1
|
Li X, Yang F, Li H, Hu Z, Yu W, Zhang Y, Gao J. Array-based specific classification of bacterial species via ligands with dimethylamino/amino groups. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5812-5819. [PMID: 39140766 DOI: 10.1039/d4ay00903g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The early detection of bacterial species plays a crucial role in patient prognosis and the development of effective therapeutic regimens. This study introduces an accessible and promising colorimetric sensor array designed to classify gram-positive (G+) and gram-negative (G-) bacterial species. The classification relies on 6 chemical ligands with dimethylamino/amino groups as sensing elements and silver nanotriangles as colorimetric probes. Using these specific sensor arrays, we successfully differentiated G- and G+ bacterial species and discriminated individual bacterial strains, and the sensors exhibited remarkable reproducibility and high sensitivity. Moreover, the sensor array can identify bacterial mixtures and bacteria at varying concentrations, underscoring its versatility. In summary, this sensor array offers an effective tool for bacterial analysis with promising applications in the field of biomedical diagnostics.
Collapse
Affiliation(s)
- Xizhe Li
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Fan Yang
- Xingzichuan Drilling Company, Yanchang Oil Mine Management Bureau, Yanan 717400, China
| | - Haojie Li
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Zhi Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Weiting Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuchen Zhang
- Department of Pharmacy, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an 710021, China.
| | - Jie Gao
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
2
|
Parihar R, Deb R, Niharika J, Thakur P, Pegu SR, Sengar GS, Sonowal J, Das PJ, Rajkhowa S, Raj A, Gupta VK. Development of triplex assay for simultaneous detection of Escherichia coli, methicillin resistant and sensitive Staphylococcus aureus in raw pork samples of retail markets. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1516-1524. [PMID: 38966784 PMCID: PMC11219700 DOI: 10.1007/s13197-023-05917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/18/2023] [Accepted: 12/13/2023] [Indexed: 07/06/2024]
Abstract
Escherichia coli and Staphylococcus aureus are the most important food borne pathogen transmitting from animal meat and meat products. Therefore, it is vital to design an accurate and specific diagnostic tool for identifying those food-borne pathogens in animal meat and meat products. In the current study, E. coli, methicillin-resistant and sensitive S. aureus (MRSA and MSSA) were simultaneously detected using a developed triplex PCR-based technique. To obtain an optimal reaction parameter, the multiplex assay was optimised by changing just one parameter while holding the others constant. Specificity of the assay was assessed using several porcine bacterial template DNA. The plasmid DNA was used to test the multiplex PCR assay's sensitivity and interference in spiked pork samples. E. coli, MRSA, and MSSA each have PCR amplified products with sizes of 335, 533, and 209 bp, respectively. The assay detects a minimum microbial load of 102 CFU/μl for all the three pathogens and can identify bacterial DNA as low as 10-2 ng/µl. The assay was validated employing 210 pork samples obtained from retail meat shops and slaughter houses, with MRSA, E. coli, and MSSA with the occurrence rate of 1.9%, 42.38%, and 18.1%, respectively. The rate of mixed bacterial contamination in pork meat samples examined with the developed method was 6.19%, 1.43%, 1.90%, and 1.43% for MSSA & E. coli, MRSA & E. coli, MSSA & MRSA, and E. coli, MSSA & MRSA, respectively. The developed multiplex PCR assay is quick and efficient, and it can distinguish between different bacterial pathogens in a single reaction tube.
Collapse
Affiliation(s)
- Ranjeet Parihar
- ICAR-National Research Centre on Pig, Guwahati, Assam India
- All India Institute of Hygiene and Public Health, Government of India, Kolkata, West Bengal India
| | - Rajib Deb
- ICAR-National Research Centre on Pig, Guwahati, Assam India
| | - Jagna Niharika
- ICAR-National Research Centre on Pig, Guwahati, Assam India
- All India Institute of Hygiene and Public Health, Government of India, Kolkata, West Bengal India
| | - Priyanka Thakur
- ICAR-National Research Centre on Pig, Guwahati, Assam India
- All India Institute of Hygiene and Public Health, Government of India, Kolkata, West Bengal India
| | | | | | | | | | | | - Atul Raj
- All India Institute of Hygiene and Public Health, Government of India, Kolkata, West Bengal India
| | | |
Collapse
|
3
|
Zhao X, Bhat A, O’Connor C, Curtin J, Singh B, Tian F. Review of Detection Limits for Various Techniques for Bacterial Detection in Food Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:855. [PMID: 38786811 PMCID: PMC11124167 DOI: 10.3390/nano14100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Foodborne illnesses can be infectious and dangerous, and most of them are caused by bacteria. Some common food-related bacteria species exist widely in nature and pose a serious threat to both humans and animals; they can cause poisoning, diseases, disabilities and even death. Rapid, reliable and cost-effective methods for bacterial detection are of paramount importance in food safety and environmental monitoring. Polymerase chain reaction (PCR), lateral flow immunochromatographic assay (LFIA) and electrochemical methods have been widely used in food safety and environmental monitoring. In this paper, the recent developments (2013-2023) covering PCR, LFIA and electrochemical methods for various bacterial species (Salmonella, Listeria, Campylobacter, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)), considering different food sample types, analytical performances and the reported limit of detection (LOD), are discussed. It was found that the bacteria species and food sample type contributed significantly to the analytical performance and LOD. Detection via LFIA has a higher average LOD (24 CFU/mL) than detection via electrochemical methods (12 CFU/mL) and PCR (6 CFU/mL). Salmonella and E. coli in the Pseudomonadota domain usually have low LODs. LODs are usually lower for detection in fish and eggs. Gold and iron nanoparticles were the most studied in the reported articles for LFIA, and average LODs were 26 CFU/mL and 12 CFU/mL, respectively. The electrochemical method revealed that the average LOD was highest for cyclic voltammetry (CV) at 18 CFU/mL, followed by electrochemical impedance spectroscopy (EIS) at 12 CFU/mL and differential pulse voltammetry (DPV) at 8 CFU/mL. LOD usually decreases when the sample number increases until it remains unchanged. Exponential relations (R2 > 0.95) between LODs of Listeria in milk via LFIA and via the electrochemical method with sample numbers have been obtained. Finally, the review discusses challenges and future perspectives (including the role of nanomaterials/advanced materials) to improve analytical performance for bacterial detection.
Collapse
Affiliation(s)
- Xinyi Zhao
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Abhijnan Bhat
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Sciences (HEMS) Research Hub, Technological University Dublin, D24 FKT9 Dublin, Ireland
| | - Christine O’Connor
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
| | - James Curtin
- Faculty of Engineering and Built Environment, Technological University Dublin, Bolton Street, D01 K822 Dublin, Ireland;
| | - Baljit Singh
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Sciences (HEMS) Research Hub, Technological University Dublin, D24 FKT9 Dublin, Ireland
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| |
Collapse
|
4
|
Fan M, Rakotondrabe TF, Chen G, Guo M. Advances in microbial analysis: based on volatile organic compounds of microorganisms in food. Food Chem 2023; 418:135950. [PMID: 36989642 DOI: 10.1016/j.foodchem.2023.135950] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/30/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
In recent years, microbial volatile organic compounds (mVOCs) produced by microbial metabolism have attracted more and more attention because they can be used to detect food early contamination and flaws. So far, many analytical methods have been reported for the determination of mVOCs in food, but few integrated review articles discussing these methods are published. Consequently, mVOCs as indicators of food microbiological contamination and their generation mechanism including carbohydrate, amino acid, and fatty acid metabolism are introduced. Meanwhile, a detailed summary of the mVOCs sampling methods such as headspace, purge trap, solid phase microextraction, and needle trap is presented, and a systematic and critical review of the analytical methods (ion mobility spectrometry, electronic nose, biosensor, and so on) of mVOCs and their application in the detection of food microbial contamination is highlighted. Finally, the future concepts that can help improve the detection of food mVOCs are prospected.
Collapse
Affiliation(s)
- Minxia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Tojofaniry Fabien Rakotondrabe
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Islam MA, Karim A, Ethiraj B, Raihan T, Kadier A. Antimicrobial peptides: Promising alternatives over conventional capture ligands for biosensor-based detection of pathogenic bacteria. Biotechnol Adv 2022; 55:107901. [PMID: 34974156 DOI: 10.1016/j.biotechadv.2021.107901] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/19/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023]
Abstract
The detection of pathogenic bacteria using biosensing techniques could be a potential alternative to traditional culture based methods. However, the low specificity and sensitivity of conventional biosensors, critically related to the choice of bio-recognition elements, limit their practical applicability. Mammalian antibodies have been widely investigated as biorecognition ligands due to high specificity and technological advancement in antibody production. However, antibody-based biosensors are not considered as an efficient approach due to the batch-to-batch inconsistencies as well as low stability. In recent years, antimicrobial peptides (AMPs) have been increasingly investigated as ligands as they have demonstrated high stability and possessed multiple sites for capturing bacteria. The conjugation of chemo-selective groups with AMPs has allowed effective immobilization of peptides on biosensor surface. However, the specificity of AMPs is a major concern for consideration as an efficient ligand. In this article, we have reviewed the advances and concerns, particularly the selectivity of AMPs for specific detection of pathogenic bacteria. This review also focuses the state-of-the-art mechanisms, challenges and prospects for designing potential AMP conjugated biosensors. The application of AMP in different biosensing transducers such as electrochemical, optical and piezoelectric varieties has been widely discussed. We argue that this review would provide insights to design and construct AMP conjugated biosensors for the pathogenic bacteria detection.
Collapse
Affiliation(s)
- M Amirul Islam
- Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Université de Sherbrooke, 3000, boul. de l'Université, Sherbrooke, Québec J1K 0A5, Canada.
| | - Ahasanul Karim
- Department of Soil Sciences and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Topu Raihan
- Deapartment of Genetic Engineering and Biotechnology, Shahjalal, University of Science and Technology, Sylhet 3114, Bangladesh
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
6
|
Li Y, Wu L, Wang Z, Tu K, Pan L, Chen Y. A magnetic relaxation DNA biosensor for rapid detection of Listeria monocytogenes using phosphatase-mediated Mn(VII)/Mn(II) conversion. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Next generation sequencing reveals limitation of qPCR methods in quantifying emerging antibiotic resistance genes (ARGs) in the environment. Appl Microbiol Biotechnol 2021; 105:2925-2936. [PMID: 33738553 DOI: 10.1007/s00253-021-11202-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/28/2021] [Accepted: 02/26/2021] [Indexed: 01/04/2023]
Abstract
Occurrence of emerging antibiotic resistance genes (ARGs) in the environment, especially those conferring resistance to the last resort antibiotic carbapenems (blaKPC) and colistin (mcr-1), has become an important environmental issue. Real-time polymerase chain reaction (qPCR) methods were commonly used to quantify emerging ARGs in the environment, with some studies reporting high abundance. Due to the high diversity of DNA templates and complexity in environmental samples, overestimation or even false-positive detection of target genes may occur due to potential non-specific amplification. This study compared the performance of dye-based qPCR and probe-based qPCR assays for the detection of blaKPC and mcr-1 in activated sludge (AS) samples, which showed that the detection of blaKPC and mcr-1 by the dye-based qPCR assays was likely false-positive when compared with probe-based qPCR results. Next generation sequencing (NGS) of the qPCR reactions identified primer dimers and non-specific amplicons as the primary causes for the false-positive detection. NGS also detected target amplicons in the negative reactions, indicating potential false-negative detection by the probe-based qPCR assays. Testing of spiked samples showed false-positive detection and overestimation by the dye-based qPCR assays primarily occurred at low concentrations of target DNA, while false-negative detection by probe-based qPCR was caused primarily by reduced amplification efficiencies in the environmental samples. Together, the results identified the limitations of the qPCR methods in complex environmental samples and demonstrated the remedial utility of NGS in quantifying emerging ARGs by qPCR. KEY POINTS: • Dye-based qPCR assays are prone to false-positive and overestimation at low substrate concentration. • Probe-based qPCR assays can experience false-negative detection due to environmental interference. • The combination of qPCR with NGS provides improved sensitivity and reliability in detecting low level ARGs in complex environmental matrices.
Collapse
|
8
|
Song F, Shen Y, Wei Y, Yang C, Ge X, Wang A, Li C, Wan Y, Li J. Botulinum toxin as an ultrasensitive reporter for bacterial and SARS-CoV-2 nucleic acid diagnostics. Biosens Bioelectron 2021; 176:112953. [PMID: 33418182 PMCID: PMC7836976 DOI: 10.1016/j.bios.2020.112953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 01/18/2023]
Abstract
The rapid identification of pathogenic microorganisms plays a crucial role in the timely diagnosis and treatment strategies during a global pandemic, especially in resource-limited area. Herein, we present a sensitive biosensor strategy depended on botulinum neurotoxin type A light chain (BoNT/A LC) activated complex assay (BACA). BoNT/A LC, the surrogate of BoNT/A which embodying the most potent biological poisons, could serve as an ultrasensitive signal reporter with high signal-to-noise ratio to avoid common strong background response, poor stability and low intensity of current biosensor methods. A nanoparticle hybridization system, involving specific binding probes that recognize pathogenic 16S rRNAs or SARS-CoV-2 gene site, was developed to measure double-stranded biotinylated target DNA containing a single-stranded overhang using Fluorescence Resonance Energy Transfer (FRET)-based assay and colorimetric method. The method is validated widely by six different bacteria strains and severe acute respiratory related coronavirus 2 (SARS-CoV-2) nucleic acid, demonstrating a single cell or 1 aM nucleic acid detecting sensitivity. This detection strategy offers a solution for general applications and has a great prospect to be a simple instrument-free colorimetric tool, especially when facing public health emergency.
Collapse
Affiliation(s)
- Fengge Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Yuanyuan Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Yangdao Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Chunrong Yang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Xiaolin Ge
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Aimin Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Chaoyang Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China; Shandong Key Laboratory of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Specific detection of the most prevalent five Listeria strains and unspecific detection of 15 Listeria using multiplex real-time PCR. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03697-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Muniandy S, Teh SJ, Thong KL, Thiha A, Dinshaw IJ, Lai CW, Ibrahim F, Leo BF. Carbon Nanomaterial-Based Electrochemical Biosensors for Foodborne Bacterial Detection. Crit Rev Anal Chem 2019; 49:510-533. [DOI: 10.1080/10408347.2018.1561243] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shalini Muniandy
- Nanotechnology and Catalysis Research Centre, Institute of Graduate Studies, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Swe Jyan Teh
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Aung Thiha
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Ignatius Julian Dinshaw
- Nanotechnology and Catalysis Research Centre, Institute of Graduate Studies, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre, Institute of Graduate Studies, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Bey Fen Leo
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Central Unit of Advanced Research Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Multiplex PCR coupled with direct amplicon sequencing for simultaneous detection of numerous waterborne pathogens. Appl Microbiol Biotechnol 2018; 103:953-961. [PMID: 30417306 DOI: 10.1007/s00253-018-9498-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/08/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
The current water quality monitoring and regulation approaches use fecal indicator bacteria (FIB) to indirectly assess health risks from fecal pathogens. Direct detection of waterborne pathogens is expected to provide more accurate and comprehensive risk assessment, which however has been hindered by the lack of methods for simultaneous detection of the numerous waterborne pathogens. This study aimed to develop a mPCR-NGS approach that uses the high sequencing depth of NGS and sequence-based detection to significantly increase the multiplex level of mPCR for direct pathogen detection in water. Individual PCR primers were designed for 16 target marker genes of nine different bacterial pathogens, and an optimal combination of primers with least primer complementarities was identified for the multiplex setting. Using an artificial tester sample, the mPCR system was optimized for annealing temperature and primer concentration, and bioinformatic procedures were developed to directly detect the target marker gene amplicons in NGS sequence reads, which showed simultaneous detection of 14 different target genes in one reaction. The effectiveness of the developed mPCR-NGS approach was subsequently demonstrated on DNA extracts from stream water samples and their counterparts that were spiked with various target pathogen DNA, and all target genes spiked into the environmental water samples were successfully detected. Several key issues for further improving the mPCR-NGS approach were also identified and discussed.
Collapse
|
12
|
Hameed S, Xie L, Ying Y. Conventional and emerging detection techniques for pathogenic bacteria in food science: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Zhao X, Li M, Xu Z. Detection of Foodborne Pathogens by Surface Enhanced Raman Spectroscopy. Front Microbiol 2018; 9:1236. [PMID: 29946307 PMCID: PMC6005832 DOI: 10.3389/fmicb.2018.01236] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/22/2018] [Indexed: 01/21/2023] Open
Abstract
Food safety has become an important public health issue in both developed and developing countries. However, as the foodborne illnesses caused by the pollution of foodborne pathogens occurred frequently, which seriously endangered the safety and health of human beings. More importantly, the traditional techniques, such as PCR and enzyme-linked immunosorbent assay, are accurate and effective, but their pretreatments are complex and time-consuming. Therefore, how to detect foodborne pathogens quickly and sensitively has become the key to control food safety. Because of its sensitivity, rapidity, and non-destructive damage to the sample, the surface enhanced Raman scattering (SERS) is considered to be a powerful testing technology that is widely used to different fields. This review aims to give a systematic and comprehensive understanding of SERS for rapid detection of pathogen bacteria. First, the related concepts of SERS are stated, such as its work principal, active substrate, and biochemical origins of the detection of bacteria by SERS. Then the latest progress and applications in food safety, from detection and characterization of targets in label-free method to label method, is summarized. The advantages and limitations of different SERS substrates and methods are discussed. Finally, there are still several hurdles for the further development of SERS techniques into real-world applications. This review comes up with the perspectives on the future trends of the SERS technique in the field of foodborne pathogens detection and some problems to be solved urgently. Therefore, the purpose is mainly to understand the detection of foodborne pathogens and to make further emphasis on the importance of SERS techniques.
Collapse
Affiliation(s)
- Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory for Hubei Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Mei Li
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory for Hubei Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Zhenbo Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
14
|
Yüce M, Kurt H, Hussain B, Ow‐Yang CW, Budak H. Exploiting Stokes and anti‐Stokes type emission profiles of aptamer‐functionalized luminescent nanoprobes for multiplex sensing applications. ChemistrySelect 2018. [DOI: 10.1002/slct.201801008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Meral Yüce
- Sabanci University SUNUM Nanotechnology Research Centre 34956 Istanbul Turkey
| | - Hasan Kurt
- School of Engineering and Natural SciencesIstanbul Medipol University 34810 Istanbul Turkey
| | - Babar Hussain
- Faculty of Engineering and Natural SciencesSabanci University 34956 Istanbul Turkey
| | - Cleva W. Ow‐Yang
- Sabanci University SUNUM Nanotechnology Research Centre 34956 Istanbul Turkey
- Faculty of Engineering and Natural SciencesSabanci University 34956 Istanbul Turkey
| | - Hikmet Budak
- Faculty of Engineering and Natural SciencesSabanci University 34956 Istanbul Turkey
- Cereal Genomics LabMontana State University, Bozeman, MT USA
| |
Collapse
|
15
|
Gao X, Yao X, Zhong Z, Jia L. Rapid and sensitive detection of Staphylococcus aureus assisted by polydopamine modified magnetic nanoparticles. Talanta 2018; 186:147-153. [PMID: 29784342 DOI: 10.1016/j.talanta.2018.04.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/08/2018] [Accepted: 04/15/2018] [Indexed: 10/17/2022]
Abstract
Pathogens cause significant morbidity and mortality to humans. Thus, development of fast and reliable methods for detection and identification of pathogens is urgently needed to increase protection level of public health and ensure the safety of consumers. Herein, a rapid and sensitive method has been developed for Staphylococcus aureus (S. aureus) detection based on the dual role of polydopamine modified magnetic nanoparticles (PDA@Fe3O4 NPs) combined with polymerase chain reaction (PCR) and capillary electrophoresis (CE). The core-shell type structure PDA@Fe3O4 NPs were prepared, which are spherical, about 152 ± 20 nm in diameter and the PDA shell is about 17.5 ± 1.6 nm. PDA@Fe3O4 NPs play a dual role including efficient capture of bacteria and extraction of DNA. In the pH range of 3.0-7.0, the capture efficiency of S. aureus by PDA@Fe3O4 NPs was more than 95% in 5 min. The adsorption capacity of the PDA@Fe3O4 NPs for S. aureus is 1.2 × 108 cfu mg-1. The efficient capture and concentration of bacteria from large volumes of samples by PDA@Fe3O4 NPs avoids the time-consuming culture-enrichment prior to PCR. Interestingly, PDA@Fe3O4 NPs were also found to be efficient adsorbents for extraction of genomic DNA from pathogens based on the electrostatic interaction. The process can be finished in 25 min. The PDA@Fe3O4 NPs based solid phase extraction combined with PCR and CE allows for detecting the order of 102 cfu mL-1S. aureus in tap water and orange juice samples. The whole process takes < 5.5 h. The developed method would provide a promising platform for rapid and sensitive detection of pathogens.
Collapse
Affiliation(s)
- Xiaomei Gao
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xin Yao
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zitao Zhong
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
16
|
Khan IUH, Cloutier M, Libby M, Lapen DR, Wilkes G, Topp E. Enhanced Single-tube Multiplex PCR Assay for Detection and Identification of Six Arcobacter Species. J Appl Microbiol 2017; 123:1522-1532. [PMID: 28960631 DOI: 10.1111/jam.13597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 11/30/2022]
Abstract
AIM A single-tube multiplex PCR (mPCR) assay was developed for rapid, sensitive and simultaneous detection and identification of six Arcobacter species including two new species, A. lanthieri and A. faecis, along with A. butzleri, A. cibarius, A. cryaerophilus and A. skirrowii on the basis of differences in the lengths of their PCR products. Previously designed monoplex, mPCR and RFLP assays do not detect or differentiate A. faecis and A. lanthieri from other closely related known Arcobacter spp. METHODS AND RESULTS Primer pairs for each target species (except A. skirrowii) and mPCR protocol were newly designed and optimized using variable regions of housekeeping including cpn60, gyrA, gyrB and rpoB genes. The accuracy and specificity of the mPCR assay was assessed using DNA templates from six targets and 11 other Arcobacter spp. as well as 50 other bacterial reference species and strains. Tests on the DNA templates of target Arcobacter spp. were appropriately identified, whereas all 61 other DNA templates from other bacterial species and strains were not amplified. Sensitivity and specificity of the mPCR assay was 10 pg μl-1 of DNA concentration per target species. The optimized assay was further evaluated, validated and compared with other mPCR assays by testing Arcobacter cultures isolated from various faecal and water sources. CONCLUSIONS Study results confirm that the newly developed mPCR assay is rapid, accurate, reliable, simple, and valuable for the simultaneous detection and routine diagnosis of six human- and animal-associated Arcobacter spp. SIGNIFICANCE AND IMPACT OF THE STUDY The new mPCR assay is useful not only for pure but also mixed cultures. Moreover, it has the ability to rapidly detect six species which enhances the value of this technology for aetiological and epidemiological studies.
Collapse
Affiliation(s)
- I U H Khan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - M Cloutier
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - M Libby
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - D R Lapen
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - G Wilkes
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - E Topp
- London Research and Development Centre (LRDC), Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
17
|
Umesha S, Manukumar HM. Advanced molecular diagnostic techniques for detection of food-borne pathogens: Current applications and future challenges. Crit Rev Food Sci Nutr 2017; 58:84-104. [PMID: 26745757 DOI: 10.1080/10408398.2015.1126701] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The elimination of disease-causing microbes from the food supply is a primary goal and this review deals with the overall techniques available for detection of food-borne pathogens. Now-a-days conventional methods are replaced by advanced methods like Biosensors, Nucleic Acid-based Tests (NAT), and different PCR-based techniques used in molecular biology to identify specific pathogens. Bacillus cereus, Staphylococcus aureus, Proteus vulgaris, Escherichia coli, Campylobacter, Listeria monocytogenes, Salmonella spp., Aspergillus spp., Fusarium spp., Penicillium spp., and pathogens are detected in contaminated food items that cause always diseases in human in any one or the other way. Identification of food-borne pathogens in a short period of time is still a challenge to the scientific field in general and food technology in particular. The low level of food contamination by major pathogens requires specific sensitive detection platforms and the present area of hot research looking forward to new nanomolecular techniques for nanomaterials, make them suitable for the development of assays with high sensitivity, response time, and portability. With the sound of these, we attempt to highlight a comprehensive overview about food-borne pathogen detection by rapid, sensitive, accurate, and cost affordable in situ analytical methods from conventional methods to recent molecular approaches for advanced food and microbiology research.
Collapse
Affiliation(s)
- S Umesha
- a Department of Studies in Biotechnology , University of Mysore, Manasagangotri , Mysore , Karnataka , India
| | - H M Manukumar
- a Department of Studies in Biotechnology , University of Mysore, Manasagangotri , Mysore , Karnataka , India
| |
Collapse
|
18
|
Detection of DNA from Escherichia coli, Clostridium perfringens, Staphylococcus aureus and Bacillus cereus after simplified enrichment using a novel multiplex real-time PCR system. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-016-2771-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Survey of five food-borne pathogens in commercial cold food dishes and their detection by multiplex PCR. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.06.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Brandão D, Liébana S, Pividori MI. Multiplexed detection of foodborne pathogens based on magnetic particles. N Biotechnol 2015; 32:511-20. [DOI: 10.1016/j.nbt.2015.03.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/16/2015] [Accepted: 03/22/2015] [Indexed: 11/26/2022]
|
21
|
Abdalhai MH, Fernandes AM, Xia X, Musa A, Ji J, Sun X. Electrochemical Genosensor To Detect Pathogenic Bacteria (Escherichia coli O157:H7) As Applied in Real Food Samples (Fresh Beef) To Improve Food Safety and Quality Control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5017-5025. [PMID: 25965077 DOI: 10.1021/acs.jafc.5b00675] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The electrochemical genosensor is one of the most promising methods for the rapid and reliable detection of pathogenic bacteria. In a previous work, we performed an efficient electrochemical genosensor detection of Staphylococcus aureus by using lead sulfide nanoparticles (PbSNPs). As a continuation of this study, in the present work, the electrochemical genosensor was used to detect Escherichia coli O157:H7. The primer and probes were designed using NCBI database and Sigma-Aldrich primer and probe software. The capture and signalizing probes were modified by thiol (SH) and amine (NH2), respectively. Then, the signalizing probe was connected using cadmium sulfide nanoparticles (CdSNPs), which showed well-defined peaks after electrochemical detection. The genosensor was prepared by immobilization of complementary DNA on the gold electrode surface, which hybridizes with a specific fragment gene from pathogenic to make a sandwich structure. The conductivity and sensitivity of the sensor were increased by using multiwalled carbon nanotubes (MWCNT) that had been modified using chitosan deposited as a thin layer on the glass carbon electrode (GCE) surface, followed by a deposit of bismuth. The peak currents of E. coli O157:H7 correlated in a linear fashion with the concentration of tDNA. The detection limit was 1.97 × 10(-14) M, and the correlation coefficient was 0.989. A poorly defined current response was observed as the negative control and baseline. Our results showed high sensitivity and selectivity of the electrochemical DNA biosensor to the pathogenic bacteria E. coli O157:H7. The biosensor was also used to evaluate the detection of pathogen in real beef samples contaminated artificially. Compared with other electrochemical DNA biosensors, we conclude that this genosensor provides for very efficient detection of pathogenic bacteria. Therefore, this method may have potential application in food safety and related fields.
Collapse
Affiliation(s)
- Mandour H Abdalhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Wuxi, Jiangsu 214122, China
| | - António Maximiano Fernandes
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Wuxi, Jiangsu 214122, China
| | - Xiaofeng Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Wuxi, Jiangsu 214122, China
| | - Abubakr Musa
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Wuxi, Jiangsu 214122, China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Wuxi, Jiangsu 214122, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Wuxi, Jiangsu 214122, China
| |
Collapse
|
22
|
A duplex qPCR for the simultaneous detection of Escherichia coli O157:H7
and Listeria monocytogenes
using LNA probes. Lett Appl Microbiol 2015; 61:20-7. [DOI: 10.1111/lam.12427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/01/2015] [Accepted: 04/01/2015] [Indexed: 12/01/2022]
|
23
|
Law JWF, Ab Mutalib NS, Chan KG, Lee LH. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 2015; 5:770. [PMID: 25628612 PMCID: PMC4290631 DOI: 10.3389/fmicb.2014.00770] [Citation(s) in RCA: 571] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/17/2014] [Indexed: 12/11/2022] Open
Abstract
The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR), multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP) and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases.
Collapse
Affiliation(s)
- Jodi Woan-Fei Law
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaSelangor Darul Ehsan, Malaysia
- School of Science, Monash University MalaysiaSelangor Darul Ehsan, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Bandar Tun RazakKuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Learn-Han Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaSelangor Darul Ehsan, Malaysia
| |
Collapse
|
24
|
Abdalhai MH, Fernandes AM, Bashari M, Ji J, He Q, Sun X. Rapid and sensitive detection of foodborne pathogenic bacteria (Staphylococcus aureus) using an electrochemical DNA genomic biosensor and its application in fresh beef. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12659-67. [PMID: 25474119 DOI: 10.1021/jf503914f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Rapid early detection of food contamination is the main key in food safety and quality control. Biosensors are emerging as a vibrant area of research, and the use of DNA biosensor recognition detectors is relatively new. In this study a genomic DNA biosensor system with a fixing and capture probe was modified by a sulfhydryl and amino group, respectively, as complementary with target DNA. After immobilization and hybridization, the following sandwich structure fixing DNA-target DNA-capture DNA-PbS NPs was formed to detect pathogenic bacteria (Staphylococuus aureus EF529607.1) by using GCE modified with (multiwalled carbon nanotubes-chitosan-bismuth) to increase the sensitivity of the electrode. The modification procedure was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The sandwich structure was dissolved in 1 M nitric acid to become accessible to the electrode, and the PbS NPs was measured in solution by differential pulse voltammetry (DPV). The results showed that the detection limit of the DNA sensor was 3.17 × 10(-14) M S. aureus using PbS NPs, whereas the result for beef samples was 1.23 ng/mL. Thus, according to the experimental results presented, the DNA biosensor exhibited high sensitivity and rapid response, and it will be useful for the food matrix.
Collapse
Affiliation(s)
- Mandour H Abdalhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University , Wuxi, Jiangsu 214122, China
| | | | | | | | | | | |
Collapse
|
25
|
Taminiau B, Korsak N, Lemaire C, Delcenserie V, Daube G. Validation of real-time PCR for detection of six major pathogens in seafood products. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.03.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|