of nanomaterials including bioimaging, magnetic hypothermia and photoablation therapy, with a particular focus on disease diagnosis and targeted drug delivery. Nanobiosensors are highly specific and can be delivered into cells to investigate important biomarkers. They are also used for targeted drug delivery and deliver theranostic agents to specific sites of interest. Other than these factors, the review also explores the role of nano-based drug delivery systems for the management and treatment of nervous system disorders, tuberculosis and orthopaedics. The nano-capsulated drugs can be transported by blood to the targeted site for a sustained release over a prolonged period. Some other applications like their role in invasive surgery, photodynamic therapy and quantum dot imaging have also been explored. Despite that, the safety concerns related to nanomedicine are also pertinent to comprehend as well as the biodistribution of NPs in the body and the mechanistic insight.
Collapse
Affiliation(s)
- Ekhlakh Veg
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Kulsum Hashmi
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Saman Raza
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Seema Joshi
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| |
Collapse
|
12
|
Xing H, Zhang Y, Li R, Ruzicka HM, Hain C, Andersson J, Bozdogan A, Henkel M, Knippschild U, Hasler R, Kleber C, Knoll W, Kissmann AK, Rosenau F. A Blautia producta specific gFET-based aptasensor for quantitative monitoring of microbiome quality. NANOSCALE HORIZONS 2024; 10:124-134. [PMID: 39420595 DOI: 10.1039/d4nh00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The use of health-relevant bacteria originating from human microbiomes for the control or therapy of diseases, including neurodegenerative disorders or diabetes, is currently gaining increasing importance in medicine. Directed and successful engineering of microbiomes via probiotic supplementation requires subtle, precise as well as, more importantly, easy, fast and convenient monitoring of its success, e.g., in patients' gut. Based on a previously described polyclonal SELEX aptamer library evolved against the human gut bacterium Blautia producta, we finally isolated three individual aptamers that proved their performance concerning affinity, specificity and robustness in reliably labeling the target bacterium and in combination with "contaminating" control bacteria. Using biofunctionalization molecules on gFETs, we could specifically quantify 101-106 cells per mL, retrace their number in mixtures and determine aptamer Kd-values around 2 nM. These measurements were possible even in the context of a real human stool sample. Our results qualify gFETs in combination with BL2, BL7 and BL8 aptamers as a promising foundation for the construction of respective sensing devices, which will open new avenues towards developing an intended monitoring technique for probiotic therapy and microbiome engineering approaches.
Collapse
Affiliation(s)
- Hu Xing
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Yiting Zhang
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Runliu Li
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Hans-Maximilian Ruzicka
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Christopher Hain
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Jakob Andersson
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Anil Bozdogan
- Division of Clinical Virology, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Marius Henkel
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Roger Hasler
- Danube Private University, Faculty of Medicine and Dentistry, Steiner Landstraße 124, 3500 Krems an der Donau, Austria
| | - Christoph Kleber
- Danube Private University, Faculty of Medicine and Dentistry, Steiner Landstraße 124, 3500 Krems an der Donau, Austria
| | - Wolfgang Knoll
- Danube Private University, Faculty of Medicine and Dentistry, Steiner Landstraße 124, 3500 Krems an der Donau, Austria
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
- Max-Planck-Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
13
|
Hu C, Yang S, Li S, Liu X, Liu Y, Chen Z, Chen H, Li S, He N, Cui H, Deng Y. Viral aptamer screening and aptamer-based biosensors for virus detection: A review. Int J Biol Macromol 2024; 276:133935. [PMID: 39029851 DOI: 10.1016/j.ijbiomac.2024.133935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Virus-induced infectious diseases have a detrimental effect on public health and exert significant influence on the global economy. Therefore, the rapid and accurate detection of viruses is crucial for effectively preventing and diagnosing infections. Aptamer-based detection technologies have attracted researchers' attention as promising solutions. Aptamers, small single-stranded DNA or RNA screened via systematic evolution of ligands by exponential enrichment (SELEX), possess a high affinity towards their target molecules. Numerous aptamers targeting viral marker proteins or virions have been developed and widely employed in aptamer-based biosensors (aptasensor) for virus detection. This review introduces SELEX schemes for screening aptamers and discusses distinctive SELEX strategies designed explicitly for viral targets. Furthermore, recent advances in aptamer-based biosensing methods for detecting common viruses using different virus-specific aptamers are summarized. Finally, limitations and prospects associated with developing of aptamer-based biosensors are discussed.
Collapse
Affiliation(s)
- Changchun Hu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuting Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Shuo Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Yuan Liu
- Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China; Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Haipo Cui
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China; Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China; Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
14
|
Nisar S, Dastgeer G, Shazad ZM, Zulfiqar MW, Rasheed A, Iqbal MZ, Hussain K, Rabani I, Kim D, Irfan A, Chaudhry AR. 2D Materials in Advanced Electronic Biosensors for Point-of-Care Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401386. [PMID: 38894575 PMCID: PMC11336981 DOI: 10.1002/advs.202401386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/18/2024] [Indexed: 06/21/2024]
Abstract
Since two-dimensionalal (2D) materials have distinct chemical and physical properties, they are widely used in various sectors of modern technologies. In the domain of diagnostic biodevices, particularly for point-of-care (PoC) biomedical diagnostics, 2D-based field-effect transistor biosensors (bio-FETs) demonstrate substantial potential. Here, in this review article, the operational mechanisms and detection capabilities of biosensing devices utilizing graphene, transition metal dichalcogenides (TMDCs), black phosphorus, and other 2D materials are addressed in detail. The incorporation of these materials into FET-based biosensors offers significant advantages, including low detection limits (LOD), real-time monitoring, label-free diagnosis, and exceptional selectivity. The review also highlights the diverse applications of these biosensors, ranging from conventional to wearable devices, underscoring the versatility of 2D material-based FET devices. Additionally, the review provides a comprehensive assessment of the limitations and challenges faced by these devices, along with insights into future prospects and advancements. Notably, a detailed comparison of FET-based biosensors is tabulated along with various other biosensing platforms and their working mechanisms. Ultimately, this review aims to stimulate further research and innovation in this field while educating the scientific community about the latest advancements in 2D materials-based biosensors.
Collapse
Affiliation(s)
- Sobia Nisar
- Department of Electrical EngineeringSejong UniversitySeoul05006Republic of Korea
- Department of Convergence Engineering for Intelligent DroneSejong UniversitySeoul05006Republic of Korea
| | - Ghulam Dastgeer
- Department of Physics & AstronomySejong UniversitySeoul05006Republic of Korea
| | - Zafar Muhammad Shazad
- SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwon16419Republic of Korea
- Department of Chemical Polymer and Composite EngineeringUniversity of Engineering & TechnologyFaisalabad CampusLahore38000Pakistan
| | - Muhammad Wajid Zulfiqar
- Department of Electrical EngineeringSejong UniversitySeoul05006Republic of Korea
- Department of Semiconductor EngineeringSejong UniversitySeoul05006Republic of Korea
| | - Amir Rasheed
- School of Materials Science and EngineeringAnhui UniversityHefeiAnhui230601China
| | - Muhammad Zahir Iqbal
- Renewable Energy Research LaboratoryFaculty of Engineering SciencesGhulam Ishaq Khan Institute of Engineering Sciences and TechnologyTopiKhyber Pakhtunkhwa23640Pakistan
| | - Kashif Hussain
- THz Technical Research Center; Shenzhen Key Laboratory of Micro‐Nano Photonic Information Technology; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenGuangdong Province518060China
- School of Materials Science and EngineeringCAPTPeking UniversityBeijing100871China
| | - Iqra Rabani
- Department of Nanotechnology and Advanced Materials EngineeringSejong UniversitySeoul05006Republic of Korea
| | - Deok‐kee Kim
- Department of Electrical EngineeringSejong UniversitySeoul05006Republic of Korea
- Department of Convergence Engineering for Intelligent DroneSejong UniversitySeoul05006Republic of Korea
- Department of Semiconductor EngineeringSejong UniversitySeoul05006Republic of Korea
| | - Ahmad Irfan
- Department of ChemistryCollege of ScienceKing Khalid UniversityP. O. Box 9004Abha61413Saudi Arabia
| | - Aijaz Rasool Chaudhry
- Department of PhysicsCollege of ScienceUniversity of BishaP.O. Box 551Bisha61922Saudi Arabia
| |
Collapse
|
15
|
Algarín Pérez A, Acedo P. An Organic Electrochemical Transistor-Based Sensor for IgG Levels Detection of Relevance in SARS-CoV-2 Infections. BIOSENSORS 2024; 14:207. [PMID: 38667200 PMCID: PMC11048065 DOI: 10.3390/bios14040207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Organic electrochemical transistors appear as an alternative for relatively low-cost, easy-to-operate biosensors due to their intrinsic amplification. Herein, we present the fabrication, characterization, and validation of an immuno-detection system based on commercial sensors using gold electrodes where no additional surface treatment is performed on the gate electrode. The steady-state response of these sensors has been studied by analyzing different semiconductor organic channels in order to optimize the biomolecular detection process and its the application to monitoring human IgG levels due to SARS-CoV-2 infections. Detection levels of up to tens of μgmL-1 with sensitivities up to 13.75% [μg/mL]-1, concentration ranges of medical relevance in seroprevalence studies, have been achieved.
Collapse
Affiliation(s)
- Antonio Algarín Pérez
- Electronic Technology Department, Universidad Carlos III de Madrid, 28911 Leganés, Spain;
| | | |
Collapse
|
16
|
Kissmann AK, Bolotnikov G, Li R, Müller F, Xing H, Krämer M, Gottschalk KE, Andersson J, Weil T, Rosenau F. IMPATIENT-qPCR: monitoring SELEX success during in vitro aptamer evolution. Appl Microbiol Biotechnol 2024; 108:284. [PMID: 38573322 PMCID: PMC10995058 DOI: 10.1007/s00253-024-13085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 04/05/2024]
Abstract
SELEX (Systematic Evolution of Ligands by Exponential enrichment) processes aim on the evolution of high-affinity aptamers as binding entities in diagnostics and biosensing. Aptamers can represent game-changers as constituents of diagnostic assays for the management of instantly occurring infectious diseases or other health threats. Without in-process quality control measures SELEX suffers from low overall success rates. We present a quantitative PCR method for fast and easy quantification of aptamers bound to their targets. Simultaneous determination of melting temperatures (Tm) of each SELEX round delivers information on the evolutionary success via the correlation of increasing GC content and Tm alone with a round-wise increase of aptamer affinity to the respective target. Based on nine successful and published previous SELEX processes, in which the evolution/selection of aptamer affinity/specificity was demonstrated, we here show the functionality of the IMPATIENT-qPCR for polyclonal aptamer libraries and resulting individual aptamers. Based on the ease of this new evolution quality control, we hope to introduce it as a valuable tool to accelerate SELEX processes in general. IMPATIENT-qPCR SELEX success monitoring. Selection and evolution of high-affinity aptamers using SELEX technology with direct aptamer evolution monitoring using melting curve shifting analyses to higher Tm by quantitative PCR with fluorescence dye SYBR Green I. KEY POINTS: • Fast and easy analysis. • Universal applicability shown for a series of real successful projects.
Collapse
Affiliation(s)
- Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128, Mainz, Germany
| | - Grigory Bolotnikov
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Runliu Li
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Franziska Müller
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Hu Xing
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Markus Krämer
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kay-E Gottschalk
- Institute of Experimental Physics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jakob Andersson
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Tanja Weil
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128, Mainz, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
17
|
Sengupta J, Hussain CM. Graphene transistor-based biosensors for rapid detection of SARS-CoV-2. Bioelectrochemistry 2024; 156:108623. [PMID: 38070365 DOI: 10.1016/j.bioelechem.2023.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/14/2024]
Abstract
Field-effect transistor (FET) biosensors use FETs to detect changes in the amount of electrical charge caused by biomolecules like antigens and antibodies. COVID-19 can be detected by employing these biosensors by immobilising bio-receptor molecules that bind to the SARS-CoV-2 virus on the FET channel surface and subsequent monitoring of the changes in the current triggered by the virus. Graphene Field-effect Transistor (GFET)-based biosensors utilise graphene, a two-dimensional material with high electrical conductivity, as the sensing element. These biosensors can rapidly detect several biomolecules including the SARS-CoV-2 virus, which is responsible for COVID-19. GFETs are ideal for real-time infectious illness diagnosis due to their great sensitivity and specificity. These graphene transistor-based biosensors could revolutionise clinical diagnostics by generating fast, accurate data that could aid pandemic management. GFETs can also be integrated into point-of-care (POC) diagnostic equipment. Recent advances in GFET-type biosensors for SARS-CoV-2 detection are discussed here, along with their associated challenges and future scope.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata 700033, India.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, 07102, NJ, USA.
| |
Collapse
|
18
|
Baghirov MB, Muradov M, Eyvazova G, Azizian-Kalandaragh Y, Mammadyarova S, Kim J, Gasımov E, Rzayev F. Effect of sulphidation process on the structure, morphology and optical properties of GO/AgNWs composites. RSC Adv 2024; 14:2320-2326. [PMID: 38213967 PMCID: PMC10782283 DOI: 10.1039/d3ra08044g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
In this study, composite materials composed of graphene oxide (GO) synthesized by a modified Hummers' method and silver nanowires (AgNWs) synthesized by a modified polyol method were prepared. The prepared composites were subjected to sulfidation under the influence of H2S gas. Structural changes in the samples were evaluated using X-ray diffraction (XRD). The binding nature of the composite was characterized using FT-IR spectroscopy. Optical properties and band gap values were investigated using ultraviolet-visible (UV-Vis) spectroscopy. The morphology of the composites was analyzed by transmission electron microscopy (TEM). A simple method using H2S gas was applied for the sulphidation process of the samples. The sulfidation process was successful under the influence of H2S gas, resulting in an increased distance between the GO layers and a decrease in the band gap value for the composite post-sulfidation. In addition, AgNWs were observed to decompose into Ag2S nanoparticles under the influence of H2S gas. It was determined that the value of the band gap of the sample changes because of sulphidation.
Collapse
Affiliation(s)
- Mahammad Baghir Baghirov
- Nano Research Laboratory, Baku State University 23 Academic Zahid Khalilov Street Baku AZ1148 Azerbaijan
| | - Mustafa Muradov
- Nano Research Laboratory, Baku State University 23 Academic Zahid Khalilov Street Baku AZ1148 Azerbaijan
| | - Goncha Eyvazova
- Nano Research Laboratory, Baku State University 23 Academic Zahid Khalilov Street Baku AZ1148 Azerbaijan
| | - Yashar Azizian-Kalandaragh
- Photonics Application and Research Center, Gazi University 06500 Ankara Turkey
- Photonics Department, Applied Science Faculty, Gazi University 06500 Ankara Turkey
| | - Sevinj Mammadyarova
- Nano Research Laboratory, Baku State University 23 Academic Zahid Khalilov Street Baku AZ1148 Azerbaijan
| | - Jiseok Kim
- Nano Research Laboratory, Baku State University 23 Academic Zahid Khalilov Street Baku AZ1148 Azerbaijan
| | - Eldar Gasımov
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University Samad Vurghun Baku Nasimi AZ1022 Azerbaijan
| | - Fuad Rzayev
- Department of Electron Microscopy, Azerbaijan Medical University Samad Vurghun Baku Nasimi AZ1022 Azerbaijan
| |
Collapse
|
19
|
Wang J, Chen D, Huang W, Yang N, Yuan Q, Yang Y. Aptamer-functionalized field-effect transistor biosensors for disease diagnosis and environmental monitoring. EXPLORATION (BEIJING, CHINA) 2023; 3:20210027. [PMID: 37933385 PMCID: PMC10624392 DOI: 10.1002/exp.20210027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Nano-biosensors that are composed of recognition molecules and nanomaterials have been extensively utilized in disease diagnosis, health management, and environmental monitoring. As a type of nano-biosensors, molecular specificity field-effect transistor (FET) biosensors with signal amplification capability exhibit prominent advantages including fast response speed, ease of miniaturization, and integration, promising their high sensitivity for molecules detection and identification. With intrinsic characteristics of high stability and structural tunability, aptamer has become one of the most commonly applied biological recognition units in the FET sensing fields. This review summarizes the recent progress of FET biosensors based on aptamer functionalized nanomaterials in medical diagnosis and environmental monitoring. The structure, sensing principles, preparation methods, and functionalization strategies of aptamer modified FET biosensors were comprehensively summarized. The relationship between structure and sensing performance of FET biosensors was reviewed. Furthermore, the challenges and future perspectives of FET biosensors were also discussed, so as to provide support for the future development of efficient healthcare management and environmental monitoring devices.
Collapse
Affiliation(s)
- Jingfeng Wang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Duo Chen
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Wanting Huang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Nianjun Yang
- Department of Chemistry, Insititute of Materials ResearchHasselt UniversityHasseltBelgium
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaChina
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| |
Collapse
|
20
|
Feng X, Li P, Xiao M, Li T, Chen B, Wang X, Wang L. Recent advances in the detection of pathogenic microorganisms and toxins based on field-effect transistor biosensors. Crit Rev Food Sci Nutr 2023; 64:9161-9190. [PMID: 37171049 DOI: 10.1080/10408398.2023.2208677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In food safety analysis, the detection and control of foodborne pathogens and their toxins are of great importance. Monitoring of virus transmission is equally important, especially in light of recent findings that coronaviruses have been detected in frozen foods and packages during the current global epidemic of coronavirus disease 2019. In recent years, field-effect transistor (FET) biosensors have attracted considerable scholarly attention for pathogenic microorganisms and toxins detection and sensing due to their rapid response time, high sensitivity, wide dynamic range, high specificity, label-free detection, portability, and cost-effectiveness. FET-based biosensors can be modified with specific recognition elements, thus providing real-time qualitative and semiquantitative analysis. Furthermore, with advances in nanotechnology and device design, various high-performance nanomaterials are gradually applied in the detection of FET-based biosensors. In this article, we review specific detection in different biological recognition elements are immobilized on FET biosensors for the detection of pathogenic microorganisms and toxins, and we also discuss nonspecific detection by FET biosensors. In addition, there are still unresolved challenges in the development and application of FET biosensors for achieving efficient, multiplexed, in situ detection of pathogenic microorganisms and toxins. Therefore, directions for future FET biosensor research and applications are discussed.
Collapse
Affiliation(s)
- Xiaoxuan Feng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pengzhen Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Mengmeng Xiao
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Tingxian Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Baiyan Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaoying Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Chen S, Sun Y, Fan X, Xu Y, Chen S, Zhang X, Man B, Yang C, Du J. Review on two-dimensional material-based field-effect transistor biosensors: accomplishments, mechanisms, and perspectives. J Nanobiotechnology 2023; 21:144. [PMID: 37122015 PMCID: PMC10148958 DOI: 10.1186/s12951-023-01898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/16/2023] [Indexed: 05/02/2023] Open
Abstract
Field-effect transistor (FET) is regarded as the most promising candidate for the next-generation biosensor, benefiting from the advantages of label-free, easy operation, low cost, easy integration, and direct detection of biomarkers in liquid environments. With the burgeoning advances in nanotechnology and biotechnology, researchers are trying to improve the sensitivity of FET biosensors and broaden their application scenarios from multiple strategies. In order to enable researchers to understand and apply FET biosensors deeply, focusing on the multidisciplinary technical details, the iteration and evolution of FET biosensors are reviewed from exploring the sensing mechanism in detecting biomolecules (research direction 1), the response signal type (research direction 2), the sensing performance optimization (research direction 3), and the integration strategy (research direction 4). Aiming at each research direction, forward perspectives and dialectical evaluations are summarized to enlighten rewarding investigations.
Collapse
Affiliation(s)
- Shuo Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yang Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Xiangyu Fan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yazhe Xu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Shanshan Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xinhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Jun Du
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
22
|
Zhang X, Pu Z, Su X, Li C, Zheng H, Li D. Flexible organic field-effect transistors-based biosensors: progress and perspectives. Anal Bioanal Chem 2023; 415:1607-1625. [PMID: 36719440 PMCID: PMC9888355 DOI: 10.1007/s00216-023-04553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Organic field-effect transistors (OFETs) have been proposed beyond three decades while becoming a research hotspot again in recent years because of the fast development of flexible electronics. Many novel flexible OFETs-based devices have been reported in these years. Among these devices, flexible OFETs-based sensors made great strides because of the extraordinary sensing capability of FET. Most of these flexible OFETs-based sensors were designed for biological applications due to the advantages of flexibility, reduced complexity, and lightweight. This paper reviews the materials, fabrications, and applications of flexible OFETs-based biosensors. Besides, the challenges and opportunities of the flexible OFETs-based biosensors are also discussed.
Collapse
Affiliation(s)
- Xingguo Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Zhihua Pu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China.
| | - Xiao Su
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Chengcheng Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Hao Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China.
| |
Collapse
|
23
|
Alnaji N, Wasfi A, Awwad F. The design of a point of care FET biosensor to detect and screen COVID-19. Sci Rep 2023; 13:4485. [PMID: 36934198 PMCID: PMC10024292 DOI: 10.1038/s41598-023-31679-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Graphene field effect transistor (FET) biosensors have attracted huge attention in the point-of-care and accurate detection. With the recent spread of the new emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the need for rapid, and accurate detection & screening tools is arising. Employing these easy-to-handle sensors can offer cheap, rapid, and accurate detection. Herein, we propose the design of a reduced graphene oxide (rGO) FET biosensor for the detection of SARS-CoV-2. The main objective of this work is to detect the SARS-CoV-2 spike protein antigen on spot selectively and rapidly. The sensor consists of rGO channel, a pair of golden electrodes, and a gate underneath the channel. The channel is functionalized with COVID-19 spike protein antibodies to achieve selectivity, and with metal nanoparticles (MNPs) such as copper and silver to enhance the bio-sensing performance. The designed sensor successfully detects the SARS-CoV-2 spike protein and shows singular electrical behavior for detection. The semi-empirical modeling approach combined with none-equilibrium Green's function were used to study the electronic transport properties of the rGO-FET biosensor before and after the addition of the target molecules. The sensor's selectivity is also tested against other viruses. This study provides a promising guide for future practical fabrication.
Collapse
Affiliation(s)
- Nisreen Alnaji
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Asma Wasfi
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Falah Awwad
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
24
|
Dutta R, Rajendran K, Jana SK, Saleena LM, Ghorai S. Use of Graphene and Its Derivatives for the Detection of Dengue Virus. BIOSENSORS 2023; 13:349. [PMID: 36979561 PMCID: PMC10046626 DOI: 10.3390/bios13030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Every year, the dengue virus and its principal mosquito vector, Aedes sp., have caused massive outbreaks, primarily in equatorial countries. The pre-existing techniques available for dengue detection are expensive and require trained personnel. Graphene and its derivatives have remarkable properties of electrical and thermal conductivity, and are flexible, light, and biocompatible, making them ideal platforms for biosensor development. The incorporation of these materials, along with appropriate nanomaterials, improves the quality of detection methods. Graphene can help overcome the difficulties associated with conventional techniques. In this review, we have given comprehensive details on current graphene-based diagnostics for dengue virus detection. We have also discussed state-of-the-art biosensing technologies and evaluated the advantages and disadvantages of the same.
Collapse
Affiliation(s)
- Reshmi Dutta
- Department of Biotechnology, SRM Institute of Science and Technology, College of Engineering and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai 603203, India
| | - Kokilavani Rajendran
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh 791109, India
| | - Saikat Kumar Jana
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh 791109, India
| | - Lilly M. Saleena
- Department of Biotechnology, SRM Institute of Science and Technology, College of Engineering and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai 603203, India
| | - Suvankar Ghorai
- Department of Microbiology, Raiganj University, Raiganj 733134, India
| |
Collapse
|
25
|
Muradov M, Baghirov MB, Eyvazova G, Gahramanli L, Mammadyarova S, Aliyeva G, Huseynov E, Abdullayev M. Influence of gamma radiation on structure, morphology, and optical properties of GO and GO/PVA nanocomposite. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
26
|
Pareek S, Jain U, Bharadwaj M, Saxena K, Roy S, Chauhan N. An ultrasensitive electrochemical DNA biosensor for monitoring Human papillomavirus-16 (HPV-16) using graphene oxide/Ag/Au nano-biohybrids. Anal Biochem 2023; 663:115015. [PMID: 36496002 DOI: 10.1016/j.ab.2022.115015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
A DNA-based electrochemical biosensor has been developed herein for the detection of Human papillomavirus-16 (HPV-16). HPV-16 is a double-stranded, non-enveloped, epitheliotropic DNA virus which responsible for cervical cancer. In this proposed biosensor, an indium tin oxide (ITO) coated glass electrode was modified for sensing HPV-16 using graphene oxide and silver coated gold nanoparticles. Subsequently, HPV-16 specific DNA probes were immobilized on a modified ITO surface. The synthesized nanocomposites were characterized by FE-SEM and UV-VIS spectroscopy techniques. Electrochemical characterization was performed by using cyclic voltammetry and electrochemical Impedance Spectroscopy methods. The hybridization between the probe and target DNA was analyzed by a reduction in current, mediated by methylene blue. The biosensor showed a qualitative inequity between the probe and target HPV-16 DNA. The developed biosensor showed high sensitivity as 0.54 mA/aM for the detection of HPV-16. In a linear range of 100 aM to 1 μM with 100 aM LOD, the proposed biosensor exhibited excellent performance with the rapid diagnosis. Thus, the results indicate that the developed HPV DNA biosensor shows good consistency with the present approaches and opens new opportunities for developing point-of-care devices. The diagnosis of HPV-16 infection in its early stage may also be possible with this detection system.
Collapse
Affiliation(s)
- Sakshi Pareek
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Utkarsh Jain
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun, 248007, India
| | - Mausumi Bharadwaj
- National Institute of Cancer Prevention & Research, Indian Council of Medical Research (ICMR), 201301, India
| | - Kirti Saxena
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Souradeep Roy
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India; Centre for Interdisciplinary Research and Innovation (CIDRI), University of Petroleum and Energy Studies (UPES), Dehradun, India
| | - Nidhi Chauhan
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun, 248007, India.
| |
Collapse
|
27
|
Dong T, Matos Pires NM, Yang Z, Jiang Z. Advances in Electrochemical Biosensors Based on Nanomaterials for Protein Biomarker Detection in Saliva. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205429. [PMID: 36585368 PMCID: PMC9951322 DOI: 10.1002/advs.202205429] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/20/2022] [Indexed: 06/02/2023]
Abstract
The focus on precise medicine enhances the need for timely diagnosis and frequent monitoring of chronic diseases. Moreover, the recent pandemic of severe acute respiratory syndrome coronavirus 2 poses a great demand for rapid detection and surveillance of viral infections. The detection of protein biomarkers and antigens in the saliva allows rapid identification of diseases or disease changes in scenarios where and when the test response at the point of care is mandated. While traditional methods of protein testing fail to provide the desired fast results, electrochemical biosensors based on nanomaterials hold perfect characteristics for the detection of biomarkers in point-of-care settings. The recent advances in electrochemical sensors for salivary protein detection are critically reviewed in this work, with emphasis on the role of nanomaterials to boost the biosensor analytical performance and increase the reliability of the test in human saliva samples. Furthermore, this work identifies the critical factors for further modernization of the nanomaterial-based electrochemical sensors, envisaging the development and implementation of next-generation sample-in-answer-out systems.
Collapse
Affiliation(s)
- Tao Dong
- Department of Microsystems‐ IMSFaculty of TechnologyNatural Sciences and Maritime SciencesUniversity of South‐Eastern Norway‐USNP.O. Box 235Kongsberg3603Norway
| | - Nuno Miguel Matos Pires
- Chongqing Key Laboratory of Micro‐Nano Systems and Intelligent TransductionCollaborative Innovation Center on Micro‐Nano Transduction and Intelligent Eco‐Internet of ThingsChongqing Key Laboratory of Colleges and Universities on Micro‐Nano Systems Technology and Smart TransducingNational Research Base of Intelligent Manufacturing ServiceChongqing Technology and Business UniversityNan'an DistrictChongqing400067China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro‐Nano Systems and Intelligent TransductionCollaborative Innovation Center on Micro‐Nano Transduction and Intelligent Eco‐Internet of ThingsChongqing Key Laboratory of Colleges and Universities on Micro‐Nano Systems Technology and Smart TransducingNational Research Base of Intelligent Manufacturing ServiceChongqing Technology and Business UniversityNan'an DistrictChongqing400067China
| | - Zhuangde Jiang
- Chongqing Key Laboratory of Micro‐Nano Systems and Intelligent TransductionCollaborative Innovation Center on Micro‐Nano Transduction and Intelligent Eco‐Internet of ThingsChongqing Key Laboratory of Colleges and Universities on Micro‐Nano Systems Technology and Smart TransducingNational Research Base of Intelligent Manufacturing ServiceChongqing Technology and Business UniversityNan'an DistrictChongqing400067China
- State Key Laboratory for Manufacturing Systems EngineeringInternational Joint Laboratory for Micro/Nano Manufacturing and Measurement TechnologyXi'an Jiaotong UniversityXi'an710049China
| |
Collapse
|
28
|
Wu J, Lin H, Moss DJ, Loh KP, Jia B. Graphene oxide for photonics, electronics and optoelectronics. Nat Rev Chem 2023; 7:162-183. [PMID: 37117900 DOI: 10.1038/s41570-022-00458-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/19/2023]
Abstract
Graphene oxide (GO) was initially developed to emulate graphene, but it was soon recognized as a functional material in its own right, addressing an application space that is not accessible to graphene and other carbon materials. Over the past decade, research on GO has made tremendous advances in material synthesis and property tailoring. These, in turn, have led to rapid progress in GO-based photonics, electronics and optoelectronics, paving the way for technological breakthroughs with exceptional performance. In this Review, we provide an overview of the optical, electrical and optoelectronic properties of GO and reduced GO on the basis of their chemical structures and fabrication approaches, together with their applications in key technologies such as solar energy harvesting, energy storage, medical diagnosis, image display and optical communications. We also discuss the challenges of this field, together with exciting opportunities for future technological advances.
Collapse
|
29
|
Ghasemi F, Salimi A. Advances in 2d Based Field Effect Transistors as Biosensing Platforms: From Principle to Biomedical Applications. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
30
|
Liu X, Chen X, Dong Y, Zhang C, Qu X, Lei Y, Jiang Z, Wei X. Multiple virus sorting based on aptamer-modified microspheres in a TSAW device. MICROSYSTEMS & NANOENGINEERING 2023; 9:64. [PMID: 37213822 PMCID: PMC10192341 DOI: 10.1038/s41378-023-00523-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/15/2023] [Accepted: 03/19/2023] [Indexed: 05/23/2023]
Abstract
Due to the overlapping epidemiology and clinical manifestations of flaviviruses, differential diagnosis of these viral diseases is complicated, and the results are unreliable. There is perpetual demand for a simplified, sensitive, rapid and inexpensive assay with less cross-reactivity. The ability to sort distinct virus particles from a mixture of biological samples is crucial for improving the sensitivity of diagnoses. Therefore, we developed a sorting system for the subsequent differential diagnosis of dengue and tick-borne encephalitis in the early stage. We employed aptamer-modified polystyrene (PS) microspheres with different diameters to specifically capture dengue virus (DENV) and tick-borne encephalitis virus (TBEV), and utilized a traveling surface acoustic wave (TSAW) device to accomplish microsphere sorting according to particle size. The captured viruses were then characterized by laser scanning confocal microscopy (LSCM), field emission scanning electron microscopy (FE-SEM) and reverse transcription-polymerase chain reaction (RT‒PCR). The characterization results indicated that the acoustic sorting process was effective and damage-free for subsequent analysis. Furthermore, the strategy can be utilized for sample pretreatment in the differential diagnosis of viral diseases.
Collapse
Affiliation(s)
- Xianglian Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xuan Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yangchao Dong
- Department of Microbiology, the Fourth Military Medical University, Xi’an, 710032 China
| | - Chuanyu Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xiaoli Qu
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yingfeng Lei
- Department of Microbiology, the Fourth Military Medical University, Xi’an, 710032 China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xueyong Wei
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| |
Collapse
|
31
|
Ramesh M, Janani R, Deepa C, Rajeshkumar L. Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications. BIOSENSORS 2022; 13:40. [PMID: 36671875 PMCID: PMC9856107 DOI: 10.3390/bios13010040] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 05/14/2023]
Abstract
Biosensors are modern engineering tools that can be widely used for various technological applications. In the recent past, biosensors have been widely used in a broad application spectrum including industrial process control, the military, environmental monitoring, health care, microbiology, and food quality control. Biosensors are also used specifically for monitoring environmental pollution, detecting toxic elements' presence, the presence of bio-hazardous viruses or bacteria in organic matter, and biomolecule detection in clinical diagnostics. Moreover, deep medical applications such as well-being monitoring, chronic disease treatment, and in vitro medical examination studies such as the screening of infectious diseases for early detection. The scope for expanding the use of biosensors is very high owing to their inherent advantages such as ease of use, scalability, and simple manufacturing process. Biosensor technology is more prevalent as a large-scale, low cost, and enhanced technology in the modern medical field. Integration of nanotechnology with biosensors has shown the development path for the novel sensing mechanisms and biosensors as they enhance the performance and sensing ability of the currently used biosensors. Nanoscale dimensional integration promotes the formulation of biosensors with simple and rapid detection of molecules along with the detection of single biomolecules where they can also be evaluated and analyzed critically. Nanomaterials are used for the manufacturing of nano-biosensors and the nanomaterials commonly used include nanoparticles, nanowires, carbon nanotubes (CNTs), nanorods, and quantum dots (QDs). Nanomaterials possess various advantages such as color tunability, high detection sensitivity, a large surface area, high carrier capacity, high stability, and high thermal and electrical conductivity. The current review focuses on nanotechnology-enabled biosensors, their fundamentals, and architectural design. The review also expands the view on the materials used for fabricating biosensors and the probable applications of nanotechnology-enabled biosensors.
Collapse
Affiliation(s)
- Manickam Ramesh
- Department of Mechanical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Ravichandran Janani
- Department of Physics, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Chinnaiyan Deepa
- Department of Artificial Intelligence & Data Science, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Lakshminarasimhan Rajeshkumar
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India
| |
Collapse
|
32
|
Lou B, Liu Y, Shi M, Chen J, Li K, Tan Y, Chen L, Wu Y, Wang T, Liu X, Jiang T, Peng D, Liu Z. Aptamer-based biosensors for virus protein detection. Trends Analyt Chem 2022; 157:116738. [PMID: 35874498 PMCID: PMC9293409 DOI: 10.1016/j.trac.2022.116738] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023]
Abstract
Virus threatens life health seriously. The accurate early diagnosis of the virus is vital for clinical control and treatment of virus infection. Aptamers are small single-stranded oligonucleotides (DNAs or RNAs). In this review, we summarized aptasensors for virus detection in recent years according to the classification of the viral target protein, and illustrated common detection mechanisms in the aptasensors (colorimetry, fluorescence assay, surface plasmon resonance (SPR), surface-enhanced raman spectroscopy (SERS), electrochemical detection, and field-effect transistor (FET)). Furthermore, aptamers against different target proteins of viruses were summarized. The relationships between the different biomarkers of the viruses and the detection methods, and their performances were revealed. In addition, the challenges and future directions of aptasensors were discussed. This review will provide valuable references for constructing on-site aptasensors for detecting viruses, especially the SARS-CoV-2.
Collapse
Affiliation(s)
- Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Meilin Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Jun Chen
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Yuwei Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Xiaoqin Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Dongming Peng
- Department of Medicinal Chemistry, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China.,Molecular Imaging Research Center of Central South University, Changsha, 410008, Hunan, PR China
| |
Collapse
|
33
|
Application of Nanotechnology in COVID-19 Infection: Findings and Limitations. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3040014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is an urgent need to address the global mortality of the COVID-19 pandemic, as it reached 6.3 million as of July 2022. As such, the experts recommended the mass diagnosis of SARS-CoV-2 infection at an early stage using nanotechnology-based sensitive diagnostic approaches. The development of nanobiosensors for Point-of-Care (POC) sampling of COVID-19 could ensure mass detection without the need for sophisticated laboratories or expert personnel. The use of Artificial Intelligence (AI) techniques for POC detection was also proposed. In addition, the utilization of various antiviral nanomaterials such as Silver Nanoparticles (AgNPs) for the development of masks for personal protection mitigates viral transmission. Nowadays, nano-assisted vaccines have been approved for emergency use, but their safety and effectiveness in the mutant strain of the SARS-CoV-2 virus remain challenging. Methodology: Updated literature was sourced from various research indexing databases such as PubMed, SCOPUS, Science Direct, Research Gate and Google Scholars. Result: We presented the concept of novel nanotechnology researched discovery, including nano-devices, electrochemical biosensing, nano-assisted vaccine, and nanomedicines, for use in recent times, which could be a formidable step for future management of COVID-19.
Collapse
|
34
|
Li J, Tang L, Li T, Li K, Zhang Y, Ni W, Xiao MM, Zhao Y, Zhang ZY, Zhang GJ. Tandem Cas13a/crRNA-Mediated CRISPR-FET Biosensor: A One-for-All Check Station for Virus without Amplification. ACS Sens 2022; 7:2680-2690. [PMID: 36073895 DOI: 10.1021/acssensors.2c01200] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The path toward field-effect transistor (FET) application from laboratory to clinic has delivered a compelling push in the biomedical domain, yet ultrasensitive and timely pathogen identification without PCR remains a long-lasting challenge. Herein, we create a generic check station termed "CRISPR-FET", first incorporating the CRISPR/Cas13a system within the FET modality, for accelerated and unamplified detection of viral RNA. Unlike conventional FETs bearing target-specific receptors, this sensor holds three unique advancements: (i) an ingenious sensing mechanism is used, which converts the signal of a large-sized analyte into an on-chip cleavage response of an immobilized CRISPR reporter, enabling signal generation events to occur all within the Debye length; (ii) the multipurpose inspection of the CoV ORF1ab, CoV N gene, and HCV RNA unveils the potential for "one-for-all" scalable FET-based molecular diagnostics; and (iii) it is shown that Cas13a-crRNAs targeting different sites of the viral genome can be deployed in tandem to amplify the FET response, empowering the detection limit down to 1.56 aM, which is a world-record level of sensitivity in the FET for direct viral gene sensing. Notably, a brilliant clinical applicability was made in distinguishing HCV-infected patients from normal controls. Overall, this study sheds new insights into FET-based nucleic acid sensing technology and invokes a vision for its possible future roles in diagnosis of various viral diseases.
Collapse
Affiliation(s)
- Jiahao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, P.R. China
| | - Lina Tang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, P.R. China
| | - Tingxian Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, P.R. China
| | - Kun Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, P.R. China
| | - Yulin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, P.R. China
| | - Wei Ni
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
| | - Meng-Meng Xiao
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, P. R. China
| | - Youyun Zhao
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
| | - Zhi-Yong Zhang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, P. R. China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, P.R. China
| |
Collapse
|
35
|
Kneißle K, Krämer M, Kissmann AK, Xing H, Müller F, Amann V, Noschka R, Gottschalk KE, Bozdogan A, Andersson J, Weil T, Spellerberg B, Stenger S, Rosenau F. A Polyclonal SELEX Aptamer Library Allows Differentiation of Candida albicans, C. auris and C. parapsilosis Cells from Human Dermal Fibroblasts. J Fungi (Basel) 2022; 8:jof8080856. [PMID: 36012844 PMCID: PMC9410195 DOI: 10.3390/jof8080856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Easy and reliable identification of pathogenic species such as yeasts, emerging as problematic microbes originating from the genus Candida, is a task in the management and treatment of infections, especially in hospitals and other healthcare environments. Aptamers are seizing an already indispensable role in different sensing applications as binding entities with almost arbitrarily tunable specificities and optimizable affinities. Here, we describe a polyclonal SELEX library that not only can specifically recognize and fluorescently label Candida cells, but is also capable to differentiate C. albicans, C. auris and C. parapsilosis cells in flow-cytometry, fluorometric microtiter plate assays and fluorescence microscopy from human cells, exemplified here by human dermal fibroblasts. This offers the opportunity to develop diagnostic tools based on this library. Moreover, these specific and robust affinity molecules could also serve in the future as potent binding entities on biomaterials and as constituents of technical devices and will thus open avenues for the development of cost-effective and easily accessible next generations of electronic biosensors in clinical diagnostics and novel materials for the specific removal of pathogenic cells from human bio-samples.
Collapse
Affiliation(s)
- Katharina Kneißle
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Markus Krämer
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
- Correspondence: (A.-K.K.); (F.R.)
| | - Hu Xing
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Franziska Müller
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Valerie Amann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Reiner Noschka
- Institute of Medical Microbiology and Hygiene, University Clinic of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Kay-Eberhard Gottschalk
- Institute of Experimental Physics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Anil Bozdogan
- Center for Electrochemical Surface Technology (CEST), Austrian Institute of Technology, 3420 Tulln, Austria
- AIT Austrian Institute of Technology, Biosensor Technologies, Giefinggasse 4, 1210 Vienna, Austria
| | - Jakob Andersson
- AIT Austrian Institute of Technology, Biosensor Technologies, Giefinggasse 4, 1210 Vienna, Austria
| | - Tanja Weil
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Clinic of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, University Clinic of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
- Correspondence: (A.-K.K.); (F.R.)
| |
Collapse
|
36
|
Ozkan-Ariksoysal D. Current Perspectives in Graphene Oxide-Based Electrochemical Biosensors for Cancer Diagnostics. BIOSENSORS 2022; 12:bios12080607. [PMID: 36005004 PMCID: PMC9405788 DOI: 10.3390/bios12080607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022]
Abstract
Since the first commercial biosensor device for blood glucose measurement was introduced in the 1970s, many “biosensor types” have been developed, and this research area remains popular worldwide. In parallel with some global biosensor research reports published in the last decade, including a great deal of literature and industry statistics, it is predicted that biosensor design technologies, including handheld or wearable devices, will be preferred and highly valuable in many areas in the near future. Biosensors using nanoparticles still maintain their very important place in science and technology and are the subject of innovative research projects. Among the nanomaterials, carbon-based ones are considered to be one of the most valuable nanoparticles, especially in the field of electrochemical biosensors. In this context, graphene oxide, which has been used in recent years to increase the electrochemical analysis performance in biosensor designs, has been the subject of this review. In fact, graphene is already foreseen not only for biosensors but also as the nanomaterial of the future in many fields and is therefore drawing research attention. In this review, recent and prominent developments in biosensor technologies using graphene oxide (GO)-based nanomaterials in the field of cancer diagnosis are briefly summarized.
Collapse
Affiliation(s)
- Dilsat Ozkan-Ariksoysal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey
| |
Collapse
|
37
|
Rizzato S, Monteduro AG, Leo A, Todaro MT, Maruccio G. From ion‐sensitive field‐effect transistor to 2D materials field‐effect‐transistor biosensors. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Silvia Rizzato
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi” University of Salento and INFN Sezione di Lecce Lecce Italy
- Institute of Nanotechnology CNR‐Nanotec Lecce Italy
| | - Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi” University of Salento and INFN Sezione di Lecce Lecce Italy
- Institute of Nanotechnology CNR‐Nanotec Lecce Italy
| | - Angelo Leo
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi” University of Salento and INFN Sezione di Lecce Lecce Italy
- Institute of Nanotechnology CNR‐Nanotec Lecce Italy
| | | | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi” University of Salento and INFN Sezione di Lecce Lecce Italy
- Institute of Nanotechnology CNR‐Nanotec Lecce Italy
| |
Collapse
|
38
|
Furlan de Oliveira R, Montes-García V, Livio PA, González-García MB, Fanjul-Bolado P, Casalini S, Samorì P. Selective Ion Sensing in Artificial Sweat Using Low-Cost Reduced Graphene Oxide Liquid-Gated Plastic Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201861. [PMID: 35676237 DOI: 10.1002/smll.202201861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Health monitoring is experiencing a radical shift from clinic-based to point-of-care and wearable technologies, and a variety of nanomaterials and transducers have been employed for this purpose. 2D materials (2DMs) hold enormous potential for novel electronics, yet they struggle to meet the requirements of wearable technologies. Here, aiming to foster the development of 2DM-based wearable technologies, reduced graphene oxide (rGO)-based liquid-gated transistors (LGTs) for cation sensing in artificial sweat endowed with distinguished performance and great potential for scalable manufacturing is reported. Laser micromachining is employed to produce flexible transistor test patterns employing rGO as the electronic transducer. Analyte selectivity is achieved by functionalizing the transistor channel with ion-selective membranes (ISMs) via a simple casting method. Real-time monitoring of K+ and Na+ in artificial sweat is carried out employing a gate voltage pulsed stimulus to take advantage of the fast responsivity of rGO. The sensors show excellent selectivity toward the target analyte, low working voltages (<0.5 V), fast (5-15 s), linear response at a wide range of concentrations (10 µm to 100 mm), and sensitivities of 1 µA/decade. The reported strategy is an important step forward toward the development of wearable sensors based on 2DMs for future health monitoring technologies.
Collapse
Affiliation(s)
- Rafael Furlan de Oliveira
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, Strasbourg, F-67000, France
- Brazilian Nanotechnology National Laboratory (LNNano), CNPEM, Campinas, 13083-970, Brazil
| | - Verónica Montes-García
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, Strasbourg, F-67000, France
| | - Pietro Antonio Livio
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, Strasbourg, F-67000, France
| | - María Begoña González-García
- Metrohm DropSens,S.L., Vivero de Ciencias de la Salud, C/ Colegio Santo Domingo de Guzmán s/n, Oviedo, Asturias, 33010, Spain
| | - Pablo Fanjul-Bolado
- Metrohm DropSens,S.L., Vivero de Ciencias de la Salud, C/ Colegio Santo Domingo de Guzmán s/n, Oviedo, Asturias, 33010, Spain
| | - Stefano Casalini
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, Strasbourg, F-67000, France
- Università degli Studi di Padova, Dipartimento di Scienze Chimiche, via Marzolo 1, Padova, 35131, Italy
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, Strasbourg, F-67000, France
| |
Collapse
|
39
|
Yang Y, Qing Y, Hao X, Fang C, Ouyang P, Li H, Wang Z, Liao Y, Fang H, Du J. APTES-Modified Remote Self-Assembled DNA-Based Electrochemical Biosensor for Human Papillomavirus DNA Detection. BIOSENSORS 2022; 12:bios12070449. [PMID: 35884252 PMCID: PMC9312881 DOI: 10.3390/bios12070449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022]
Abstract
High-risk human papillomavirus (HPV) infection is an important cause of cervical cancer formation; therefore, being able to detect high-risk HPV (e.g., HPV-16) is important for the early treatment and prevention of cervical cancer. In this study, a combination of a 3-aminopropyltriethoxysilane (APTES) modified gold electrode and a super sandwich structure was creatively developed, resulting in the development of a biosensor that is both sensitive and stable for the detection of HPV-16. The electrochemical biosensor possesses a lower detection limit compared with previous studies with an LOD of 5.475 × 10−16 mol/L and it possesses a wide linear range from 1.0 × 10−13 mol/L to 1.0 × 10−6 mol/L (R2 = 0.9923) for the target DNA. The experimental data show that the sensor has good stability, and there is no significant decrease in the current response value after 7 days in the low-temperature environment. In addition, the sensor proved to be a powerful clinical tool for disease diagnosis because it showed good interference resistance in complex human serum samples.
Collapse
|
40
|
Pourmadadi M, Soleimani Dinani H, Saeidi Tabar F, Khassi K, Janfaza S, Tasnim N, Hoorfar M. Properties and Applications of Graphene and Its Derivatives in Biosensors for Cancer Detection: A Comprehensive Review. BIOSENSORS 2022; 12:bios12050269. [PMID: 35624570 PMCID: PMC9138779 DOI: 10.3390/bios12050269] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 05/09/2023]
Abstract
Cancer is one of the deadliest diseases worldwide, and there is a critical need for diagnostic platforms for applications in early cancer detection. The diagnosis of cancer can be made by identifying abnormal cell characteristics such as functional changes, a number of vital proteins in the body, abnormal genetic mutations and structural changes, and so on. Identifying biomarker candidates such as DNA, RNA, mRNA, aptamers, metabolomic biomolecules, enzymes, and proteins is one of the most important challenges. In order to eliminate such challenges, emerging biomarkers can be identified by designing a suitable biosensor. One of the most powerful technologies in development is biosensor technology based on nanostructures. Recently, graphene and its derivatives have been used for diverse diagnostic and therapeutic approaches. Graphene-based biosensors have exhibited significant performance with excellent sensitivity, selectivity, stability, and a wide detection range. In this review, the principle of technology, advances, and challenges in graphene-based biosensors such as field-effect transistors (FET), fluorescence sensors, SPR biosensors, and electrochemical biosensors to detect different cancer cells is systematically discussed. Additionally, we provide an outlook on the properties, applications, and challenges of graphene and its derivatives, such as Graphene Oxide (GO), Reduced Graphene Oxide (RGO), and Graphene Quantum Dots (GQDs), in early cancer detection by nanobiosensors.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran; (M.P.); (F.S.T.)
| | - Homayoon Soleimani Dinani
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA;
| | - Fatemeh Saeidi Tabar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran; (M.P.); (F.S.T.)
| | - Kajal Khassi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran;
| | - Sajjad Janfaza
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (S.J.); (N.T.)
| | - Nishat Tasnim
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (S.J.); (N.T.)
- School of Engineering and Computer Science, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (S.J.); (N.T.)
- School of Engineering and Computer Science, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Correspondence:
| |
Collapse
|
41
|
Dai C, Liu Y, Wei D. Two-Dimensional Field-Effect Transistor Sensors: The Road toward Commercialization. Chem Rev 2022; 122:10319-10392. [PMID: 35412802 DOI: 10.1021/acs.chemrev.1c00924] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The evolutionary success in information technology has been sustained by the rapid growth of sensor technology. Recently, advances in sensor technology have promoted the ambitious requirement to build intelligent systems that can be controlled by external stimuli along with independent operation, adaptivity, and low energy expenditure. Among various sensing techniques, field-effect transistors (FETs) with channels made of two-dimensional (2D) materials attract increasing attention for advantages such as label-free detection, fast response, easy operation, and capability of integration. With atomic thickness, 2D materials restrict the carrier flow within the material surface and expose it directly to the external environment, leading to efficient signal acquisition and conversion. This review summarizes the latest advances of 2D-materials-based FET (2D FET) sensors in a comprehensive manner that contains the material, operating principles, fabrication technologies, proof-of-concept applications, and prototypes. First, a brief description of the background and fundamentals is provided. The subsequent contents summarize physical, chemical, and biological 2D FET sensors and their applications. Then, we highlight the challenges of their commercialization and discuss corresponding solution techniques. The following section presents a systematic survey of recent progress in developing commercial prototypes. Lastly, we summarize the long-standing efforts and prospective future development of 2D FET-based sensing systems toward commercialization.
Collapse
Affiliation(s)
- Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
42
|
Sadighbayan D, Minhas-Khan A, Ghafar-Zadeh E. Laser-Induced Graphene-Functionalized Field-Effect Transistor-Based Biosensing: A Potent Candidate for COVID-19 Detection. IEEE Trans Nanobioscience 2022; 21:232-245. [PMID: 34648455 PMCID: PMC9088816 DOI: 10.1109/tnb.2021.3119996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Speedy and on-time detection of coronavirus disease 2019 (COVID-19) is of high importance to control the pandemic effectively and stop its disastrous consequences. A widely available, reliable, label-free, and rapid test that can recognize tiny amounts of specific biomarkers might be the solution. Nanobiosensors are one of the most attractive candidates for this purpose. Integration of graphene with biosensing devices shifts the performance of these systems to an incomparable level. Between the various arrangements using this wonder material, field-effect transistors (FETs) display a precise detection even in complex samples. The emergence of pioneering biosensors for detecting a wide range of diseases especially COVID-19 created the incentive to prepare a review of the recent graphene-FET biosensing platforms. However, the graphene fabrication and transfer to the surface of the device is an imperative factor for researchers to take into account. Therefore, we also reviewed the common methods of manufacturing graphene for biosensing applications and discuss their advantages and disadvantages. One of the most recent synthesizing techniques - laser-induced graphene (LIG) - is attracting attention owing to its extraordinary benefits which are thoroughly explained in this article. Finally, a conclusion highlighting the current challenges is presented.
Collapse
Affiliation(s)
- Deniz Sadighbayan
- Biologically Inspired Sensors and Actuators Laboratory (BioSA)York UniversityTorontoONM3J 1P3Canada
| | - Aamir Minhas-Khan
- Biologically Inspired Sensors and Actuators Laboratory (BioSA)York UniversityTorontoONM3J 1P3Canada
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory (BioSA)York UniversityTorontoONM3J 1P3Canada
| |
Collapse
|
43
|
Aptamers-Diagnostic and Therapeutic Solution in SARS-CoV-2. Int J Mol Sci 2022; 23:ijms23031412. [PMID: 35163338 PMCID: PMC8836149 DOI: 10.3390/ijms23031412] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
The SARS-CoV-2 virus is currently the most serious challenge to global public health. Its emergence has severely disrupted the functioning of health services and the economic and social situation worldwide. Therefore, new diagnostic and therapeutic tools are urgently needed to allow for the early detection of the SARS-CoV-2 virus and appropriate treatment, which is crucial for the effective control of the COVID-19 disease. The ideal solution seems to be the use of aptamers—short fragments of nucleic acids, DNA or RNA—that can bind selected proteins with high specificity and affinity. They can be used in methods that base the reading of the test result on fluorescence phenomena, chemiluminescence, and electrochemical changes. Exploiting the properties of aptamers will enable the introduction of rapid, sensitive, specific, and low-cost tests for the routine diagnosis of SARS-CoV-2. Aptamers are excellent candidates for the development of point-of-care diagnostic devices and are potential therapeutic tools for the treatment of COVID-19. They can effectively block coronavirus activity in multiple fields by binding viral proteins and acting as carriers of therapeutic substances. In this review, we present recent developments in the design of various types of aptasensors to detect and treat the SARS-CoV-2 infection.
Collapse
|
44
|
Synthesis and Applications of Graphene Oxide. MATERIALS 2022; 15:ma15030920. [PMID: 35160865 PMCID: PMC8839209 DOI: 10.3390/ma15030920] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023]
Abstract
Thanks to the unique properties of graphite oxides and graphene oxide (GO), this material has become one of the most promising materials that are widely studied. Graphene oxide is not only a precursor for the synthesis of thermally or chemically reduced graphene: researchers revealed a huge amount of unique optical, electronic, and chemical properties of graphene oxide for many different applications. In this review, we focus on the structure and characterization of GO, graphene derivatives prepared from GO and GO applications. We describe GO utilization in environmental applications, medical and biological applications, freestanding membranes, and various composite systems.
Collapse
|
45
|
Wang W, Zhai W, Chen Y, He Q, Zhang H. Two-dimensional material-based virus detection. Sci China Chem 2022; 65:497-513. [PMID: 35035391 PMCID: PMC8742882 DOI: 10.1007/s11426-021-1150-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022]
Abstract
Cost-effective, rapid, and accurate virus detection technologies play key roles in reducing viral transmission. Prompt and accurate virus detection enables timely treatment and effective quarantine of virus carrier, and therefore effectively reduces the possibility of large-scale spread. However, conventional virus detection techniques often suffer from slow response, high cost or sophisticated procedures. Recently, two-dimensional (2D) materials have been used as promising sensing platforms for the high-performance detection of a variety of chemical and biological substances. The unique properties of 2D materials, such as large specific area, active surface interaction with biomolecules and facile surface functionalization, provide advantages in developing novel virus detection technologies with fast response and high sensitivity. Furthermore, 2D materials possess versatile and tunable electronic, electrochemical and optical properties, making them ideal platforms to demonstrate conceptual sensing techniques and explore complex sensing mechanisms in next-generation biosensors. In this review, we first briefly summarize the virus detection techniques with an emphasis on the current efforts in fighting again COVID-19. Then, we introduce the preparation methods and properties of 2D materials utilized in biosensors, including graphene, transition metal dichalcogenides (TMDs) and other 2D materials. Furthermore, we discuss the working principles of various virus detection technologies based on emerging 2D materials, such as field-effect transistor-based virus detection, electrochemical virus detection, optical virus detection and other virus detection techniques. Then, we elaborate on the essential works in 2D material-based high-performance virus detection. Finally, our perspective on the challenges and future research direction in this field is discussed.
Collapse
Affiliation(s)
- Wenbin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057 China
| |
Collapse
|
46
|
Szunerits S, Pagneux Q, Swaidan A, Mishyn V, Roussel A, Cambillau C, Devos D, Engelmann I, Alidjinou EK, Happy H, Boukherroub R. The role of the surface ligand on the performance of electrochemical SARS-CoV-2 antigen biosensors. Anal Bioanal Chem 2022; 414:103-113. [PMID: 33616686 PMCID: PMC7897554 DOI: 10.1007/s00216-020-03137-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 01/07/2023]
Abstract
Point-of-care (POC) technologies and testing programs hold great potential to significantly improve diagnosis and disease surveillance. POC tests have the intrinsic advantage of being able to be performed near the patient or treatment facility, owing to their portable character. With rapid results often in minutes, these diagnostic platforms have a high positive impact on disease management. POC tests are, in addition, advantageous in situations of a shortage of skilled personnel and restricted availability of laboratory-based analytics. While POC testing programs are widely considered in addressing health care challenges in low-income health systems, the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections could largely benefit from fast, efficient, accurate, and cost-effective point-of-care testing (POCT) devices for limiting COVID-19 spreading. The unrestrained availability of SARS-CoV-2 POC tests is indeed one of the adequate means of better managing the COVID-19 outbreak. A large number of novel and innovative solutions to address this medical need have emerged over the last months. Here, we critically elaborate the role of the surface ligands in the design of biosensors to cope with the current viral outbreak situation. Their notable effect on electrical and electrochemical sensors' design will be discussed in some given examples. Graphical abstract.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France.
| | - Quentin Pagneux
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Abir Swaidan
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Vladyslav Mishyn
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, CEDEX 20, 13020, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, CEDEX 20, 13020, Marseille, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, CEDEX 20, 13020, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, CEDEX 20, 13020, Marseille, France
| | - David Devos
- Univ. Lille, CHU-Lille, Inserm, U1172, Lille Neuroscience & Cognition, LICEND, 59000, Lille, France
| | - Ilka Engelmann
- Univ. Lille, CHU Lille, Laboratoire de Virologie ULR3610, 59000, Lille, France
| | | | - Henri Happy
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| |
Collapse
|
47
|
Halima HB, Errachid A, Jaffrezic‐Renault N. Electrochemical Affinity Sensors Using Field Effect Transducer Devices for Chemical Analysis. ELECTROANAL 2021. [DOI: 10.1002/elan.202100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hamdi Ben Halima
- University of Lyon Institute of Analytical Sciences 69100 Villeurbanne France
| | - Abdelhamid Errachid
- University of Lyon Institute of Analytical Sciences 69100 Villeurbanne France
| | | |
Collapse
|
48
|
Monteil S, Casson AJ, Jones ST. Electronic and electrochemical viral detection for point-of-care use: A systematic review. PLoS One 2021; 16:e0258002. [PMID: 34591907 PMCID: PMC8483417 DOI: 10.1371/journal.pone.0258002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/15/2021] [Indexed: 12/27/2022] Open
Abstract
Detecting viruses, which have significant impact on health and the economy, is essential for controlling and combating viral infections. In recent years there has been a focus towards simpler and faster detection methods, specifically through the use of electronic-based detection at the point-of-care. Point-of-care sensors play a particularly important role in the detection of viruses. Tests can be performed in the field or in resource limited regions in a simple manner and short time frame, allowing for rapid treatment. Electronic based detection allows for speed and quantitative detection not otherwise possible at the point-of-care. Such approaches are largely based upon voltammetry, electrochemical impedance spectroscopy, field effect transistors, and similar electrical techniques. Here, we systematically review electronic and electrochemical point-of-care sensors for the detection of human viral pathogens. Using the reported limits of detection and assay times we compare approaches both by detection method and by the target analyte of interest. Compared to recent scoping and narrative reviews, this systematic review which follows established best practice for evidence synthesis adds substantial new evidence on 1) performance and 2) limitations, needed for sensor uptake in the clinical arena. 104 relevant studies were identified by conducting a search of current literature using 7 databases, only including original research articles detecting human viruses and reporting a limit of detection. Detection units were converted to nanomolars where possible in order to compare performance across devices. This approach allows us to identify field effect transistors as having the fastest median response time, and as being the most sensitive, some achieving single-molecule detection. In general, we found that antigens are the quickest targets to detect. We also observe however, that reports are highly variable in their chosen metrics of interest. We suggest that this lack of systematisation across studies may be a major bottleneck in sensor development and translation. Where appropriate, we use the findings of the systematic review to give recommendations for best reporting practice.
Collapse
Affiliation(s)
- Solen Monteil
- Department of Materials, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
- The Henry Royce Institute, Manchester, United Kingdom
| | - Alexander J. Casson
- The Henry Royce Institute, Manchester, United Kingdom
- Department of Electrical and Electronic Engineering, School of Engineering, University of Manchester, Manchester, United Kingdom
| | - Samuel T. Jones
- Department of Materials, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
- The Henry Royce Institute, Manchester, United Kingdom
| |
Collapse
|
49
|
Liu J, Wan Q, Zeng R, Tang D. An ultrasensitive homogeneous electrochemical biosensor based on CRISPR-Cas12a. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3227-3232. [PMID: 34235515 DOI: 10.1039/d1ay00725d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Taking advantage of the high-efficiency indiscriminate ssDNA cleavage activity of Cas12a in combination with the diffusivity difference of methylene blue (MB)-labeled probes (short oligonucleotides/mononucleotides) toward the negatively-charged indium tin oxide (ITO) electrode, a simple, immobilization-free, highly sensitive, and homogeneous electrochemical biosensor for the detection of human papillomavirus (HPV-16) has been fabricated. At the core of the detection process, Cas12a employed ssDNA trans-cleavage capability to achieve short-strand nucleotide cleavage, while MB-labeled probes served as high-efficiency homogeneous electrochemical emitters to achieve differential pulse voltammetric (DPV) signal. Specifically, due to strong electrostatic repulsion, MB-labeled short oligonucleotides (reporter) cannot diffuse freely to the surface of the negatively charged ITO electrode, and only weak electrochemical signals can be detected. The presence of the target HPV-16 can activate the Cas12a complex to perform indiscriminate ssDNA cleavage of the reporter to produce MB-labeled mononucleotides. The MB-labeled mononucleotides with a smaller size have almost no negative charge, so they very easily diffuse to the surface of the ITO electrode and result in an enhanced electrochemical signal response. Different electrochemical responses (DPV peak intensity) of the CRISPR-Cas12a-assisted amplification strategy can be obtained through the diffusion rate of different MB-labeled DNA on the electrode, which is also positively correlated with the input HPV-16 concentration. Given the unique combination of the CRISPR-Cas12a system with the homogeneous electrochemical solution phase, the detection limit is determined to be 3.22 pM (wide dynamic working range from 0.01 nM to 100 nM) and the two-step detection workflow could be completed within 50 min at ambient temperature, which is superior to that of the HPV-based biosensors previously reported.
Collapse
Affiliation(s)
- Jie Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China.
| | - Qing Wan
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, Hubei, P. R. China.
| | - Ruijin Zeng
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| |
Collapse
|
50
|
Thakur AK, Sathyamurthy R, Ramalingam V, Lynch I, Sharshir SW, Ma Z, Poongavanam G, Lee S, Jeong Y, Hwang JY. A case study of SARS-CoV-2 transmission behavior in a severely air-polluted city (Delhi, India) and the potential usage of graphene based materials for filtering air-pollutants and controlling/monitoring the COVID-19 pandemic. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:923-946. [PMID: 34165129 DOI: 10.1039/d1em00034a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Globally, humanity is facing its most significant challenge in 100 years due to the novel coronavirus, SARS-CoV-2, which is responsible for COVID-19. Under the enormous pressure created by the pandemic, scientists are studying virus transmission mechanisms in order to develop effective mitigation strategies. However, no established methods have been developed to control the spread of this deadly virus. In addition, the ease in lockdown has escalated air pollution which may affect SARS-CoV-2 transmission through attachment to particulates. The present review summarizes the role of graphene nanomaterials, which show antimicrobial behavior and have antiviral efficacy, in reducing the spread of COVID-19. Graphene and its derivatives have excellent antimicrobial efficacy, providing both physical and chemical mechanisms of damage. Coupled with their lightness, optimal properties, and ease of functionalization, they are optimal nanomaterials for coating onto fabrics such as personal protection equipment, face masks and gloves to control the transmission of SARS-CoV-2 effectively. Biosensors using graphene can effectively detect the virus with high accuracy and sensitivity, providing rapid quantification. It is envisioned that the present work will boost the development of graphene-based highly sensitive, accurate and cost-effective diagnostic tools for efficiently monitoring and controlling the spread of COVID-19 and other air-borne viruses.
Collapse
Affiliation(s)
- Amrit Kumar Thakur
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore, Tamil Nadu 641407, India.
| | - Ravishankar Sathyamurthy
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore, Tamil Nadu 641407, India.
| | - Velraj Ramalingam
- Institute for Energy Studies, Anna University, Chennai-600025, Tamil Nadu, India
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Swellam Wafa Sharshir
- Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh33516, Egypt
| | - Zhenjun Ma
- Sustainable Buildings Research Centre (SBRC), University of Wollongong, Australia
| | - Ganeshkumar Poongavanam
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| | - Suyeong Lee
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Yeseul Jeong
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jang-Yeon Hwang
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|