1
|
Yao JST, Ladner Y, Amin N'CC, Perrin C. Salting-out assisted liquid-liquid extraction (SALLE): Principle, optimization, and applications in blood sample analysis. J Pharm Biomed Anal 2025; 257:116720. [PMID: 39899904 DOI: 10.1016/j.jpba.2025.116720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/14/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
This review focuses on the use of Salting-Out Assisted Liquid-Liquid Extraction (SALLE) for blood sample processing prior analysis, exploring its principles, optimization parameters, and coupling with analytical techniques. SALLE is favored for its simplicity, cost-effectiveness, and rapid execution using the salting-out effect to induce phase separation in mixtures of aqueous samples and water-miscible organic solvents. The review categorizes and discusses the different types of blood samples, the main salts and solvents used, and the parameters affecting the extraction efficiency, such as solvent and salt type as well as ionic strength, pH, vortex mixing and centrifugation time. Advantages of SALLE over traditional methods like solid-phase extraction (SPE) and protein precipitation (PP) are highlighted, emphasizing its environmental friendliness, high extraction efficiency, and ease of automation. By examining recent literature and scientific publications (2014-2024), this review provides a comprehensive understanding of the factors influencing SALLE performance and its application in bioanalysis, particularly when coupled with separative techniques such as liquid chromatography (LC), capillary electrophoresis (CE), and mass spectrometry (MS).
Collapse
Affiliation(s)
- Jean Simon Thodhekes Yao
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247‑CNRS‑UM‑ENSCM, Université de Montpellier, Montpellier, France; Université Felix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Yoann Ladner
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247‑CNRS‑UM‑ENSCM, Université de Montpellier, Montpellier, France
| | | | - Catherine Perrin
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247‑CNRS‑UM‑ENSCM, Université de Montpellier, Montpellier, France.
| |
Collapse
|
2
|
Zhang H, Zhong Y, Li L, Xin X, Zhuang J, Zhong Y, Zhu M. Restricted access membrane roll with functionalized silica nanoparticles cross-linked by hydrophilic polymer chains on the surface for the direct extraction of Evodiae Fructus active components from rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1258:124589. [PMID: 40253848 DOI: 10.1016/j.jchromb.2025.124589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/22/2025]
Abstract
Evodiamine and other indole alkaloids are the main active constituents in Evodiae Fructus (EF), which is widely applied in traditional Chinese medicine. Recently, the toxic side effects of EF caused by the alkaloid evodiamine have gradually attracted the attention of researchers. In this regard, the rapid and accurate detection of these alkaloids in biological body fluids has become a challenging task. Therefore, it has become a priority that the rapid and efficient extraction of evodiamine etc. alkaloids from blood sample. In this research, a novel method was proposed to prepare the restricted access (RA) membrane with the hydrophobic functional silica nanoparticles cross-linked on the surface by hydrophilic poly-hydroxyethyl methacrylate (p-HEMA). The poly-HEMA chains played the role of protein exclusion and the functional nanoparticles played the role of hydrophobic adsorbent. The RA membrane was wound into a roll shape and inserted into a 1 mL medical syringe to assemble a portable SPE device, named as SRAMR-SPE, for the direct and simultaneous extraction of evodiamine (EVO), rutecarpine (RUT) and dehydroevodiamine (DHE) in rat plasma after a simple dilution with PBS. The prepared functional nanoparticles and RA membrane were characterized by Fourier transform infrared (FT-IR) spectrometer, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM), respectively. HPLC-UV analysis was used to investigate the extraction performance of SRAMR. An associated SRAMR-SPE-HPLC method was constructed and applied to the detection of real rat plasma after the method validation for the verification of the reliability and applicability of the SRAMR-SPE. The experimental results showed that the RA membrane roll (RAMR) had a good ability to exclude plasma proteins and adsorb analytes with multiple reusability. For 3 consecutive cycles of SRAMR-SPE processes, the extraction recoveries of three components at three concentration levels were determined as follows: DHE 93.1-95.1 %, EVO 88.8-91.6 % and RUT 93.6-95.6 %, and the absolute recoveries of the entire SRAMR-SPE-HPLC-UV method were separately as follows: DHE 90.3-92.3 %, EVO 86.2-90.9 %, RUT 91.8-96.4 %. The linear ranges were detected as follows: 0.0600-6.00 μg mL-1 (DHE), 0.105-5.65 μg mL-1 (EVO) and 0.0632-6.32 μg mL-1 (RUT).
Collapse
Affiliation(s)
- Hongwu Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yuhao Zhong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lidan Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoyu Xin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiayi Zhuang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Zhong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingfang Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Xie H, Lin F, Shi F, Johnstone E, Wang Y, An Y, Su J, Liu J, Dong Q, Liu J. Synthesis, biological evaluation and mechanism study based on network pharmacology of amino acids esters of 20(S)-protopanaxadiol as novel anticancer agents. Fitoterapia 2025; 180:106274. [PMID: 39537112 DOI: 10.1016/j.fitote.2024.106274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
As one of the metabolites of ginseng, 20(S)-protopanaxadiol (PPD) is a compound with dammarane-type tetracyclic triterpene, which performs a wide range of anticancer activities. In this study, PPD was used as a lead. A series of compounds were synthesized respectively with 11 amino acids through esterification and were evaluated for their cytotoxicity against several cancer cell lines. One of the synthetic products (PL) exhibited potent inhibitory effect on Huh-7 cells relative to that of PPD in vitro. Subsequently, the Annexin V-FITC /PI staining assay was used to verify that PL induced apoptosis of Huh-7 cells in a dose-dependent manner. A UPLC-Q/TOF-MS analysis method was established and validated for assessing pharmacokinetic properties after the administration of PPD and PL in rats. The results showed that compared with PPD, T1/2of PL in rats was prolonged, and the peak time was delayed, resulting in broader tissue distribution of the compound in the body. In addition, the targets of PL against several cancers were predicted and analyzed via network pharmacology. Molecular docking simulations demonstrated that PL interacted with the active sites of the above targets. In conclusion, this study provided a theoretical basis for the development and clinical application of anti-tumor activity of PPD.
Collapse
Affiliation(s)
- Hongliu Xie
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Fang Lin
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Fei Shi
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | | | - Yaqi Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Yang An
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Jun Su
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China; Basic Medicine Department, Fenyang College of Shanxi Medical University, Fenyang 032200, PR China
| | - Jiayin Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Qinghai Dong
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Jihua Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
4
|
Ai J, Li J, Chang AK, Pei Y, Li H, Liu K, Li R, Xu L, Wang N, Liu Y, Su W, Liu W, Wang T, Jiang Z, Chen L, Liang X. Toxicokinetics and bioavailability of indoxacarb enantiomers and their new metabolites in rats. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106024. [PMID: 39084783 DOI: 10.1016/j.pestbp.2024.106024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Indoxacarb is a chiral insecticide that consists of two enantiomers, S-(+)-indoxacarb and R-(-)-indoxacarb, of which only S-(+)-indoxacarb has insecticidal activity. Previous enantioselective toxicology studies of indoxacarb focused mostly on simple environmental model organisms. The lack of a toxicology evaluation of indoxacarb conducted in a mammalian system could mean that the extent of the potential health risk posed by the insecticide to humans is not adequately known. In this study, we reported on a new pair of enantiomers, S-IN-RM294 and R-IN-RM294, derived from the metabolic breakdown of S-(+)-indoxacarb and R-(-)-indoxacarb, respectively, in rats. The toxicokinetics of S-(+)-indoxacarb, R-(-)-indoxacarb, S-IN-RM294, and R-IN-RM294 in rats were evaluated to provide a more comprehensive risk assessment of these molecules. The bioavailability and excretion rates of both S-(+)-indoxacarb and R-(-)-indoxacarb were relatively low, which may be due to their faster metabolism and accumulation in the tissues. In addition, there were significant differences in the metabolism and distribution between the two indoxacarb enantiomers and their metabolites in vivo. S-(+)-Indoxacarb was found to be more easily metabolized in the blood compared with R-(-)-indoxacarb, as shown by the differences in pharmacokinetic parameters between oral and intravenous administration. Analysis of their tissue distribution showed that S-(+)-indoxacarb was less likely to accumulate in most tissues. The results obtained for the two metabolites were consistent with those of the two parent compounds. S-IN-RM294 was more readily cleared from the blood and less likely to accumulate in the tissues compared with R-IN-RM294. Therefore, whether from the perspective of insecticidal activity or from the perspective of mammalian and environmental friendliness, the application of optically pure S-(+)-indoxacarb in agriculture may be a more efficient and safer strategy.
Collapse
Affiliation(s)
- Jiao Ai
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Jianxin Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Alan Kueichieh Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang Province, PR China
| | - Ying Pei
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Haoran Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Kai Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Ruiyun Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Liuping Xu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Nan Wang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Yuhui Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Weiping Su
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Wenbao Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Tingting Wang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Zhen Jiang
- Department of Analytical Chemistry, College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning Province, PR China
| | - Lijiang Chen
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China.
| | - Xiao Liang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China.
| |
Collapse
|
5
|
Xu Q, Gao H, Zhu F, Xu W, Wang Y, Xie J, Guo G, Yang L, Ma L, Shen Z, Li J. Pharmacokinetic Properties of Baitouweng Decoction in Bama Miniature Pigs: Implications for Clinical Application in Humans. Int J Anal Chem 2024; 2024:5535752. [PMID: 38766522 PMCID: PMC11101253 DOI: 10.1155/2024/5535752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Traditional Chinese medicine (TCM) serves as a significant adjunct to chemical treatment for chronic diseases. For instance, the administration of Baitouweng decoction (BTWD) has proven effective in the treatment of ulcerative colitis. However, the limited understanding of its pharmacokinetics (PK) has impeded its widespread use. Chinese Bama miniature pigs possess anatomical and physiological similarities to the human body, making them a valuable model for investigating PK properties. Consequently, the identification of PK properties in Bama miniature pigs can provide valuable insights for guiding the clinical application of BTWD in humans. To facilitate this research, a rapid and sensitive UPLC-MS/MS method has been developed for the simultaneous quantification of eleven active ingredients of BTWD in plasma. Chromatographic separation was conducted using an Acquity UPLC HSS T3 C18 column and a gradient mobile phase comprising acetonitrile and water (containing 0.1% acetic acid). The methodology was validated in accordance with the FDA Bioanalytical Method Validation Guidance for Industry. The lower limit of quantitation fell within the range of 0.60-2.01 ng/mL. Pharmacokinetic studies indicated that coptisine chloride, berberine, columbamine, phellodendrine, and obacunone exhibited low Cmax, while fraxetin, esculin, fraxin, and pulchinenoside B4 were rapidly absorbed and eliminated from the plasma. These findings have implications for the development of effective components in BTWD and the adjustment of clinical dosage regimens.
Collapse
Affiliation(s)
- Qianqian Xu
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huilan Gao
- Binzhou Inspection and Testing Center, Binzhou, China
| | - Fuqiang Zhu
- Binzhou Inspection and Testing Center, Binzhou, China
| | - Wenliang Xu
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Yubo Wang
- Department of Thoracic Surgery, Binzhou Medical College Hospital, Binzhou, China
| | - Jinwen Xie
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Guangjun Guo
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Limei Yang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Li Ma
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Zhiqiang Shen
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Shi J, Zhang K, Li T, Wu L, Yang Y, Zhang Y, Tu P, Liu W, Song Y. Differentiation of isomeric chalcone and dihydroflavone using liquid chromatography coupled with hydrogen-deuterium exchange tandem mass spectrometry (HDX-MS/MS): An application for flavonoids-focused characterization of Snow chrysanthemum. J Chromatogr A 2024; 1720:464773. [PMID: 38432106 DOI: 10.1016/j.chroma.2024.464773] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Although the co-occurrences of isomeric chalcones and dihydroflavones widely appear in medicinal plants, the differentiation of such isomerism seldom succeeds using MS/MS, attributing to totally identical MS/MS spectra. Here, efforts were paid to pursue an eligible tool allowing to address the technical challenge. Being inspired by that one more proton signal is observed in 1H NMR spectrum of isoliquiritigenin than liquiritigenin when employing DMSO‑d6 as solvent, hydrogen-deuterium exchange (HDX)-MS/MS was evaluated towards differentiating isomeric chalcones and dihydroflavones through replacing H2O with D2O to prepare the mobile phase. As a result, differences were observed for either MS1 or MS2 spectrum when comparing two pairs of isomers, such as liquiritigenin vs. isoliquiritigenin and liquiritin vs. isoliquiritin, because the isomeric precursor and fragment ion species owned different amounts of hydroxyl protons and those reactive protons could be partially or completely substituted by deuterium protons at the exposure in D2O to result in n × 1.006 mass increments. Moreover, utmost four hydrogen/deuterium exchanges occurred for a single glucosyl moiety. Thereafter, HDX-MS/MS was applied to characterize the flavonoids of Snow chrysanthemum, a precious edible herbal medicine that is rich in isomeric chalcones and dihydroflavones. Through paying special attention to the deuterium labeling styles of (de)protonated molecules as well as those featured fragment ions, five pairs of isomeric chalcones and dihydroflavones were confirmatively differentiated, in addition to that 28 flavonoids were structurally annotated by applying those well-defined mass fragmentation rules. Hence, this study offered an in-depth insight towards the flavonoids-focused characterization of Snow chrysanthemum, and more importantly, HDX-MS/MS is a superior tool to differentiate, but not limited to, isomeric chalcones and dihydroflavones.
Collapse
Affiliation(s)
- Jingjing Shi
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ke Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ting Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lijuan Wu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Yang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenjing Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
7
|
Das P, Mitra D, Jana K, Ghosh D. In Vitro Study on Spermicidal Action of Hydro-methanol Extract of Tinospora cordifolia (Willd.) Stem in Rat and Human Sperm: a Comparative Analysis. Reprod Sci 2023; 30:3480-3494. [PMID: 37640890 DOI: 10.1007/s43032-023-01327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Human fertility regulation is a major way to control overpopulation. In this perspective, this study emphasized the in vitro effect of hydro-methanol extract of Tinospora cordifolia (TCHME) stem for spermicidal and reproductive hypo-functions using human and rat samples. Control, 0.5-, 1-, and 2-mg TCHME-charged groups were considered to assess the relevant parameters. Levels of spermiological parameters like sperm motility, viability, the integrity of plasma and acrosomal membrane, and nuclear chromatin decondensation were significantly reduced (p < 0.05) in the dose- and duration-dependent TCHME-charged groups compared to the control. The inhibitory concentration 50 (IC50) of TCHME on motile human and rat sperms were 0.8 and 0.4 mg/ml, respectively. Testicular androgenic key enzymes and antioxidant enzymes (human sperm pellet, testes, and epididymis of rat)' activities were significantly diminished (p < 0.05), while antioxidant enzymes' activities were significantly elevated (p < 0.05) in renal and insignificantly (p > 0.05) elevated in hepatic tissues of rat in TCHME-charged groups compared to the control. Significant elevation (p < 0.05) of thiobarbituric acid reactive substances (TBARS)' level in human sperm pellet, testes, and epididymis of rats and significant diminution (p < 0.05) in TBARS levels of liver and kidney were observed in TCHME-charged groups. It focused that TCHME is more potent for stress imposition on reproductive tissues and sperm compared to the other tested tissues. Non-significant alterations (p > 0.05) in glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) activities in the said organs of rat indicated its non-toxic effect. It highlighted that TCHME possesses spermicidal and reproductive tissue-specific effects which strengthen the possibilities of male contraceptive development from it.
Collapse
Affiliation(s)
- Puja Das
- Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal, 721 102, India
| | - Dipanwita Mitra
- Molecular Medicine, Nutrigenomics and Public Health Research Laboratory, Department of Bio-Medical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721 102, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, EN 80, Sector-V, Bidhannagar, Kolkata, 700091, India
| | - Debidas Ghosh
- Molecular Medicine, Nutrigenomics and Public Health Research Laboratory, Department of Bio-Medical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721 102, India.
| |
Collapse
|
8
|
Jiang M, Zhao D, Zou Y, Li X, Lou J, Wang Y, Gao X, Yang W. An efficient approach addressing the chemical complexity of Jiawei Fangji Huangqi decoction by integrating ultra-high-performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry and intelligent data processing workflows. J Sep Sci 2023; 46:e2300374. [PMID: 37582648 DOI: 10.1002/jssc.202300374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
A challenge in the quality control of traditional Chinese medicine is the systematic multicomponent characterization of the compound formulae. Jiawei Fangji Huangqi, a modified form of Fangji Huangqi, is a prescription comprising seven herbal medicines. To address the chemical complexity of the Jiawei Fangji Huangqi decoction, we integrated ion mobility-quadrupole time-of-flight high-definition MSE coupled to ultra-high-performance liquid chromatography and intelligent data processing workflows available in the UNIFI software package. Good chromatographic separation was achieved on CORTECS UPLC T3 column within 52 min, and high-accuracy MS2 data were acquired using high-definition MSE in the negative and positive modes. A chemical library of 1250 compounds was created and incorporated into the UNIFI software to enable automatic peak annotation of the high-definition MSE data. We identified or tentatively characterize 430 compounds in the Jiawei Fangji Huangqi decoction. The potential superiority of high-definition MSE over conventional MS data acquisition approaches was revealed in its spectral quality (MS2 ), differentiation of isomers, separation of coeluting compounds, and target mass coverage. The multiple components of the Jiawei Fangji Huangqi decoction were elucidated, offering insight into its improved pharmacological action compared with that of the Fangji Huangqi formula.
Collapse
Affiliation(s)
- Meiting Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Dongxue Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yadan Zou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Xiaohang Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Jia Lou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
9
|
Zheng W, Yang S, Chen X. The pharmacological and pharmacokinetic properties of obacunone from citrus fruits: A comprehensive narrative review. Fitoterapia 2023; 169:105569. [PMID: 37315716 DOI: 10.1016/j.fitote.2023.105569] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Limonoids are a class of oxygenated terpenoids that exist mainly in citrus fruits. As a kind of limonoid, obacunone has attracted more and more researchers' attention because of its extensive pharmacological activities. The purpose of the narrative review is to systematically review relevant studies on the pharmacological effects and pharmacokinetic characteristics of obacunone to provide researchers with the latest and useful information. Pharmacological studies have shown that obacunone has a variety of pharmacological activities, such as anticancer, antioxidant, anti-inflammatory, anti-diabetes, neuroprotection, antibiosis, and antivirus. Among them, the anticancer effect is the most prominent. Pharmacokinetic studies have shown that the oral bioavailability of obacunone is low. This indicates the presence of high first-pass metabolism. We hope that this paper can help relevant scholars understand the progress in pharmacological and pharmacokinetic research of obacunone and help the further development of obacunone as a functional food.
Collapse
Affiliation(s)
- Wenhao Zheng
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400011, PR China
| | - Shi Yang
- Cardiovascular Department, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400011, PR China
| | - Xin Chen
- Department of Dermatology, Chongqing Jiangbei Hospital of Traditional Chinese Medicine, Chongqing 400020, PR China.
| |
Collapse
|
10
|
Yu L, Qian X, Feng Y, Yin Y, Zhang XD, Wei Q, Wang L, Rong W, Li JJ, Li JX, Zhu Q. Investigation of preclinical pharmacokinetics of N-demethylsinomenine, a potential novel analgesic candidate, using an UPLC-MS/MS quantification method. Front Chem 2023; 11:1222560. [PMID: 37483270 PMCID: PMC10359479 DOI: 10.3389/fchem.2023.1222560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
N- Demethylsinomenine (NDSM), the in vivo demethylated metabolite of sinomenine, has exhibited antinociceptive efficacy against various pain models and may become a novel drug candidate for pain management. However, no reported analytical method for quantification of N- Demethylsinomenine in a biological matrix is currently available, and the pharmacokinetic properties of N- Demethylsinomenine are unknown. In the present study, an ultra-high performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) method for quantification of N- Demethylsinomenine in rat plasma was developed and utilized to examine the preclinical pharmacokinetic profiles of N- Demethylsinomenine. The liquid-liquid extraction using ethyl acetate as the extractant was selected to treat rat plasma samples. The mixture of 25% aqueous phase (0.35% acetic acid-10 mM ammonium acetate buffer) and 75% organic phase (acetonitrile) was chosen as the mobile phases flowing on a ZORBAX C18 column to perform the chromatographic separation. After a 6-min rapid elution, NDSM and its internal standard (IS), metronidazole, were separated successfully. The ion pairs of 316/239 and 172/128 were captured for detecting N- Demethylsinomenine and IS, respectively, using multiple reaction monitoring (MRM) under a positive electrospray ionization (ESI) mode in this mass spectrometry analysis. The standard curve met linear requirements within the concentration range from 3 to 1000 ng/mL, and the lower limit of quantification (LLOQ) was 3 ng/mL. The method was evaluated regarding precision, accuracy, recovery, matrix effect, and stability, and all the results met the criteria presented in the guidelines for validation of biological analysis method. Then the pharmacokinetic profiles of N- Demethylsinomenine in rat plasma were characterized using this validated UPLC-MS/MS method. N- Demethylsinomenine exhibited the feature of linear pharmacokinetics after intravenous (i.v.) or intragastric (i.g.) administration in rats. After i. v. bolus at three dosage levels (0.5, 1, and 2 mg/kg), N- Demethylsinomenine showed the profiles of rapid elimination with mean half-life (T1/2Z) of 1.55-1.73 h, and extensive tissue distribution with volume of distribution (VZ) of 5.62-8.07 L/kg. After i. g. administration at three dosage levels (10, 20, and 40 mg/kg), N- Demethylsinomenine showed the consistent peak time (Tmax) of 3 h and the mean absolute bioavailability of N- Demethylsinomenine was 30.46%. These pharmacokinetics findings will aid in future drug development decisions of N- Demethylsinomenine as a potential candidate for pain analgesia.
Collapse
Affiliation(s)
- Lulu Yu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xunjia Qian
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yiheng Feng
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yujian Yin
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xiao-Dan Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Qianqian Wei
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Liyun Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Weiwei Rong
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Jie-Jia Li
- Center for Neural Developmental and Degenerative Research of Nantong University, Institute for Translational Neuroscience, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Jun-Xu Li
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| |
Collapse
|
11
|
Liu J, An Y, Su J, Dong Q, Xie H, Liu J. The antitumor activity and pharmacokinetics research of PPD-Arg (Tos) using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Biomed Chromatogr 2023; 37:e5535. [PMID: 36289571 DOI: 10.1002/bmc.5535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023]
Abstract
In this study, a new compound PPD-Arg (Tos) (PAT), an arginine derivative of 20(s)-PPD, was synthesized via Fmoc-Arg (Tos)-OH and 20(s)-PPD. The pharmacokinetic properties in rats, in vitro cytotoxicity, and cell apoptosis rates of protopanaxadiol (PPD) and PAT were determined. A sensitive bioanalytical method for pharmacokinetics using ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry was developed and validated. The result showed that the Tmax and t1/2 of PAT were significantly enhanced, indicating a long-lasting effect in vivo. Compared to the PPD group, the PAT group showed higher bioavailability. PAT also exhibited higher antitumor efficacy than PPD against three cancer cells, especially the strongest inhibitory activity against Huh-7, even more potent than the positive control of paclitaxel. Therefore, the apoptosis assay based on annexin V/propidium iodide-combined staining against Huh-7 further demonstrated that PAT could induce apoptosis of Huh-7 cells. Better pharmacokinetic properties and antitumor efficacy of the arginine derivative of 20(s)-PPD were important. These findings could provide references for further clinical research on amino acid derivatives of PPD as antitumor agents.
Collapse
Affiliation(s)
- Jiayin Liu
- Department of Natural Product Chemistry, School of Pharmacy, Jilin University, Changchun, China
| | - Yang An
- Department of Natural Product Chemistry, School of Pharmacy, Jilin University, Changchun, China
| | - Jun Su
- Department of Natural Product Chemistry, School of Pharmacy, Jilin University, Changchun, China
| | - Qinghai Dong
- Department of Natural Product Chemistry, School of Pharmacy, Jilin University, Changchun, China
| | - Hongliu Xie
- Department of Natural Product Chemistry, School of Pharmacy, Jilin University, Changchun, China
| | - Jihua Liu
- Department of Natural Product Chemistry, School of Pharmacy, Jilin University, Changchun, China
| |
Collapse
|
12
|
Vasilakopoulou PB, Gousgouni AT, Yanni AE, Kostomitsopoulos N, Karathanos VT, Chiou A. Polar Phenol Detection in Plasma and Serum: Insights on Sample Pre-Treatment for LC/MS Analysis and Application on the Serum of Corinthian Currant-Fed Rats. Biomolecules 2022; 12:biom12121838. [PMID: 36551268 PMCID: PMC9775334 DOI: 10.3390/biom12121838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Analysis of plasma and serum provides valuable information on the amounts of polar phenols' circulating after ingestion. In the present study, protein precipitation (PPT), liquid-liquid extraction (LLE), solid phase extraction (SPE), enzymatic hydrolysis and their combinations were meticulously evaluated for the extraction of a variety of polar phenolic moieties from plasma and serum. The recovery values of the above methods were compared; satisfactory recoveries (>60%) were attained for most analytes. Polar phenol aglycones undergo degradation with enzymatic hydrolysis; however, their extended phase II metabolism makes enzymatic hydrolysis a mandated process for their analysis in such biofluids. Hence, enzymatic hydrolysis followed by LLE was used for the identification of polar phenols in rats' serum, after the long-term oral consumption of Corinthian Currant. Corinthian Currant is a Greek dried vine product rich in bioactive polar phenolics. Flavonoids and phenolic acids, detected as aglycones, ranged from 0.57 ± 0.08 to 181.66 ± 48.95 and 3.45 ± 1.20 to 897.81 ± 173.96 ng/mL, respectively. The majority of polar phenolics were present as phase II metabolites, representing their fasting state in the blood stream. This is the first study evaluating the presence of polar phenolics in the serum of rats following a long-term diet supplemented with Corinthian Currant as a whole food.
Collapse
Affiliation(s)
- Paraskevi B. Vasilakopoulou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece
| | - Aimilia-Tatiana Gousgouni
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece
| | - Amalia E. Yanni
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Vaios T. Karathanos
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece
- Agricultural Cooperatives’ Union of Aeghion, Corinthou 201, 251 00 Aeghion, Greece
| | - Antonia Chiou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University, 70 El. Venizelou Ave., 176 76 Kallithea, Greece
- Correspondence: ; Tel.: +30-210-9549-157; Fax: +30-210-9577050
| |
Collapse
|
13
|
Fu S, Liao L, Yang Y, Bai Y, Zeng Y, Wang H, Wen J. The pharmacokinetics profiles, pharmacological properties, and toxicological risks of dehydroevodiamine: A review. Front Pharmacol 2022; 13:1040154. [PMID: 36467053 PMCID: PMC9715618 DOI: 10.3389/fphar.2022.1040154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/03/2022] [Indexed: 01/10/2024] Open
Abstract
Dehydroevodiamine (DHE) is a quinazoline alkaloid isolated from Evodiae Fructus (EF, Wuzhuyu in Chinese, Rutaceae family), a well-known traditional Chinese medicine (TCM) which is clinically applied to treat headache, abdominal pain, menstrual pain, abdominal distension, vomiting, acid regurgitation, etc. Modern research demonstrates that DHE is one of the main components of EF. In recent years, DHE has received extensive attention due to its various pharmacological activities. This review is the first to comprehensively summarize the current studies on pharmacokinetics profiles, pharmacological properties, and toxicological risks of DHE in diverse diseases. Pharmacokinetic studies have shown that DHE has a relatively good oral absorption effect in the mean concentration curves in rat plasma and high absorption in the gastrointestinal tract. In addition, distribution re-absorption and enterohepatic circulation may lead to multiple blood concentration peaks of DHE in rat plasma. DHE possesses a wide spectrum of pharmacological properties in the central nervous system, cardiovascular system, and digestive system. Moreover, DHE has anti-inflammatory effects via downregulating pro-inflammatory cytokines and inflammatory mediators. Given the favorable pharmacological activity, DHE is expected to be a potential drug candidate for the treatment of Alzheimer's disease, chronic stress, amnesia, chronic atrophic gastritis, gastric ulcers, and rheumatoid arthritis. In addition, toxicity studies have suggested that DHE has proarrhythmic effects and can impair bile acid homeostasis without causing hepatotoxicity. However, further rigorous and well-designed studies are needed to elucidate the pharmacokinetics, pharmacological effects, potential biological mechanisms, and toxicity of DHE.
Collapse
Affiliation(s)
- Shubin Fu
- Jiujiang Inspection and Testing Certification Center, Jiujiang, China
| | - Liying Liao
- Jiujiang Inspection and Testing Certification Center, Jiujiang, China
| | - Yi Yang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yan Bai
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yan Zeng
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Haoyu Wang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Jianxia Wen
- School of Food and Bioengineering, Xihua University, Chengdu, China
| |
Collapse
|
14
|
Chen G, Ma T, Ma Y, Han C, Zhang J, Sun Y. Chemical Composition, Anti-Breast Cancer Activity and Extraction Techniques of Ent-Abietane Diterpenoids from Euphorbia fischeriana Steud. Molecules 2022; 27:molecules27134282. [PMID: 35807527 PMCID: PMC9268248 DOI: 10.3390/molecules27134282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Ent-abietane diterpenoids are the main active constituents of Euphorbia fischeriana. In the continuing search for new anti-breast cancer drugs, 11 ent-abietane diterpenoids (1–11) were isolated from E. fischeriana. The structures of these compounds were clearly elucidated on the basis of 1D and 2D NMR spectra as well as HRESIMS data. Among them, compound 1 was a novel compound, compound 10 was isolated from Euphorbia genus for the first time, compound 11 was firstly discovered from E. fischeriana. These compounds exhibited varying degrees of growth inhibition against the MCF-10A, MCF-7, ZR-75-1 and MDA-MB-231 cell lines in vitro. The experimental data obtained permit us to identify the roles of the epoxy group, hydroxyl group and acetoxyl group on their cytotoxic activities. Extraction is an important means for the isolation, identification, and application of valuable compounds from natural plants. To maximize yields of ent-abietane diterpenoids of E. fischeriana, 17-hydroxyjolkinolide B, jolkinolide B, 17-hydroxyjolkinolide A and jolkinolide A were selected as quality controls to optimize the salting-out-assisted liquid–liquid extraction (SALLE) by response surface methodology (RSM). The optimized conditions for SALLE were 0.47 g sodium dihydrogen phosphate, 5.5 mL acetonitrile and 4.5 mL water at pH 7.5. The experimental values of 17-hydroxyjolkinolide B, jolkinolide B, 17-hydroxyjolkinolide A and jolkinolide A (2.134, 0.529, 0.396, and 0.148 mg/g, respectively) were in agreement with the predicted values, thus demonstrating the appropriateness of the model.
Collapse
Affiliation(s)
- Gang Chen
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Road 333, Qiqihar 161006, China; (G.C.); (T.M.); (Y.M.); (J.Z.)
| | - Tiancheng Ma
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Road 333, Qiqihar 161006, China; (G.C.); (T.M.); (Y.M.); (J.Z.)
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Yukun Ma
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Road 333, Qiqihar 161006, China; (G.C.); (T.M.); (Y.M.); (J.Z.)
| | - Cuicui Han
- College of Pharmacy, Qiqihar Medical University, Bukui Road 333, Qiqihar 161006, China
- Correspondence: (C.H.); or (Y.S.)
| | - Jinling Zhang
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Road 333, Qiqihar 161006, China; (G.C.); (T.M.); (Y.M.); (J.Z.)
| | - Yu Sun
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Road 333, Qiqihar 161006, China; (G.C.); (T.M.); (Y.M.); (J.Z.)
- Correspondence: (C.H.); or (Y.S.)
| |
Collapse
|
15
|
Preclinical Drug Pharmacokinetic, Tissue Distribution and Excretion Profiles of the Novel Limonin Derivate HY-071085 as an Anti-Inflammatory and Analgesic Candidate in Rats and Beagle Dogs. Pharmaceuticals (Basel) 2022; 15:ph15070801. [PMID: 35890101 PMCID: PMC9316000 DOI: 10.3390/ph15070801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Limonin is one of the research hotspots in natural drug development. However, its low solubility in water leads to poor oral bioavailability, discouraging the further study of its potential as a candidate compound. In order to overcome this limitation, and to enhance its biological activities, a novel limonin derivative—HY-071085—was synthesized by structural modification, and has exhibited strong anti-inflammatory and analgesic activity. In order to achieve a thorough understanding of the biological actions of HY-071085 in vivo, this study evaluated the pharmacokinetics and bioavailability of HY-071085 in rats and beagle dogs, and the distribution and excretion in rats. Using ultra-high-performance liquid chromatography-tandem mass spectrometry, the kinetic profiles of HY-071085 in the plasma of healthy rats and beagle dogs after a single gavage, repeated gavages and the intravenous injection of HY-071085 were studied. The tissue distribution (heart, liver, spleen, lung, kidney, gastric tissue, intestine, brain, skin, testis, ovary and womb) and excretion of HY-071085 were also studied. These results showed that HY-071085 has nonlinear dynamic characteristics in rat and beagle dog plasma. It was found that the plasma concentrations of HY-071085 in female rats were significantly higher than those in male rats after a single oral administration. There were gender differences in the kinetic behavior of HY-071085 in rats; however, there was no difference identified in dogs. HY-071085 was mainly eliminated as metabolites in rats, and was distributed in most of the tissues except the brain, with the highest content being in the gastric tissue and intestinal arease, followed by the liver, spleen, fat, lung, kidney, ovary and heart. The bioavailability of HY-071085 in male and female rats was 2.8% and 10.8%, respectively, and was about 13.1% in beagle dogs. The plasma protein binding rate of HY-071085 in rats, beagle dogs and humans ranged from 32.9% to 100%, with obvious species differences. In conclusion, our study provides useful information regarding the absorption, distribution and excretion of HY-071085, which will provide a good base for the study of the mechanism of its biological effects.
Collapse
|
16
|
Holowinski P, Typek R, Dawidowicz AL, Rombel M, Dybowski MP. Formation of trifluoroacetic artefacts in gas chromatograph injector during Cannabidiol analysis. J Chromatogr A 2022; 1671:463020. [DOI: 10.1016/j.chroma.2022.463020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/07/2023]
|