1
|
Vincent MA, Naziemiec MI, Andersen ML, Anantheswaran RC, Silakov A, Elias RJ. Peptides modulate Cu(II) reactivity toward hop-derived polyfunctional thiols in beer. Food Chem 2025; 481:144032. [PMID: 40158371 DOI: 10.1016/j.foodchem.2025.144032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/17/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
Polyfunctional thiols are beneficial contributors to beer aroma yet are labile to oxidation reactions and thus difficult to maintain throughout the brewing process and in finished beer. Recent studies in our lab and elsewhere have demonstrated that relatively low concentrations of copper in wort and beer can adversely affect the stability of hop-derived polyfunctional thiols; however, in this present study, we show how a barley-derived dipeptide can modulate polyfunctional thiol stability using glycyl histidine (Gly-His) as a model dipeptide. We demonstrate that Gly-His, which was previously shown to interact strongly with Cu(II) in sweet wort, binds to Cu(II) to form stable complexes in beer. This binding could potentially delay the loss of the several hop-derived polyfunctional thiols that are beneficial and critical to the aroma quality of hop-forward beers.
Collapse
Affiliation(s)
- Morgan A Vincent
- Department of Chemistry, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Magdalena I Naziemiec
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mogens L Andersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| | - Ramaswamy C Anantheswaran
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alexey Silakov
- Department of Chemistry, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ryan J Elias
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Pérez-Lucas G, Navarro G, Navarro S. Understanding How Chemical Pollutants Arise and Evolve in the Brewing Supply Chain: A Scoping Review. Foods 2024; 13:1709. [PMID: 38890939 PMCID: PMC11171931 DOI: 10.3390/foods13111709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
In this study, a critical review was carried out using the Web of ScienceTM Core Collection database to analyse the scientific literature published to date to identify lines of research and future perspectives on the presence of chemical pollutants in beer brewing. Beer is one of the world's most popular drinks and the most consumed alcoholic beverage. However, a widespread challenge with potential implications for human and animal health is the presence of physical, chemical, and/or microbiological contaminants in beer. Biogenic amines, heavy metals, mycotoxins, nitrosamines, pesticides, acrylamide, phthalates, bisphenols, microplastics, and, to a lesser extent, hydrocarbons (aliphatic chlorinated and polycyclic aromatic), carbonyls, furan-derivatives, polychlorinated biphenyls, and trihalomethanes are the main chemical pollutants found during the beer brewing process. Pollution sources include raw materials, technological process steps, the brewery environment, and packaging materials. Different chemical pollutants have been found during the beer brewing process, from barley to beer. Brewing steps such as steeping, kilning, mashing, boiling, fermentation, and clarification are critical in reducing the levels of many of these pollutants. As a result, their residual levels are usually below the maximum levels allowed by international regulations. Therefore, this work was aimed at assessing how chemical pollutants appear and evolve in the brewing process, according to research developed in the last few decades.
Collapse
Affiliation(s)
| | | | - Simón Navarro
- Department of Agricultural Chemistry, Geology and Pedology, School of Chemistry, University of Murcia, Campus Universitario de Espinardo, E-30100 Murcia, Spain; (G.P.-L.); (G.N.)
| |
Collapse
|
3
|
Sides TR, Nelson JC, Nwachukwu KN, Boston J, Marshall SA. The Influence of Arsenic Co-Exposure in a Model of Alcohol-Induced Neurodegeneration in C57BL/6J Mice. Brain Sci 2023; 13:1633. [PMID: 38137081 PMCID: PMC10741530 DOI: 10.3390/brainsci13121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Both excessive alcohol consumption and exposure to high levels of arsenic can lead to neurodegeneration, especially in the hippocampus. Co-exposure to arsenic and alcohol can occur because an individual with an Alcohol Use Disorder (AUD) is exposed to arsenic in their drinking water or food or because of arsenic found directly in alcoholic beverages. This study aims to determine if co-exposure to alcohol and arsenic leads to worse outcomes in neurodegeneration and associated mechanisms that could lead to cell death. To study this, mice were exposed to a 10-day gavage model of alcohol-induced neurodegeneration with varying doses of arsenic (0, 0.005, 2.5, or 10 mg/kg). The following were examined after the last dose of ethanol: (1) microglia activation assessed via immunohistochemical detection of Iba-1, (2) reactive oxygen and nitrogen species (ROS/RNS) using a colorimetric assay, (3) neurodegeneration using Fluoro-Jade® C staining (FJC), and 4) arsenic absorption using ICP-MS. After exposure, there was an additive effect of the highest dose of arsenic (10 mg/kg) in the dentate gyrus of alcohol-induced FJC+ cells. This additional cell loss may have been due to the observed increase in microglial reactivity or increased arsenic absorption following co-exposure to ethanol and arsenic. The data also showed that arsenic caused an increase in CYP2E1 expression and ROS/RNS production in the hippocampus which could have independently contributed to increased neurodegeneration. Altogether, these findings suggest a potential cyclical impact of co-exposure to arsenic and ethanol as ethanol increases arsenic absorption but arsenic also enhances alcohol's deleterious effects in the CNS.
Collapse
Affiliation(s)
- Tori R. Sides
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; (T.R.S.); (J.C.N.); (K.N.N.); (J.B.)
| | - James C. Nelson
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; (T.R.S.); (J.C.N.); (K.N.N.); (J.B.)
| | - Kala N. Nwachukwu
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; (T.R.S.); (J.C.N.); (K.N.N.); (J.B.)
- Integrated Biosciences PhD Program, North Carolina Central University, Durham, NC 27707, USA
| | - Jhana Boston
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; (T.R.S.); (J.C.N.); (K.N.N.); (J.B.)
| | - S. Alex Marshall
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; (T.R.S.); (J.C.N.); (K.N.N.); (J.B.)
| |
Collapse
|
4
|
López-Balladares O, Espinoza-Montero PJ, Fernández L. Electrochemical Evaluation of Cd, Cu, and Fe in Different Brands of Craft Beers from Quito, Ecuador. Foods 2023; 12:foods12112264. [PMID: 37297508 DOI: 10.3390/foods12112264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The presence of heavy metals in craft beers can endanger human health if the total metal content exceeds the exposure limits recommended by sanitary standards; in addition, they can cause damage to the quality of the beer. In this work, the concentration of Cd(II), Cu(II), and Fe(III) was determined in 13 brands of craft beer with the highest consumption in Quito, Ecuador, by differential pulse anodic stripping voltammetry (DPASV), using as boron-doped diamond (BDD) working electrode. The BDD electrode used has favorable morphological and electrochemical properties for the detection of metals such as Cd(II), Cu(II), and Fe(III). A granular morphology with microcrystals with an average size between 300 and 2000 nm could be verified for the BDD electrode using a scanning electron microscope. Double layer capacitance of the BDD electrode was 0.01412 μF cm-2, a relatively low value; Ipox/Ipred ratios were 0.99 for the potassium ferro-ferricyanide system in BDD, demonstrating that the redox process is quasi-reversible. The figures of merit for Cd(II), Cu(II), and Fe(III) were; DL of 6.31, 1.76, and 1.72 μg L-1; QL of 21.04, 5.87, and 5.72 μg L-1, repeatability of 1.06, 2.43, and 1.34%, reproducibility of 1.61, 2.94, and 1.83% and percentage of recovery of 98.18, 91.68, and 91.68%, respectively. It is concluded that the DPASV method on BDD has acceptable precision and accuracy for the quantification of Cd(II), Cu(II), and Fe(III), and it was verified that some beers did not comply with the permissible limits of food standards.
Collapse
Affiliation(s)
- Oscar López-Balladares
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
| | | | - Lenys Fernández
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| |
Collapse
|
5
|
González PA, Dans EP, Tranche IDLH, Acosta-Dacal AC, Hernández ÁR, Montes AM, Peña MZ, Luzardo OP. Comparative analysis of mycotoxin, pesticide, and elemental content of Canarian craft and Spanish mainstream beers. Toxicol Rep 2023; 10:389-399. [PMID: 36974105 PMCID: PMC10038769 DOI: 10.1016/j.toxrep.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
The number of craft breweries and the volume of craft beer produced globally is growing exponentially. However, little is known about their differences with mainstream beers regarding mycotoxin profile, pesticide and pollutant residues and elemental composition. Given that beer is one of the most consumed beverages worldwide, it is important to shed light on its toxicological profile. In this study, samples of 23 craft beers and 19 mainstream Spanish beers were collected to perform a comparative analysis including 8 mycotoxins, 225 pesticide residues and 50 POPs, and 50 elements. Mycotoxins were not detected in craft beers, while 100% of mainstream beers presented at least one mycotoxin. In contrast, craft beers contained higher average pesticide residues than their mainstream counterparts, although significant differences were only found in Mepiquat and Metrafenone content. No persistent organic pollutants were detected in any sample. The elemental composition presented differences between the two groups both in the concentration of elements and their hierarchy. In conclusion, the toxicological profile of all beers was safe and is unlikely to constitute a hazard to consumer health. Craft beers present significant differences from their mainstream counterparts in all the dimensions explored.
Collapse
Affiliation(s)
- Pablo Alonso González
- Institute of Natural Products and Agrobiology (IPNA-CSIC), Av. Astrofisico Francisco Sánchez, 3, 38206 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Eva Parga Dans
- Institute of Natural Products and Agrobiology (IPNA-CSIC), Av. Astrofisico Francisco Sánchez, 3, 38206 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
- Corresponding author.
| | | | - Andrea Carolina Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria 35016, Spain
| | - Ángel Rodríguez Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria 35016, Spain
| | - Ana Macías Montes
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria 35016, Spain
| | - Manuel Zumbado Peña
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria 35016, Spain; & Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid 28029, Spain
| | - Octavio Pérez Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria 35016, Spain; & Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid 28029, Spain
| |
Collapse
|
6
|
Changes in bioavailability of zinc during malting process and wort production. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractTrace metals, particularly zinc, influence the growth and metabolism of yeast. In the literature the recommended concentration of zinc in pitching wort is > 0.15 mg/L; lower concentrations cause fermentation problems and reduce in consequence final beer quality. The aim of this study was the exploration of changes in bioavailability (available zinc), which was never considered before, and in the mass balance of total zinc during malting process and wort production. Therefore, the work comprised two parts: (1) investigating the effect of malt modification on zinc content and bioavailability of, respectively, produced malt depending on malt modification by varying the steeping degree (38–48%) in the malting process and (2) examining the effect of zinc losses and changes in bioavailability in the by-products (spent grain and hot break) by performing brewing trials up to pitching wort. Zinc was measured by atomic absorption spectroscopy. We applied a specific extraction scheme to evaluate first the bioavailability of zinc in brewing-related samples. In the malting process, total zinc losses increased with greater modification level of the malt samples, although bioavailability increased simultaneously. Spent grain was the primary zinc loss by-product (98%) in the brewing process. The distribution of the binding forms of zinc in hot break and spent grain was significantly altered with an increase in the less water-soluble binding forms of zinc.
Collapse
|
7
|
Ciont C, Epuran A, Kerezsi AD, Coldea TE, Mudura E, Pasqualone A, Zhao H, Suharoschi R, Vriesekoop F, Pop OL. Beer Safety: New Challenges and Future Trends within Craft and Large-Scale Production. Foods 2022; 11:2693. [PMID: 36076878 PMCID: PMC9455588 DOI: 10.3390/foods11172693] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
The presence of physical, chemical, or microbiological contaminants in beer represents a broad and worthy problem with potential implications for human health. The expansion of beer types makes it more and more appreciated for the sensorial properties and health benefits of fermentation and functional ingredients, leading to significant consumed quantities. Contaminant sources are the raw materials, risks that may occur in the production processes (poor sanitation, incorrect pasteurisation), the factory environment (air pollution), or inadequate (ethanol) consumption. We evaluated the presence of these contaminants in different beer types. This review covers publications that discuss the presence of bacteria (Lactobacillus, Pediococcus), yeasts (Saccharomyces, Candida), moulds (Fusarium, Aspergillus), mycotoxins, heavy metals, biogenic amines, and micro- and nano-plastic in beer products, ending with a discussion regarding the identified gaps in current risk reduction or elimination strategies.
Collapse
Affiliation(s)
- Călina Ciont
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Alexandra Epuran
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Andreea Diana Kerezsi
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, B-5030 Gembloux, Belgium
| | - Teodora Emilia Coldea
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Elena Mudura
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Frank Vriesekoop
- Department of Food Technology and Innovation, Harper Adams University, Newport TF10 8NB, UK
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
8
|
The Elemental Profile of Beer Available on Polish Market: Analysis of the Potential Impact of Type of Packaging Material and Risk Assessment of Consumption. Molecules 2022; 27:molecules27092962. [PMID: 35566304 PMCID: PMC9100925 DOI: 10.3390/molecules27092962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 11/17/2022] Open
Abstract
Twenty-five elements, including the most essential and toxic metals, were determined in fifty beer samples stored in cans and bottles by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and Cold Vapor Atomic Absorption Spectroscopy (CVAAS) techniques. The packaging material was analyzed using the Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS) technique. The control of the level of individual metals is necessary, not only to maintain the organoleptic properties of the product, but also to fulfill the standards regarding the permissible maximum concentrations. Metals can originate from different sources, including the brewing water, malt grains, hops, adjuncts, fruits, and spices. They may also come from contamination from the brewery equipment, i.e., vessels and tanks, including beer packing, storing and transporting (kegs, casks, cans). Discriminant analysis revealed that the differentiation of three types of beer (Lager, Ale, Craft) was possible, based on elemental concentrations, for the reduced data set after their selection using the Kruskal-Wallis test. The analysis of the impact of the packaging material (can or bottle) proved that when this parameter was used as a differentiating criterion, the difference in the content of Na, Al, Cu and Mn can be indicated. The risk assessment analysis showed that the consumption of beer in a moderate quantity did not have any adverse effect in terms of the selected element concentrations, besides Al. However, in the case of Al, the risk related to consumption can be considered, but only for the beer stored in cans produced from aluminum.
Collapse
|
9
|
Wu G, Li Y, Zhang J, Yun W, Xiong Z, Yang L. Simultaneous and ultra-sensitive detection of Cu 2+ and Mg 2+ in wine and beer based on dual DNA tweezers and entropy-driven three-dimensional DNA nanomachine. Food Chem 2021; 358:129835. [PMID: 33933951 DOI: 10.1016/j.foodchem.2021.129835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Simultaneous and ultra-sensitive detection strategy of Cu2+ and Mg2+ in wine and beer was developed based on dual DNA tweezers and entropy-driven three-dimensional DNA nanomachine. The dual DNAzyme can simultaneously respond to two kinds of metal ions and cause two kinds of "turn-on" fluorescent signals. The working principle of this strategy was indirectly proven. In addition, some key experimental parameters were also optimized. Under the optimum conditions, the limit of detection was 10 pM for Cu2+ and 2 nM for Mg2+ respectively which was significantly improved by entropy driven amplification. This strategy also showed good selectivity and specificity. It was successfully used to detect of Cu2+ and Mg2+ in wine and beer with 5.26% to 9.12% of relative standard deviation and 90.4% to 110.5% of recoveries.
Collapse
Affiliation(s)
- Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuting Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiafeng Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wen Yun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Zhengwei Xiong
- School of Biological and Chemical Engineering, Innovation Center of Lipid Resources and Children's Daily Chemicals, Chongqing University of Education, Chongqing 400067, China.
| | - Lizhu Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
10
|
Baiano A. Craft beer: An overview. Compr Rev Food Sci Food Saf 2020; 20:1829-1856. [PMID: 33369039 DOI: 10.1111/1541-4337.12693] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 11/27/2022]
Abstract
The purpose of the work was to provide an overview on craft beer. Details and issues concerning history and legal definition market, fiscal policy, innovation, safety, healthiness, consumer profile, and sustainability are supplied. The term "craft brewery" generally refers to a brewery able to produce low volumes of beer, often made with traditional ingredients-for emulating historic styles-but also with the addition of nontraditional ingredients as a distinctiveness sign of the master brewer. In many countries, the importance of the company size is related to the opportunity to take advantage of reduced excise rates for low production volumes. In several countries, another important requisite of a craft brewery is represented by its independence from other alcohol industry members. Even in the presence of a great heterogeneity of the size of craft breweries in the various countries, their number in the world is around 17,000. Craft beer is mainly consumed in restaurants and bars. Innovation of craft beer concerns aspects, such as ingredients, alcohol content, aging, and packaging, and the profile of the typical craft beer drinker is that of a young man, with a higher education and a medium-high income. Craft beers are often not filtered/not pasteurized and, for these reasons, they are beverages rich in health compounds but with a reduced shelf life. As in the case of larger breweries, the environmental impact of craft breweries is mainly represented by water consumption and production of liquid and solid wastes.
Collapse
Affiliation(s)
- Antonietta Baiano
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, University of Foggia, Foggia, Italy
| |
Collapse
|
11
|
Impact of Copper Fungicide Use in Hop Production on the Total Metal Content and Stability of Wort and Dry-Hopped Beer. BEVERAGES 2020. [DOI: 10.3390/beverages6030048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transition metals, including copper, iron, and manganese, are known to catalyze the generation of reactive oxygen species (ROS) in beer leading to reduced product stability. Metals in beer are generally derived from raw ingredients. The present study aims to evaluate the impact of brewing and dry-hopping using hops treated with copper-based fungicides (CBFs) on the final transition metal content of model buffer solutions and pilot-scale systems of wort and beer. Copper levels in model wort and beer solutions were elevated (105.6% and 230.4% increase, respectively) when CBF-treated hops were used. In laboratory-prepared wort, elevated copper concentrations were not observed when CBF-treated hops were used for boiling. Dry hopping of beer using CBF-treated hops led to significant increases in total copper content (ca. 75 µg/kg vs. ca. 40–50 µg/kg in the control-hopped beer) when yeast was absent from the treated beer, but not when yeast was present. It was observed that manganese levels were significantly elevated in all hopped beers (ca. 495–550 µg/kg vs. 90–125 µg/kg in the unhopped control), regardless of hop treatment. A hop varietal thiol, 4-Mercapto-4-methylpentan-2-one, was spiked into treated beers, and the rate of oxidative loss was monitored during aging. Rates of thiol loss in treated beer samples did not differ across CBF treatments but were significantly lower in unhopped controls in the absence of yeast (p < 0.0001) and correlated significantly with total manganese content of the beers (R2 = 0.4228, p = 0.0006). The rate of staling in hopped beers as measured by the rate of 1-hydroxyethyl radical generation did not differ among hop treatments, suggesting that excess copper content contributed from the hops does not negatively impact the oxidative stability of the beers. These findings suggest that brewers can use CBF-treated hops without any negative implications for the shelf stability of their beers and do not contraindicate the use of CBF in hops production when necessary.
Collapse
|
12
|
Zambrzycka-Szelewa E, Nalewajko-Sieliwoniuk E, Zaremba M, Bajguz A, Godlewska-Żyłkiewicz B. The Mineral Profile of Polish Beers by Fast Sequential Multielement HR CS FAAS Analysis and Its Correlation with Total Phenolic Content and Antioxidant Activity by Chemometric Methods. Molecules 2020; 25:molecules25153402. [PMID: 32727164 PMCID: PMC7436273 DOI: 10.3390/molecules25153402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022] Open
Abstract
Beer is the most common alcoholic beverage worldwide, and is an excellent source of macro- and microelements, as well as phenolic compounds. In this study, a fast method for the determination of Na, K, Mg, Ca, Fe, Mn, and Cu in beer was developed using flame atomic absorption spectrometry. The precision of this method was between 0.8 and 8.0% (as the relative standard deviation (RSD)), and limits of detections were in the range of 0.45 (Mn)–94 µg/L (Na). Among the macroelements tested in the beer samples, K was found at the highest concentration, whereas Na was found at the lowest concentration level. Beer also turned out to be a good source of Mg and K. The total phenolic content (TPC) was determined by the Folin–Ciocalteu method, while the antioxidant activity was estimated by the ABTS method. The results show remarkable variations in the mineral content, TPC, and antioxidant activity across the beer types and brands. Moreover, the relations between the type, color, refraction index, antioxidant activity, extract, alcohol, mineral, and the total phenolic contents were investigated using the factor analysis of mixed data (FAMD) combined with hierarchical clustering on principal components (HCPC).
Collapse
Affiliation(s)
- Elżbieta Zambrzycka-Szelewa
- Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245 Białystok, Poland; (E.Z.-S.); (M.Z.)
| | - Edyta Nalewajko-Sieliwoniuk
- Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245 Białystok, Poland; (E.Z.-S.); (M.Z.)
- Correspondence: (E.N.-S.); (B.G.-Ż.)
| | - Mariusz Zaremba
- Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245 Białystok, Poland; (E.Z.-S.); (M.Z.)
| | - Andrzej Bajguz
- Faculty of Biology, University of Bialystok, Ciołkowskiego 1J, 15-245 Białystok, Poland;
| | - Beata Godlewska-Żyłkiewicz
- Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245 Białystok, Poland; (E.Z.-S.); (M.Z.)
- Correspondence: (E.N.-S.); (B.G.-Ż.)
| |
Collapse
|
13
|
Sequential and simultaneous determination of chlorine, iron, and silicon in beer samples by high-resolution continuum source graphite furnace molecular and atomic absorption spectrometry. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01787-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Pires LN, de S. Dias F, Teixeira LS. Assessing the internal standardization of the direct multi-element determination in beer samples through microwave-induced plasma optical emission spectrometry. Anal Chim Acta 2019; 1090:31-38. [DOI: 10.1016/j.aca.2019.09.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/14/2019] [Accepted: 09/12/2019] [Indexed: 10/26/2022]
|
15
|
Redan BW, Jablonski JE, Halverson C, Jaganathan J, Mabud MA, Jackson LS. Factors Affecting Transfer of the Heavy Metals Arsenic, Lead, and Cadmium from Diatomaceous-Earth Filter Aids to Alcoholic Beverages during Laboratory-Scale Filtration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2670-2678. [PMID: 30784277 PMCID: PMC9116435 DOI: 10.1021/acs.jafc.8b06062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Filtration methods for alcoholic fermented beverages often use filter aids such as diatomaceous earth (DE), which may contain elevated amounts of the heavy metals arsenic (As), lead (Pb), and cadmium (Cd). Here, we evaluated factors affecting transfer of these heavy metals from DE to beer and wine. A laboratory-scale filtration system was used to process unfiltered ale, lager, red wine, and white wine with three types of food-grade DE. Filtrate and DE were analyzed for heavy metals using ICP-MS, in addition to LC-ICP-MS for As-speciation analysis. Use of 2 g/L DE containing 5.4 mg/kg soluble inorganic As (iAs) for filtering beer and wine resulted in significant ( p < 0.05) increases of 11.2-13.7 μg/L iAs in the filtered beverage. There was a significant ( p < 0.05) effect from the DE quantity used in filtration on the transfer of iAs in all beverage types, whereas no alterations were observed for Pb and Cd levels. Methods to wash DE using water, citric acid, or EDTA all significantly ( p < 0.05) reduced iAs concentrations, whereas only EDTA significantly reduced Pb levels. Cd concentrations were not affected by any wash method. These data indicate that specific steps can be taken to limit heavy-metal transfer from DE filter aids to beer and wine.
Collapse
Affiliation(s)
- Benjamin W. Redan
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Safety, Division of Food Processing Science and Technology
| | - Joseph E. Jablonski
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Safety, Division of Food Processing Science and Technology
| | - Catherine Halverson
- U.S. Department of the Treasury, Alcohol and Tobacco Tax and Trade Bureau, Scientific Services Division
| | - James Jaganathan
- U.S. Department of the Treasury, Alcohol and Tobacco Tax and Trade Bureau, Scientific Services Division
| | - Md. Abdul Mabud
- U.S. Department of the Treasury, Alcohol and Tobacco Tax and Trade Bureau, Scientific Services Division
| | - Lauren S. Jackson
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Safety, Division of Food Processing Science and Technology
- Corresponding author: Tel: 708-924-0616; Fax: 708-924-0690;
| |
Collapse
|
16
|
Leão PRPD, Medina AL, Vieira MA, Ribeiro AS. Decomposição de amostras de cerveja com sistema de refluxo para determinação monoelementar por F AAS/AES e determinação multielementar por MIP OES. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2017. [DOI: 10.1590/1981-6723.6217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resumo Neste trabalho, é descrito o desenvolvimento de um método analítico para análise de amostras de cervejas por técnicas de espectrometria. As amostras foram preparadas por decomposição em meio ácido, em um sistema de refluxo, e as determinações foram realizadas por F AAS (Fe, Mg e Zn), F AES (Na) e MIP OES (Ca, Fe, K, Mg, Mn, Na, Ni e Zn). As melhores condições para a decomposição da amostra foram obtidas através de estudo com delineamento composto central rotacional: volume de 10,0 mL de cerveja desgaseificada, adição de 5,0 mL de HNO3 e 2,0 mL H2O2, seguida por uma etapa de aquecimento em bloco digestor a 160 °C, por 93 min. Os limites de quantificação do método foram ≤ 0,100 mg L-1 para todos os elementos investigados, independentemente da técnica analítica utilizada, ficando abaixo, por exemplo, dos valores estipulados para Zn e Ni, pela Agência Nacional de Vigilância Sanitária do Brasil. Os estudos comparativos entre as diferentes técnicas avaliadas mostraram, pelo teste T com nível de 90% de confiança, que não há diferença significativa para as determinações de Fe, Mg, Na e Zn nas amostras de cerveja. O método de preparo da amostra proposto mostrou ser simples, rápido, de baixo custo e confiável, para análise de cervejas nas diferentes técnicas de espectrometria atômica.
Collapse
|