1
|
Liao WW, Lin CY, Horng YS, Chen CL, Lee TH, Wu CY. Transcranial direct current stimulation over the motor and premotor cortex with mirror therapy improves motor control, muscle function, and brain activity in chronic stroke: a double-blind randomized sham-controlled trial. J Neuroeng Rehabil 2025; 22:98. [PMID: 40287756 PMCID: PMC12032799 DOI: 10.1186/s12984-025-01635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a popular approach to augment the effects of neurorehabilitation. Most studies stimulated the ipsilesional primary motor cortex (iM1); nonetheless, the success of iM1 stimulation was variable, suggesting that it may not be optimal for improving recovery. Ipsilesional premotor cortex (iPMC) may be an alternative candidate based on its likelihood of survival post-stroke and its contribution to functions. This study aimed to determine the effects of tDCS on the iPMC and iM1 with mirror therapy (MT) on motor control, muscle function, and brain activity in chronic stroke. METHODS Thirty-six participants were randomly distributed into (1) iPMC-tDCS with MT (PMC) (2), iM1-tDCS with MT (M1), and (3) sham tDCS with MT (sham). Motor control was assessed using kinematics. Muscle function was assessed using the modified Ashworth and the Medical Research Council Scales. The M1 and PMC activity was recorded using electroencephalography (EEG), and the event-related desynchronization and the laterality index (LI) were examined. RESULTS Significant within-group differences were identified in the kinematic outcomes. After interventions, the PMC group showed reduced paretic upper limb muscle spasticity and improved paretic limb control with greater movement smoothness and peak velocity. The M1 group showed reduced trunk compensation with fewer trunk displacement and flexion. However, the sham group relied more on trunk compensation, demonstrating increased trunk peak velocity and smoothness. Significant between-group differences were also found in paretic limb control and trunk displacement. Post-hoc analysis revealed that the PMC group improved paretic limb control, and the M1 group showed reduced trunk displacement more than the sham group. Significant within-and between-group differences were identified in EEG outcomes. The iM1 and contralesional PMC (cPMC) activity increased from pre-to-post intervention in the M1 group. In contrast, the iM1 activity decreased, and the LI declined from pre- to post-intervention in the sham group. Significant group differences were found in the iM1 activity, with the PMC and M1 having greater iM1 activation than the sham group. CONCLUSIONS Differential treatment benefits were identified between iPMC- and iM1-tDCS with MT. iPMC-tDCS with MT uniquely improved paretic upper limb control with reduced muscle spasticity while iM1-tDCS with MT mitigated trunk compensation during reaching. These findings suggest that both iPMC- and iM1-tDCS could augment the effects of stroke neurorehabilitation and may be considered in clinical applications. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04655209. Registered on 15th November 2020. https://clinicaltrials.gov/study/NCT04655209 .
Collapse
Affiliation(s)
- Wan-Wen Liao
- Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Chia-Yi Lin
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Yi-Shiung Horng
- Department of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, New Taipei City, Taiwan
| | - Chia-Ling Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Graduate Institute of Early Intervention, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Hai Lee
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Yi Wu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Zich C, Ward NS, Forss N, Bestmann S, Quinn AJ, Karhunen E, Laaksonen K. Post-stroke changes in brain structure and function can both influence acute upper limb function and subsequent recovery. Neuroimage Clin 2025; 45:103754. [PMID: 39978147 PMCID: PMC11889610 DOI: 10.1016/j.nicl.2025.103754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Improving outcomes after stroke depends on understanding both the causes of initial function/impairment and the mechanisms of recovery. Recovery in patients with initially low function/high impairment is variable, suggesting the factors relating to initial function/impairment are different to the factors important for subsequent recovery. Here we aimed to determine the contribution of altered brain structure and function to initial severity and subsequent recovery of the upper limb post-stroke. The Nine-Hole Peg Test was recorded in week 1 and one-month post-stroke and used to divide 36 stroke patients (18 females, age: M = 66.56 years) into those with high/low initial function and high/low subsequent recovery. We determined differences in week 1 brain structure (Magnetic Resonance Imaging) and function (Magnetoencephalography, tactile stimulation) between high/low patients for both initial function and subsequent recovery. Lastly, we examined the relative contribution of changes in brain structure and function to recovery in patients with low levels of initial function. Low initial function and low subsequent recovery are related to lower sensorimotor β power and greater lesion-induced disconnection of contralateral [ipsilesional] white-matter motor projection connections. Moreover, differences in intra-hemispheric connectivity (structural and functional) are unique to initial motor function, while differences in inter-hemispheric connectivity (structural and functional) are unique to subsequent motor recovery. Function-related and recovery-related differences in brain function and structure after stroke are related, yet not identical. Separating out the factors that contribute to each process is key to identifying potential therapeutic targets for improving outcomes.
Collapse
Affiliation(s)
- Catharina Zich
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, United Kingdom; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom; Medical Research Council Brain Network Dynamics Unit, University of Oxford, United Kingdom.
| | - Nick S Ward
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, United Kingdom
| | - Nina Forss
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Neurocenter, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| | - Sven Bestmann
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, United Kingdom; Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, United Kingdom
| | - Andrew J Quinn
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Eeva Karhunen
- Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| | - Kristina Laaksonen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Formica C, De Salvo S, Muscarà N, Bonanno L, Arcadi FA, Lo Buono V, Acri G, Quartarone A, Marino S. Applications of Near Infrared Spectroscopy and Mirror Therapy for Upper Limb Rehabilitation in Post-Stroke Patients: A Brain Plasticity Pilot Study. J Clin Med 2024; 13:6612. [PMID: 39518751 PMCID: PMC11547098 DOI: 10.3390/jcm13216612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Objectives: The aim of this study was to identify the neural pattern activation during mirror therapy (MT) and explore any cortical reorganization and reducing asymmetry of hemispheric activity for upper limb rehabilitation in post-stroke patients. Methods: A box containing a mirror was placed between the arms of the patients to create the illusion of normal motion in the affected limb by reflecting the image of the unaffected limb in motion. We measured the cerebral hemodynamic response using near-infrared spectroscopy (NIRS). We enrolled ten right-handed stroke patients. They observed healthy hand movements in the mirror (MT condition) while performing various tasks (MT condition), and then repeated the same tasks with the mirror covered (N-MT condition). Results: Significant activation of some brain areas was observed in the right and left hemiparesis groups for the MT condition, while lower levels of activation were observed for the N-MT condition. The results showed significant differences in hemodynamic response based on oxygenated (HbO) concentrations between MT and N-MT conditions across all tasks in sensorimotor areas. These neural circuits were activated despite the motor areas being affected by the brain injury, indicating that the reflection of movement in the mirror helped to activate them. Conclusions: These results suggest that MT promotes cortical activations of sensory motor areas in affected and non-affected brain sides in subacute post-stroke patients, and it encourages the use of these tools in clinical practice.
Collapse
Affiliation(s)
- Caterina Formica
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (C.F.); (N.M.); (L.B.); (F.A.A.); (V.L.B.); (A.Q.); (S.M.)
| | - Simona De Salvo
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (C.F.); (N.M.); (L.B.); (F.A.A.); (V.L.B.); (A.Q.); (S.M.)
| | - Nunzio Muscarà
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (C.F.); (N.M.); (L.B.); (F.A.A.); (V.L.B.); (A.Q.); (S.M.)
| | - Lilla Bonanno
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (C.F.); (N.M.); (L.B.); (F.A.A.); (V.L.B.); (A.Q.); (S.M.)
| | - Francesca Antonia Arcadi
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (C.F.); (N.M.); (L.B.); (F.A.A.); (V.L.B.); (A.Q.); (S.M.)
| | - Viviana Lo Buono
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (C.F.); (N.M.); (L.B.); (F.A.A.); (V.L.B.); (A.Q.); (S.M.)
| | - Giuseppe Acri
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali, Università degli Studi di Messina, c/o A.O.U. Policlinico ‘G. Martino’ Via Consolare Valeria 1, 98125 Messina, Italy;
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (C.F.); (N.M.); (L.B.); (F.A.A.); (V.L.B.); (A.Q.); (S.M.)
| | - Silvia Marino
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (C.F.); (N.M.); (L.B.); (F.A.A.); (V.L.B.); (A.Q.); (S.M.)
| |
Collapse
|
4
|
Yuan R, Wei X, Ye Y, Wang M, Jiang J, Li K, Zhu W, Zheng W, Wu C. The effects of the mirror therapy on shoulder function in patients with breast cancer following surgery: a randomized controlled trial. J Cancer Surviv 2024; 18:1574-1589. [PMID: 37329478 DOI: 10.1007/s11764-023-01398-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/01/2023] [Indexed: 06/19/2023]
Abstract
PURPOSE Shoulder dysfunction is one of the most bothersome questions for breast cancer survivors. Studies show that mirror therapy can improve shoulder function in patients with a limited shoulder range of motion and shoulder pain. Here, this article reports the results of a randomized controlled trial investigating the effects of the mirror therapy on shoulder function in patients with breast cancer following surgical treatments. METHODS Totally, 79 participants were divided to two groups receiving active range-of-motion upper limb exercise based on the mirror therapy or active range-of-motion upper limb exercise respectively for 8 weeks. Shoulder range of motion, Constant-Murley Score, Disabilities of Arm, Shoulder, and Hand Questionnaire, Tampa Scale of Kinesiophobia, Visual analog scale, and grip strength were measured at baseline (T0), 2 weeks (T1), 4 weeks (T2), and 8 weeks (T3). The effects of the intervention on shoulder function were analyzed in generalized estimation equation, from group, time, and the interactions between group and time based on the data from participants who completed at least one post-baseline observation RESULTS: At least one post-baseline observation was performed by 69 participants (n=34 mirror group, n=35 control group). 28(82.35%) participants in the mirror group adhered to the exercise compared to 30(85.71%) in the control group. Generalized estimation equation model showed group had main effects on forward flexion (Waldχ²=6.476, P=0.011), with the Cohen's d=0.54. The effects of the group on abduction, Constant-Murley Score, and Disabilities of Arm, Shoulder, and Hand Questionnaire were significant when fix the effects of the time. At 8 weeks, participants in the mirror group showed an improvement in abduction compared to the control group (P=0.005), the Cohen's d was 0.70. At 8 weeks, participants in the mirror group had a higher Constant-Murley Score than control group (P=0.009), with Cohen's effect size value of d=0.64. The mirror group showed a greater improvement on the Disability of Arm, Shoulder, and Hand Questionnaire than control group at 2 weeks, 4 weeks, and 8 weeks (P≤0.032), but with a weak effect size value of all (r≤0.32). Group had main effects on Tampa Scale of Kinesiophobia (Waldχ²=6.631, P=0.010), with the Cohen's effect size value of d=0.56. CONCLUSIONS Mirror therapy improved shoulder flexion, abduction, shoulder function in daily life, and arm function and symptom of the affected shoulder in patients with breast cancer following surgical treatment, while decreasing fear of movement/(re)injury. Mirror configuration needs to be improved in further research to increase its feasibility. IMPLICATIONS FOR CANCER SURVIVORS Breast cancer survivors can try mirror therapy as a practical and effective method in shoulder rehabilitation for a promotion on effects. TRIAL REGISTRATION ClinicalTrial.gov Identifier: ChiCTR2000033080.
Collapse
Affiliation(s)
- Ruzhen Yuan
- School of Nursing, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolin Wei
- Obstetrics And Gynecology Hospital, Fudan University, Shanghai, China
| | - Yi Ye
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingyue Wang
- Huadong Hospital Affiliated To Fudan University, Shanghai, China
| | - Jieting Jiang
- School of Nursing, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kunpeng Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Zheng
- Department of Galactophore, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Caiqin Wu
- School of Nursing, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
5
|
Muñoz-Gómez E, Aguilar-Rodríguez M, Mollà-Casanova S, Sempere-Rubio N, Inglés M, Serra-Añó P. A randomized controlled trial on the effectiveness of mirror therapy in improving strength, range of movement and muscle activity, in people with carpal tunnel syndrome. J Hand Ther 2024; 37:534-543. [PMID: 38458950 DOI: 10.1016/j.jht.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/07/2024] [Accepted: 02/09/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND There is little information on the potential effects of mirror therapy (MT) on motor recovery in individuals with Carpal Tunnel Syndrome (CTS). PURPOSE To compare the effectiveness of a MT protocol versus a therapeutic exercise (TE) protocol, in improving strength, range of motion (ROM), muscle activity, pain, and functionality in patients with CTS. STUDY DESIGN Randomized clinical trial. METHODS Thirty-nine participants with unilateral CTS were divided into two groups: (i) MT group (n = 20) that followed an exercise protocol applied to the unaffected hand reflected in a mirror, and (ii) TE group (n = 19) that followed the same exercise protocol using the unaffected hand but without a mirror. Strength, wrist ROM, muscle activity, pain and functionality, were assessed at baseline (T0), after treatment (T1) and one month after treatment (T2). RESULTS At T1, the MT group showed significantly higher wrist flexion-extension ROM compared to TE (p = 0.04, d = 0.8), maintained at T2 (p = 0.02, d = 0.8). No significant changes were observed in ulnar-radius deviation, pronosupination, or fatigue following either MT or TE (p > 0.05). MT exhibited enhanced handgrip strength at T1 (p = 0.001, d = 0.7), as well as an increase in the extensor carpi radialis (ECR) and flexor carpi radialis (FCR) maximum muscle activity (p = 0.04, d = 1.0; p = 0.03, d = 0.4). At T1, both groups decreased pain (p = 0.002, d = 1.1; p = 0.02, d = 0.7), and improved functionality (p < 0.001, d = 0.8; p = 0.01, d = 0.5) (MT and TE respectively). DISCUSSION MT led to enhancements in wrist flexion-extension movement, handgrip strength and functionality unlike TE. MT notably increased muscle activity, particularly in the ECR and FCR muscles. CONCLUSIONS MT is a favorable strategy to improve wrist flexion-extension ROM, handgrip strength, ECR and FCR muscle activity, and functionality in people with unilateral CTS.
Collapse
Affiliation(s)
- Elena Muñoz-Gómez
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Marta Aguilar-Rodríguez
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain.
| | - Sara Mollà-Casanova
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Nuria Sempere-Rubio
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Marta Inglés
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Pilar Serra-Añó
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| |
Collapse
|
6
|
Özdemir EC, Elhan AH, Küçükdeveci AA. Effects of mirror therapy in post-traumatic complex regional pain syndrome type-1: a randomized controlled study. J Rehabil Med 2024; 56:jrm40417. [PMID: 39318174 PMCID: PMC11439965 DOI: 10.2340/jrm.v56.40417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVE To investigate the effects of mirror therapy applied in addition to routine rehabilitation on clinical outcomes in post-traumatic complex regional pain syndrome type 1. DESIGN Single-blind randomized controlled trial. SUBJECTS Patients with trauma-induced complex regional pain syndrome type 1 of the hand receiving outpatient rehabilitation. METHODS Patients were randomized into mirror therapy and control groups. All patients received routine physical therapy and rehabilitation for 20 sessions (5 sessions/week, for 4 weeks). The mirror group received additional mirror therapy at each session. The primary outcome was pain intensity by numeric rating scale. Secondary outcomes were grip/pinch strength, hand/wrist circumference, dexterity, hand activities, and health-related quality of life. All assessments were performed before and immediately after the treatment, and 4 weeks later at follow-up. RESULTS Forty patients were enrolled, 20 in each group. Both groups revealed statistically significant improvements from therapy regarding pain, grip/pinch strength, wrist circumference, dexterity, and hand activities (p < 0.05). When groups were compared regarding the improvements in assessment parameters, no statistically significant difference was found between the 2 groups in any of the outcomes (p > 0.05). CONCLUSION Mirror therapy applied in addition to routine therapy in post-traumatic complex regional pain syndrome type 1 did not provide extra benefit to the improvement of pain, function, and other clinical outcomes.
Collapse
Affiliation(s)
- Elif Can Özdemir
- Gülhane Training and Research Hospital, Department of Physical Medicine and Rehabilitation, Ankara, Turkey.
| | - Atilla H Elhan
- Ankara University, Faculty of Medicine, Department of Biostatistics, Ankara, Turkey
| | - Ayşe A Küçükdeveci
- Ankara University, Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Ankara Turkey
| |
Collapse
|
7
|
Norris TA, Augenstein TE, Rodriguez KM, Claflin ES, Krishnan C. Shaping corticospinal pathways in virtual reality: effects of task complexity and sensory feedback during mirror therapy in neurologically intact individuals. J Neuroeng Rehabil 2024; 21:154. [PMID: 39232841 PMCID: PMC11373181 DOI: 10.1186/s12984-024-01454-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Restoration of limb function for individuals with unilateral weakness typically requires volitional muscle control, which is often not present for individuals with severe impairment. Mirror therapy-interventions using a mirror box to reflect the less-impaired limb onto the more-impaired limb-can facilitate corticospinal excitability, leading to enhanced recovery in severely impaired clinical populations. However, the mirror box applies limitations on mirror therapy, namely that all movements appear bilateral and are confined to a small area, impeding integration of complex activities and multisensory feedback (e.g., visuo-tactile stimulation). These limitations can be addressed with virtual reality, but the resulting effect on corticospinal excitability is unclear. OBJECTIVE Examine how virtual reality-based unilateral mirroring, complex activities during mirroring, and visuo-tactile stimulation prior to mirroring affect corticospinal excitability. MATERIALS AND METHODS Participants with no known neurological conditions (n = 17) donned a virtual reality system (NeuRRoVR) that displayed a first-person perspective of a virtual avatar that matched their motions. Transcranial magnetic stimulation-induced motor evoked potentials in the nondominant hand muscles were used to evaluate corticospinal excitability in four conditions: resting, mirroring, mirroring with prior visuo-tactile stimulation (mirroring + TACT), and control. During mirroring, the movements of each participant's dominant limb were reflected onto the nondominant limb of the virtual avatar, and the avatar's dominant limb was kept immobile (i.e., unilateral mirroring). The mirroring + TACT condition was the same as the mirroring condition, except that mirroring was preceded by visuo-tactile stimulation of the nondominant limb. During the control condition, unilateral mirroring was disabled. During all conditions, participants performed simple (flex/extend fingers) and complex (stack virtual blocks) activities. RESULTS We found that unilateral mirroring increased corticospinal excitability compared to no mirroring (p < 0.001), complex activities increased excitability compared to simple activities during mirroring (p < 0.001), and visuo-tactile stimulation prior to mirroring decreased excitability (p = 0.032). We also found that these features did not interact with each other. DISCUSSIONS The findings of this study shed light onto the neurological mechanisms of mirror therapy and demonstrate the unique ways in which virtual reality can augment mirror therapy. The findings have important implications for rehabilitation for design of virtual reality systems for clinical populations.
Collapse
Affiliation(s)
- Trevor A Norris
- Neuromuscular & Rehabilitation Robotics Laboratory (NeuRRo Lab), Michigan Medicine, University of Michigan, 325 E Eisenhower Parkway (Room 3013), Ann Arbor, MI, 48108, USA
| | - Thomas E Augenstein
- Neuromuscular & Rehabilitation Robotics Laboratory (NeuRRo Lab), Michigan Medicine, University of Michigan, 325 E Eisenhower Parkway (Room 3013), Ann Arbor, MI, 48108, USA
- Robotics Department, University of Michigan, Ann Arbor, MI, USA
- Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
| | - Kazandra M Rodriguez
- Neuromuscular & Rehabilitation Robotics Laboratory (NeuRRo Lab), Michigan Medicine, University of Michigan, 325 E Eisenhower Parkway (Room 3013), Ann Arbor, MI, 48108, USA
- Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
| | - Edward S Claflin
- Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
| | - Chandramouli Krishnan
- Neuromuscular & Rehabilitation Robotics Laboratory (NeuRRo Lab), Michigan Medicine, University of Michigan, 325 E Eisenhower Parkway (Room 3013), Ann Arbor, MI, 48108, USA.
- Robotics Department, University of Michigan, Ann Arbor, MI, USA.
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Physical Therapy, University of Michigan-Flint, Flint, MI, USA.
- Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Rizzo M, Petrini L, Del Percio C, Arendt-Nielsen L, Babiloni C. Neurophysiological Oscillatory Mechanisms Underlying the Effect of Mirror Visual Feedback-Induced Illusion of Hand Movements on Nociception and Cortical Activation. Brain Sci 2024; 14:696. [PMID: 39061436 PMCID: PMC11274372 DOI: 10.3390/brainsci14070696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Mirror Visual Feedback (MVF)-induced illusion of hand movements produces beneficial effects in patients with chronic pain. However, neurophysiological mechanisms underlying these effects are poorly known. In this preliminary study, we test the novel hypothesis that such an MVF-induced movement illusion may exert its effects by changing the activity in midline cortical areas associated with pain processing. Electrical stimuli with individually fixed intensity were applied to the left hand of healthy adults to produce painful and non-painful sensations during unilateral right-hand movements with such an MVF illusion and right and bilateral hand movements without MVF. During these events, electroencephalographic (EEG) activity was recorded from 64 scalp electrodes. Event-related desynchronization (ERD) of EEG alpha rhythms (8-12 Hz) indexed the neurophysiological oscillatory mechanisms inducing cortical activation. Compared to the painful sensations, the non-painful sensations were specifically characterized by (1) lower alpha ERD estimated in the cortical midline, angular gyrus, and lateral parietal regions during the experimental condition with MVF and (2) higher alpha ERD estimated in the lateral prefrontal and parietal regions during the control conditions without MVF. These preliminary results suggest that the MVF-induced movement illusion may affect nociception and neurophysiological oscillatory mechanisms, reducing the activation in cortical limbic and default mode regions.
Collapse
Affiliation(s)
- Marco Rizzo
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (M.R.); (L.P.); (L.A.-N.)
| | - Laura Petrini
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (M.R.); (L.P.); (L.A.-N.)
| | - Claudio Del Percio
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (M.R.); (L.P.); (L.A.-N.)
- Department of Medical Gastroenterology, Mech-Sense, Aalborg University Hospital, 9220 Aalborg, Denmark
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
- Hospital San Raffaele Cassino, 03043 Cassino, Italy
| |
Collapse
|
9
|
Wodu CO, Sweeney G, Slachetka M, Kerr A. Stroke Survivors' Interaction With Hand Rehabilitation Devices: Observational Study. JMIR BIOMEDICAL ENGINEERING 2024; 9:e54159. [PMID: 38922668 PMCID: PMC11237792 DOI: 10.2196/54159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/10/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The hand is crucial for carrying out activities of daily living as well as social interaction. Functional use of the upper limb is affected in up to 55% to 75% of stroke survivors 3 to 6 months after stroke. Rehabilitation can help restore function, and several rehabilitation devices have been designed to improve hand function. However, access to these devices is compromised in people with more severe loss of function. OBJECTIVE In this study, we aimed to observe stroke survivors with poor hand function interacting with a range of commonly used hand rehabilitation devices. METHODS Participants were engaged in an 8-week rehabilitation intervention at a technology-enriched rehabilitation gym. The participants spent 50-60 minutes of the 2-hour session in the upper limb section at least twice a week. Each participant communicated their rehabilitation goals, and an Action Research Arm Test (ARAT) was used to measure and categorize hand function as poor (scores of 0-9), moderate (scores of 10-56), or good (score of 57). Participants were observed during their interactions with 3 hand-based rehabilitation devices that focused on hand rehabilitation: the GripAble, NeuroBall, and Semi-Circular Peg Board. Observations of device interactions were recorded for each session. RESULTS A total of 29 participants were included in this study, of whom 10 (34%) had poor hand function, 17 (59%) had moderate hand function, and 2 (7%) had good hand function. There were no differences in the age and years after stroke among participants with poor hand function and those with moderate (P=.06 and P=.09, respectively) and good (P=.37 and P=.99, respectively) hand function. Regarding the ability of the 10 participants with poor hand function to interact with the 3 hand-based rehabilitation devices, 2 (20%) participants with an ARAT score greater than 0 were able to interact with the devices, whereas the other 8 (80%) who had an ARAT score of 0 could not. Their inability to interact with these devices was clinically examined, and the reason was determined to be a result of either the presence of (1) muscle tone or stiffness or (2) muscle weakness. CONCLUSIONS Not all stroke survivors with impairments in their hands can make use of currently available rehabilitation technologies. Those with an ARAT score of 0 cannot actively interact with hand rehabilitation devices, as they cannot carry out the hand movement necessary for such interaction. The design of devices for hand rehabilitation should consider the accessibility needs of those with poor hand function.
Collapse
Affiliation(s)
- Chioma Obinuchi Wodu
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
- Department of Biomedical Technology, University of Port Harcourt, Port Harcourt, Nigeria
| | - Gillian Sweeney
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Milena Slachetka
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Andrew Kerr
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
10
|
Tully TN, Thomson CJ, Clark GA, George JA. Validity and Impact of Methods for Collecting Training Data for Myoelectric Prosthetic Control Algorithms. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1974-1983. [PMID: 38739519 PMCID: PMC11197051 DOI: 10.1109/tnsre.2024.3400729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Intuitive regression control of prostheses relies on training algorithms to correlate biological recordings to motor intent. The quality of the training dataset is critical to run-time regression performance, but accurately labeling intended hand kinematics after hand amputation is challenging. In this study, we quantified the accuracy and precision of labeling hand kinematics using two common training paradigms: 1) mimic training, where participants mimic predetermined motions of a prosthesis, and 2) mirror training, where participants mirror their contralateral intact hand during synchronized bilateral movements. We first explored this question in healthy non-amputee individuals where the ground-truth kinematics could be readily determined using motion capture. Kinematic data showed that mimic training fails to account for biomechanical coupling and temporal changes in hand posture. Additionally, mirror training exhibited significantly higher accuracy and precision in labeling hand kinematics. These findings suggest that the mirror training approach generates a more faithful, albeit more complex, dataset. Accordingly, mirror training resulted in significantly better offline regression performance when using a large amount of training data and a non-linear neural network. Next, we explored these different training paradigms online, with a cohort of unilateral transradial amputees actively controlling a prosthesis in real-time to complete a functional task. Overall, we found that mirror training resulted in significantly faster task completion speeds and similar subjective workload. These results demonstrate that mirror training can potentially provide more dexterous control through the utilization of task-specific, user-selected training data. Consequently, these findings serve as a valuable guide for the next generation of myoelectric and neuroprostheses leveraging machine learning to provide more dexterous and intuitive control.
Collapse
|
11
|
Jo S, Jang H, Kim H, Song C. 360° immersive virtual reality-based mirror therapy for upper extremity function and satisfaction among stroke patients: a randomized controlled trial. Eur J Phys Rehabil Med 2024; 60:207-215. [PMID: 38483333 PMCID: PMC11114156 DOI: 10.23736/s1973-9087.24.08275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Stroke is a leading cause of long-term disability worldwide; therefore, an effective rehabilitation strategy is fundamental. Mirror therapy (MT) has been a popular approach for upper extremity rehabilitation, but it presents some limitations. Recent advancements in virtual reality (VR) technology have introduced immersive VR-based MT, potentially overcoming these limitations and enhancing rehabilitation outcomes. AIM This study aimed to evaluate the effectiveness of a novel 360° immersive virtual reality-based MT (360MT) in upper extremity rehabilitation for stroke patients, comparing it to traditional MT (TMT) and conventional physical therapy control group (CG). DESIGN A prospective, active control, assessor blinded, parallel groups, randomized controlled trial. POPULATION Forty-five participants with chronic stroke within six months of onset. METHODS The participants were randomly allocated to 360MT, TMT, or CG groups. Outcome measures included Fugl-Meyer Assessment for Upper Extremity (FMA-UE), Box and Block Test (BBT), and Manual Function Test (MFT). Additionally, patient experience and satisfaction in the groups of 360MT and TMT were assessed through questionnaires and interviews. RESULTS Results revealed that the 360MT group showed significantly greater improvements in FMA-UE, MFT and BBT compared to TMT (P<0.05) and CG (P<0.001) groups. Patient experience and satisfaction were more favorable in the 360MT group, with participants reporting higher engagement and motivation. CONCLUSIONS 360MT appears to be a promising approach for upper extremity rehabilitation in stroke patients, providing better outcomes and higher patient satisfaction. However, further research is needed to confirm these findings and strengthen the evidence base for 360MT in stroke rehabilitation. CLINICAL REHABILITATION IMPACT 360MT demonstrated notably enhanced upper extremity rehabilitation outcomes as well as better patient satisfaction among chronic stroke patients within six months of onset compared to traditional MT and conventional physical therapy. This novel approach not only fostered functional improvements but also elevated levels of engagement and motivation among participants, suggesting a promising future application in stroke rehabilitation framework.
Collapse
Affiliation(s)
- Sungbae Jo
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Hoon Jang
- Department of Physical Therapy, Graduate School of Sahmyook University, Seoul, South Korea
| | - Hyunjin Kim
- Department of Rehabilitation Medicine, Hanyang University Guri Hospital, Gyeonggi-do, South Korea
| | - Changho Song
- Department of Physical Therapy, College of Health Science, Sahmyook University, Seoul, South Korea -
| |
Collapse
|
12
|
Martín Pérez SE, Rodríguez JD, Kalitovics A, de Miguel Rodríguez P, Bortolussi Cegarra DS, Rodríguez Villanueva I, García Molina Á, Ruiz Rodríguez I, Montaño Ocaña J, Martín Pérez IM, Sosa Reina MD, Villafañe JH, Alonso Pérez JL. Effect of Mirror Therapy on Post-Needling Pain Following Deep Dry Needling of Myofascial Trigger Point in Lateral Elbow Pain: Prospective Controlled Pilot Trial. J Clin Med 2024; 13:1490. [PMID: 38592311 PMCID: PMC10934708 DOI: 10.3390/jcm13051490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024] Open
Abstract
Background: This prospective randomized, controlled pilot trial to explore the immediate effect of adding Mirror Visual Feedback Therapy on pain sensitivity and motor performance among subjects suffering from post-needling pain diagnosed as Lateral Elbow Pain. Methods: A total of 49 participants (23 female, 26 male) were enrolled and randomly allocated to either the experimental group, which received Deep Dry Needling in the m. Brachioradialis, Ischemic Compression, Cold Spray, Stretching, and Mirror Visual Feedback Therapy (n = 25), or a control group without Mirror Visual Feedback Therapy (n = 24). Pre- and post-treatment evaluations included assessments of post-needling pain intensity, pressure pain threshold, two-point discrimination threshold, and maximum hand grip strength. Results: Intergroup analysis revealed a statistically significant reduction in post-needling pain intensity favoring the experimental group (U = 188.00, p = 0.034). Additionally, intragroup analysis showed significant improvements in post-needling pain intensity (MD = 0.400, SEM = 0.271, W = 137.00, p = 0.047) and pressure pain threshold (MD = 0.148 Kg/cm2, SEM = 0.038, W = 262.00, p < 0.001) within the experimental group following the intervention. Conclusions: These findings suggest a potential benefit of integrating Mirror Visual Feedback Therapy into treatment protocols for individuals with Lateral Elbow Pain experiencing post-needling discomfort. Further research is necessary to fully elucidate the clinical implications of these findings.
Collapse
Affiliation(s)
- Sebastián Eustaquio Martín Pérez
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain; (J.D.R.); (A.K.); (P.d.M.R.); (J.L.A.P.)
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
- Departamento de Medicina Física y Farmacología, Área de Radiología y Medicina Física, Facultad de Ciencias de la Salud, Universidad de la Laguna, 38200 Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain
| | - Jhoselyn Delgado Rodríguez
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain; (J.D.R.); (A.K.); (P.d.M.R.); (J.L.A.P.)
| | - Alejandro Kalitovics
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain; (J.D.R.); (A.K.); (P.d.M.R.); (J.L.A.P.)
| | - Pablo de Miguel Rodríguez
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain; (J.D.R.); (A.K.); (P.d.M.R.); (J.L.A.P.)
| | - Daniela Sabrina Bortolussi Cegarra
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
| | - Iremar Rodríguez Villanueva
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
| | - Álvaro García Molina
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
| | - Iván Ruiz Rodríguez
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
| | - Juan Montaño Ocaña
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
| | - Isidro Miguel Martín Pérez
- Departamento de Medicina Física y Farmacología, Área de Radiología y Medicina Física, Facultad de Ciencias de la Salud, Universidad de la Laguna, 38200 Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain
| | - María Dolores Sosa Reina
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Jorge Hugo Villafañe
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - José Luis Alonso Pérez
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain; (J.D.R.); (A.K.); (P.d.M.R.); (J.L.A.P.)
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| |
Collapse
|
13
|
Okamura R, Nakashima A, Moriuchi T, Fujiwara K, Ohno K, Higashi T, Tomori K. Effects of a virtual reality-based mirror therapy system on upper extremity rehabilitation after stroke: a systematic review and meta-analysis of randomized controlled trials. Front Neurol 2024; 14:1298291. [PMID: 38259644 PMCID: PMC10800725 DOI: 10.3389/fneur.2023.1298291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Virtual reality-based mirror therapy (VRMT) has recently attracted attention as a novel and promising approach for treating upper extremity dysfunction in patients with stroke. However, the clinical efficacy of VRMT has not been investigated. Methods This study aimed to conduct a meta-analysis to evaluate the effects of VRMT on upper extremity dysfunction in patients with stroke. We screened articles published between January 2010 and July 2022 in PubMed, Scopus, MEDLINE, and Cochrane Central Register of Controlled Trials. Our inclusion criteria focused on randomized controlled trials (RCTs) comparing VRMT groups with control groups (e.g., conventional mirror therapy, occupational therapy, physical therapy, or sham therapy). The outcome measures included the Fugl-Meyer assessment upper extremity test (FMA-UE), the box and block test (BBT), and the manual function test (MFT). Risk of bias was assessed using the Cochrane Collaboration risk-of-bias tool 2.0. We calculated the standardized mean differences (SMD) and 95% confidence intervals (95% CI). The experimental protocol was registered in the PROSPERO database (CRD42022345756). Results This study included five RCTs with 148 stroke patients. The meta-analysis showed statistical differences in the results of FMA-UE [SMD = 0.81, 95% CI (0.52, 1.10), p < 0.001], BBT [SMD = 0.48, 95% CI (0.16, 0.80), p = 0.003], and MFT [SMD = 0.72, 95% CI (0.05, 1.40), p = 0.04] between the VRMT and the control groups. Discussion VRMT may play a beneficial role in improving upper extremity dysfunction after stroke, especially when combined with conventional rehabilitation. However, there were differences in the type of VRMT, stage of disease, and severity of upper extremity dysfunction. Multiple reports of high-quality RCTs are needed to clarify the effects of VRMT. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022345756.
Collapse
Affiliation(s)
- Ryohei Okamura
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Akira Nakashima
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takefumi Moriuchi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kengo Fujiwara
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kanta Ohno
- Major of Occupational Therapy, Department of Rehabilitation, School of Health Science, Tokyo University of Technology, Tokyo, Japan
| | - Toshio Higashi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kounosuke Tomori
- Major of Occupational Therapy, Department of Rehabilitation, School of Health Science, Tokyo University of Technology, Tokyo, Japan
| |
Collapse
|
14
|
Oh ZH, Liu CH, Hsu CW, Liou TH, Escorpizo R, Chen HC. Mirror therapy combined with neuromuscular electrical stimulation for poststroke lower extremity motor function recovery: a systematic review and meta-analysis. Sci Rep 2023; 13:20018. [PMID: 37973838 PMCID: PMC10654913 DOI: 10.1038/s41598-023-47272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 11/11/2023] [Indexed: 11/19/2023] Open
Abstract
The combination of mirror therapy (MT) and neuromuscular electrical stimulation (NMES) has been devised as an intervention method in stroke rehabilitation; however, few studies have investigated its efficacy in lower extremity motor function recovery. In this systematic review and meta-analysis, we examined the effectiveness of combined MT and NMES therapy in improving poststroke walking speed, spasticity, balance and other gait parameters. Randomized controlled trials (RCTs) were selected from PubMed, Cochrane Library, EMBASE, and Scopus databases. In total, six RCTs which involving 181 participants were included. Our findings indicate that MT combined with NMES elicits greater improvement relative to control group in walking speed (SMD = 0.67, 95% confidence interval [CI] 0.26-1.07, P = 0.001), Berg Balance Scale (SMD = 0.72; 95% CI 0.31-1.13; P = 0.0007), cadence (SMD = 0.59, 95% CI 0.02-1.16, P = 0.04), step length (SMD = 0.94, 95% CI 0.35-1.53, P = 0.002), and stride length (SMD = 0.95, 95% CI 0.36-1.54, P = 0.002) but not in modified Ashworth scale (SMD = - 0.40, 95% CI - 1.05 to 0.26, P = 0.23). Our findings suggest that MT combined with NMES may be a suitable supplemental intervention to conventional therapy in stroke survivors.
Collapse
Affiliation(s)
- Zhen-Han Oh
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chia-Hung Liu
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Wei Hsu
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, No. 291 Zhongzheng Road, Zhonghe District 235, New Taipei City, Taiwan
| | - Tsan-Hon Liou
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, No. 291 Zhongzheng Road, Zhonghe District 235, New Taipei City, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Reuben Escorpizo
- Department of Rehabilitation and Movement Science, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, USA
- Swiss Paraplegic Research, Nottwil, Switzerland
| | - Hung-Chou Chen
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, No. 291 Zhongzheng Road, Zhonghe District 235, New Taipei City, Taiwan.
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Center for Evidence-Based Health Care, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
15
|
Álvarez de la Campa Crespo M, Donegan T, Amestoy-Alonso B, Just A, Combalía A, Sanchez-Vives MV. Virtual embodiment for improving range of motion in patients with movement-related shoulder pain: an experimental study. J Orthop Surg Res 2023; 18:729. [PMID: 37752613 PMCID: PMC10523655 DOI: 10.1186/s13018-023-04158-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Recent evidence supports the use of immersive virtual reality (VR) as a means of delivering bodily illusions that may have therapeutic potential for the treatment of musculoskeletal conditions. We wanted to investigate whether a single session of an embodiment-based immersive VR training program influences pain-free range of motion in patients with shoulder pain. METHODS We designed a rehabilitation program based on developing ownership over a virtual body and then "exercising" the upper limb in immersive VR, while the real arm remains static. We then carried out a single-arm pre-post experiment in which 21 patients with movement-related musculoskeletal shoulder pain were exposed to the 15-min VR program and measured their active pain-free range of motion immediately before and afterwards. RESULTS We found that shoulder abduction and hand-behind-back movements, but not shoulder flexion, were significantly and clinically improved post-intervention and that the level of improvement correlated with the level of embodiment. Following this one session, at 1-week follow-up the improvements were not maintained. CONCLUSIONS Virtual embodiment may be a useful therapeutic tool to help improve range of motion in patients with movement-related shoulder pain in the short term, which in turn could expedite rehabilitation and recovery in these conditions.
Collapse
Affiliation(s)
| | - Tony Donegan
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosellón, 149, 08036, Barcelona, Spain
| | - Beñat Amestoy-Alonso
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosellón, 149, 08036, Barcelona, Spain
| | - Andrea Just
- Servicio de Rehabilitación y Fisioterapia, Quironsalud Barcelona, Plaça d'Alfonso Comín, 5, 08023, Barcelona, Spain
- Fundación Garcia Cugat, Quironsalud Barcelona, Plaça d'Alfonso Comín, 5, 08023, Barcelona, Spain
| | - Andrés Combalía
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosellón, 149, 08036, Barcelona, Spain
- Departament de Cirurgia i Especialitats Medicoquirúrgiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova, 143, 08036, Barcelona, Spain
- Servei de Cirurgia Ortopèdica i Traumatologia, Hospital Clínic de Barcelona, Universitat de Barcelona, Villarroel, 170, 08036, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova, 143, Barcelona, Spain
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosellón, 149, 08036, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain.
| |
Collapse
|
16
|
Chang WK, Lim H, Park SH, Lim C, Paik NJ, Kim WS, Ku J. Effect of immersive virtual mirror visual feedback on Mu suppression and coherence in motor and parietal cortex in stroke. Sci Rep 2023; 13:12514. [PMID: 37532803 PMCID: PMC10397282 DOI: 10.1038/s41598-023-38749-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
We investigated the activation pattern of the motor cortex (M1) and parietal cortex during immersive virtual reality (VR)-based mirror visual feedback (MVF) of the upper limb in 14 patients with chronic stroke and severe upper limb hemiparesis and in 21 healthy controls. Participants performed wrist extension with unaffected wrists (dominant side in controls). In the MVF condition, movement of the affected hand was synchronized with that of the unaffected hand. In the no-MVF condition, only the movement of unaffected hand was shown. Mu suppression in bilateral M1 and parietal cortex and mu coherence were analyzed. In patients with stroke, MVF induced significant mu suppression in both the ipsilesional M1 and parietal lobes (p = 0.006 and p = 0.009, respectively), while mu suppression was observed in the bilateral M1 (p = 0.003 for ipsilesional and p = 0.041 for contralesional M1, respectively) and contralesional parietal lobes in the controls (p = 0.036). The ipsilesional mu coherence between the M1 and parietal cortex in patients with stroke was stronger than controls, regardless of MVF condition (p < 0.001), while mu coherence between interhemispheric M1 cortices was significantly weaker in patients with stroke (p = 0.032). Our findings provide evidence of the neural mechanism of MVF using immersive VR in patients with stroke.
Collapse
Affiliation(s)
- Won Kee Chang
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyunmi Lim
- Department of Biomedical Engineering, College of Medicine, Keimyung University, 1095, Dalgubeol-daero, Dalseo-gu, Daegu, Republic of Korea
| | - Seo Hyun Park
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Chaiyoung Lim
- Bundang Rusk Rehabilitation Speciality Hospital, Seongnam, Republic of Korea
| | - Nam-Jong Paik
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Won-Seok Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | - Jeonghun Ku
- Department of Biomedical Engineering, College of Medicine, Keimyung University, 1095, Dalgubeol-daero, Dalseo-gu, Daegu, Republic of Korea.
- Department of Biomedical Engineering, School of Medicine, Keimyung University, Daegu, Republic of Korea.
| |
Collapse
|
17
|
Mollà-Casanova S, Muñoz-Gómez E, Sempere-Rubio N, Inglés M, Aguilar-Rodríguez M, Page Á, López-Pascual J, Serra-Añó P. Effect of virtual running with exercise on functionality in pre-frail and frail elderly people: randomized clinical trial. Aging Clin Exp Res 2023:10.1007/s40520-023-02414-x. [PMID: 37188994 DOI: 10.1007/s40520-023-02414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Virtual mirror therapies could increase the results of exercise, since the mirror neuron system produces an activation of motor execution cortical areas by observing actions performed by others. In this way, pre-frail and frail people could use this system to reach an exercise capacity threshold and obtain health benefits. AIM The aim of this study is to evaluate the effects of a virtual running (VR) treatment combined with specific physical gait exercise (PE) compared to placebo VR treatment combined with PE on functionality, pain, and muscular tone in pre-frail and frail older persons. METHODS A single blinded, two-arm, randomised controlled trial design was employed. Thirty-eight participants were divided into two intervention arms: Experimental Intervention (EI) group, in which VR and gait-specific physical exercises were administered and Control Intervention (CI) group, in which a placebo virtual gait and the same exercise programme was administered. Functionality, pain, and tone were assessed. RESULTS EI group improved in aerobic capacity, functional lower-limb strength, reaction time, and pain, while CI group remained the same. Regarding static balance and muscle tone, no differences were found for either group. Further analysis is needed to asses VR effectiveness for improving gait, stand-up and sit-down performance and velocity. CONCLUSIONS Virtual running therapy appears to enhance capacities related with voluntary movements (i.e., aerobic capacity, functional lower-limb strength, and reaction time) and reduce pain.
Collapse
Affiliation(s)
- Sara Mollà-Casanova
- UBIC Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Gascó Oliag, 5, Valencia, Spain
| | - Elena Muñoz-Gómez
- UBIC Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Gascó Oliag, 5, Valencia, Spain
| | - Núria Sempere-Rubio
- UBIC Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Gascó Oliag, 5, Valencia, Spain.
| | - Marta Inglés
- UBIC Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Gascó Oliag, 5, Valencia, Spain
| | - Marta Aguilar-Rodríguez
- UBIC Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Gascó Oliag, 5, Valencia, Spain
| | - Álvaro Page
- Instituto Universitario de Ingeniería Mecánica y Biomecánica, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Juan López-Pascual
- Instituto de Biomecánica de Valencia, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Pilar Serra-Añó
- UBIC Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Gascó Oliag, 5, Valencia, Spain
| |
Collapse
|
18
|
Iwanami J, Mutai H, Sagari A, Sato M, Kobayashi M. Relationship between Corticospinal Excitability While Gazing at the Mirror and Motor Imagery Ability. Brain Sci 2023; 13:brainsci13030463. [PMID: 36979273 PMCID: PMC10046091 DOI: 10.3390/brainsci13030463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Mirror therapy (MT) helps stroke survivors recover motor function. Previous studies have reported that an individual's motor imagery ability is related to the areas of brain activity during motor imagery and the effectiveness of motor imagery training. However, the relationship between MT and motor imagery ability and between corticospinal tract excitability during mirror gazing, an important component of MT, and motor imagery ability is unclear. This study determined whether the motor-evoked potential (MEP) amplitude while gazing at the mirror relates to participants' motor imagery abilities. Twenty-four healthy right-handed adults (seven males) were recruited. Transcranial magnetic stimulation was performed while gazing at the mirror, and MEP of the first dorsal interosseous muscle of the right hand were measured. Motor imagery ability was measured using the Kinesthetic and Visual Imagery Questionnaire (KVIQ), which assesses the vividness of motor imagery ability. Additionally, a mental chronometry (MC) task was used to assess time aspects. The results showed a significant moderate correlation between changes in MEP amplitude values while gazing at the mirror, as compared with resting conditions, and assessment scores of KVIQ. This study shows that corticospinal excitability because of mirror gazing may be related to the vividness of motor imagery ability.
Collapse
Affiliation(s)
- Jun Iwanami
- Division of Occupational Therapy, School of Health Science, Faculty of Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Hitoshi Mutai
- Division of Occupational Therapy, School of Health Science, Faculty of Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Akira Sagari
- Division of Occupational Therapy, School of Health Science, Faculty of Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Masaaki Sato
- Division of Occupational Therapy, School of Health Science, Faculty of Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Masayoshi Kobayashi
- Division of Occupational Therapy, School of Health Science, Faculty of Medicine, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
19
|
Türkmen C, Konca M, Yetim B. Prioritization of neurologic rehabilitation interventions by ELECTRE-III analysis in subacute stroke patients. Acta Neurol Belg 2023; 123:181-189. [PMID: 35639258 DOI: 10.1007/s13760-022-01982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Elimination and Choice Translating Reality (ELECTRE) III is a commonly used multicriteria decision-making (MCDM) method when alternatives are being prioritized in health sciences. The selection of the rehabilitation approach is the key factor to improve the upper extremity functions of stroke patients. Thus, choosing a reasonably good treatment approach will directly reduce the patient's cost to the government and caregivers, while also improving quality of life. The aim of our study was to prioritize the six different methods used in the rehabilitation of stroke patients with mild or moderate upper extremity dysfunction, using one of the MCDM methods based on experts' opinions. METHODS A three-stage face-to-face interview across Turkey, based on the ELECTRE-III method, was conducted with 18 physiotherapists specializing in the rehabilitation of mild or moderate stroke-induced upper extremity disorders. RESULTS According to ELECTRE-III, Circuit Class Therapy (CCT) is the best choice for treating upper extremity functional loss in general. It is also the best alternative in both the ascending and descending distillation processes of ELECTRE-III. On the other hand, Bobath neurodevelopmental treatment (NDT) has a similar success level according to ascending distillation. Mirror therapy and constraint-induced movement therapy are the third-best methods in the analysis. However, robotic rehabilitation is the least preferable treatment method according to the experts' judgments. CONCLUSIONS The results showed that rehabilitation interventions such as Bobath-NDT and proprioceptive neuromuscular facilitation, which are frequently used in developing countries, are still useful, and CCT is the most appropriate intervention for the transition from conventional methods to innovative models in these countries.
Collapse
Affiliation(s)
- Ceyhun Türkmen
- Faculty of Health Sciences, Çankırı Karatekin University, 18200 Sıhhiye st, Çankırı, Turkey.
| | - Murat Konca
- Faculty of Health Sciences, Çankırı Karatekin University, 18200 Sıhhiye st, Çankırı, Turkey
| | - Birol Yetim
- Faculty of Economics and Administrative Sciences, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| |
Collapse
|
20
|
Kim H, Kim J, Jo S, Lee K, Kim J, Song C. Video augmented mirror therapy for upper extremity rehabilitation after stroke: a randomized controlled trial. J Neurol 2023; 270:831-842. [PMID: 36210358 DOI: 10.1007/s00415-022-11410-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate the effects of mirror therapy using a newly developed video augmented wearable reflection device on reach-to-grasp motor control and upper extremity motor function. METHODS Participants were randomly allocated to one of three groups: mirror therapy using a video augmented wearable reflection device group (MTVADG), n = 12; traditional mirror therapy group (TMTG), n = 12; and control group (CG), n = 12. Participants in the MTVADG and TMTG received conventional rehabilitation in addition to mirror therapy. Motor control during the reach-to-grasp movement was assessed using kinematic analysis. Each participant's upper extremity motor function was assessed using the Fugl-Meyer Assessment, Manual Function Test, and Box and Block Test. RESULTS While both the MTVADG and TMTG showed significantly improved reach-to-grasp movement. The MTVADG showed greater efficiency in kinematic performance than the TMTG. Moreover, while both the MTVADG and TMTG showed improved upper extremity motor function, the MTVADG showed significantly greater improvement in proximal upper limb function compared to the TMTG. CONCLUSION Our results suggested that mirror therapy using a video augmented wearable reflection device is more efficient compared to traditional mirror therapy for patients with stroke. CLINICAL TRIAL REGISTRATION UNIQUE IDENTIFIER KCT0003047.
Collapse
Affiliation(s)
- Hyunjin Kim
- Department of Physical Therapy, Graduate School of Sahmyook University, Seoul, 01795, Republic of Korea
| | - Junghyun Kim
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Sungbae Jo
- Department of Physical Therapy, Graduate School of Sahmyook University, Seoul, 01795, Republic of Korea
| | - Kyeongjin Lee
- Department of Physical Therapy, College of Health Science, Kyungdong University, Wonju-si, Gangwon-Do, 26495, Republic of Korea
| | - Junesun Kim
- Department of Physical Therapy, College of Health Science, Korea University, 145, Anam-Ro, Sungbuk-Gu, Seoul, 02841, Republic of Korea.
- Department of Health Science, Rehabilitation Science Program, Korea University Graduate School, Seoul, 02841, Republic of Korea.
- BK21FOUR Program in Learning Health Systems Korea University, Seoul, 02841, Republic of Korea.
| | - Changho Song
- Department of Physical Therapy, College of Health Science, Sahmyook University, 815, Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea.
| |
Collapse
|
21
|
de Freitas Zanona A, Romeiro da Silva AC, Baltar do Rego Maciel A, Shirahige Gomes do Nascimento L, Bezerra da Silva A, Piscitelli D, Monte-Silva K. Sensory and motor cortical excitability changes induced by rTMS and sensory stimulation in stroke: A randomized clinical trial. Front Neurosci 2023; 16:985754. [PMID: 36760794 PMCID: PMC9907709 DOI: 10.3389/fnins.2022.985754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Background The ability to produce coordinated movement is dependent on dynamic interactions through transcallosal fibers between the two cerebral hemispheres of the brain. Although typically unilateral, stroke induces changes in functional and effective connectivity across hemispheres, which are related to sensorimotor impairment and stroke recovery. Previous studies have focused almost exclusively on interhemispheric interactions in the primary motor cortex (M1). Objective To identify the presence of interhemispheric asymmetry (ASY) of somatosensory cortex (S1) excitability and to investigate whether S1 repetitive transcranial magnetic stimulation (rTMS) combined with sensory stimulation (SS) changes excitability in S1 and M1, as well as S1 ASY, in individuals with subacute stroke. Methods A randomized clinical trial. Participants with a single episode of stroke, in the subacute phase, between 35 and 75 years old, were allocated, randomly and equally balanced, to four groups: rTMS/sham SS, sham rTMS/SS, rTMS/SS, and sham rTMS/Sham SS. Participants underwent 10 sessions of S1 rTMS of the lesioned hemisphere (10 Hz, 1,500 pulses) followed by SS. SS was applied to the paretic upper limb (UL) (active SS) or non-paretic UL (sham SS). TMS-induced motor evoked potentials (MEPs) of the paretic UL and somatosensory evoked potential (SSEP) of both ULs assessed M1 and S1 cortical excitability, respectively. The S1 ASY index was measured before and after intervention. Evaluator, participants and the statistician were blinded. Results Thirty-six participants divided equally into groups (nine participants per group). Seven patients were excluded from MEP analysis because of failure to produce consistent MEP. One participant was excluded in the SSEP analysis because no SSEP was detected. All somatosensory stimulation groups had decreased S1 ASY except for the sham rTMS/Sham SS group. When compared with baseline, M1 excitability increased only in the rTMS/SS group. Conclusion S1 rTMS and SS alone or in combination changed S1 excitability and decreased ASY, but it was only their combination that increased M1 excitability. Clinical trial registration clinicaltrials.gov, identifier (NCT03329807).
Collapse
Affiliation(s)
- Aristela de Freitas Zanona
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil,Occupational Therapy Department and Post-Graduate Program in Applied Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | | | - Adriana Baltar do Rego Maciel
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Amanda Bezerra da Silva
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Daniele Piscitelli
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy,Department of Kinesiology, University of Connecticut, Storrs, CT, United States,*Correspondence: Daniele Piscitelli, ,
| | - Katia Monte-Silva
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
22
|
Wen X, Li L, Li X, Zha H, Liu Z, Peng Y, Liu X, Liu H, Yang Q, Wang J. Therapeutic Role of Additional Mirror Therapy on the Recovery of Upper Extremity Motor Function after Stroke: A Single-Blind, Randomized Controlled Trial. Neural Plast 2022; 2022:8966920. [PMID: 36624743 PMCID: PMC9825233 DOI: 10.1155/2022/8966920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Rehabilitation of upper extremity hemiplegia after stroke remains a great clinical challenge, with only 20% of patients achieving a basic return to normal hand function. How to promote the recovery of motor function at an early stage is crucial to the life of the patient. OBJECTIVES To invest the effects of additional mirror therapy in improving upper limb motor function and activities of daily living in acute and subacute stroke patients, and further explore the effects of other factors on the efficacy of MT. METHODS Participants who presented with unilateral upper extremity paralysis due to a first ischemic or hemorrhagic stroke were included in the study. They were randomly allocated to the experimental or control group. Patients in the control group received occupational therapy for 30 minutes each session, six times a week, for three weeks, while patients in the experimental group received 30 minutes of additional mirror therapy based on occupational therapy. The primary outcome measures were Fugl-Meyer Assessment-upper extremity (FMA-UE), Action Research Arm Test (ARAT), and Instrumental Activity of Daily Living (IADL) which were evaluated by two independent occupational therapists before treatment and after 3-week treatment. A paired t-test was used to compare the values between pretreatment and posttreatment within an individual group. Two-sample t-test was utilized to compare the changes (baseline to postintervention) between the two groups. RESULTS A total of 52 stroke patients with unilateral upper extremity motor dysfunction who were able to actively cooperate with the training were included in this study. At baseline, no significant differences were found between groups regarding demographic and clinical characteristics (P > 0.05 for all). Upper limb motor function and ability to perform activities of daily living of the patients were statistically improved in both groups towards the third week (P < 0.05). In addition, statistical analyses showed more significant improvements in the score changes of FMA-UE and IADL in the experimental group compared to the control group after treatment (P < 0.05), but no significant difference was observed in the ARAT score changes between the two groups (P > 0.05). The subgroup analysis showed that no significant heterogeneity was observed in age, stroke type, lesion side, and clinical stage (P > 0.05). CONCLUSION In conclusion, some positive changes in aspects of upper limb motor function and the ability to perform instrumental activities of daily living compared with routine occupational therapy were observed in additional mirror therapy. Therefore, the application of additional mirror therapy training should be reconsidered to improve upper extremity motor in stroke patients.
Collapse
Affiliation(s)
- Xin Wen
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
- School of Rehabilitation Medicine Gannan Medical University, Ganzhou, Jiangxi, China
| | - Li Li
- Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Xuelian Li
- Department of Neurology Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Huanghong Zha
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Zicai Liu
- School of Rehabilitation Medicine Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yang Peng
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Xuejin Liu
- School of Rehabilitation Medicine Gannan Medical University, Ganzhou, Jiangxi, China
| | - Huiyu Liu
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Quan Yang
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Jing Wang
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| |
Collapse
|
23
|
Rizzo M, Petrini L, Del Percio C, Lopez S, Arendt‐Nielsen L, Babiloni C. Mirror visual feedback during unilateral finger movements is related to the desynchronization of cortical electroencephalographic somatomotor alpha rhythms. Psychophysiology 2022; 59:e14116. [PMID: 35657095 PMCID: PMC9788070 DOI: 10.1111/psyp.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 12/30/2022]
Abstract
Using a mirror adequately oriented, the motion of just one hand induces the illusion of the movement with the other hand. Here, we tested the hypothesis that such a mirror phenomenon may be underpinned by an electroencephalographic (EEG) event-related desynchronization/synchronization (ERD/ERS) of central alpha rhythms (around 10 Hz) as a neurophysiological measure of the interactions among cerebral cortex, basal ganglia, and thalamus during movement preparation and execution. Eighteen healthy right-handed male participants performed standard auditory-triggered unilateral (right) or bilateral finger movements in the No Mirror (M-) conditions. In the Mirror (M+) condition, the unilateral right finger movements were performed in front of a mirror oriented to induce the illusion of simultaneous left finger movements. EEG activity was recorded from 64 scalp electrodes, and the artifact-free event-related EEG epochs were used to compute alpha ERD. In the M- conditions, a bilateral prominent central alpha ERD was observed during the bilateral movements, while left central alpha ERD and right alpha ERS were seen during unilateral right movements. In contrast, the M+ condition showed significant bilateral and widespread alpha ERD during the unilateral right movements. These results suggest that the above illusion of the left movements may be related to alpha ERD measures reflecting excitatory desynchronizing signals in right lateral premotor and primary somatomotor areas possibly in relation to basal ganglia-thalamic loops.
Collapse
Affiliation(s)
- Marco Rizzo
- Center for Neuroplasticity and Pain (CNAP), SMIDepartment of Health Science and TechnologyAalborg UniversityAalborgDenmark
| | - Laura Petrini
- Center for Neuroplasticity and Pain (CNAP), SMIDepartment of Health Science and TechnologyAalborg UniversityAalborgDenmark
| | - Claudio Del Percio
- Department of Physiology and Pharmacology “V. Erspamer”Sapienza University of RomeRomeItaly
| | - Susanna Lopez
- Department of Physiology and Pharmacology “V. Erspamer”Sapienza University of RomeRomeItaly
| | - Lars Arendt‐Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMIDepartment of Health Science and TechnologyAalborg UniversityAalborgDenmark,Department of Medical Gastroenterology, Mech‐SenseAalborg University HospitalAalborgDenmark
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “V. Erspamer”Sapienza University of RomeRomeItaly
| |
Collapse
|
24
|
Immediate Effects of Fine-Motor Training on Coordination and Dexterity of the Non-Dominant Hand in Healthy Adults: A Randomized Controlled Trial. Behav Sci (Basel) 2022; 12:bs12110446. [PMID: 36421742 PMCID: PMC9687507 DOI: 10.3390/bs12110446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Several studies have demonstrated the beneficial effects of mirror training; however, only a few studies in Eastern countries have investigated fine-motor exercises using chopsticks, which have numerous advantages. We aimed to compare changes in coordination and dexterity of the non-dominant hand in healthy adults after conducting fine-motor training with the dominant hand using a mirror. We divided 100 healthy adults (age: 20−40 years) into experimental and control groups (each n = 50). The experimental group placed the non-dominant hand in a mirror box and indirectly imitated the fine-motor exercises conducted with the dominant hand using chopsticks. The control group performed the task with the non-dominant hand using chopsticks. We conducted the Chopsticks Manipulation Test and the Purdue Pegboard Test to assess the pre- and post-intervention coordination and dexterity of the non-dominant hand. Both groups showed a significant post-intervention improvement in coordination and dexterity (p < 0.01). There was no significant between-group difference in the functional improvement of coordination and dexterity (p > 0.05). Fine-motor training using mirrors and chopsticks significantly improved coordination and dexterity of the non-dominant hand. This training could be used to improve activity in brain regions associated with the non-dominant hand in healthy adults.
Collapse
|
25
|
Augenstein TE, Kortemeyer D, Glista L, Krishnan C. Enhancing Mirror Therapy via Scaling and Shared Control: A Novel Open-Source Virtual Reality Platform for Stroke Rehabilitation. VIRTUAL REALITY 2022; 26:525-538. [PMID: 35600315 PMCID: PMC9119151 DOI: 10.1007/s10055-021-00593-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/03/2021] [Indexed: 06/03/2023]
Abstract
Mirror therapy is increasingly used in stroke rehabilitation to improve functional movements of the affected limb. However, the extent of mirroring in conventional mirror therapy is typically fixed (1:1) and cannot be tailored based on the patient's impairment level. Further, the movements of the affected limb are not actively incorporated in the therapeutic process. To address these issues, we developed an immersive VR system using HTC Vive and Leap Motion, which communicates with our free and open-source software environment programmed using SteamVR and the Unity 3D gaming engine. The mirror therapy VR environment was incorporated with two novel features: (1) scalable mirroring and (2) shared control. In the scalable mirroring, mirror movements were programmed to be scalable between 0 and 1, where 0 represents no movements, 0.5 represents 50% mirroring, and 1 represents 100% mirroring. In shared control, the contribution of the mirroring limb to the movements was programmed to be scalable between 0 to 1, where 0 represents 100% contribution from the mirroring limb (i.e., no mirroring), 0.5 represents 50% of movements from the mirrored limb and 50% of movements from the mirroring limb, and 1 represents full mirroring (i.e., no shared movements). Validation experiments showed that these features worked appropriately. The proposed VR-based mirror therapy is the first fully developed system that is freely available to the rehabilitation science community. The scalable and shared control features can diversify mirror therapy and potentially augment the outcomes of rehabilitation, although this needs to be verified through future experiments.
Collapse
Affiliation(s)
- Thomas E. Augenstein
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
- Robotics Institute, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Kortemeyer
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
| | - Lawrence Glista
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Chandramouli Krishnan
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
- Robotics Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Tofani M, Santecchia L, Conte A, Berardi A, Galeoto G, Sogos C, Petrarca M, Panuccio F, Castelli E. Effects of Mirror Neurons-Based Rehabilitation Techniques in Hand Injuries: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5526. [PMID: 35564920 PMCID: PMC9104298 DOI: 10.3390/ijerph19095526] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023]
Abstract
Background: Hand trauma requires specific rehabilitation protocol depending on the different structures involved. According to type of surgical intervention, and for monitoring pain and edema, post-operative rehabilitation of a hand that has experienced trauma involves different timings for immobilization. Several protocols have been used to reduce immobilization time, and various techniques and methods are adopted, depending on the structures involved. Objective: To measure the effects of mirror neurons-based rehabilitation techniques in hand injuries throughout a systematic review and meta-analysis. Methods: The protocol was accepted in PROSPERO database. A literature search was conducted in Cinahl, Scopus, Medline, PEDro, OTseeker. Two authors independently identified eligible studies, based on predefined inclusion criteria, and extracted the data. RCT quality was assessed using the JADAD scale. Results: Seventy-nine suitable studies were screened, and only eleven were included for qualitative synthesis, while four studies were selected for quantitative analysis. Four studies were case reports/series, and seven were RCTs. Nine investigate the effect of Mirror Therapy and two the effect of Motor Imagery. Quantitative analyses revealed Mirror Therapy as effective for hand function recovery (mean difference = −14.80 95% Confidence Interval (CI) = −17.22, −12.38) (p < 0.00001) in the short term, as well as in long follow-up groups (mean difference = −13.11 95% Confidence Interval (CI) = −17.53, −8.69) (p < 0.00001). Clinical, but not statistical, efficacy was found for manual dexterity (p = 0.15), while no benefit was reported for range of motion. Conclusions: Mirror neurons-based rehabilitation techniques, combined with conventional occupational and physical therapy, can be a useful approach in hand trauma. Mirror therapy seems to be effective for hand function recovery, but, for motor imagery and action observation, there is not sufficient evidence to recommend its use. Further research on the efficacy of the mirror neurons-based technique in hand injury is recommended.
Collapse
Affiliation(s)
- Marco Tofani
- Professional Development, Continuous Education and Research Service, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.B.); (G.G.); (C.S.)
| | - Luigino Santecchia
- Orthopedic Unit, Department of Surgery, Bambino Gesù Children’s Hospital, 00100 Rome, Italy;
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.B.); (G.G.); (C.S.)
- Neuromed IRCCS, 86077 Pozzili, Italy
| | - Anna Berardi
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.B.); (G.G.); (C.S.)
| | - Giovanni Galeoto
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.B.); (G.G.); (C.S.)
- Neuromed IRCCS, 86077 Pozzili, Italy
| | - Carla Sogos
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.B.); (G.G.); (C.S.)
| | - Maurizio Petrarca
- Department of Intensive Neurorehabilitation and Robotics, Bambino Gesù Children’s Hospital, 00100 Rome, Italy; (M.P.); (E.C.)
| | | | - Enrico Castelli
- Department of Intensive Neurorehabilitation and Robotics, Bambino Gesù Children’s Hospital, 00100 Rome, Italy; (M.P.); (E.C.)
| |
Collapse
|
27
|
Lotze M, Moseley GL. Clinical and Neurophysiological Effects of Progressive Movement Imagery Training for Pathological Pain. THE JOURNAL OF PAIN 2022; 23:1480-1491. [PMID: 35504569 DOI: 10.1016/j.jpain.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 01/04/2023]
Abstract
Movement limitation is a common characteristic of chronic pain such that pain prevents the very movement and activity that is most likely to promote recovery. This is particularly the case for pathological pain states such as complex regional pain syndrome (CRPS). One clinical approach to CRPS that has growing evidence of efficacy involves progressive movement imagery training. Graded Motor Imagery (GMI) targets clinical and neurophysiological effects through a stepwise progression through implicit and explicit movement imagery training, mirror therapy and then functional tasks. Here we review experiences from over 20 years of clinical and research experience with GMI. We situate GMI in terms of its historical underpinnings, the benefits and outstanding challenges of its implementation, its potential application beyond CRPS. We then review the neuropathological targets of GMI and current thought on its effects on neurophysiological biomarkers. Perspective This article provides an overview of our experiences with graded motor imagery training over the last 20 years focussing on the treatment of CRPS. It does both cover the theoretical underpinnings for this treatment approach, biomarkers which indicate potential changes driven by GMI, and experiences for achieving optimal treatment results.
Collapse
Affiliation(s)
- Martin Lotze
- Functional Imaging Unit. Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany.
| | - G Lorimer Moseley
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, Australia
| |
Collapse
|
28
|
de Freitas Zanona A, Romeiro da Silva AC, do Rego Maciel AB, Gomes do Nascimento LS, Bezerra da Silva A, Bolognini N, Monte-Silva K. Somatosensory Cortex Repetitive Transcranial Magnetic Stimulation and Associative Sensory Stimulation of Peripheral Nerves Could Assist Motor and Sensory Recovery After Stroke. Front Hum Neurosci 2022; 16:860965. [PMID: 35479184 PMCID: PMC9036089 DOI: 10.3389/fnhum.2022.860965] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
Background We investigated whether transcranial magnetic stimulation (rTMS) over the primary somatosensory cortex (S1) and sensory stimulation (SS) could promote upper limb recovery in participants with subacute stroke. Methods Participants were randomized into four groups: rTMS/Sham SS, Sham rTMS/SS, rTMS/SS, and control group (Sham rTMS/Sham SS). Participants underwent ten sessions of sham or active rTMS over S1 (10 Hz, 1,500 pulses, 120% of resting motor threshold, 20 min), followed by sham or active SS. The SS involved active sensory training (exploring features of objects and graphesthesia, proprioception exercises), mirror therapy, and Transcutaneous electrical nerve stimulation (TENS) in the region of the median nerve in the wrist (stimulation intensity as the minimum intensity at which the participants reported paresthesia; five electrical pulses of 1 ms duration each at 10 Hz were delivered every second over 45 min). Sham stimulations occurred as follows: Sham rTMS, coil was held while disconnected from the stimulator, and rTMS noise was presented with computer loudspeakers with recorded sound from a real stimulation. The Sham SS received therapy in the unaffected upper limb, did not use the mirror and received TENS stimulation for only 60 seconds. The primary outcome was the Body Structure/Function: Fugl-Meyer Assessment (FMA) and Nottingham Sensory Assessment (NSA); the secondary outcome was the Activity/Participation domains, assessed with Box and Block Test, Motor Activity Log scale, Jebsen-Taylor Test, and Functional Independence Measure. Results Forty participants with stroke ischemic (n = 38) and hemorrhagic (n = 2), men (n = 19) and women (n = 21), in the subacute stage (10.6 ± 6 weeks) had a mean age of 62.2 ± 9.6 years, were equally divided into four groups (10 participants in each group). Significant somatosensory improvements were found in participants receiving active rTMS and active SS, compared with those in the control group (sham rTMS with sham SS). Motor function improved only in participants who received active rTMS, with greater effects when active rTMS was combined with active SS. Conclusion The combined use of SS with rTMS over S1 represents a more effective therapy for increasing sensory and motor recovery, as well as functional independence, in participants with subacute stroke. Clinical Trial Registration [clinicaltrials.gov], identifier [NCT03329807].
Collapse
Affiliation(s)
| | | | | | | | | | - Nadia Bolognini
- Department of Psychology, University of Milano Bicocca, Milan, Italy
- Neuropsychological Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Katia Monte-Silva
- Applied Neuroscience Laboratory, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
29
|
Hsieh YW, Lee MT, Chen CC, Hsu FL, Wu CY. Development and user experience of an innovative multi-mode stroke rehabilitation system for the arm and hand for patients with stroke. Sci Rep 2022; 12:1868. [PMID: 35115543 PMCID: PMC8813916 DOI: 10.1038/s41598-022-05314-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/11/2022] [Indexed: 12/04/2022] Open
Abstract
Many individuals with stroke experience upper-limb motor deficits, and a recent trend is to develop novel devices for enhancing their motor function. This study aimed to develop a new upper-limb rehabilitation system with the integration of two rehabilitation therapies into one system, digital mirror therapy (MT) and action observation therapy (AOT), and to test the usability of this system. In the part I study, the new system was designed to operate in multiple training modes of digital MT (i.e., unilateral and bilateral modes) and AOT (i.e., pre-recorded and self-recorded videos) with self-developed software. In the part II study, 4 certified occupational therapists and 10 stroke patients were recruited for evaluating usability. The System Usability Scale (SUS) (maximum score = 100) and a self-designed questionnaire (maximum score = 50) were used. The mean scores of the SUS were 79.38 and 80.00, and those of the self-designed questionnaire were 41.00 and 42.80, respectively, for the therapists and patients after using this system, which indicated good usability and user experiences. This novel upper-limb rehabilitation system with good usability might be further used to increase the delivery of two emerging rehabilitation therapies, digital AOT and MT, to individuals with stroke.
Collapse
Affiliation(s)
- Yu-Wei Hsieh
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 33302, Taiwan. .,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, 33305, Taiwan.
| | - Meng-Ta Lee
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 33302, Taiwan.
| | - Chih-Chi Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, 33305, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Fu-Lin Hsu
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 33302, Taiwan
| | - Ching-Yi Wu
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 33302, Taiwan.,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, 33305, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, 33302, Taiwan
| |
Collapse
|
30
|
Tai RY, Zhu JD, Chen CC, Hsieh YW, Cheng CH. Modulation of Functional Connectivity in Response to Mirror Visual Feedback in Stroke Survivors: An MEG Study. Brain Sci 2021; 11:brainsci11101284. [PMID: 34679347 PMCID: PMC8533793 DOI: 10.3390/brainsci11101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 11/21/2022] Open
Abstract
Background. Several brain regions are activated in response to mirror visual feedback (MVF). However, less is known about how these brain areas and their connectivity are modulated in stroke patients. This study aimed to explore the effects of MVF on brain functional connectivity in stroke patients. Materials and Methods. We enrolled 15 stroke patients who executed Bilateral-No mirror, Bilateral-Mirror, and Unilateral-Mirror conditions. The coherence values among five brain regions of interest in four different frequency bands were calculated from magnetoencephalographic signals. We examined the differences in functional connectivity of each two brain areas between the Bilateral-No mirror and Bilateral-Mirror conditions and between the Bilateral-Mirror and Unilateral-Mirror conditions. Results. The functional connectivity analyses revealed significantly stronger connectivity between the posterior cingulate cortex and primary motor cortex in the beta band (adjusted p = 0.04) and possibly stronger connectivity between the precuneus and primary visual cortex in the theta band (adjusted p = 0.08) in the Bilateral-Mirror condition than those in the Bilateral-No mirror condition. However, the comparisons between the Bilateral-Mirror and Unilateral-Mirror conditions revealed no significant differences in cortical coherence in all frequency bands. Conclusions. Providing MVF to stroke patients may modulate the lesioned primary motor cortex through visuospatial and attentional cortical networks.
Collapse
Affiliation(s)
- Ruei-Yi Tai
- Department of Neurology, Taipei Medical University Hospital, Taipei 110, Taiwan;
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan
| | - Jun-Ding Zhu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chih-Chi Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou 333, Taiwan;
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yu-Wei Hsieh
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou 333, Taiwan;
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (Y.-W.H.); (C.-H.C.); Tel.: +8863-211-8800 (ext. 3820) (Y.-W.H.); +8863-211-8800 (ext. 3854) (C.-H.C.)
| | - Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Correspondence: (Y.-W.H.); (C.-H.C.); Tel.: +8863-211-8800 (ext. 3820) (Y.-W.H.); +8863-211-8800 (ext. 3854) (C.-H.C.)
| |
Collapse
|
31
|
Mirror Visual Feedback Induces M1 Excitability by Disengaging Functional Connections of Perceptuo-Motor-Attentional Processes during Asynchronous Bimanual Movement: A Magnetoencephalographic Study. Brain Sci 2021; 11:brainsci11081092. [PMID: 34439711 PMCID: PMC8392514 DOI: 10.3390/brainsci11081092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Mirror visual feedback (MVF) has been shown to increase the excitability of the primary motor cortex (M1) during asynchronous bimanual movement. However, the functional networks underlying this process remain unclear. We recruited 16 healthy volunteers to perform asynchronous bimanual movement, that is, their left hand performed partial range of movement while their right hand performed normal full range of movement. Their ongoing brain activities were recorded by whole-head magnetoencephalography during the movement. Participants were required to keep both hands stationary in the control condition. In the other two conditions, participants were required to perform asynchronous bimanual movement with MVF (Asy_M) and without MVF (Asy_w/oM). Greater M1 excitability was found under Asy_M than under Asy_w/oM. More importantly, when receiving MVF, the visual cortex reduced its functional connection to brain regions associated with perceptuo-motor-attentional process (i.e., M1, superior temporal gyrus, and dorsolateral prefrontal cortex). This is the first study to demonstrate a global functional network of MVF during asynchronous bimanual movement, providing a foundation for future research to examine the neural mechanisms of mirror illusion in motor control.
Collapse
|
32
|
Takeuchi N, Izumi SI. Motor Learning Based on Oscillatory Brain Activity Using Transcranial Alternating Current Stimulation: A Review. Brain Sci 2021; 11:1095. [PMID: 34439714 PMCID: PMC8392205 DOI: 10.3390/brainsci11081095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Developing effective tools and strategies to promote motor learning is a high-priority scientific and clinical goal. In particular, motor-related areas have been investigated as potential targets to facilitate motor learning by noninvasive brain stimulation (NIBS). In addition to shedding light on the relationship between motor function and oscillatory brain activity, transcranial alternating current stimulation (tACS), which can noninvasively entrain oscillatory brain activity and modulate oscillatory brain communication, has attracted attention as a possible technique to promote motor learning. This review focuses on the use of tACS to enhance motor learning through the manipulation of oscillatory brain activity and its potential clinical applications. We discuss a potential tACS-based approach to ameliorate motor deficits by correcting abnormal oscillatory brain activity and promoting appropriate oscillatory communication in patients after stroke or with Parkinson's disease. Interpersonal tACS approaches to manipulate intra- and inter-brain communication may result in pro-social effects and could promote the teaching-learning process during rehabilitation sessions with a therapist. The approach of re-establishing oscillatory brain communication through tACS could be effective for motor recovery and might eventually drive the design of new neurorehabilitation approaches based on motor learning.
Collapse
Affiliation(s)
- Naoyuki Takeuchi
- Department of Physical Therapy, Akita University Graduate School of Health Sciences 1-1-1, Hondo, Akita 010-8543, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| |
Collapse
|
33
|
Comparison of the on-line effects of different motor simulation conditions on corticospinal excitability in healthy participants. Sci Rep 2021; 11:13176. [PMID: 34162974 PMCID: PMC8222244 DOI: 10.1038/s41598-021-92591-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/14/2021] [Indexed: 12/05/2022] Open
Abstract
In healthy participants, corticospinal excitability is known to increase during motor simulations such as motor imagery (MI), action observation (AO) and mirror therapy (MT), suggesting their interest to promote plasticity in neurorehabilitation. Further comparing these methods and investigating their combination may potentially provide clues to optimize their use in patients. To this end, we compared in 18 healthy participants abductor pollicis brevis (APB) corticospinal excitability during MI, AO or MT, as well as MI combined with either AO or MT. In each condition, 15 motor-evoked potentials (MEPs) and three maximal M-wave were elicited in the right APB. Compared to the control condition, mean normalized MEP amplitude (i.e. MEP/M) increased during MI (P = .003), MT (P < .001) and MT + MI (P < .001), without any difference between the three conditions. No MEP modulation was evidenced during AO or AO + MI. Because MI provided no additional influence when combined with AO or MT, our results may suggest that, in healthy subjects, visual feedback and unilateral movement with a mirror may provide the greatest effects among all the tested motor simulations.
Collapse
|
34
|
Garipelli G, Rossy T, Perez-Marcos D, Jöhr J, Diserens K. Movement-Related Cortical Potentials in Embodied Virtual Mirror Visual Feedback. Front Neurol 2021; 12:646886. [PMID: 34211428 PMCID: PMC8239222 DOI: 10.3389/fneur.2021.646886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Mirror therapy is thought to drive interhemispheric communication, resulting in a balanced activation. We hypothesized that embodied virtual mirror visual feedback (VR-MVF) presented on a computer screen may produce a similar activation. In this proof-of-concept study, we investigated differences in movement-related cortical potentials (MRCPs) in the electroencephalogram (EEG) from different visual feedback of user movements in 1 stroke patient and 13 age-matched adults. Methods: A 60-year-old right-handed (Edinburgh score >95) male ischemic stroke [left paramedian pontine, National Institutes of Health Stroke Scale (NIHSS) = 6] patient and 13 age-matched right-handed (Edinburgh score >80) healthy adults (58 ± 9 years; six female) participated in the study. We recorded 16-electrode electroencephalogram (EEG), while participants performed planar center-out movements in two embodied visual feedback conditions: (i) direct (movements translated to the avatar's ipsilateral side) and (ii) mirror (movements translated to the avatar's contralateral side) with left (direct left/mirror left) or right (direct right/mirror right) arms. Results: As hypothesized, we observed more balanced MRCP hemispheric negativity in the mirror right compared to the direct right condition [statistically significant at the FC4 electrode; 99.9% CI, (0.81, 13)]. MRCPs in the stroke participant showed reduced lateralized negativity in the direct left (non-paretic) situation compared to healthy participants. Interestingly, the potentials were stronger in the mirror left (non-paretic) compared to direct left case, with significantly more bilateral negativity at FC3 [95% CI (0.758 13.2)] and C2 [95% CI (0.04 9.52)]. Conclusions: Embodied mirror visual feedback is likely to influence bilateral sensorimotor cortical subthreshold activity during movement preparation and execution observed in MRCPs in both healthy participants and a stroke patient.
Collapse
Affiliation(s)
| | - Tamara Rossy
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Jane Jöhr
- Acute Neurorehabilitation Unit, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Karin Diserens
- Acute Neurorehabilitation Unit, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
35
|
Fong KNK, Ting KH, Zhang JJQ, Yau CSF, Li LSW. Event-Related Desynchronization During Mirror Visual Feedback: A Comparison of Older Adults and People After Stroke. Front Hum Neurosci 2021; 15:629592. [PMID: 34135740 PMCID: PMC8200456 DOI: 10.3389/fnhum.2021.629592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/19/2021] [Indexed: 11/15/2022] Open
Abstract
Event-related desynchronization (ERD), as a proxy for mirror neuron activity, has been used as a neurophysiological marker for motor execution after mirror visual feedback (MVF). Using EEG, this study investigated ERD upon the immediate effects of single-session MVF in unimanual arm movements compared with the ERD effects occurring without a mirror, in two groups: stroke patients with left hemiplegia and their healthy counterparts. During EEG recordings, each group performed one session of mirror therapy training in three task conditions: with a mirror, with no mirror, and with a covered mirror. An asymmetry index was calculated from the subtraction of the event-related spectrum perturbations between the C3 and C4 electrodes located over the sensorimotor cortices contralateral and ipsilateral to the moved arm. Results of the effect of task versus group in contralateral and ipsilateral motor areas showed that there was a significant effect of task condition at the contralateral motor area in the high beta band (17–35 Hz) at C3. High beta ERD showed that the suppression was greater over the contralateral hemisphere than it was over the ipsilateral hemisphere in both study groups. The magnitude of low beta (12–16 Hz) ERD in patients with stroke was more suppressed in contralesional C3 under the no mirror compared to that of the covered mirror and similarly more suppressed in ipsilesional C4 ERD under the no mirror compared to that of the mirror condition. The correlation analysis revealed that the magnitude of ERSP power correlated significantly with arm severity in the low and high beta bands in patients with stroke, and a higher asymmetry index in the low beta band was associated with higher arm functioning under the no-mirror condition. There was a shift in sensorimotor ERD toward the contralateral hemisphere as induced by MVF accompanying unimanual movement in both stroke patients and healthy controls. The use of ERD in the low beta band as a neurophysiological marker to indicate the relationships between the amount of MVF-induced ERD attenuation and motor severity, and the outcome indicator for improving stroke patients’ neuroplasticity in clinical trials using MVF are warranted to be explored in the future.
Collapse
Affiliation(s)
- Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - K H Ting
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Jack J Q Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | | | - Leonard S W Li
- Tung Wah Hospital, Hospital Authority, Hong Kong, Hong Kong
| |
Collapse
|
36
|
Carr JC, Bemben MG, Stock MS, DeFreitas JM. Ipsilateral and contralateral responses following unimanual fatigue with and without illusionary mirror visual feedback. J Neurophysiol 2021; 125:2084-2093. [PMID: 33909484 DOI: 10.1152/jn.00077.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Illusionary mirror visual feedback alters interhemispheric communication and influences cross-limb interactions. Combining forceful unimanual contractions with the mirror illusion is a convenient way to provoke robust alterations within ipsilateral motor networks. It is unknown, however, if the mirror illusion affects cross-limb fatigability. We examine this concept by comparing the ipsilateral and contralateral handgrip force and electromyographic (EMG) responses following unimanual fatigue with and without illusionary mirror visual feedback. Participants underwent three experimental sessions (mirror, no-mirror, and control), performing a unimanual fatigue protocol with and without illusionary mirror visual feedback. Maximal handgrip force and EMG activity were measured before and after each session for both hands during maximal unimanual and bimanual contractions. The associated EMG activity from the inactive forearm during unimanual contraction was also examined. The novel findings demonstrate greater relative fatigability during bimanual versus unimanual contraction following unimanual fatigue (-31.8% vs. -23.4%, P < 0.01) and the mirror illusion attenuates this difference (-30.3% vs. -26.3%, P = 0.169). The results show no evidence for a cross-over effect of fatigue with (+0.62%, -2.72%) or without (+0.26%, -2.49%) the mirror illusion during unimanual or bimanual contraction. The mirror illusion resulted in significantly lower levels of associated EMG activity in the contralateral forearm. There were no sex differences for any of the measures of fatigability. These results demonstrate that the mirror illusion influences contraction-dependent fatigue during maximal handgrip contractions. Alterations in facilitatory and inhibitory transcallosal drive likely explain these findings.NEW & NOTEWORTHY Illusionary mirror visual feedback is a promising clinical tool for motor rehabilitation, yet many features of its influence on motor output are unknown. We show that maximal bimanual force output is compromised to a greater extent than unimanual force output following unimanual fatigue, yet illusionary mirror visual feedback attenuates this difference. The mirror illusion also reduces the unintended EMG activity of the inactive, contralateral forearm during unimanual contraction.
Collapse
Affiliation(s)
- Joshua C Carr
- Department of Kinesiology, Texas Christian University, Fort Worth, Texas.,Department of Medical Education, TCU and UNTHSC School of Medicine, Fort Worth, Texas
| | - Michael G Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | - Matt S Stock
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, Florida.,Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida
| | - Jason M DeFreitas
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
37
|
Kim DH, Jang SH. Effects of Mirror Therapy Combined with EMG-Triggered Functional Electrical Stimulation to Improve on Standing Balance and Gait Ability in Patient with Chronic Stroke. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3721. [PMID: 33918288 PMCID: PMC8038158 DOI: 10.3390/ijerph18073721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/28/2022]
Abstract
This study was performed to evaluate the effects of EMG-triggered functional electrical stimulation on balance and gait ability on patient with Chronic Stroke. A total of 60 chronic stroke patients were divided into mirror treatment and functional electrical (MT-EF) Group, MT group, CON group. Each group performed 60 min a day five times a week for eight weeks. MT-FE group was performed 30 min five times a week for eight weeks in mirror therapy process with EMG-FES. MT group performed 30 min five times a week for eight weeks in mirror therapy process. CON group was performed 30 min five times a week for eight weeks in conservative treatment. To measure the balance ability, Biorescue (COP, LOS), Berg balance scale (BBS) and FRT, and the gait ability test was performed by 10 m walk test. MT-FE group revealed significant differences in COP, LOS, BBS, FRT and 10 m walk test as compared to the MT and CON groups (p < 0.05). Our results showed that MT-FE was more effective on COP, LOS, BBS, FRT and 10 m walk test in patients with chronic stroke. Our results also showed that MT-EF group was more effective on balance and gait ability in patients with chronic stroke. We suggest that this study can be used for intervention data for recovering balance and gait ability in chronic stroke patients.
Collapse
Affiliation(s)
- Dong-Hoon Kim
- Department of Physical Therapy, Gimcheon University, 214, Daehak-ro, Gimcheon 39528, Korea;
| | - Sang-Hun Jang
- Department of Physical Therapy, College of Health and Life Science, Korea National University of Transportation, 61, Daehak-ro, Jeungpyeong-gun, Chungbuk 27909, Korea
| |
Collapse
|
38
|
Goldenkoff ER, McGregor HR, Mergos J, Gholizadeh P, Bridenstine J, Brown MJN, Vesia M. Reversal of Visual Feedback Modulates Somatosensory Plasticity. Neuroscience 2020; 452:335-344. [PMID: 33220339 DOI: 10.1016/j.neuroscience.2020.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/22/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022]
Abstract
Reversed visual feedback during unimanual training increases transfer of skills to the opposite untrained hand and modulates plasticity in motor areas of the brain. However, it is unclear if unimanual training with reversed visual feedback also affects somatosensory areas. Here we manipulated visual input during unimanual training using left-right optical reversing spectacles and tested whether unimanual training with reversed vision modulates somatosensory cortical excitability to facilitate motor performance. Thirty participants practiced a unimanual ball-rotation task using the right hand with either left-right reversed vision (incongruent visual and somatosensory feedback) or direct vision (congruent feedback) of the moving hand. We estimated cortical excitability in primary somatosensory cortex (S1) before and after unimanual training by measuring somatosensory evoked potentials (SEPs). This was done by electrically stimulating the median nerve in the wrist while participants rested, and recording potentials over both hemispheres using electroencephalography. Performance of the ball-rotation task improved for both the right (trained) and left (untrained) hand after training across both direct and reversed vision conditions. Participants with direct vision of the right hand during training showed SEPs amplitudes increased bilaterally. In contrast, participants in the reversed visual condition showed attenuated SEPs following training. The results suggest that cortical suppression of S1 activity supports skilled motor performance after unimanual training with reversed vision, presumably by sensory gating of afferent signals from the movement. This finding provides insight into the mechanisms by which visual input interacts with the sensorimotor system and induces neuroplastic changes in S1 to support skilled motor performance.
Collapse
Affiliation(s)
- Elana R Goldenkoff
- School of Kinesiology, Brain Behavior Lab, University of Michigan, Ann Arbor, USA
| | - Heather R McGregor
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Joshua Mergos
- School of Kinesiology, Intraoperative Neuromonitoring Program, University of Michigan, Ann Arbor, USA
| | - Puyan Gholizadeh
- School of Kinesiology, Brain Behavior Lab, University of Michigan, Ann Arbor, USA; School of Kinesiology, Intraoperative Neuromonitoring Program, University of Michigan, Ann Arbor, USA
| | - John Bridenstine
- School of Kinesiology, Brain Behavior Lab, University of Michigan, Ann Arbor, USA; School of Kinesiology, Intraoperative Neuromonitoring Program, University of Michigan, Ann Arbor, USA
| | - Matt J N Brown
- Department of Kinesiology, California State University Sacramento, Sacramento, USA
| | - Michael Vesia
- School of Kinesiology, Brain Behavior Lab, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
39
|
Aoyama T, Kanazawa A, Kohno Y, Watanabe S, Tomita K, Kimura T, Endo Y, Kaneko F. Feasibility Case Study for Treating a Patient with Sensory Ataxia Following a Stroke with Kinesthetic Illusion Induced by Visual Stimulation. Prog Rehabil Med 2020; 5:20200025. [PMID: 33134593 PMCID: PMC7591318 DOI: 10.2490/prm.20200025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Sensory ataxia is a disorder of movement coordination caused by sensory
deficits, especially in kinesthetic perception. Visual stimulus-induced kinesthetic
illusion (KINVIS) is a method used to provide vivid kinesthetic perception without
peripheral sensory input by using a video showing pre-recorded limb movements while the
actual limb remains stationary. We examined the effects of KINVIS intervention in a
patient with sensory ataxia. Case: The patient was a 59-year-old man with a severe
proprioceptive deficit caused by left thalamic hemorrhage. During KINVIS intervention, a
computer screen displayed a pre-recorded mirror image video of the patient’s unaffected
hand performing flexion–extension movements as if it were attached to the patient’s
affected forearm. Kinematics during the flexion–extension movements of the paretic hand
were recorded before and after 20-min interventions. Transcranial magnetic stimulation was
applied to the affected and non-affected hemispheres. The amplitude of the motor-evoked
potential (MEP) at rest was recorded for the muscles of both hands. After the
intervention, the total trajectory length and the rectangular area bounding the trajectory
of the index fingertip decreased. The MEP amplitude of the paretic hand increased, whereas
the MEP amplitude of the non-paretic hand was unchanged. Discussion: The changes in
kinematics after the intervention suggested that KINVIS therapy may be a useful new
intervention for sensory ataxia, a condition for which few effective treatments are
currently available. Studies in larger numbers of patients are needed to clarify the
mechanisms underlying this therapeutic effect.
Collapse
Affiliation(s)
- Toshiyuki Aoyama
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ami, Japan
| | - Atsushi Kanazawa
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ami, Japan
| | - Yutaka Kohno
- Centre for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ami, Japan
| | - Shinya Watanabe
- Department of Occupational Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ami, Japan
| | - Kazuhide Tomita
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ami, Japan
| | - Takehide Kimura
- Department of Physical Therapy, Faculty of Health Sciences, Tsukuba International University, Tsuchiura, Japan
| | - Yusuke Endo
- Department of Physical Therapy, Health Science University, Fujikawaguchiko, Japan
| | - Fuminari Kaneko
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
40
|
Huang Y, Chen JC, Tsai CH, Lu MK. Convergent Associative Motor Cortical Plasticity Induced by Conditional Somatosensory and Motor Reaction Afferents. Front Hum Neurosci 2020; 14:576171. [PMID: 33192405 PMCID: PMC7609873 DOI: 10.3389/fnhum.2020.576171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Objective: Associative motor cortical plasticity can be non-invasively induced by paired median nerve electric stimulation and transcranial magnetic stimulation (TMS) of the primary motor cortex (M1). This study investigates whether a simultaneous motor reaction of the other hand advances the associative plasticity in M1. Methods: Twenty-four right-handed subjects received conventional paired associative stimulation (PAS) and PAS with simultaneous motor reaction (PASmr) with at least a 1-week interval. The PASmr protocol additionally included left abductor pollicis brevis muscle movement responding to a digital sound. The motor reaction time was individually measured. The M1 excitability was examined by the motor evoked potential (MEP), short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF) before and after the PAS protocols. Results: The conventional PAS protocol significantly facilitated MEP and suppressed SICI. A negative correlation between the reaction time and the MEP change, and a positive correlation between the reaction time and the ICF change were found in the PASmr protocol. By subgrouping analysis, we further found significant facilitation of MEP and a reduction of ICF in the subjects with fast reaction times but not in those with slow reaction times. Conclusion: Synchronized motor reaction ipsilateral to the stimulated M1 induces associative M1 motor plasticity through the spike-timing dependent principle. MEP and ICF change could represent this kind of plasticity. The current findings provide a novel insight into designing rehabilitation programs concerning motor function.
Collapse
Affiliation(s)
- Yi Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Jui-Cheng Chen
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chon-Haw Tsai
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Kuei Lu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.,Ph.D. Program for Translational Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
41
|
Bello UM, Kranz GS, Winser SJ, Chan CCH. Neural Processes Underlying Mirror-Induced Visual Illusion: An Activation Likelihood Estimation Meta-Analysis. Front Hum Neurosci 2020; 14:276. [PMID: 32848663 PMCID: PMC7412952 DOI: 10.3389/fnhum.2020.00276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/18/2020] [Indexed: 12/02/2022] Open
Abstract
Introduction: Neuroimaging studies on neural processes associated with mirror-induced visual illusion (MVI) are growing in number. Previous systematic reviews on these studies used qualitative approaches. Objective: The present study conducted activation likelihood estimation (ALE) meta-analysis to locate the brain areas for unfolding the neural processes associated with the MVI. Method: We searched the CINAHL, MEDLINE, Scopus, and PubMed databases and identified eight studies (with 14 experiments) that met the inclusion criteria. Results: Contrasting with a rest condition, strong convergence in the bilateral primary and premotor areas and the inferior parietal lobule suggested top-down motor planning and execution. In addition, convergence was identified in the ipsilateral precuneus, cerebellum, superior frontal gyrus, and superior parietal lobule, clusters corresponding to the static hidden hand indicating self-processing operations, somatosensory processing, and motor control. When contrasting with an active movement condition, additional substantial convergence was revealed in visual-related areas, such as the ipsilateral cuneus, fusiform gyrus, middle occipital gyrus (visual area V2) and lingual gyrus, which mediate basic visual processing. Conclusions: To the best of our knowledge, the current meta-analysis is the first to reveal the visualization, mental rehearsal and motor-related processes underpinning the MVI and offers theoretical support on using MVI as a clinical intervention for post-stroke patients.
Collapse
Affiliation(s)
- Umar Muhammad Bello
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.,Department of Physiotherapy, Yobe State University Teaching Hospital, Damaturu, Nigeria
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.,Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Stanley John Winser
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chetwyn C H Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.,Applied Cognitive Neuroscience Laboratory, The Hong Kong Polytechnic University, Hong Kong, China.,University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
42
|
Bello UM, Winser SJ, Chan CCH. Role of kinaesthetic motor imagery in mirror-induced visual illusion as intervention in post-stroke rehabilitation. Rev Neurosci 2020; 31:659-674. [PMID: 32229682 DOI: 10.1515/revneuro-2019-0106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/15/2020] [Indexed: 01/12/2023]
Abstract
Mirror-induced visual illusion obtained through mirror therapy is widely used to facilitate motor recovery after stroke. Activation of primary motor cortex (M1) ipsilateral to the moving limb has been reported during mirror-induced visual illusion. However, the mechanism through which the mirror illusion elicits motor execution processes without movements observed in the mirrored limb remains unclear. This study aims to review evidence based on brain imaging studies for testing the hypothesis that neural processes associated with kinaesthetic motor imagery are attributed to ipsilateral M1 activation. Four electronic databases were searched. Studies on functional brain imaging, investigating the instant effects of mirror-induced visual illusion among stroke survivors and healthy participants were included. Thirty-five studies engaging 78 stroke survivors and 396 healthy participants were reviewed. Results of functional brain scans (n = 20) indicated that half of the studies (n = 10, 50%) reported significant changes in the activation of ipsilateral M1, which mediates motor preparation and execution. Other common neural substrates included primary somatosensory cortex (45%, kinaesthesia), precuneus (40%, image generation and self-processing operations) and cerebellum (20%, motor control). Similar patterns of ipsilateral M1 activations were observed in the two groups. These neural substrates mediated the generation, maintenance, and manipulation of motor-related images, which were the key processes in kinaesthetic motor imagery. Relationships in terms of shared neural substrates and mental processes between mirror-induced visual illusion and kinaesthetic motor imagery generate new evidence on the role of the latter in mirror therapy. Future studies should investigate the imagery processes in illusion training for post-stroke patients.
Collapse
Affiliation(s)
- Umar M Bello
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, No. 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong, China.,Department of Physiotherapy, Yobe State University Teaching Hospital, Along Potiskum Road, Damaturu, Yobe State, Nigeria
| | - Stanley J Winser
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, No. 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong, China
| | - Chetwyn C H Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, No. 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong, China.,Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, No. 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong, China.,University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, No. 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
43
|
Matamala-Gomez M, Malighetti C, Cipresso P, Pedroli E, Realdon O, Mantovani F, Riva G. Changing Body Representation Through Full Body Ownership Illusions Might Foster Motor Rehabilitation Outcome in Patients With Stroke. Front Psychol 2020; 11:1962. [PMID: 32973612 PMCID: PMC7471722 DOI: 10.3389/fpsyg.2020.01962] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022] Open
Abstract
How our brain represents our body through the integration of internal and external sensory information so that we can interact with our surrounding environment has become a matter of interest especially in the field of neurorehabilitation. In this regard, there is an increasing interest in the use of multisensory integration techniques—such as the use of body ownership illusions—to modulate distorted body representations after brain damage. In particular, cross-modal illusions such as mirror visual feedback therapy (MVFT) have been widely used for motor rehabilitation. Despite the effectiveness of the MVFT for motor rehabilitation, there are some limitations to fully modify the distorted internal representation of the paretic limb in patients with stroke. A possible explanation for this relies on the physical limitations of the mirror in reproducing upper-limb distortions, which can result in a reduced sense of ownership of the mirrored limb. New digital technologies such as virtual reality (VR) and 360° videos allow researchers to create body ownership illusions by adapting virtual bodies so that they represent specific morphological characteristics including upper-limb distortions. In this manuscript, we present a new rehabilitation approach that employs full virtual body ownership illusions, using a 360° video system, for the assessment and modulation of the internal representation of the affected upper limb in stroke patients. We suggest modifying the internal representation of the upper limb to a normal position before starting motor rehabilitation training.
Collapse
Affiliation(s)
- Marta Matamala-Gomez
- "Riccardo Massa" Department of Human Sciences for Education, University of Milano-Bicocca, Milan, Italy
| | - Clelia Malighetti
- Department of Psychology, Catholic University of Milan, Milan, Italy
| | - Pietro Cipresso
- Department of Psychology, Catholic University of Milan, Milan, Italy.,Applied Technology for Neuro-Psychology Laboratory, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Elisa Pedroli
- Applied Technology for Neuro-Psychology Laboratory, Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Faculty of Psychology, eCampus University, Novedrate, Italy
| | - Olivia Realdon
- "Riccardo Massa" Department of Human Sciences for Education, University of Milano-Bicocca, Milan, Italy
| | - Fabrizia Mantovani
- "Riccardo Massa" Department of Human Sciences for Education, University of Milano-Bicocca, Milan, Italy
| | - Giuseppe Riva
- Department of Psychology, Catholic University of Milan, Milan, Italy.,Applied Technology for Neuro-Psychology Laboratory, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| |
Collapse
|
44
|
Tai RY, Zhu JD, Cheng CH, Tseng YJ, Chen CC, Hsieh YW. Cortical neural activity evoked by bilateral and unilateral mirror therapy after stroke. Clin Neurophysiol 2020; 131:2333-2340. [PMID: 32828035 DOI: 10.1016/j.clinph.2020.06.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/05/2020] [Accepted: 06/18/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This study aimed to investigate the differential effects of bilateral and unilateral mirror therapy (MT) on motor cortical activations in stroke patients by magnetoencephalography (MEG). METHODS Sixteen stroke patients and 16 right-handed healthy volunteers were recruited. All participants were required to perform 4 conditions: resting, no mirror with bilateral hand movements (Bilateral-No mirror), mirror with bilateral hand movements (Bilateral-Mirror) and mirror with unilateral hand movements (Unilateral-Mirror). Beta oscillatory activities in the primary motor cortex (M1) were collected during each condition using MEG. The percentage change of beta oscillatory activity was calculated for each condition to correct the baseline differences. RESULTS In the stroke group, the percentage change of M1 beta oscillatory activity significantly decreased more in the Bilateral-Mirror condition than in the Bilateral-No mirror and Unilateral-Mirror conditions. In the healthy group, no significant differences in the percentage change of beta oscillatory activity were found among the 3 conditions. Further, a significant difference in the percentage change of beta oscillatory activity only in the Bilateral-Mirror condition was found between the 2 groups. CONCLUSIONS This study provides new information on the differential cortical activations modulated by bilateral and unilateral MT. SIGNIFICANCE Bilateral MT led to greater M1 neural activities than unilateral MT and bilateral movements without a mirror in stroke patients.
Collapse
Affiliation(s)
- Ruei-Yi Tai
- Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Jun-Ding Zhu
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yi-Jhan Tseng
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Chih-Chi Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Wei Hsieh
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
45
|
Mann J. The medical avatar and its role in neurorehabilitation and neuroplasticity: A review. NeuroRehabilitation 2020; 46:467-482. [PMID: 32508340 DOI: 10.3233/nre-203063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND One of the most interesting emerging medical devices is the medical avatar - a digital representation of the patient that can be used toward myriad ends, the full potential of which remains to be explored. Medical avatars have been instantiated as telemedical tools used to establish a representation of the patient in tele-space, upon which data about the patient's health can be represented and goals and progress can be visually tracked. Manipulation of the medical avatar has also been explored as a means of increasing motivation and inducing neural plasticity. OBJECTIVE The article reviews the literature on body representation, simulation, and action-observation and explores how these components of neurorehabilitation are engaged by an avatar-based self-representation. METHODS Through a review of the literature on body representation, simulation, and action-observation and a review of how these components of neurorehabilitation can be engaged and manipulated with an avatar, the neuroplastic potential of the medical avatar is explored. Literature on the use of the medical avatar for neurorehabilitation is also reviewed. RESULTS This review demonstrates that the medical avatar has vast potentialities in neurorehabilitation and that further research on its use and effect is needed.
Collapse
Affiliation(s)
- Jessie Mann
- Virginia Tech Carilion Fralin Biomedical Research Institute, 2 Riverside Cr., Roanoke, VA 24016, USA. Tel.: + 1-201-423-3434; E-mail:
| |
Collapse
|
46
|
Khan MA, Das R, Iversen HK, Puthusserypady S. Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application. Comput Biol Med 2020; 123:103843. [PMID: 32768038 DOI: 10.1016/j.compbiomed.2020.103843] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022]
Abstract
Strokes are a growing cause of mortality and many stroke survivors suffer from motor impairment as well as other types of disabilities in their daily life activities. To treat these sequelae, motor imagery (MI) based brain-computer interface (BCI) systems have shown potential to serve as an effective neurorehabilitation tool for post-stroke rehabilitation therapy. In this review, different MI-BCI based strategies, including "Functional Electric Stimulation, Robotics Assistance and Hybrid Virtual Reality based Models," have been comprehensively reported for upper-limb neurorehabilitation. Each of these approaches have been presented to illustrate the in-depth advantages and challenges of the respective BCI systems. Additionally, the current state-of-the-art and main concerns regarding BCI based post-stroke neurorehabilitation devices have also been discussed. Finally, recommendations for future developments have been proposed while discussing the BCI neurorehabilitation systems.
Collapse
Affiliation(s)
- Muhammad Ahmed Khan
- Department of Health Technology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| | - Rig Das
- Department of Health Technology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Helle K Iversen
- Department of Neurology, University of Copenhagen, Rigshospitalet, 2600, Glostrup, Denmark
| | | |
Collapse
|
47
|
Takenaka T. Motor image recall ability affects the excitability of spinal nerve function in healthy participants executing mirror therapy tasks at different complexities. J Phys Ther Sci 2020; 32:110-113. [PMID: 32158072 PMCID: PMC7032981 DOI: 10.1589/jpts.32.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/04/2019] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The purpose of this study was to use Mirror Therapy to clarify the effect of
the differences in image recall ability and the types of finger exercises on the
excitability of spinal nerve function. This study will help establish the methodology for
therapeutic intervention using Mirror Therapy. [Participants and Methods] We divided 30
healthy right-handed adults into two groups: one with high exercise image recall ability
and the other with low exercise image recall ability. The participants were asked to put
both hands in the Mirror Box such that the left hand was hidden behind the mirror. While
looking at the mirror image of the right hand, they were instructed not to move the left
hand voluntarily. We measured the F-wave from the finger abductor muscle using evoked
electromyography. [Results] The comparison between the high and low image recall groups
showed that the excitability of spinal nerve function increased in the low image recall
group overall. [Conclusion] From the above results, we suggest that when performing mirror
therapy, it is necessary to select a task that is not too simple and not difficult to move
normally.
Collapse
Affiliation(s)
- Takahiro Takenaka
- Department of Rehabilitation, Heisei College of Health Sciences: 180 Kurono, Gifu 501-1131, Japan
| |
Collapse
|
48
|
Bello UM, Winser SJ, Chan CCH. Does task complexity influence motor facilitation and visuo-motor memory during mirror therapy in post-stroke patients? Med Hypotheses 2020; 138:109590. [PMID: 32036194 DOI: 10.1016/j.mehy.2020.109590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/21/2020] [Indexed: 11/25/2022]
Abstract
Stroke is one of the most common causes of mortality and reduced disability-adjusted life years worldwide. Hemiparesis due to reduced skeletal-muscle power is an effect of brain lesions. Mirror therapy can significantly improve motor performance among post-stroke patients. To determine if altering the complexity of the mirror task in the mirror therapy paradigm would enhance top-down motor facilitation and visuo-motor memory demand, we conducted a pilot study on four post-stroke patients. Our preliminary results showed that performing complex finger tapping task resulted in enhanced activities in the primary motor cortex and precuneus, ipsilateral to the moving hand in the mirror therapy paradigm. We hypothesise the following: (a) complex finger tapping would result in stronger top-down motor facilitation and higher demand on visuo-motor memory than simple finger tapping in the mirror therapy paradigm, and (b) observing a blurred mirror image would result in increased top-down motor facilitation and higher demand on visuo-motor memory than a clear mirror image. To confirm these hypotheses, we propose a cross-sectional observational study on a large sample of post-stroke patients. This paper reports the findings of the pilot study, the rationale for testing the hypotheses, the experimental set-up, the task design and the assessment protocol for functional near-infrared spectroscopy.
Collapse
Affiliation(s)
- Umar Muhammad Bello
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong.
| | - Stanley John Winser
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong.
| | - Chetwyn C H Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
49
|
Gandhi DB, Sterba A, Khatter H, Pandian JD. Mirror Therapy in Stroke Rehabilitation: Current Perspectives. Ther Clin Risk Manag 2020; 16:75-85. [PMID: 32103968 PMCID: PMC7012218 DOI: 10.2147/tcrm.s206883] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/16/2020] [Indexed: 12/30/2022] Open
Abstract
In contrast to varied therapy approaches, mirror therapy (MT) can be used even in completely plegic stroke survivors, as it uses visual stimuli for producing a desired response in the affected limb. MT has been studied to have effects not just on motor impairments but also on sensations, visuospatial neglect, and pain after stroke. This paper attempts to systematically review and present the current perspectives on mirror therapy and its application in stroke rehabilitation, and dosage, feasibility and acceptability in stroke rehabilitation. An electronic database search across Google, PubMed, Web of Science, etc., generated 3871 results. After screening them based on the inclusion and exclusion criteria, we included 28 studies in this review. The data collected were divided on the basis of application in stroke rehabilitation, modes of intervention delivery, and types of control and outcome assessment. We found that most studies intervened for upper limb motor impairments post stroke. Studies were equally distributed between intervention in chronic and acute phases post stroke with therapy durations lasting between 1 and 8 weeks. MT showed definitive motor and sensory improvements although the extent of improvements in sensory impairments and hemineglect is limited. MT proves to be an effective and feasible approach to rehabilitate post-stroke survivors in the acute, sub-acute, and chronic phases of stroke, although its long-term effects and impact on activities of daily living need to be analysed extensively.
Collapse
Affiliation(s)
- Dorcas Bc Gandhi
- College of Physiotherapy, Christian Medical College & Hospital Ludhiana, Ludhiana, Punjab, India.,Faculty of Medicine, Masaryk University, Stroke Brno, International Clinical Research Center, St. Anne´s University Hospital, Brno, Czech Republic
| | - Albert Sterba
- Department of Neurology, Christian Medical College & Hospital Ludhiana, Ludhiana, Punjab, India
| | - Himani Khatter
- Faculty of Medicine, Masaryk University, Stroke Brno, International Clinical Research Center, St. Anne´s University Hospital, Brno, Czech Republic
| | - Jeyaraj D Pandian
- Faculty of Medicine, Masaryk University, Stroke Brno, International Clinical Research Center, St. Anne´s University Hospital, Brno, Czech Republic
| |
Collapse
|
50
|
Bai Z, Fong KNK, Zhang J, Hu Z. Cortical mapping of mirror visual feedback training for unilateral upper extremity: A functional near-infrared spectroscopy study. Brain Behav 2020; 10:e01489. [PMID: 31805613 PMCID: PMC6955835 DOI: 10.1002/brb3.1489] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/28/2019] [Accepted: 11/13/2019] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Mirror therapy has been shown to be effective in promoting hemiplegic arm recovery in patients with stroke or unilateral cerebral palsy. This study aimed to explore the cortical mapping associated with mirror therapy in a group of healthy adults by using functional near-infrared spectroscopy. METHODS Fifteen right-handed healthy adults were recruited by means of convenience sampling. A 2 × 2 factorial design was used: movement complexity with two levels-task-based (T) and movement-based (M), and visual direction with two levels-mirror visual feedback task (MT) and covered mirror with normal visual feedback task (NoT) as the control, constituting four conditions, namely TMT, MMT, TNoT, and MNoT. The regions of interest were the sensorimotor cortex (SMC), the supplementary motor area (SMA), the superior parietal cortex (SPL), and the precuneus in both the contralateral and ipsilateral hemispheres. RESULTS Our findings showed that in the ipsilateral hemisphere, MT induced a higher activation in the SMA and SPL than NoT. With regard to the activation of the ipsilateral SMC, only one channel was found showing superior effects of MT compared with NoT. In addition, MT can strengthen the functional connectivity between the SMC and SMA. In the contralateral hemisphere, both movement complexity and visual direction showed significant main effects in the SMC, while only movement complexity showed a significant main effect in the SMA and SPL. The precuneus of both sides was deactivated and showed no significant difference among the four conditions. CONCLUSIONS Our experiment implies that the modest activation of ipsilateral SMC during MT is likely to be associated with the enhanced activity of ipsilateral SMA and that the precuneus may not be an essential component of the MT-related neural network.
Collapse
Affiliation(s)
- Zhongfei Bai
- Department of Rehabilitation SciencesThe Hong Kong Polytechnic UniversityKowloonHong Kong SAR
- Department of Occupational TherapyShanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)ShanghaiChina
- Department of Rehabilitation SciencesTongji University School of MedicineShanghaiChina
| | - Kenneth N. K. Fong
- Department of Rehabilitation SciencesThe Hong Kong Polytechnic UniversityKowloonHong Kong SAR
| | - Jiaqi Zhang
- Department of Rehabilitation SciencesThe Hong Kong Polytechnic UniversityKowloonHong Kong SAR
| | - Zhishan Hu
- Faculty of Health SciencesUniversity of MacauMacau SAR
| |
Collapse
|