1
|
McClung MR, Betah D, Leder BZ, Kendler DL, Oates M, Timoshanko J, Wang Z. Romosozumab improves microarchitecture as assessed by tissue thickness-adjusted trabecular bone score in postmenopausal women with osteoporosis. J Bone Miner Res 2025; 40:193-200. [PMID: 39656908 PMCID: PMC11789382 DOI: 10.1093/jbmr/zjae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/05/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Bone mineral density (BMD) is only one of several bone strength determinants affected by osteoporosis therapies. Trabecular Bone Score (TBS), a gray-level texture index determined from lumbar spine (LS) dual-X-ray absorptiometry scans, is an indirect measure of bone microarchitecture independent of and complementary to BMD and clinical risk factors. In the Active-Controlled Fracture Study in Postmenopausal Women with Osteoporosis at High Risk (ARCH), monthly subcutaneous romosozumab 210 mg for 12 mo followed by 24-mo open-label weekly oral alendronate 70 mg (romosozumab-to-alendronate) significantly reduced fracture risk compared to 36-mo alendronate alone in postmenopausal women with osteoporosis and prior fracture. This analysis evaluated tissue thickness-adjusted TBS (TBSTT) in a subgroup of patients from ARCH who had post-hoc TBS measurements at baseline and at least one post-baseline visit at months 12, 24, and 36. Baseline characteristics were similar between romosozumab-to-alendronate (n = 190) and alendronate alone (n = 188). Romosozumab led to significantly greater gains in TBSTT vs alendronate at month 12 (least squares mean difference, 3.6%), with greater gains maintained after transition to alendronate and persisting at months 24 (2.9%) and 36 (2.3%; all p<.001). Romosozumab-to-alendronate increased the percentage of individual patients with "normal" TBSTT from 28.9% at baseline to 48.1%, 43.9%, and 45.4% at months 12, 24, and 36, respectively, and decreased the percentage of individual patients with degraded TBSTT from 52.6% to 33.3%, 36.0%, and 33.5%, respectively (all p<.001). A similar but smaller trend was observed with alendronate alone from baseline through month 36 (p ≤.012). Changes in TBSTT and LS BMD were largely unrelated from baseline to month 12 (romosozumab-to-alendronate, r2 = 0.065; alendronate alone, r2 = 0.021) and month 36 (r2 = 0.058; r2 = 0.057, respectively). In postmenopausal women with osteoporosis and prior fracture, 12-mo romosozumab followed by 24-mo alendronate significantly improved bone microarchitecture estimated by TBSTT more than 36-mo alendronate alone.
Collapse
Affiliation(s)
| | - Donald Betah
- Amgen Inc., Thousand Oaks, CA 91320, United States
| | - Benjamin Z Leder
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - David L Kendler
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Mary Oates
- Amgen Inc., Thousand Oaks, CA 91320, United States
| | | | - Zhenxun Wang
- Amgen Inc., Thousand Oaks, CA 91320, United States
| |
Collapse
|
2
|
Lewiecki EM, Betah D, Humbert L, Libanati C, Oates M, Shi Y, Winzenrieth R, Ferrari S, Omura F. 3D-modeling from hip DXA shows improved bone structure with romosozumab followed by denosumab or alendronate. J Bone Miner Res 2024; 39:473-483. [PMID: 38477808 PMCID: PMC11262148 DOI: 10.1093/jbmr/zjae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/22/2023] [Accepted: 12/15/2024] [Indexed: 03/14/2024]
Abstract
Romosozumab treatment in women with postmenopausal osteoporosis increases bone formation while decreasing bone resorption, resulting in large BMD gains to reduce fracture risk within 1 yr. DXA-based 3D modeling of the hip was used to assess estimated changes in cortical and trabecular bone parameters and map the distribution of 3D changes in bone parameters over time in patients from 2 randomized controlled clinical trials: FRAME (romosozumab vs placebo followed by denosumab) and ARCH (romosozumab vs alendronate followed by alendronate). For each study, data from a subset of ~200 women per treatment group who had TH DXA scans at baseline and months 12 and 24 and had provided consent for future research were analyzed post hoc. 3D-SHAPER software v2.11 (3D-SHAPER Medical) was used to generate patient-specific 3D models from TH DXA scans. Percentage changes from baseline to months 12 and 24 in areal BMD (aBMD), integral volumetric BMD (vBMD), cortical thickness, cortical vBMD, cortical surface BMD (sBMD), and trabecular vBMD were evaluated. Data from 377 women from FRAME (placebo, 190; romosozumab, 187) and 368 women from ARCH (alendronate, 185; romosozumab, 183) with evaluable 3D assessments at baseline and months 12 and 24 were analyzed. At month 12, treatment with romosozumab vs placebo in FRAME and romosozumab vs alendronate in ARCH resulted in greater increases in aBMD, integral vBMD, cortical thickness, cortical vBMD, cortical sBMD, and trabecular vBMD (P < .05 for all). At month 24, cumulative gains in all parameters were greater in the romosozumab-to-denosumab vs placebo-to-denosumab sequence and romosozumab-to-alendronate vs alendronate-to-alendronate sequence (P < .05 for all). 3D-SHAPER analysis provides a novel technique for estimating changes in cortical and trabecular parameters from standard hip DXA images. These data add to the accumulating evidence that romosozumab improves hip bone density and structure, thereby contributing to the antifracture efficacy of the drug.
Collapse
Affiliation(s)
- E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, 300 Oak St NE, Albuquerque, NM 87106, United States
| | - Donald Betah
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Ludovic Humbert
- 3D-SHAPER Medical, Rambla de Catalunya, 53, 4-H, Eixample, 08007 Barcelona, Spain
| | - Cesar Libanati
- UCB Pharma, Allée de la Recherche, 60, Brussels B-1070, Belgium
| | - Mary Oates
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Yifei Shi
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Renaud Winzenrieth
- 3D-SHAPER Medical, Rambla de Catalunya, 53, 4-H, Eixample, 08007 Barcelona, Spain
| | - Serge Ferrari
- Division of Bone Diseases, University Hospital of Geneva, Geneva 1211, Switzerland
| | - Fumitoshi Omura
- Koenji Orthopedics Clinic, 4-29-2, Koenji minami, Suginami-ku, Tokyo, 166-0003, Japan
| |
Collapse
|
3
|
Bot RB, Chirla R, Hozan CT, Cavalu S. Mapping the Spatial Evolution of Proximal Femur Osteoporosis: A Retrospective Cross-Sectional Study Based on CT Scans. Int J Gen Med 2024; 17:1085-1100. [PMID: 38529101 PMCID: PMC10962364 DOI: 10.2147/ijgm.s454546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
Purpose The purpose of this study was to quantify the modifications occurring in osteoporosis at the level of the human proximal femur throughout the trabecular structure, along with the identification of certain anatomic regions preferentially affected by osteoporosis. Another goal was to map the evolution of the radiodensity of the trabecular bone as osteoporosis progresses to an advanced stage. Methods The study included CT scans (right femur) from 51 patients, out of which 40 had various degrees of osteoporosis, but no other local pathology. Ten regions of interest in two orthogonal slices have been identified and the differences in radiodensity as well as their evolution have been statistically analyzed in terms of relative and absolute changes. Results A detailed spatial map showing the evolution of osteoporosis was obtained. As osteoporosis evolved, the relative decrease in radiodensity was inversely correlated to the radiodensity of the healthy bone. In particular, the region covering the Ward triangle decreased the most, by an average 61-62% in osteopenia and 101-106% in advanced osteoporosis, while the principal compressive group was affected the least, showing a decrease by an average 14-15% in osteopenia and 29-32% in advanced osteoporosis. The absolute decrease in radiodensity was not correlated to the radiodensity of the healthy bone and was shifted to the inferior-posterior edge of the femur. Inside the femoral head, the upper region was affected the most in absolute terms, while the greater trochanter was less affected than the femoral neck. The maximum metaphyseal cortical bone density was unaffected by the progression of osteoporosis. Conclusion Significant differences were noticed in terms of the absolute and relative osteoporotic changes in radiodensity related to different anatomical regions of the human femoral bone. These differences become more pronounced as the disease progresses.
Collapse
Affiliation(s)
- Robert B Bot
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, 410087, Romania
- Department of Orthopedics, Emergency County Clinical Hospital Oradea, Oradea, 410169, Romania
| | - Razvan Chirla
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, 410087, Romania
| | - Calin Tudor Hozan
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, 410087, Romania
- Department of Orthopedics, Emergency County Clinical Hospital Oradea, Oradea, 410169, Romania
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, 410087, Romania
| |
Collapse
|
4
|
Chavassieux P, Chapurlat R. Interest of Bone Histomorphometry in Bone Pathophysiology Investigation: Foundation, Present, and Future. Front Endocrinol (Lausanne) 2022; 13:907914. [PMID: 35966102 PMCID: PMC9368205 DOI: 10.3389/fendo.2022.907914] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the development of non-invasive methods, bone histomorphometry remains the only method to analyze bone at the tissue and cell levels. Quantitative analysis of transiliac bone sections requires strict methodologic conditions but since its foundation more 60 years ago, this methodology has progressed. Our purpose was to review the evolution of bone histomorphometry over the years and its contribution to the knowledge of bone tissue metabolism under normal and pathological conditions and the understanding of the action mechanisms of therapeutic drugs in humans. The two main applications of bone histomorphometry are the diagnosis of bone diseases and research. It is warranted for the diagnosis of mineralization defects as in osteomalacia, of other causes of osteoporosis as bone mastocytosis, or the classification of renal osteodystrophy. Bone biopsies are required in clinical trials to evaluate the safety and mechanism of action of new therapeutic agents and were applied to anti-osteoporotic agents such as bisphosphonates and denosumab, an anti-RANKL, which induces a marked reduction of the bone turnover with a consequent elongation of the mineralization period. In contrast, an increased bone turnover with an extension of the formation site is observed with teriparatide. Romosozumab, an anti-sclerostin, has a dual effect with an early increased formation and reduced resorption. Bone histomorphometric studies allow us to understand the mechanism of coupling between formation and resorption and to evaluate the respective role of bone modeling and remodeling. The adaptation of new image analysis techniques will help bone biopsy analysis in the future.
Collapse
|
5
|
Awal R, Ben Hmida J, Luo Y, Faisal T. Study of the significance of parameters and their interaction on assessing femoral fracture risk by quantitative statistical analysis. Med Biol Eng Comput 2022; 60:843-854. [PMID: 35119555 DOI: 10.1007/s11517-022-02516-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
Early assessment of hip fracture helps develop therapeutic and preventive mechanisms that may reduce the occurrence of hip fracture. An accurate assessment of hip fracture risk requires proper consideration of the loads, the physiological and morphological parameters, and the interactions between these parameters. Hence, this study aims at analyzing the significance of parameters and their interactions by conducting a quantitative statistical analysis. A multiple regression model was developed considering different loading directions during a sideways fall (angle [Formula: see text] and [Formula: see text] on the coronal and transverse planes, respectively), age, gender, patient weight, height, and femur morphology as independent parameters and Fracture Risk Index (FRI) as a dependent parameter. Strain-based criteria were used for the calculation of FRI with the maximum principal strain obtained from quantitative computed tomography-based finite element analysis. The statistical result shows that [Formula: see text] [Formula: see text], age [Formula: see text], true moment length [Formula: see text], gender [Formula: see text], FNA [Formula: see text], height [Formula: see text], and FSL [Formula: see text] significantly affect FRI where [Formula: see text] is the most influential parameter. The significance of two-level interaction [Formula: see text] and three-level interaction [Formula: see text] shows that the effect of parameters is dissimilar and depends on other parameters suggesting the variability of FRI from person to person.
Collapse
Affiliation(s)
- Rabina Awal
- Department of Mechanical Engineering, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Jalel Ben Hmida
- Department of Mechanical Engineering, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Yunhua Luo
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Tanvir Faisal
- Department of Mechanical Engineering, University of Louisiana at Lafayette, Lafayette, LA, USA.
| |
Collapse
|
6
|
Öhman‐Mägi C, Holub O, Wu D, Hall RM, Persson C. Density and mechanical properties of vertebral trabecular bone-A review. JOR Spine 2021; 4:e1176. [PMID: 35005442 PMCID: PMC8717096 DOI: 10.1002/jsp2.1176] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Being able to predict the mechanical properties of vertebrae in patients with osteoporosis and other relevant pathologies is essential to prevent fractures and to develop the most favorable fracture treatments. Furthermore, a reliable prediction is important for developing more patient- and pathology-specific biomaterials. A plethora of studies correlating bone density to mechanical properties has been reported; however, the results are variable, due to a variety of factors, including anatomical site and methodological differences. The aim of this study was to provide a comprehensive literature review on density and mechanical properties of human vertebral trabecular bone as well as relationships found between these properties. A literature search was performed to include studies, which investigated mechanical properties and bone density of trabecular bone. Only studies on vertebral trabecular bone tissue, reporting bone density or mechanical properties, were kept. A large variation in reported vertebral trabecular bone densities, mechanical properties, and relationships between the two was found, as exemplified by values varying between 0.09 and 0.35 g/cm3 for the wet apparent density and from 0.1 to 976 MPa for the elastic modulus. The differences were found to reflect variations in experimental and analytical processes that had been used, including testing protocol and specimen geometry. The variability in the data decreased in studies where bone tissue testing occurred in a standardized manner (eg, the reported differences in average elastic modulus decreased from 400% to 10%). It is important to take this variability into account when analyzing the predictions found in the literature, for example, to calculate fracture risk, and it is recommended to use the models suggested in the present review to reduce data variability.
Collapse
Affiliation(s)
- Caroline Öhman‐Mägi
- Department of Materials Science and EngineeringUppsala UniversityUppsalaSweden
| | - Ondrej Holub
- School of Mechanical EngineeringUniversity of LeedsLeedsUK
| | - Dan Wu
- Department of Materials Science and EngineeringUppsala UniversityUppsalaSweden
| | | | - Cecilia Persson
- Department of Materials Science and EngineeringUppsala UniversityUppsalaSweden
| |
Collapse
|
7
|
Brown JP, Engelke K, Keaveny TM, Chines A, Chapurlat R, Foldes AJ, Nogues X, Civitelli R, De Villiers T, Massari F, Zerbini CAF, Wang Z, Oates MK, Recknor C, Libanati C. Romosozumab improves lumbar spine bone mass and bone strength parameters relative to alendronate in postmenopausal women: results from the Active-Controlled Fracture Study in Postmenopausal Women With Osteoporosis at High Risk (ARCH) trial. J Bone Miner Res 2021; 36:2139-2152. [PMID: 34190361 PMCID: PMC9292813 DOI: 10.1002/jbmr.4409] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 01/20/2023]
Abstract
The Active-Controlled Fracture Study in Postmenopausal Women With Osteoporosis at High Risk (ARCH) trial (NCT01631214; https://clinicaltrials.gov/ct2/show/NCT01631214) showed that romosozumab for 1 year followed by alendronate led to larger areal bone mineral density (aBMD) gains and superior fracture risk reduction versus alendronate alone. aBMD correlates with bone strength but does not capture all determinants of bone strength that might be differentially affected by various osteoporosis therapeutic agents. We therefore used quantitative computed tomography (QCT) and finite element analysis (FEA) to assess changes in lumbar spine volumetric bone mineral density (vBMD), bone volume, bone mineral content (BMC), and bone strength with romosozumab versus alendronate in a subset of ARCH patients. In ARCH, 4093 postmenopausal women with severe osteoporosis received monthly romosozumab 210 mg sc or weekly oral alendronate 70 mg for 12 months, followed by open-label weekly oral alendronate 70 mg for ≥12 months. Of these, 90 (49 romosozumab, 41 alendronate) enrolled in the QCT/FEA imaging substudy. QCT scans at baseline and at months 6, 12, and 24 were assessed to determine changes in integral (total), cortical, and trabecular lumbar spine vBMD and corresponding bone strength by FEA. Additional outcomes assessed include changes in aBMD, bone volume, and BMC. Romosozumab caused greater gains in lumbar spine integral, cortical, and trabecular vBMD and BMC than alendronate at months 6 and 12, with the greater gains maintained upon transition to alendronate through month 24. These improvements were accompanied by significantly greater increases in FEA bone strength (p < 0.001 at all time points). Most newly formed bone was accrued in the cortical compartment, with romosozumab showing larger absolute BMC gains than alendronate (p < 0.001 at all time points). In conclusion, romosozumab significantly improved bone mass and bone strength parameters at the lumbar spine compared with alendronate. These results are consistent with greater vertebral fracture risk reduction observed with romosozumab versus alendronate in ARCH and provide insights into structural determinants of this differential treatment effect. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jacques P Brown
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre, Department of Medicine, Rheumatology Division, Laval University, Quebec City, Québec, Canada
| | - Klaus Engelke
- Bioclinica, Hamburg, Germany.,Department of Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tony M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California Berkeley, Berkeley, California, USA
| | | | - Roland Chapurlat
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unités Mixtes de Recherche (UMR) 1033, Université de Lyon, Hôpital E Herriot, Lyon, France
| | - A Joseph Foldes
- Osteoporosis Center, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Xavier Nogues
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Autonomous University of Barcelona, Barcelona, Spain
| | - Roberto Civitelli
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tobias De Villiers
- Department of Obstetrics and Gynaecology, Stellenbosch University, Stellenbosch, South Africa
| | - Fabio Massari
- Instituto de Diagnóstico e Investigaciones Metabólicas, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
8
|
Leonhardt Y, Gassert FT, Feuerriegel G, Gassert FG, Kronthaler S, Boehm C, Kufner A, Ruschke S, Baum T, Schwaiger BJ, Makowski MR, Karampinos DC, Gersing AS. Vertebral bone marrow T2* mapping using chemical shift encoding-based water-fat separation in the quantitative analysis of lumbar osteoporosis and osteoporotic fractures. Quant Imaging Med Surg 2021; 11:3715-3725. [PMID: 34341744 PMCID: PMC8245952 DOI: 10.21037/qims-20-1373] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/07/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Chemical shift encoding-based water-fat separation techniques have been used for fat quantification [proton density fat fraction (PDFF)], but they also enable the assessment of bone marrow T2*, which has previously been reported to be a potential biomarker for osteoporosis and may give insight into the cause of vertebral fractures (i.e., osteoporotic vs. traumatic) and the microstructure of the bone when applied to vertebral bone marrow. METHODS The 32 patients (78.1% with low-energy osteopenic/osteoporotic fractures, mean age 72.3±9.8 years, 76% women; 21.9% with high-energy traumatic fractures, 47.3±12.8 years, no women) were frequency-matched for age and sex to subjects without vertebral fractures (n=20). All study patients underwent 3T-MRI of the lumbar spine including sagittally acquired spoiled gradient echo sequences for chemical shift encoding-based water-fat separation, from which T2* values were obtained. Volumetric trabecular bone mineral density (BMD) and trabecular bone parameters describing the three-dimensional structural integrity of trabecular bone were derived from quantitative CT. Associations between T2* measurements, fracture status and trabecular bone parameters were assessed using multivariable linear regression models. RESULTS Mean T2* values of non fractured vertebrae in all patients showed a significant correlation with BMD (r=-0.65, P<0.001), trabecular number (TbN) (r=-0.56, P<0.001) and trabecular spacing (TbSp) (r=0.61, P<0.001); patients with low-energy osteoporotic vertebral fractures showed significantly higher mean T2* values than those with traumatic fractures (13.6±4.3 vs. 8.4±2.2 ms, P=0.01) as well as a significantly lower TbN (0.69±0.08 vs. 0.93±0.03 mm-1, P<0.01) and a significantly larger trabecular spacing (1.06±0.16 vs. 0.56±0.08 mm, P<0.01). Mean T2* values of osteoporotic patients with and without vertebral fracture showed no significant difference (13.5±3.4 vs. 15.6±3.5 ms, P=0.40). When comparing the mean T2* of the fractured vertebrae, no significant difference could be detected between low-energy osteoporotic fractures and high-energy traumatic fractures (12.6±5.4 vs. 8.1±2.4 ms, P=0.10). CONCLUSIONS T2* mapping of vertebral bone marrow using using chemical shift encoding-based water-fat separation allows for assessing osteoporosis as well as the trabecular microstructure and enables a radiation-free differentiation between patients with low-energy osteoporotic and high-energy traumatic vertebral fractures, suggesting its potential as a biomarker for bone fragility.
Collapse
Affiliation(s)
- Yannik Leonhardt
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian T. Gassert
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Georg Feuerriegel
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Felix G. Gassert
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sophia Kronthaler
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christof Boehm
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alexander Kufner
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Benedikt J. Schwaiger
- Department of Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcus R. Makowski
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alexandra S. Gersing
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, University Hospital of Munich (LMU), Munich, Germany
| |
Collapse
|
9
|
Fölsch C, Dharma J, Fonseca Ulloa CA, Lips KS, Rickert M, Pruss A, Jahnke A. Influence of thermodisinfection on microstructure of human femoral heads: duration of heat exposition and compressive strength. Cell Tissue Bank 2020; 21:457-468. [PMID: 32314113 PMCID: PMC7452940 DOI: 10.1007/s10561-020-09832-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/30/2020] [Indexed: 11/25/2022]
Abstract
Allogeneic bone derived from living donors being necessary to match demand for bone transplantation and thermodisinfection of femoral heads is an established sterilization method. During the thermodisinfection the peripheral bone is exposed to maximum 86 °C for 94 min providing 82.5 °C within the center of the femoral head for at least 15 min. This study examined the compression force of the central and representative peripheral regions of native and thermodisinfected human femoral heads to observe wether different duration and intensity of heat exposure might alter mechanic behaviour. Slices from the equatorial region of human femoral heads were taken from each 14 native and thermodisinfected human femoral heads. The central area revealed a significantly higher compression force for native (p ≤ 0.001) and for thermodisinfected bone (p = 0.002 and p = 0.005) compared with peripheral regions since no relevant differences were found between the peripheral and intermediate areas themselves. A small reduction of compression force for thermodisinfected bone was shown since this did not appear significant due to the small number of specimens. The heat exposure did not alter the pre-existing anatomical changes of the microarchitecture of the native femoral heads from the center towards the peripheral regions. The heterogeneity of microstructure of the femoral head might be of interest concerning clinical applications of bone grafts since the difference between native and thermodisinfected bone appears moderate as shown previously. The different quantity of heat exposure did not reveal any significant influence on compression force which might enable thermodisinfection of preformed bone pieces for surgical indications.
Collapse
Affiliation(s)
- Christian Fölsch
- Department of Orthopaedic Surgery, Justus-Liebig-University Medical School, Klinikstrasse 33, 35392, Giessen, Germany.
| | - Julian Dharma
- Labarotory of Biomechanics, Department of Orthopaedic Surgery, Justus-Liebig-University Medical School, Klinikstrasse 29, 35392, Giessen, Germany
| | - Carlos Alfonso Fonseca Ulloa
- Labarotory of Biomechanics, Department of Orthopaedic Surgery, Justus-Liebig-University Medical School, Klinikstrasse 29, 35392, Giessen, Germany
| | - Katrin Susanne Lips
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University, Aulweg 128, 35392, Giessen, Germany
| | - Markus Rickert
- Department of Orthopaedic Surgery, Justus-Liebig-University Medical School, Klinikstrasse 33, 35392, Giessen, Germany
| | - Axel Pruss
- University Tissue Bank, Institute of Transfusion Medicine, Charité University Medical School, Charitéplatz 1, 10117, Berlin, Germany
| | - Alexander Jahnke
- Labarotory of Biomechanics, Department of Orthopaedic Surgery, Justus-Liebig-University Medical School, Klinikstrasse 29, 35392, Giessen, Germany
| |
Collapse
|
10
|
Arnold EL, Clement J, Rogers KD, Garcia-Castro F, Greenwood C. The use of μCT and fractal dimension for fracture prediction in osteoporotic individuals. J Mech Behav Biomed Mater 2020; 103:103585. [PMID: 32090913 DOI: 10.1016/j.jmbbm.2019.103585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 11/16/2022]
Abstract
Osteoporosis (OP) is a widespread condition with commonly associated fracture sites at the hip, vertebra and wrist. This study examines the effects of age and osteoporosis on bone quality by comparing the efficacy of using parameters which indicate bone quality (both traditional clinical parameters such as bone mineral density (BMD), as well as apparent Young's modulus determined by finite element analysis, among others) to predict fracture. Non-fracture samples were collected from the femoral heads of 83 donors (44 males, 39 females), and fracture samples were obtained from the femoral heads of 17 donors (female). Microarchitectural parameters (Bone Volume/Total Volume [BV/TV], Bone Surface/Bone Volume [BS/BV], Tissue Mineral Density [TMD, etc.]) were measured from μCT of each sample as well as 2D and 3D fractal dimension (D2D and D3D respectively). A cube was cropped from μCT images and an isotropic hexahedral element was assigned to each voxel. Finite element analysis was used to calculate the Young's modulus for each sample. Overall, values for microarchitectural characteristics, fractal dimension measurements and Young's Modulus were consistent with values within literature. Significant correlations are observed between age and BV/TV for non-fracture males and females, as well as between age and volumetric BMD (vBMD) for the same groups. Significant differences are present between age-matched non-fracture and fracture females for BV/TV, BS/BV, vBMD, TMD, D2D, D3D, (p < 0.01 for all). Properties which are not age dependent are significantly different between age-matched non-fracture and fracture specimens, indicating OP is a disease, and not just an accelerated aging process.
Collapse
Affiliation(s)
- Emily L Arnold
- Cranfield Forensic Institute, Cranfield University, Shrivenham, UK.
| | - John Clement
- Melbourne Dental School, University of Melbourne, Australia
| | - Keith D Rogers
- Cranfield Forensic Institute, Cranfield University, Shrivenham, UK
| | | | | |
Collapse
|
11
|
Using texture analysis of head CT images to differentiate osteoporosis from normal bone density. Eur J Radiol 2019; 116:212-218. [DOI: 10.1016/j.ejrad.2019.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/01/2019] [Accepted: 05/07/2019] [Indexed: 11/18/2022]
|
12
|
Kustro T, Kiss T, Chernohorskyi D, Chepurnyi Y, Helyes Z, Kopchak A. Quantification of the mandibular defect healing by micro-CT morphometric analysis in rats. J Craniomaxillofac Surg 2018; 46:2203-2213. [PMID: 30343871 DOI: 10.1016/j.jcms.2018.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/29/2018] [Accepted: 09/19/2018] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The goal of this study was the evaluation of the bone tissue structural characteristics over the time course of mandibular defect healing using micro-CT technique, as well as determination of the inter-relationships between different micro-CT parameters used for assessment of the bone regeneration process and the patterns of their dynamic changes. MATERIALS AND METHODS The body and ramus of the mandible was exposed in 24 Wistar rats. A 2-mm full thickness bony defect was created. Animals were randomized into four groups, which were ended 3, 6, 12 and 24 weeks after operation. The mandible was excised and underwent micro-CT analysis. For statistical evaluation, the Mann-Whitney U test, polynomial or exponential regression and Spearman analysis were applied. RESULTS The absolute volume of the bone regenerate increased from 1.69 ± 0.53 mm3 (3 weeks) to 3.36 mm3 ± 0.56 (6 months), as well as percentage of bone volume, increased significantly from 12.5 ± 2.3% at the 3-week term to 26.4 ± 8.7% at the 3-month term or 23.1 ± 8.7% at the 6-month term. Structural (trabecular) thickness gradually increased from 0.13 ± 0.007 mm at the 3-week term to 0.3 ± 0.11 mm at the 6-month term. The structural model index was 0.79 ± 0.46 in the early phase after trauma and then decreased to negative values. CONCLUSION The bone regeneration process was characterized by a significant increase (p < 0.05) in bone volume, percentage of bone volume, structural thickness and bone mineral density, and a decrease in bone surface-to-volume ratio and volume of pore space from the 3-week term to the 6-month term. These changes can be mathematically described by nonlinear exponential regression models.
Collapse
Affiliation(s)
- T Kustro
- Department of Stomatology, Bogomolets National Medical University, 13, T. Shevchenko blvd, 01601, Kyiv, Ukraine
| | - T Kiss
- János Szentágothai Research Centre & Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - D Chernohorskyi
- Department of Stomatology, Bogomolets National Medical University, 13, T. Shevchenko blvd, 01601, Kyiv, Ukraine
| | - Y Chepurnyi
- Department of Stomatology, Bogomolets National Medical University, 13, T. Shevchenko blvd, 01601, Kyiv, Ukraine.
| | - Z Helyes
- János Szentágothai Research Centre & Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Ifjúság útja 20, Pécs, H-7624, Hungary; PharmInVivo Ltd., Szondi Gy. u. 7, H-7629, Pécs, Hungary
| | - A Kopchak
- Department of Stomatology, Bogomolets National Medical University, 13, T. Shevchenko blvd, 01601, Kyiv, Ukraine
| |
Collapse
|
13
|
Lewandowski BE, Myers JG. Forecasting post-flight hip fracture probability using probabilistic modeling. J Biomech Eng 2018; 141:2697809. [PMID: 30128484 DOI: 10.1115/1.4041164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Indexed: 11/08/2022]
Abstract
A probabilistic model predicts hip fracture probability for post-flight male astronauts during lateral fall scenarios from various heights. A biomechanical representation of the hip provides impact load. Correlations relate spaceflight bone mineral density (BMD) loss and post-flight BMD recovery to bone strength. Translations convert fracture risk index, the ratio of applied load to bone strength, to fracture probability. Parameter distributions capture uncertainty and Monte Carlo simulations provide probability outcomes. The fracture probability for a 1 m fall 0 days post-flight is 15% greater than preflight and remains 6% greater than pre-flight at 365 days post-flight. Probability quantification provides insight into how spaceflight induced BMD loss affects fracture probability. A bone loss rate reflecting improved exercise countermeasures and dietary intake further reduces the post-flight fracture probability to 6% greater than preflight at 0 days post-flight and 2% greater at 365 days post-flight. Quantification informs assessments of countermeasure effectiveness. When preflight BMD is one standard deviation below mean astronaut preflight BMD, fracture probability at 0 days post-flight is 34% greater than the preflight fracture probability calculated with mean BMD and 28% greater at 365 days post-flight. Quantification aids review of astronaut BMD fitness for duty standards. Increases in post-flight fracture probability are associated with an estimated 18% reduction in post-flight bone strength. Therefore, a 0.82 deconditioning coefficient modifies force application limits for crew vehicles.
Collapse
Affiliation(s)
- Beth E Lewandowski
- NASA John H. Glenn Research Center, Low-gravity Exploration Technology Branch, Cleveland, OH, 44135
| | - Jerry G Myers
- NASA John H. Glenn Research Center, Low-gravity Exploration Technology Branch, Cleveland, OH, 44135
| |
Collapse
|
14
|
Rabelo GD, Roux JP, Portero-Muzy N, Gineyts E, Chapurlat R, Chavassieux P. Cortical Fractal Analysis and Collagen Crosslinks Content in Femoral Neck After Osteoporotic Fracture in Postmenopausal Women: Comparison with Osteoarthritis. Calcif Tissue Int 2018; 102:644-650. [PMID: 29249023 DOI: 10.1007/s00223-017-0378-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/14/2017] [Indexed: 01/22/2023]
Abstract
The femoral neck (FN) has been previously characterized by thinner cortices in osteoporotic fracture (HF) when compared to hip osteoarthritis (HOA). The purposes of this study were to complete the previous investigations on FNs from HF and HOA by analyzing the complexity of the cortical structure and to approach the intrinsic properties of cortical bone by assessing the collagen crosslink contents. FN samples were obtained during arthroplasty in 35 postmenopausal women (HF; n = 17; mean age 79 ± 2 years; HOA; n = 18; mean age 66 ± 2 years). The cortical fractal dimension (Ct.FD) and lacunarity (Ct.Lac) derived from high-resolution peripheral quantitative tomography (isotropic voxel size: 82 μm) images of FN by using Ctan software and Fraclac running in ImageJ were analyzed. The collagen crosslinks content [pyridinoline, deoxypyridinoline, pentosidine (PEN)] were assessed in cortical bone. Ct.FD was significantly lower (p < 0.0001) in HF than HOA reflecting a decreased complexity and was correlated to the age and BMD. In two sub-groups, BMD- and age-matched, respectively, Ct.FD remained significantly lower in HF than HOA (p < 0.001). Ct.Lac was not different between HF and HOA. PEN content was two times higher in HF than HOA (p < 0.0001) independently of age. In conclusion, FN with HF was characterized by a less complex cortical texture and higher PEN content than HOA. In addition to the decreased bone mass and BMD previously reported, these modifications contribute to the lower bone quality in HF than HOA in postmenopausal women.
Collapse
Affiliation(s)
| | | | | | | | | | - Pascale Chavassieux
- INSERM UMR 1033, Université de Lyon, Lyon, France.
- INSERM UMR 1033, UFR de Médecine Lyon-Est, Domaine Laennec, 7-11, Rue Guillaume Paradin, 69372, Lyon Cedex 08, France.
| |
Collapse
|
15
|
Johannesdottir F, Thrall E, Muller J, Keaveny TM, Kopperdahl DL, Bouxsein ML. Comparison of non-invasive assessments of strength of the proximal femur. Bone 2017; 105:93-102. [PMID: 28739416 DOI: 10.1016/j.bone.2017.07.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/15/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022]
Abstract
It is not clear which non-invasive method is most effective for predicting strength of the proximal femur in those at highest risk of fracture. The primary aim of this study was to compare the abilities of dual energy X-ray absorptiometry (DXA)-derived aBMD, quantitative computed tomography (QCT)-derived density and volume measures, and finite element analysis (FEA)-estimated strength to predict femoral failure load. We also evaluated the contribution of cortical and trabecular bone measurements to proximal femur strength. We obtained 76 human cadaveric proximal femurs (50 women and 26 men; age 74±8.8years), performed imaging with DXA and QCT, and mechanically tested the femurs to failure in a sideways fall configuration at a high loading rate. Linear regression analysis was used to construct the predictive model between imaging outcomes and experimentally-measured femoral strength for each method. To compare the performance of each method we used 3-fold cross validation repeated 10 times. The bone strength estimated by QCT-based FEA predicted femoral failure load (R2adj=0.78, 95%CI 0.76-0.80; RMSE=896N, 95%CI 830-961) significantly better than femoral neck aBMD by DXA (R2adj=0.69, 95%CI 0.66-0.72; RMSE=1011N, 95%CI 952-1069) and the QCT-based model (R2adj=0.73, 95%CI 0.71-0.75; RMSE=932N, 95%CI 879-985). Both cortical and trabecular bone contribute to femoral strength, the contribution of cortical bone being higher in femurs with lower trabecular bone density. These findings have implications for optimizing clinical approaches to assess hip fracture risk. In addition, our findings provide new insights that will assist in interpretation of the effects of osteoporosis treatments that preferentially impact cortical versus trabecular bone.
Collapse
Affiliation(s)
- Fjola Johannesdottir
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA.
| | - Erica Thrall
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - John Muller
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tony M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California, Berkeley, CA, USA
| | | | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Kim W, Oravec D, Divine GW, Flynn MJ, Yeni YN. Effect of View, Scan Orientation and Analysis Volume on Digital Tomosynthesis (DTS) Based Textural Analysis of Bone. Ann Biomed Eng 2017; 45:1236-1246. [DOI: 10.1007/s10439-017-1792-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022]
|
17
|
Micro-CT vs. Whole Body Multirow Detector CT for Analysing Bone Regeneration in an Animal Model. PLoS One 2016; 11:e0166540. [PMID: 27880788 PMCID: PMC5120815 DOI: 10.1371/journal.pone.0166540] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/31/2016] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Compared with multirow detector CT (MDCT), specimen (ex vivo) micro-CT (μCT) has a significantly higher (~ 30 x) spatial resolution and is considered the gold standard for assessing bone above the cellular level. However, it is expensive and time-consuming, and when applied in vivo, the radiation dose accumulates considerably. The aim of this study was to examine whether the lower resolution of the widely used MDCT is sufficient to qualitatively and quantitatively evaluate bone regeneration in rats. METHODS Forty critical-size defects (5mm) were placed in the mandibular angle of rats and covered with coated bioactive titanium implants to promote bone healing. Five time points were selected (7, 14, 28, 56 and 112 days). μCT and MDCT were used to evaluate the defect region to determine the bone volume (BV), tissue mineral density (TMD) and bone mineral content (BMC). RESULTS MDCT constantly achieved higher BV values than μCT (10.73±7.84 mm3 vs. 6.62±4.96 mm3, p<0.0001) and consistently lower TMD values (547.68±163.83 mm3 vs. 876.18±121.21 mm3, p<0.0001). No relevant difference was obtained for BMC (6.48±5.71 mm3 vs. 6.15±5.21 mm3, p = 0.40). BV and BMC showed very strong correlations between both methods, whereas TMD was only moderately correlated (r = 0.87, r = 0.90, r = 0.68, p < 0.0001). CONCLUSIONS Due to partial volume effects, MDCT overestimated BV and underestimated TMD but accurately determined BMC, even in small volumes, compared with μCT. Therefore, if bone quantity is a sufficient end point, a considerable number of animals and costs can be saved, and compared with in vivo μCT, the required dose of radiation can be reduced.
Collapse
|
18
|
Vivekanandhan S, Subramaniam J, Mariamichael A. A computer-aided system for automatic extraction of femur neck trabecular bone architecture using isotropic volume construction from clinical hip computed tomography images. Proc Inst Mech Eng H 2016; 230:930-41. [DOI: 10.1177/0954411916663581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 07/18/2016] [Indexed: 12/28/2022]
Abstract
Hip fractures due to osteoporosis are increasing progressively across the globe. It is also difficult for those fractured patients to undergo dual-energy X-ray absorptiometry scans due to its complicated protocol and its associated cost. The utilisation of computed tomography for the fracture treatment has become common in the clinical practice. It would be helpful for orthopaedic clinicians, if they could get some additional information related to bone strength for better treatment planning. The aim of our study was to develop an automated system to segment the femoral neck region, extract the cortical and trabecular bone parameters, and assess the bone strength using an isotropic volume construction from clinical computed tomography images. The right hip computed tomography and right femur dual-energy X-ray absorptiometry measurements were taken from 50 south-Indian females aged 30–80 years. Each computed tomography image volume was re-constructed to form isotropic volumes. An automated system by incorporating active contour models was used to segment the neck region. A minimum distance boundary method was applied to isolate the cortical and trabecular bone components. The trabecular bone was enhanced and segmented using trabecular enrichment approach. The cortical and trabecular bone features were extracted and statistically compared with dual-energy X-ray absorptiometry measured femur neck bone mineral density. The extracted bone measures demonstrated a significant correlation with neck bone mineral density ( r > 0.7, p < 0.001). The inclusion of cortical measures, along with the trabecular measures extracted after isotropic volume construction and trabecular enrichment approach procedures, resulted in better estimation of bone strength. The findings suggest that the proposed system using the clinical computed tomography images scanned with low dose could eventually be helpful in osteoporosis diagnosis and its treatment planning.
Collapse
|
19
|
Lee DC, Varela A, Kostenuik PJ, Ominsky MS, Keaveny TM. Finite Element Analysis of Denosumab Treatment Effects on Vertebral Strength in Ovariectomized Cynomolgus Monkeys. J Bone Miner Res 2016; 31:1586-95. [PMID: 27149403 DOI: 10.1002/jbmr.2830] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 03/01/2016] [Accepted: 03/04/2016] [Indexed: 01/22/2023]
Abstract
Finite element analysis has not yet been validated for measuring changes in whole-bone strength at the hip or spine in people after treatment with an osteoporosis agent. Toward that end, we assessed the ability of a clinically approved implementation of finite element analysis to correctly quantify treatment effects on vertebral strength, comparing against direct mechanical testing, in cynomolgus monkeys randomly assigned to one of three 16-month-long treatments: sham surgery with vehicle (Sham-Vehicle), ovariectomy with vehicle (OVX-Vehicle), or ovariectomy with denosumab (OVX-DMAb). After treatment, T12 vertebrae were retrieved, scanned with micro-CT, and mechanically tested to measure compressive strength. Blinded to the strength data and treatment codes, the micro-CT images were coarsened and homogenized to create continuum-type finite element models, without explicit porosity. With clinical translation in mind, these models were then analyzed for strength using the U.S. Food and Drug Administration (FDA)-cleared VirtuOst software application (O.N. Diagnostics, Berkeley, CA, USA), developed for analysis of human bones. We found that vertebral strength by finite element analysis was highly correlated (R(2) = 0.97; n = 52) with mechanical testing, independent of treatment (p = 0.12). Further, the size of the treatment effect on strength (ratio of mean OVX-DMAb to mean OVX-Vehicle, as a percentage) was large and did not differ (p = 0.79) between mechanical testing (+57%; 95% CI [26%, 95%]) and finite element analysis (+51% [20%, 88%]). The micro-CT analysis revealed increases in cortical thickness (+45% [19%, 73%]) and trabecular bone volume fraction (+24% [8%, 42%]). These results show that a preestablished clinical finite element analysis implementation-developed for human bone and clinically validated in fracture-outcome studies-correctly quantified the observed treatment effects of denosumab on vertebral strength in cynomolgus monkeys. One implication is that the treatment effects in this study are well explained by the features contained within these finite element models, namely, the bone geometry and mass and the spatial distribution of bone mass. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Aurore Varela
- Charles River Laboratories Inc., Montréal, QC, Canada
| | | | | | | |
Collapse
|
20
|
Checefsky WA, Abidin AZ, Nagarajan MB, Bauer JS, Baum T, Wismüller A. Assessing vertebral fracture risk on volumetric quantitative computed tomography by geometric characterization of trabecular bone structure. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9785:978508. [PMID: 29367797 PMCID: PMC5777337 DOI: 10.1117/12.2216898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The current clinical standard for measuring Bone Mineral Density (BMD) is dual X-ray absorptiometry, however more recently BMD derived from volumetric quantitative computed tomography has been shown to demonstrate a high association with spinal fracture susceptibility. In this study, we propose a method of fracture risk assessment using structural properties of trabecular bone in spinal vertebrae. Experimental data was acquired via axial multi-detector CT (MDCT) from 12 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. Common image processing methods were used to annotate the trabecular compartment in the vertebral slices creating a circular region of interest (ROI) that excluded cortical bone for each slice. The pixels inside the ROI were converted to values indicative of BMD. High dimensional geometrical features were derived using the scaling index method (SIM) at different radii and scaling factors (SF). The mean BMD values within the ROI were then extracted and used in conjunction with a support vector machine to predict the failure load of the specimens. Prediction performance was measured using the root-mean-square error (RMSE) metric and determined that SIM combined with mean BMD features (RMSE = 0.82 ± 0.37) outperformed MDCT-measured mean BMD (RMSE = 1.11 ± 0.33) (p < 10-4). These results demonstrate that biomechanical strength prediction in vertebrae can be significantly improved through the use of SIM-derived texture features from trabecular bone.
Collapse
Affiliation(s)
- Walter A Checefsky
- Department of Electrical and Computer Engineering, University of Rochester, New York, United States
| | - Anas Z Abidin
- Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, New York, United States
| | - Mahesh B Nagarajan
- Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, New York, United States
| | - Jan S Bauer
- Institute for Diagnostic and Interventional Radiology, Technical University of Munich, Germany
| | - Thomas Baum
- Institute for Diagnostic and Interventional Radiology, Technical University of Munich, Germany
| | - Axel Wismüller
- Department of Electrical and Computer Engineering, University of Rochester, New York, United States
- Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, New York, United States
- Faculty of Medicine and Institute of Clinical Radiology, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
21
|
Extraction of 3D Femur Neck Trabecular Bone Architecture from Clinical CT Images in Osteoporotic Evaluation: a Novel Framework. J Med Syst 2015; 39:81. [DOI: 10.1007/s10916-015-0266-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
|
22
|
Shen J, Nielson CM, Marshall LM, Lee DC, Keaveny TM, Orwoll ES. The Association Between BMI and QCT-Derived Proximal Hip Structure and Strength in Older Men: A Cross-Sectional Study. J Bone Miner Res 2015; 30:1301-8. [PMID: 25565555 PMCID: PMC4755511 DOI: 10.1002/jbmr.2450] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/23/2014] [Accepted: 12/31/2014] [Indexed: 01/28/2023]
Abstract
Although higher body mass index (BMI) is associated with higher bone mineral density, recent evidence indicates that increased BMI may not be consistently associated with reduced hip fracture risk. Moreover, substantial proportions of hip fractures occur among overweight and obese men and women. The role of increased BMI and obesity on bone density, structure, and strength at the hip is not well understood. We conducted cross-sectional analyses between BMI and various density and structure measures derived from quantitative computed tomography (QCT)-scans of the proximal femur, in 3067 men (mean age: 73 y) from the Osteoporotic Fractures in Men Study (MrOS). Finite element (FE) analysis of hip QCT scans was performed for a subcohort of 672 men to provide a measure of femoral strength for a simulated sideways fall. The impact force was estimated using patient-specific weight and height information. Multivariable general linear models were used to examine the associations between BMI and hip QCT measures. The relationship of BMI with hip QCT measures was significantly different between men categorized as non-obese and obese (P for interaction ≤ 0.014). For non-obese men (BMI < 30), increasing BMI was associated with higher integral, cortical and trabecular vBMD, integral volume, cross-sectional area, and percent cortical volume (all p < 0.001). For obese men (BMI ≥30), increasing BMI was not associated with any of those parameters. In addition, compared to non-obese men, obese men had a higher hip strength, but also a higher ratio of impact force to strength (P < 0.0001), in theory increasing their risk of hip fracture despite their increased strength. These results provide a better understanding of hip fracture risk in obese men.
Collapse
Affiliation(s)
- Jian Shen
- Department of Medicine, Bone and Mineral Unit, Oregon Health and Science University, Portland, OR
| | - Carrie M Nielson
- Department of Medicine, Bone and Mineral Unit, Oregon Health and Science University, Portland, OR
| | - Lynn M Marshall
- Departments of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR
| | | | - Tony M Keaveny
- O.N. Diagnostics, Berkeley, CA
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA
| | - Eric S Orwoll
- Department of Medicine, Bone and Mineral Unit, Oregon Health and Science University, Portland, OR
| |
Collapse
|
23
|
The Singh Index does not correlate with bone mineral density (BMD) measured with dual energy X-ray absorptiometry (DXA) or peripheral quantitative computed tomography (pQCT). Arch Orthop Trauma Surg 2015; 135:645-50. [PMID: 25739991 DOI: 10.1007/s00402-015-2187-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Indexed: 01/23/2023]
Abstract
The Singh Index (SI), a classification system by which the severity of osteoporosis is assessed based on plain radiographs, is a renowned, simple and inexpensive form of evaluating osteoporosis. The aim of this study was to evaluate the correlation between the SI and bone mineral density (BMD) as measured by dual energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT). The SI was evaluated in 128 cadaveric femora (64 patients, mean age 66.7 years, range 24-89 years) by three independent observers, all blinded to plain radiographs. BMD was also analysed by means of DXA and pQCT in the cadaveric femora. The mean interrater correlation was found to be 0.629. The correlation of the mean BMD measured by DXA (DXA-BMD) and SI was found to be poor, with r = 0.49. The corresponding sensitivity of 45.2 % and specificity of 92.3 % were even poor. The BMD measured by pQCT (pQCT-BMD) also revealed a poor correlation with SI, such that r = 0.337 and r = 0.428 for the trochanteric and neck regions, respectively. Due to the poor correlation of the SI with BMD and the poorer interrater correlation, the SI should be rejected as a tool for evaluating osteoporosis. The SI was found to be too imprecise and is therefore unsuitable for diagnosing osteoporosis and osteopenia.
Collapse
|
24
|
Nagarajan MB, Checefsky WA, Abidin AZ, Tsai H, Wang X, Hobbs SK, Bauer JS, Baum T, Wismüller A. Characterizing Trabecular Bone structure for Assessing Vertebral Fracture Risk on Volumetric Quantitative Computed Tomography. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2015; 9417. [PMID: 29200590 DOI: 10.1117/12.2082059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While the proximal femur is preferred for measuring bone mineral density (BMD) in fracture risk estimation, the introduction of volumetric quantitative computed tomography has revealed stronger associations between BMD and spinal fracture status. In this study, we propose to capture properties of trabecular bone structure in spinal vertebrae with advanced second-order statistical features for purposes of fracture risk assessment. For this purpose, axial multi-detector CT (MDCT) images were acquired from 28 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. A semi-automated method was used to annotate the trabecular compartment in the central vertebral slice with a circular region of interest (ROI) to exclude cortical bone; pixels within were converted to values indicative of BMD. Six second-order statistical features derived from gray-level co-occurrence matrices (GLCM) and the mean BMD within the ROI were then extracted and used in conjunction with a generalized radial basis functions (GRBF) neural network to predict the failure load of the specimens; true failure load was measured through biomechanical testing. Prediction performance was evaluated with a root-mean-square error (RMSE) metric. The best prediction performance was observed with GLCM feature 'correlation' (RMSE = 1.02 ± 0.18), which significantly outperformed all other GLCM features (p < 0.01). GLCM feature correlation also significantly outperformed MDCT-measured mean BMD (RMSE = 1.11 ± 0.17) (p < 10-4). These results suggest that biomechanical strength prediction in spinal vertebrae can be significantly improved through characterization of trabecular bone structure with GLCM-derived texture features.
Collapse
Affiliation(s)
- Mahesh B Nagarajan
- Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, New York, United States
| | - Walter A Checefsky
- Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, New York, United States
| | - Anas Z Abidin
- Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, New York, United States
| | - Halley Tsai
- Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, New York, United States
| | - Xixi Wang
- Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, New York, United States
| | - Susan K Hobbs
- Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, New York, United States
| | - Jan S Bauer
- Institute for Diagnostic Radiology, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Institute for Diagnostic Radiology, Technical University of Munich, Munich, Germany
| | - Axel Wismüller
- Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, New York, United States.,Institute for Clinical Radiology, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
25
|
Cristofolini L. In vitro evidence of the structural optimization of the human skeletal bones. J Biomech 2015; 48:787-96. [DOI: 10.1016/j.jbiomech.2014.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2014] [Indexed: 11/17/2022]
|
26
|
Klotz MCM, Beckmann NA, Bitsch RG, Seebach E, Reiner T, Jäger S. Bone quality assessment for total hip arthroplasty with intraoperative trabecular torque measurements. J Orthop Surg Res 2014; 9:109. [PMID: 25391790 PMCID: PMC4251677 DOI: 10.1186/s13018-014-0109-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 10/24/2014] [Indexed: 11/21/2022] Open
Abstract
Background In cases of poor bone quality, intraoperative torque measurement might be an alternative to preoperative dual-energy X-ray absorptiometry (DXA) to assess bone quality in total hip arthroplasty (THA). Methods Trabecular peak torque measurement was applied in 14 paired fresh frozen human femurs. Here, a 6.5 × 23 mm wingblade was inserted into the proximal femur without harming the lateral cortical bone. Further tests of the proximal femur also evaluated bone strength (DXA, micro-computed tomography (μCT), monoaxial compression test), and the results were compared to the trabecular torque measurement. Student’s t-test was used to compare the values of the groups. Pearson product–moment was applied to correlate the values of the peak torque measurement with the bone strength measured by DXA, μCT, and monoaxial compression test. Results In the femoral head, the mean trabecular peak torque was 4.38 ± 1.86 Nm. These values showed a strong correlation with the values of the DXA, the μCT, and the biomechanical load test (Pearson’s product–moment: DXA: 0.86, μCT-BMD: 0.80, load test: 0.85). Furthermore, the torque measurement showed a more pronounced correlation with the biomechanical load test compared to the DXA. Conclusions The use of this method provides highly diagnostic information about bone quality. Since the approach was adjusted for THA, no harm of the lateral bone stock will result from this measurement during surgery. The results of this initial study employing small sample sizes indicate that this new method is as sensitive as DXA in predicting bone quality and may function as an intraoperative alternative to DXA in THA. Nevertheless, before this method will turn into clinical use, more research and clinical trials are necessary.
Collapse
Affiliation(s)
- Matthias C M Klotz
- Laboratory of Biomechanics and Implant Research, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany.
| | - Nicholas A Beckmann
- Laboratory of Biomechanics and Implant Research, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany.
| | - Rudi G Bitsch
- Laboratory of Biomechanics and Implant Research, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany.
| | - Elisabeth Seebach
- Laboratory of Biomechanics and Implant Research, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany.
| | - Tobias Reiner
- Laboratory of Biomechanics and Implant Research, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany.
| | - Sebastian Jäger
- Laboratory of Biomechanics and Implant Research, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118, Heidelberg, Germany.
| |
Collapse
|
27
|
Nagarajan MB, De T, Lochmüller EM, Eckstein F, Wismüller A. Using Anisotropic 3D Minkowski Functionals for Trabecular Bone Characterization and Biomechanical Strength Prediction in Proximal Femur Specimens. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2014; 9038. [PMID: 29170581 DOI: 10.1117/12.2044352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The ability of Anisotropic Minkowski Functionals (AMFs) to capture local anisotropy while evaluating topological properties of the underlying gray-level structures has been previously demonstrated. We evaluate the ability of this approach to characterize local structure properties of trabecular bone micro-architecture in ex vivo proximal femur specimens, as visualized on multi-detector CT, for purposes of biomechanical bone strength prediction. To this end, volumetric AMFs were computed locally for each voxel of volumes of interest (VOI) extracted from the femoral head of 146 specimens. The local anisotropy captured by such AMFs was quantified using a fractional anisotropy measure; the magnitude and direction of anisotropy at every pixel was stored in histograms that served as a feature vectors that characterized the VOIs. A linear multi-regression analysis algorithm was used to predict the failure load (FL) from the feature sets; the predicted FL was compared to the true FL determined through biomechanical testing. The prediction performance was measured by the root mean square error (RMSE) for each feature set. The best prediction performance was obtained from the fractional anisotropy histogram of AMF Euler Characteristic (RMSE = 1.01 ± 0.13), which was significantly better than MDCT-derived mean BMD (RMSE = 1.12 ± 0.16, p<0.05). We conclude that such anisotropic Minkowski Functionals can capture valuable information regarding regional trabecular bone quality and contribute to improved bone strength prediction, which is important for improving the clinical assessment of osteoporotic fracture risk.
Collapse
Affiliation(s)
- Mahesh B Nagarajan
- Departments of Biomedical Engineering & Imaging Sciences, University of Rochester, USA
| | - Titas De
- Department of Electrical & Computer Engineering, University of Rochester, USA
| | | | - Felix Eckstein
- Institute of Anatomy, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Axel Wismüller
- Departments of Biomedical Engineering & Imaging Sciences, University of Rochester, USA
| |
Collapse
|
28
|
Yang CC, Nagarajan MB, Huber MB, Carballido-Gamio J, Bauer JS, Baum T, Eckstein F, Lochmüller EM, Link TM, Wismüller A. Predicting the Biomechanical Strength of Proximal Femur Specimens with Minkowski Functionals and Support Vector Regression. ACTA ACUST UNITED AC 2014; 9038. [PMID: 29170582 DOI: 10.1117/12.2041782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Regional trabecular bone quality estimation for purposes of femoral bone strength prediction is important for improving the clinical assessment of osteoporotic fracture risk. In this study, we explore the ability of 3D Minkowski Functionals derived from multi-detector computed tomography (MDCT) images of proximal femur specimens in predicting their corresponding biomechanical strength. MDCT scans were acquired for 50 proximal femur specimens harvested from human cadavers. An automated volume of interest (VOI)-fitting algorithm was used to define a consistent volume in the femoral head of each specimen. In these VOIs, the trabecular bone micro-architecture was characterized by statistical moments of its BMD distribution and by topological features derived from Minkowski Functionals. A linear multi-regression analysis and a support vector regression (SVR) algorithm with a linear kernel were used to predict the failure load (FL) from the feature sets; the predicted FL was compared to the true FL determined through biomechanical testing. The prediction performance was measured by the root mean square error (RMSE) for each feature set. The best prediction result was obtained from the Minkowski Functional surface used in combination with SVR, which had the lowest prediction error (RMSE = 0.939 ± 0.345) and which was significantly lower than mean BMD (RMSE = 1.075 ± 0.279, p<0.005). Our results indicate that the biomechanical strength prediction can be significantly improved in proximal femur specimens with Minkowski Functionals extracted from on MDCT images used in conjunction with support vector regression.
Collapse
Affiliation(s)
- Chien-Chun Yang
- Departments of Imaging Sciences & Biomedical Engineering, University of Rochester, New York, United States
| | - Mahesh B Nagarajan
- Departments of Imaging Sciences & Biomedical Engineering, University of Rochester, New York, United States
| | - Markus B Huber
- Departments of Imaging Sciences & Biomedical Engineering, University of Rochester, New York, United States
| | - Julio Carballido-Gamio
- Musculoskeletal and Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, United States
| | - Jan S Bauer
- Institute of Diagnostic Radiology, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Institute of Diagnostic Radiology, Technical University of Munich, Munich, Germany
| | - Felix Eckstein
- Institute of Anatomy, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Thomas M Link
- Musculoskeletal and Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, United States
| | - Axel Wismüller
- Departments of Imaging Sciences & Biomedical Engineering, University of Rochester, New York, United States
| |
Collapse
|
29
|
ZANI LORENZO, CRISTOFOLINI LUCA, JUSZCZYK MATEUSZMARIA, GRASSI LORENZO, VICECONTI MARCO. A NEW PARADIGM FOR THE IN VITRO SIMULATION OF SIDEWAYS FALL LOADING OF THE PROXIMAL HUMAN FEMUR. J MECH MED BIOL 2014. [DOI: 10.1142/s0219519414500055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although the direction of loads applied to the proximal human femur is unpredictable during sideways fall, most in vitro and numerical simulations refer to a single loading condition (15° internal rotation; 10° adduction), which has been anecdotally suggested in the 1950s. The aim of the present study was to improve in vitro simulations of sideways falls on the proximal femur. An in vitro setup was developed that allowed exploring a range of loading directions +/-90° internal–external rotation; 0°–50° adduction). To enable accurate control of the loading conditions (direction and magnitude of all load components applied to the femur), the setup included a number of low-friction linear and rotary bearings. The setup was instrumented with an axial and a torsional load cell, three displacement transducers and a rotation transducer to monitor the most significant components of load/displacement during testing. The strain distribution was measured on the bone surface (16 triaxial strain gauges, 2,000 Hz). Fracture was recorded with a high-speed camera. The setup was successfully tested on a cadaveric femur non-destructively (12 loading configurations) and destructively (15° internal rotation; 10° adduction). All measurements were highly repeatable (the displacements of the femoral head varied by < 2% between repetitions; the tilt in the frontal plane by < 0.05°; and strain varied on average 0.34% between repetitions). The displacement of the femoral head varied by over 50% when the same force was applied in different directions. Principal strains at the same location varied by over 70%, depending on the direction of the applied force. The high-speed video enabled the identification of the point of fracture initiation. This study has shown that a new paradigm for testing the proximal femur (including improved testing conditions and a variety of loading configurations) can provide more accurate and more extensive information about the state of strain.
Collapse
Affiliation(s)
- LORENZO ZANI
- Medical Technology Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy
| | | | - MATEUSZ MARIA JUSZCZYK
- Medical Technology Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy
- Department of Industrial Engineering, University of Bologna, Italy
| | - LORENZO GRASSI
- Medical Technology Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - MARCO VICECONTI
- Department of Mechanical Engineering, University of Sheffield, UK
| |
Collapse
|
30
|
Yang CC, Nagarajan MB, Huber MB, Carballido-Gamio J, Bauer JS, Baum T, Eckstein F, Lochmüller E, Majumdar S, Link TM, Wismüller A. Improving bone strength prediction in human proximal femur specimens through geometrical characterization of trabecular bone microarchitecture and support vector regression. JOURNAL OF ELECTRONIC IMAGING 2014; 23:013013. [PMID: 24860245 PMCID: PMC4030629 DOI: 10.1117/1.jei.23.1.013013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We investigate the use of different trabecular bone descriptors and advanced machine learning tech niques to complement standard bone mineral density (BMD) measures derived from dual-energy x-ray absorptiometry (DXA) for improving clinical assessment of osteoporotic fracture risk. For this purpose, volumes of interest were extracted from the head, neck, and trochanter of 146 ex vivo proximal femur specimens on multidetector computer tomography. The trabecular bone captured was characterized with (1) statistical moments of the BMD distribution, (2) geometrical features derived from the scaling index method (SIM), and (3) morphometric parameters, such as bone fraction, trabecular thickness, etc. Feature sets comprising DXA BMD and such supplemental features were used to predict the failure load (FL) of the specimens, previously determined through biomechanical testing, with multiregression and support vector regression. Prediction performance was measured by the root mean square error (RMSE); correlation with measured FL was evaluated using the coefficient of determination R2. The best prediction performance was achieved by a combination of DXA BMD and SIM-derived geometric features derived from the femoral head (RMSE: 0.869 ± 0.121, R2: 0.68 ± 0.079), which was significantly better than DXA BMD alone (RMSE: 0.948 ± 0.119, R2: 0.61 ± 0.101) (p < 10-4). For multivariate feature sets, SVR outperformed multiregression (p < 0.05). These results suggest that supplementing standard DXA BMD measurements with sophisticated femoral trabecular bone characterization and supervised learning techniques can significantly improve biomechanical strength prediction in proximal femur specimens.
Collapse
Affiliation(s)
- Chien-Chun Yang
- University of Rochester, Departments of Imaging Sciences and Biomedical Engineering, Rochester, New York 14627
| | - Mahesh B. Nagarajan
- University of Rochester, Departments of Imaging Sciences and Biomedical Engineering, Rochester, New York 14627
| | - Markus B. Huber
- University of Rochester, Departments of Imaging Sciences and Biomedical Engineering, Rochester, New York 14627
| | - Julio Carballido-Gamio
- University of California San Francisco, Musculoskeletal and Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, San Francisco, California 94143
| | - Jan S. Bauer
- Technische Universität München, Institut Für Röntgendiagnostik, Munich, München 85748, Germany
| | - Thomas Baum
- Technische Universität München, Institut Für Röntgendiagnostik, Munich, München 85748, Germany
| | - Felix Eckstein
- Paracelsus Medical University Salzburg, Institute of Anatomy and Musculoskeletal Research, Salzburg 5020, Austria
| | - Eva Lochmüller
- Paracelsus Medical University Salzburg, Institute of Anatomy and Musculoskeletal Research, Salzburg 5020, Austria
| | - Sharmila Majumdar
- University of California San Francisco, Musculoskeletal and Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, San Francisco, California 94143
| | - Thomas M. Link
- University of California San Francisco, Musculoskeletal and Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, San Francisco, California 94143
| | - Axel Wismüller
- University of Rochester, Departments of Imaging Sciences and Biomedical Engineering, Rochester, New York 14627
- University of Munich, Department of Radiology, München 80539, Germany
| |
Collapse
|
31
|
Baum T, Gräbeldinger M, Räth C, Garcia EG, Burgkart R, Patsch JM, Rummeny EJ, Link TM, Bauer JS. Trabecular bone structure analysis of the spine using clinical MDCT: can it predict vertebral bone strength? J Bone Miner Metab 2014; 32:56-64. [PMID: 23604586 DOI: 10.1007/s00774-013-0465-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/22/2013] [Indexed: 12/23/2022]
Abstract
Recent technical improvements have made it possible to determine trabecular bone structure parameters of the spine using clinical multi-detector computed tomography (MDCT). Therefore, the purpose of this study was to analyze trabecular bone structure parameters obtained from clinical MDCT in relation to high resolution peripheral quantitative computed tomography (HR-pQCT) as a standard of reference and to investigate whether clinical MDCT can predict vertebral bone strength. Fourteen functional spinal segment units between T7 and L3 were harvested from 14 formalin-fixed human cadavers (11 women and 3 men; age 84 ± 10 years). All functional spinal segment units were examined using HR-pQCT (isotropic voxel size of 41 μm(3)) and a clinical whole-body MDCT (interpolated voxel size of 146 × 146 × 300 μm(3)). Trabecular bone structure analyses (histomorphometric and texture measures) were performed in the HR-pQCT as well as MDCT images. Vertebral failure load (FL) of the functional spinal segment units was determined in an uniaxial biomechanical test. The HR-pQCT and MDCT derived trabecular bone structure parameters showed correlations ranging from r = 0.60 to r = 0.90 (p < 0.05). Correlations between trabecular bone structure parameters and FL amounted up to r = 0.86 (p < 0.05) using the HR-pQCT images, and up to r = 0.79 (p < 0.05) using the MDCT images. Correlation coefficients of FL versus trabecular bone structure parameters obtained with HR-pQCT and MDCT were not significantly different (p > 0.05). In this cadaver model, the spatial resolution of clinically available whole-body MDCT scanners was suitable for trabecular bone structure analysis of the spine and to predict vertebral bone strength.
Collapse
Affiliation(s)
- Thomas Baum
- Institut für Radiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gebauer M, Stark O, Vettorazzi E, Grifka J, Püschel K, Amling M, Beckmann J. DXA and pQCT predict pertrochanteric and not femoral neck fracture load in a human side-impact fracture model. J Orthop Res 2014; 32:31-8. [PMID: 24019186 DOI: 10.1002/jor.22478] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 08/08/2013] [Indexed: 02/04/2023]
Abstract
The validity of dual energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT) measurements as predictors of pertrochanteric and femoral neck fracture loads was compared in an experimental simulation of a fall on the greater trochanter. 65 proximal femora were harvested from patients at autopsy. All specimens were scanned with use of DXA for areal bone mineral density and pQCT for volumetric densities at selected sites of the proximal femur. A three-point bending test simulating a side-impact was performed to determine fracture load and resulted in 16 femoral neck and 49 pertrochanteric fractures. Regression analysis revealed that DXA BMD trochanter was the best variable at predicting fracture load of pertrochanteric fractures with an adjusted R(2) of 0.824 (p < 0.0001). There was no correlation between densitometric parameters and the fracture load of femoral neck fractures. A significant correlation further was found between body weight, height, femoral head diameter, and neck length on the one side and fracture load on the other side, irrespective of the fracture type. Clinically, the DXA BMD trochanter should be favored and integrated routinely as well as biometric and geometric parameters, particularly in elderly people with known osteoporosis at risk for falls.
Collapse
Affiliation(s)
- Matthias Gebauer
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany; Helios-ENDO-Klinik, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Dall’Ara E, Luisier B, Schmidt R, Pretterklieber M, Kainberger F, Zysset P, Pahr D. DXA predictions of human femoral mechanical properties depend on the load configuration. Med Eng Phys 2013; 35:1564-72; discussion 1564. [DOI: 10.1016/j.medengphy.2013.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/16/2013] [Accepted: 04/21/2013] [Indexed: 10/26/2022]
|
35
|
Shirazi-Fard Y, Anthony RA, Kwaczala AT, Judex S, Bloomfield SA, Hogan HA. Previous exposure to simulated microgravity does not exacerbate bone loss during subsequent exposure in the proximal tibia of adult rats. Bone 2013; 56:461-73. [PMID: 23871849 DOI: 10.1016/j.bone.2013.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/16/2013] [Accepted: 07/04/2013] [Indexed: 11/29/2022]
Abstract
Extended periods of inactivity cause severe bone loss and concomitant deterioration of the musculoskeletal system. Considerable research has been aimed at better understanding the mechanisms and consequences of bone loss due to unloading and the associated effects on strength and fracture risk. One factor that has not been studied extensively but is of great interest, particularly for human spaceflight, is how multiple or repeated exposures to unloading and reloading affect the skeleton. Space agencies worldwide anticipate increased usage of repeat-flier crewmembers, and major thrust of research has focused on better understanding of microgravity effects on loss of bone density at weightbearing skeletal sites; however there is limited data available on repeat microgravity exposure. The adult hindlimb unloaded (HU) rat model was used to determine how an initial unloading cycle will affect a subsequent exposure to disuse and recovery thereafter. Animals underwent 28 days of HU starting at 6 months of age followed by 56 days of recovery, and then another 28 days of HU with 56 days of recovery. In vivo longitudinal pQCT was used to quantify bone morphological changes, and ex vivo μCT was used to quantify trabecular microarchitecture and cortical shell geometry at the proximal tibia metaphysis (PTM). The mechanical properties of trabecular bone were examined by the reduced platen compression mechanical test. The hypothesis that the initial HU exposure will mitigate decrements in bone mass and density for the second HU exposure was supported as pre- to post-HU declines in total BMC, total vBMD, and cortical area by in vivo pQCT at the proximal tibia metaphysis were milder for the second HU (and not significant) compared to an age-matched single HU (3% vs. 6%, 2% vs. 6%, and 2% vs. 6%, respectively). In contrast, the hypothesis was not supported at the microarchitectural level as losses in BV/TV and Tb.Th. were similar during 2nd HU exposure and age-matched single HU. Recovery with respect to post-HU values and compared to aging controls for total BMC, vBMD and cortical area were slower in older animals exposed to single or double HU cycles compared to recovery of younger animals exposed to a single HU bout. Despite milder recovery at the older age, there was no difference between unloaded animals and controls at the end of second recovery period. Therefore, the data did not support the hypothesis that two cycles of HU exposure with recovery would have a net negative effect. Mechanical properties of trabecular bone were affected more severely than densitometric measures (35% loss in trabecular bone ultimate stress vs. 9% loss in trabecular vBMD), which can be attributed most prominently to reductions in trabecular bone density and tissue mineral density. Together, our data demonstrate that initial exposure to mechanical unloading does not exacerbate bone loss during a subsequent unloading period and two cycles of unloading followed by recovery do not have a cumulative net negative effect on total bone mineral content and density as measured by pQCT at the proximal tibia metaphysis.
Collapse
Affiliation(s)
- Yasaman Shirazi-Fard
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Kim W, McArdle BH, Kawcak CE, McIlwraith CW, Firth EC, Broom ND. Histomorphometric evaluation of the effect of early exercise on subchondral vascularity in the third carpal bone of horses. Am J Vet Res 2013; 74:542-9. [PMID: 23531061 DOI: 10.2460/ajvr.74.4.542] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate histomorphometric changes in the cartilage and subchondral bone of the third carpal bone associated with conditioning exercise in young Thoroughbreds. ANIMALS Nine 18-month-old Thoroughbreds. Procedures-Both third carpal bones of 9 horses (4 exercised spontaneously at pasture only and 5 given additional conditioning exercise beginning at a mean age of 3 weeks) were evaluated. Histomorphometric variables (hyaline and calcified cartilage thickness and collagen orientation; vascular channel area, number, and orientation; and osteochondral junction rugosity) of the third carpal bone, sampled at 4 dorsopalmar sites in the radial facet, were compared between the exercised and nonexercised groups. RESULTS The vascular channel area measured at the 4 dorsopalmar sites was larger in the exercised group than in the control group, but none of the variables were significantly different between groups. Both groups had significant site-specific variations in all measured variables. Most importantly, the vascular channel area was highest in the most dorsal aspect. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that the mild exercise imposed in both groups during the developmental period appeared to be associated with an increase in the vascular channel area beneath the calcified cartilage layer in the third carpal bone. This increased vascular channel area could also be associated with high stress in the dorsal aspect of the radial facet, a region that is known to be vulnerable to osteochondral fragmentation.
Collapse
Affiliation(s)
- Woong Kim
- Tissue Mechanics Laboratory, Department of Chemical and Materials Engineering, Faculty of Engineering, Faculty of Science, University of Auckland, Auckland 1142, New Zealand
| | | | | | | | | | | |
Collapse
|
37
|
Ohnaru K, Sone T, Tanaka K, Akagi K, Ju YI, Choi HJ, Tomomitsu T, Fukunaga M. Hip structural analysis: a comparison of DXA with CT in postmenopausal Japanese women. SPRINGERPLUS 2013; 2:331. [PMID: 23961402 PMCID: PMC3724983 DOI: 10.1186/2193-1801-2-331] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/18/2013] [Indexed: 11/25/2022]
Abstract
Geometry of the proximal femur is one determinant of fracture risk, and can be analyzed by a simple method using dual-energy X-ray absorptiometry (DXA). The aim of the present study was to investigate the accuracy of hip structural analysis (HSA) using clinical data in postmenopausal Japanese women. A total of 184 postmenopausal women aged 51–88 years (mean, 70.5 ± 8.7 years) who underwent artificial joint replacement surgery for osteoarthrosis of the hip or knee joint were included. Computed tomography (CT) data from preoperative assessment were utilized for analysis of proximal femoral geometry (CT-HSA) using QCTPro Software (Mindways Software Inc., Austin, TX) and compared with HSA results based on DXA (DXA-HSA). The results of femoral geometry were further compared with a CT-based finite-element method (CT/FEM). There was moderate to high correlation between DXA-HSA and CT-HSA (r=0.60-0.90, p<0.001), except for the buckling ratio in the intertrochanteric region. Moreover, the correlation of HSA with CT/FEM was similar between DXA-HSA and CT-HSA. The present results suggest that the geometry of proximal femoral cross sections can be reasonably well characterized using DXA.
Collapse
Affiliation(s)
- Kazuhiro Ohnaru
- Department of Radiological Technology, Kawasaki College of Allied Health Professions, 316 Matsushima, Kurashiki, Okayama, 701-0194 Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Grote S, Noeldeke T, Blauth M, Mutschler W, Bürklein D. Mechanical torque measurement in the proximal femur correlates to failure load and bone mineral density ex vivo. Orthop Rev (Pavia) 2013; 5:77-81. [PMID: 23888206 PMCID: PMC3718240 DOI: 10.4081/or.2013.e16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 12/03/2022] Open
Abstract
Knowledge of local bone quality is essential for surgeons to determine operation techniques. A device for intraoperative measurement of local bone quality has been developed by the AO-Research Foundation (Densi - Probe®). We used this device to experimentally measure peak breakaway torque of trabecular bone in the proximal femur and correlated this with local bone mineral density (BMD) and failure load. Bone mineral density of 160 cadaver femurs was measured by ex situ dualenergy X-ray absorptiometry. The failure load of all femurs was analyzed by side-impact analysis. Femur fractures were fixed and mechanical peak torque was measured with the DensiProbe® device. Correlation was calculated whereas correlation coefficient and significance was calculated by Fisher’s Ztransformation. Moreover, linear regression analysis was carried out. The unpaired Student’s t-test was used to assess the significance of differences. The Ward triangle region had the lowest BMD with 0.511 g/cm2 (±0.17 g/cm2), followed by the upper neck region with 0.546 g/cm2 (±0.16 g/cm2), trochanteric region with 0.685 g/cm2 (±0.19 g/cm2) and the femoral neck with 0.813 g/cm2 (±0.2 g/cm2). Peak torque of DensiProbe® in the femoral head was 3.48 Nm (±2.34 Nm). Load to failure was 4050.2 N (±1586.7 N). The highest correlation of peak torque measured by Densi Probe® and load to failure was found in the femoral neck (r=0.64, P<0.001). The overall correlation of mechanical peak torque with T-score was r=0.60 (P<0.001). A correlation was found between mechanical peak torque, load to failure of bone and BMD in vitro. Trabecular strength of bone and bone mineral density are different aspects of bone strength, but a correlation was found between them. Mechanical peak torque as measured may contribute additional information about bone strength, especially in the perioperative testing.
Collapse
Affiliation(s)
- Stefan Grote
- Department of Trauma Surgery, University of Munich, Campus Innenstadt , Munich, Germany
| | | | | | | | | |
Collapse
|
39
|
Wang G, He M, Yi P, Wang J, Li B, Li J, Fu Y, Bai L, Fu Q. Comparison of effects of vanadium absorbed by Coprinus comatus with those of inorganic vanadium on bone in streptozotocin-diabetic rats. Biol Trace Elem Res 2012; 149:391-8. [PMID: 22549703 DOI: 10.1007/s12011-012-9437-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/19/2012] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to compare the effect of vanadium absorbed by Coprinus comatus (VACC) with inorganic vanadium (vanadium nitrate, IV) in preventing diabetes-related osteopenia in streptozotocin-diabetic rats. Sixty Wistar female rats used were divided into four groups: (1) normal rats (control), (2) diabetic rats, (3) diabetic rats treated with VACC, and (4) diabetic rats treated with vanadium nitrate. A standardized type 1-like diabetes model was induced by injection of streptozotocin. After the rats were treated orally with VACC and IV respectively, plasma glucose, body weights, micro-CT, biomechanical testing, and histomorphometry were examined. In addition, bone samples were obtained to evaluate the content of mineral substances in bones. Treatments were performed over a 12-week period. Both VACC and IV have a positive effect on plasma glucose and body weights of STZ-induced diabetic rats. However, treatment with IV only caused a 39.6 % decrease in glucose levels and a 14.6 % increase in body weights, whereas VACC decreased plasma glucose and increased body weights by up to 52.2 and 24.5 %, respectively. At the same time, VACC significantly improved trabecular microstructure and mechanical strength, while IV did not exhibit desirable such effects. Also, bone Ca and bone P were not significantly increased by IV. These results indicated that both VACC and IV have hypoglycemic activity on diabetic rats, while IV did not improve bone properties. In conclusion, this study suggests that VACC improves diabetes-related bone dysfunction, primarily by improving the diabetic states.
Collapse
Affiliation(s)
- Guangbin Wang
- Department of Orthopaedics, ShengJing Hospital, China Medical University, Shenyang, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW To give an overview of advanced in-vivo imaging techniques for assessing bone quality beyond bone mineral density that have considerably advanced in recent years. RECENT FINDINGS Quantitative computed tomography and finite element analysis improve fracture risk prediction at the spine, and help to better understand the pathophysiology of skeletal diseases and response to therapy by quantifying bone mineral density in different bone compartments, determining bone strength, and assessing bone geometry. With new high-resolution techniques, trabecular structure at the spine, forearm, and tibia, and cortical porosity at the forearm and tibia can be measured. Hip structure analysis and trabecular bone score have extended the usefulness of dual X-ray absorptiometry. SUMMARY New advanced three-dimensional imaging techniques to quantify bone quality are mature and have proven to be complimentary methods to dual X-ray absorptiometry enhancing our understanding of bone metabolism and treatment.
Collapse
Affiliation(s)
- Klaus Engelke
- Institute of Medical Physics, University of Erlangen, Erlangen, Germany.
| |
Collapse
|
41
|
|
42
|
Zerfass P, Lowitz T, Museyko O, Bousson V, Laouisset L, Kalender WA, Laredo JD, Engelke K. An Integrated Segmentation and Analysis Approach for QCT of the Knee to Determine Subchondral Bone Mineral Density and Texture. IEEE Trans Biomed Eng 2012; 59:2449-58. [DOI: 10.1109/tbme.2012.2202660] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Divergent Significance of Bone Mineral Density Changes in Aging Depending on Sites and Sex Revealed through Separate Analyses of Bone Mineral Content and Area. J Osteoporos 2012; 2012:642486. [PMID: 23227425 PMCID: PMC3512306 DOI: 10.1155/2012/642486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/27/2012] [Accepted: 09/24/2012] [Indexed: 11/25/2022] Open
Abstract
Bone mineral density (aBMD) is equivalent to bone mineral content (BMC) divided by area. We rechecked the significance of aBMD changes in aging by examining BMC and area separately. Subjects were 1167 community-dwelling Japanese men and women, aged 40-79 years. ABMDs of femoral neck and lumbar spine were assessed by DXA twice, at 6-year intervals. The change rates of BMC and area, as well as aBMD, were calculated and described separately by the age stratum and by sex. In the femoral neck region, aBMDs were significantly decreased in all age strata by an increase in area as well as BMC loss in the same pattern in both sexes. In the lumbar spine region, aBMDs decreased until the age of 60 in women, caused by the significant BMC decrease accompanying the small area change. Very differently in men, aBMDs increased after their 50s due to BMC increase, accompanied by an area increase. Separate analyses of BMC and area change revealed that the significance of aBMD changes in aging was very divergent among sites and between sexes. This may explain in part the dissociation of aBMD change and bone strength, suggesting that we should be more cautious when interpreting the meaning of aBMD change.
Collapse
|
44
|
Le Corroller T, Halgrin J, Pithioux M, Guenoun D, Chabrand P, Champsaur P. Combination of texture analysis and bone mineral density improves the prediction of fracture load in human femurs. Osteoporos Int 2012; 23:163-9. [PMID: 21739104 DOI: 10.1007/s00198-011-1703-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/16/2011] [Indexed: 01/23/2023]
Abstract
UNLABELLED Twenty-one excised femurs were studied using (1) a high-resolution digital X-ray device to estimate three textural parameters, (2) dual-energy X-ray absorptiometry (DXA) to measure bone mineral density (BMD), and (3) mechanical tests to failure. Textural parameters significantly correlated with BMD (p < 0.05) and bone strength (p < 0.05). Combining texture parameters and BMD significantly improved the fracture load prediction from adjusted r(2) = 0.74 to adjusted r(2) =0.82 (p < 0.05). INTRODUCTION The purpose of this study is to determine if the combination of bone texture parameters using a new high-resolution X-ray device and BMD measurement by DXA provided a better prediction of femoral failure load than BMD evaluation alone. METHODS The proximal ends of 21 excised femurs were studied using (1) a high-resolution digital X-ray device (BMA, D3A Medical Systems) to estimate three textural parameters: fractal parameter Hmean, co-occurrence, and run-length matrices, (2) DXA to measure BMD, and (3) mechanical tests to failure in a side-impact configuration. Regions of interest in the femoral neck, intertrochanteric region, and greater trochanter were selected for DXA and bone texture analysis. Every specimen was scanned twice with repositioning before mechanical testing to assess reproducibility using intraclass correlation coefficient (ICC) with 95% confidence interval. The prediction of femoral failure load was evaluated using multiple regression analysis. RESULTS Thirteen femoral neck and 8 intertrochanteric fractures were observed with a mean failure load of 2,612 N (SD, 1,382 N). Fractal parameter Hmean, co-occurrence, and run-length matrices each significantly correlated with site-matched BMD (p < 0.05) and bone strength (p < 0.05). The ICC of the textural parameters varied between 0.65 and 0.90. Combining bone texture parameters and BMD significantly improved the fracture load prediction from adjusted r(2) =0.74 to adjusted r(2) = 0.82 (p < 0.05). CONCLUSION In these excised femurs, the combination of bone texture parameters with BMD demonstrated a better performance in the failure load prediction than that of BMD alone.
Collapse
Affiliation(s)
- T Le Corroller
- Department of Radiology, Hôpital Sainte Marguerite, 270 Boulevard de Sainte Marguerite, 13009 Marseille, France.
| | | | | | | | | | | |
Collapse
|
45
|
Mulder L, van Rietbergen B, Noordhoek NJ, Ito K. Determination of vertebral and femoral trabecular morphology and stiffness using a flat-panel C-arm-based CT approach. Bone 2012; 50:200-8. [PMID: 22057082 DOI: 10.1016/j.bone.2011.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/22/2011] [Accepted: 10/19/2011] [Indexed: 01/04/2023]
Abstract
The importance of assessing trabecular architecture together with bone mineral density to determine bone stiffness and fracture risk in osteoporosis has been well established. However, no imaging modalities are available to assess trabecular architecture at clinically relevant sites in the axial skeleton. Recently developed flat-panel CT devices, however, offer resolutions that are potentially good enough to resolve bone architecture at these sites. The goal of the present study was to investigate how accurate trabecular architecture and stiffness can be determined based on images from such a device (XperCT, Philips Healthcare). Ten cadaver human C3 vertebrae, twelve T12 vertebrae and 12 proximal femora were scanned with XperCT while mimicking in-vivo scanning conditions and compared to scans of the same bones with microCT. Standard segmentation and morphology quantification algorithms were applied as well as finite element (FE) simulation based on segmented and gray value images. Results showed that mean trabecular separation (Tb.Sp) and number (Tb.N) can be accurately determined at all sites. The accuracy of other parameters, however, depended on the site. For T12 no other structural parameters could be accurately quantified and no FE-results could be obtained from segmented images. When using gray-level images, however, accurate determination of cancellous bone stiffness was possible. For the C3 vertebrae and proximal femora, mean bone volume fraction (BV/TV), Tb.Sp, Tb.N, and anisotropy (C3 only) could be determined accurately. For Tb.Th, structure model index (SMI, femur only), and anisotropy good correlations were obtained but the values were not determined accurately. FE simulations based on segmented images were accurate for the C3 vertebrae, but severely underestimated bone stiffness for the femur. Here also, this was improved by using the gray value models. In conclusion, XperCT does provide a resolution that is good enough to determine trabecular architecture, but the signal to noise ratio is key to the accuracy of the morphology measurement. When the trabeculae are thick e.g. in the femur or the noise is low, e.g. cervical spine, architecture and stiffness could be determined accurately, but when the trabeculae are thin and the noise is high, e.g. thoracic spine, architecture could not be determined accurately and the connectivity was lost and hence no mechanical properties could be calculated directly.
Collapse
Affiliation(s)
- Lars Mulder
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | |
Collapse
|
46
|
Hansen S, Jensen JEB, Ahrberg F, Hauge EM, Brixen K. The combination of structural parameters and areal bone mineral density improves relation to proximal femur strength: an in vitro study with high-resolution peripheral quantitative computed tomography. Calcif Tissue Int 2011; 89:335-46. [PMID: 21874544 DOI: 10.1007/s00223-011-9523-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/29/2011] [Indexed: 01/23/2023]
Abstract
The aim of this study was to assess structural indices from high-resolution peripheral quantitative computed tomography (HR-pQCT) images of the human proximal femur along with areal bone mineral density (aBMD) and compare the relationship of these parameters to bone strength in vitro. Thirty-one human proximal femur specimens (8 men and 23 women, median age 74 years, range 50-89) were examined with HR-pQCT at four regions of interest (femoral head, neck, major and minor trochanter) with 82 μm and in a subgroup (n = 17) with 41 μm resolution. Separate analyses of cortical and trabecular geometry, volumetric BMD (vBMD), and microarchitectural parameters were obtained. In addition, aBMD by dual-energy X-ray absorptiometry (DXA) was performed at conventional hip regions and maximal compressive strength (MCS) was determined in a side-impact biomechanical test. Twelve cervical and 19 trochanteric fractures were confirmed. Geometry, vBMD, microarchitecture, and aBMD correlated significantly with MCS, with Spearman's correlation coefficients up to 0.77, 0.89, 0.90, and 0.85 (P < 0.001), respectively. No differences in these correlations were found using 41 μm compared to 82 μm resolution. In multiple regression analysis of MCS, a combined model (age- and sex-adjusted) with aBMD and structural parameters significantly increased R (2) values (up to 0.90) compared to a model holding aBMD alone (R (2) up to 0.78) (P < 0.05). Structural parameters and aBMD are equally related to MCS, and both cortical and trabecular structural parameters obtained from HR-pQCT images hold information on bone strength complementary to that of aBMD.
Collapse
Affiliation(s)
- Stinus Hansen
- Department of Endocrinology, Odense University Hospital, Denmark.
| | | | | | | | | |
Collapse
|
47
|
Pulkkinen P, Partanen J, Jalovaara P, Nieminen MT, Jämsä T. Combination of radiograph-based trabecular and geometrical parameters can discriminate cervical hip fractures from controls in individuals with BMD in non-osteoporotic range. Bone 2011; 49:290-4. [PMID: 21550431 DOI: 10.1016/j.bone.2011.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/14/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
Majority of hip fractures occur in individuals with bone mineral density (BMD) in non-osteoporotic range. This suggests that factors other than BMD are associated with increased fracture risk in these individuals. The aim of this study was to investigate the combined ability of radiograph-based trabecular and geometrical parameters to discriminate cervical hip fractures from controls in individuals with non-osteoporotic BMD. A total of 39 postmenopausal females with non-pathologic cervical hip fracture were recruited to the study. Nineteen of the fracture patients (48.7%) had non-osteoporotic BMD and they constituted the fracture group. The control group consisted of 35 BMD-matched non-osteoporotic females. Several geometrical and trabecular parameters were extracted from plain pelvic radiographs, and their combined ability to discriminate fracture patients from controls was studied using a receiver operating characteristics (ROC) analysis. Significant differences in several radiograph-based geometrical and trabecular parameters were found between the fracture patients and controls, whereas no statistically significant difference in BMD was observed (p=0.92) between the groups. Area under the ROC curve was 0.993 (95% CI 0.977-1.008) for the combined multiple regression model, which included both trabecular and geometrical parameters as explanatory factors. Here, the sensitivity of 100% was achieved with the specificity of 94%. In a cross-validation of the model, 94.4% of the fracture patients, and 94.1% of the controls were classified correctly. The combination of radiograph-based trabecular and geometrical parameters was able to discriminate the cervical hip fracture cases from controls with similar BMD, showing that the method can provide additional information on bone structure and fracture risk beyond BMD.
Collapse
Affiliation(s)
- P Pulkkinen
- Department of Medical Technology, Institute of Biomedicine, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.
| | | | | | | | | |
Collapse
|
48
|
Pei Y, Fu Q. Yeast-incorporated gallium promotes fracture healing by increasing callus bony area and improving trabecular microstructure on ovariectomized osteopenic rats. Biol Trace Elem Res 2011; 141:207-15. [PMID: 20446054 DOI: 10.1007/s12011-010-8708-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 04/19/2010] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to analyze the impact of yeast-incorporated gallium on fracture healing in ovariectomized osteopenic rats. Forty Wistar female rats used were divided into three groups: sham-operated rats (SHAM), ovariectomized (OVX) rats, and ovx rats treated with yeast-bound gallium (YG). A standardized fracture-healing model with stable plate fixation was established for rat femoral. After 4-week stable fixation, animals were killed to prepare bones for Micro-CT, biomechanical testing, and histomorphometry. In addition, bone samples were obtained to evaluate the content of mineral substances in bones. Quantitative analysis of the bones from animals in the organic gallium group revealed significantly increased mineral contents compared to bones from OVX and SHAM groups. Micro-CT showed that treatment with yeast-incorporated gallium increased BV/TV and trabecular thickness and decreased trabecular separation in ovx animals. Histomorphometric evaluation demonstrated that YG increased callus area and callus bone formation. Yeast-bound gallium also improved the biomechanical properties of bone healing. In conclusion, this study suggests that yeast-incorporated gallium could promote fracture healing in ovariectomized rats.
Collapse
Affiliation(s)
- Yi Pei
- Department of Orthopaedics, ShengJing Hospital, China Medical University, Shenyang, People's Republic of China
| | | |
Collapse
|
49
|
Keyak JH, Sigurdsson S, Karlsdottir G, Oskarsdottir D, Sigmarsdottir A, Zhao S, Kornak J, Harris TB, Sigurdsson G, Jonsson BY, Siggeirsdottir K, Eiriksdottir G, Gudnason V, Lang TF. Male-female differences in the association between incident hip fracture and proximal femoral strength: a finite element analysis study. Bone 2011; 48:1239-45. [PMID: 21419886 PMCID: PMC3095704 DOI: 10.1016/j.bone.2011.03.682] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 03/09/2011] [Accepted: 03/09/2011] [Indexed: 11/18/2022]
Abstract
Hip fracture risk is usually evaluated using dual energy X-ray absorptiometry (DXA) or quantitative computed tomography (QCT) which provide surrogate measures for proximal femoral strength. However, proximal femoral strength can best be estimated explicitly by combining QCT with finite element (FE) analysis. To evaluate this technique for predicting hip fracture in older men and women, we performed a nested age- and sex-matched case-control study in the Age Gene/Environment Susceptibility (AGES) Reykjavik cohort. Baseline (pre-fracture) QCT scans of 5500 subjects were obtained. During 4-7 years follow-up, 51 men and 77 women sustained hip fractures. Ninety-seven men and 152 women were randomly selected as age- and sex-matched controls. FE-strength of the left hip of each subject for stance (F(Stance)) and posterolateral fall (F(Fall)) loading, and total femur areal bone mineral density (aBMD) were computed from the QCT data. F(Stance) and F(Fall) in incident hip fracture subjects were 13%-25% less than in control subjects (p ≤ 0.006) after controlling for demographic parameters. The difference between FE strengths of fracture and control subjects was disproportionately greater in men (stance, 22%; fall, 25%) than in women (stance, 13%; fall, 18%) (p ≤ 0.033), considering that F(Stance) and F(Fall) in fracture subjects were greater in men than in women (p < 0.001). For men, F(Stance) was associated with hip fracture after accounting for aBMD (p = 0.013). These data indicate that F(Stance) provides information about fracture risk that is beyond that provided by aBMD (p = 0.013). These findings support further exploration of possible sex differences in the predictors of hip fracture and of sex-specific strategies for using FE analysis to manage osteoporosis.
Collapse
Affiliation(s)
- J H Keyak
- Department of Radiological Sciences, University of California, Irvine, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Variation of trabecular architecture in proximal femur of postmenopausal women. J Biomech 2011; 44:248-56. [DOI: 10.1016/j.jbiomech.2010.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/13/2010] [Indexed: 01/02/2023]
|