1
|
Sakurai T, Ishii M, Miyata H, Ikeda N, Suehiro F, Komabashiri N, Oura Y, Nishimura M. Effect of CD10-positive cells on osteogenic differentiation of human maxillary/mandibular bone marrow-derived mesenchymal stem cells. Arch Oral Biol 2025; 170:106135. [PMID: 39591929 DOI: 10.1016/j.archoralbio.2024.106135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVE This study was aimed at investigating the effect of CD10-positive cells within the maxillary/mandibular bone marrow-derived mesenchymal stem cells (MBMSCs) on osteogenic differentiation of MBMSCs. DESIGN CD10 expression in iliac bone marrow-derived MSCs (IBMSCs), MBMSCs, and gingival fibroblasts was measured using flow cytometry. The osteogenic potential of 19 MBMSC lines was evaluated, and based on it, they were classified into osteogenic-High and osteogenic-Low groups. The percentage of CD10-positive cells in each group was compared. Effect of coculturing gingival fibroblasts and CD10-positive cells on the osteogenic potential of MBMSCs was also assessed. Expression of tissue inhibitor of metalloprotease-1 (TIMP-1) in osteogenic-High and osteogenic-Low MBMSCs was measured using quantitative real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. The molecular mechanisms underlying the regulation of osteogenic differentiation in MBMSCs were investigated. RESULTS CD10 was not expressed in IBMSCs, but was highly expressed in fibroblasts. In MBMSCs, the CD10-positivity rate varied considerably between cells. MBMSCs with a high-CD10 positivity rate showed low osteogenic potential. Coculture with fibroblasts or CD10-positive cells reduced the osteogenic potential of MBMSCs. TIMP-1 was highly expressed in CD10-positive cells, and osteogenic-Low MBMSCs showed significantly higher TIMP-1 expression compared with osteogenic-High MBMSCs. β-catenin signaling was suppressed in osteogenic-Low MBMSCs. CONCLUSION This study revealed that TIMP-1 secreted from CD10-positive cells may be involved in the suppression of the osteogenic potential of MBMSCs by contamination with CD10-positive cells. This finding provides important insights for developing bone regeneration therapies using MBMSCs.
Collapse
Affiliation(s)
- Tomoaki Sakurai
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Masakazu Ishii
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan.
| | - Haruka Miyata
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Nao Ikeda
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Fumio Suehiro
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Naohiro Komabashiri
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Yurika Oura
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Masahiro Nishimura
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| |
Collapse
|
2
|
Rao S, He Z, Wang Z, Yin H, Hu X, Tan Y, Wan T, Zhu H, Luo Y, Wang X, Li H, Wang Z, Hu X, Hong C, Wang Y, Luo M, Du W, Qian Y, Tang S, Xie H, Chen C. Extracellular vesicles from human urine-derived stem cells delay aging through the transfer of PLAU and TIMP1. Acta Pharm Sin B 2024; 14:1166-1186. [PMID: 38487008 PMCID: PMC10935484 DOI: 10.1016/j.apsb.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 03/17/2024] Open
Abstract
Aging increases the risks of various diseases and the vulnerability to death. Cellular senescence is a hallmark of aging that contributes greatly to aging and aging-related diseases. This study demonstrates that extracellular vesicles from human urine-derived stem cells (USC-EVs) efficiently inhibit cellular senescence in vitro and in vivo. The intravenous injection of USC-EVs improves cognitive function, increases physical fitness and bone quality, and alleviates aging-related structural changes in different organs of senescence-accelerated mice and natural aging mice. The anti-aging effects of USC-EVs are not obviously affected by the USC donors' ages, genders, or health status. Proteomic analysis reveals that USC-EVs are enriched with plasminogen activator urokinase (PLAU) and tissue inhibitor of metalloproteinases 1 (TIMP1). These two proteins contribute importantly to the anti-senescent effects of USC-EVs associated with the inhibition of matrix metalloproteinases, cyclin-dependent kinase inhibitor 2A (P16INK4a), and cyclin-dependent kinase inhibitor 1A (P21cip1). These findings suggest a great potential of autologous USC-EVs as a promising anti-aging agent by transferring PLAU and TIMP1 proteins.
Collapse
Affiliation(s)
- Shanshan Rao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Zehui He
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Zun Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
- Xiangya School of Nursing, Central South University, Changsha 410013, China
| | - Hao Yin
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Xiongke Hu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
- Department of Pediatric Orthopedics, Hunan Children's Hospital, University of South China, Changsha 410007, China
| | - Yijuan Tan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Tengfei Wan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Hao Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Yi Luo
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Xin Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Hongming Li
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Zhenxing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chungu Hong
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Yiyi Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Mingjie Luo
- Xiangya School of Nursing, Central South University, Changsha 410013, China
- School of Nursing, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Wei Du
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuxuan Qian
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Siyuan Tang
- Xiangya School of Nursing, Central South University, Changsha 410013, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunyuan Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| |
Collapse
|
3
|
Cut loose TIMP-1: an emerging cytokine in inflammation. Trends Cell Biol 2022; 33:413-426. [PMID: 36163148 DOI: 10.1016/j.tcb.2022.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022]
Abstract
Appreciation of the entire biological impact of an individual protein can be hampered by its original naming based on one function only. Tissue inhibitor of metalloproteinases-1 (TIMP-1), mostly known for its eponymous function to inhibit metalloproteinases, exhibits only a fraction of its cellular effects via this feature. Recently, TIMP-1 emerged as a potent cytokine acting via various cell-surface receptors, explaining a so-far under-appreciated role of TIMP-1-mediated signaling on immune cells. This, at least partly, resolved why elevated blood levels of TIMP-1 correlate with progression of numerous inflammatory diseases. Here, we emphasize the necessity of unbiased name-independent recognition of structure-function relationships to properly appreciate the biological potential of TIMP-1 and other cytokines in complex physiological processes such as inflammation.
Collapse
|
4
|
Zhou Q, Cheng Y, Sun F, Shen J, Nasser MI, Zhu P, Zhang X, Li Y, Yin G, Wang Y, Wu X, Zhao M. A Comprehensive Review of the Therapeutic Value of Urine-Derived Stem Cells. Front Genet 2022; 12:781597. [PMID: 35047009 PMCID: PMC8762167 DOI: 10.3389/fgene.2021.781597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Stem cells possess regenerative powers and multidirectional differentiation potential and play an important role in disease treatment and basic medical research. Urine-derived stem cells (USCs) represent a newly discovered type of stem cell with biological characteristics similar to those of mesenchymal stromal cells (MSCs), including their doubling time and immunophenotype. USCs are noninvasive and can be readily obtained from voided urine and steadily cultured. Based on advances in this field, USCs and their secretions have increasingly emerged as ideal sources. USCs may play regulatory roles in the cellular immune system, oxidative stress, revascularization, apoptosis and autophagy. This review summarizes the applications of USCs in tissue regeneration and various disease treatments. Furthermore, by analysing their limitations, we anticipate the development of more feasible therapeutic strategies to promote USC-based individualized treatment.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yiyu Cheng
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fang Sun
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jie Shen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xueyan Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuxiang Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guangming Yin
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuequn Wang
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiushan Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
5
|
Chen CY, Du W, Rao SS, Tan YJ, Hu XK, Luo MJ, Ou QF, Wu PF, Qing LM, Cao ZM, Yin H, Yue T, Zhan CH, Huang J, Zhang Y, Liu YW, Wang ZX, Liu ZZ, Cao J, Liu JH, Hong CG, He ZH, Yang JX, Tang SY, Tang JY, Xie H. Extracellular vesicles from human urine-derived stem cells inhibit glucocorticoid-induced osteonecrosis of the femoral head by transporting and releasing pro-angiogenic DMBT1 and anti-apoptotic TIMP1. Acta Biomater 2020; 111:208-220. [PMID: 32447063 DOI: 10.1016/j.actbio.2020.05.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) frequently occurs after glucocorticoid (GC) treatment. Extracellular vesicles (EVs) are important nano-sized paracrine mediators of intercellular crosstalk. This study aimed to determine whether EVs from human urine-derived stem cells (USC-EVs) could protect against GC-induced ONFH and focused on the impacts of USC-EVs on angiogenesis and apoptosis to explore the mechanism by which USC-EVs attenuated GC-induced ONFH. The results in vivo showed that the intravenous administration of USC-EVs at the early stage of GC exposure could rescue angiogenesis impairment, reduce apoptosis of trabecular bone and marrow cells, prevent trabecular bone destruction and improve bone microarchitecture in the femoral heads of rats. In vitro, USC-EVs reversed the GC-induced suppression of endothelial angiogenesis and activation of apoptosis. Deleted in malignant brain tumors 1 (DMBT1) and tissue inhibitor of metalloproteinases 1 (TIMP1) proteins were enriched in USC-EVs and essential for the USC-EVs-induced pro-angiogenic and anti-apoptotic effects in GC-treated cells, respectively. Knockdown of TIMP1 attenuated the protective effects of USC-EVs against GC-induced ONFH. Our study suggests that USC-EVs are a promising nano-sized agent for the prevention of GC-induced ONFH by delivering pro-angiogenic DMBT1 and anti-apoptotic TIMP1. STATEMENT OF SIGNIFICANCE: This study demonstrates that the intravenous injection of extracellular vesicles from human urine-derived stem cells (USC-EVs) at the early stage of glucocorticoid (GC) exposure efficiently protects the rats from the GC-induced osteonecrosis of the femoral head (ONFH). Moreover, this study identifies that the promotion of angiogenesis and inhibition of apoptosis by transferring pro-angiogenic DMBT1 and anti-apoptotic TIMP1 proteins contribute importantly to the USC-EVs-induced protective effects against GC-induced ONFH. This study suggests the promising prospect of USC-EVs as a new nano-sized agent for protecting against GC-induced ONFH, and the potential of DMBT1 and TIMP1 as the molecular targets for further augmenting the protective function of USC-EVs.
Collapse
Affiliation(s)
- Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Du
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Hand & Microsurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shan-Shan Rao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya Nursing School, Central South University, Changsha, Hunan 410013, China
| | - Yi-Juan Tan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiong-Ke Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ming-Jie Luo
- Xiangya Nursing School, Central South University, Changsha, Hunan 410013, China
| | - Qi-Feng Ou
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Hand & Microsurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Pan-Feng Wu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Hand & Microsurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Li-Ming Qing
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Hand & Microsurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhe-Ming Cao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Hand & Microsurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hao Yin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tao Yue
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chao-Hong Zhan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jie Huang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Zhang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yi-Wei Liu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zheng-Zhao Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jia Cao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiang-Hua Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chun-Gu Hong
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ze-Hui He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jun-Xiao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan 410013, China
| | - Ju-Yu Tang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Hand & Microsurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan 410008, China; Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha, Hunan 410008, China.
| |
Collapse
|
6
|
Kim HS, Vargas A, Eom YS, Li J, Yamamoto KL, Craft CM, Lee EJ. Tissue inhibitor of metalloproteinases 1 enhances rod survival in the rd1 mouse retina. PLoS One 2018; 13:e0197322. [PMID: 29742163 PMCID: PMC5942829 DOI: 10.1371/journal.pone.0197322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/29/2018] [Indexed: 01/06/2023] Open
Abstract
Retinitis pigmentosa (RP), an inherited retinal degenerative disease, is characterized by a progressive loss of rod photoreceptors followed by loss of cone photoreceptors. Previously, when tissue inhibitor of metalloproteinase 1 (TIMP1), a key extracellular matrix (ECM) regulator that binds to and inhibits activation of Matrix metallopeptidase 9 (MMP9) was intravitreal injected into eyes of a transgenic rhodopsin rat model of RP, S334ter-line3, we discovered cone outer segments are partially protected. In parallel, we reported that a specific MMP9 and MMP2 inhibitor, SB-3CT, interferes with mechanisms leading to rod photoreceptor cell death in an MMP9 dependent manner. Here, we extend our initial rat studies to examine the potential of TIMP1 as a treatment in retinal degeneration by investigating neuroprotective effects in a classic mouse retinal degeneration model, rdPde6b-/- (rd1). The results clearly demonstrate that intravitreal injections of TIMP1 produce extended protection to delay rod photoreceptor cell death. The mean total number of rods in whole-mount retinas was significantly greater in TIMP-treated rd1 retinas (postnatal (P) 30, P35 (P<0.0001) and P45 (P<0.05) than in saline-treated rd1 retinas. In contrast, SB-3CT did not delay rod cell death, leading us to further investigate alternative pathways that do not involve MMPs. In addition to inducing phosphorylated ERK1/2, TIMP1 significantly reduces BAX activity and delays attenuation of the outer nuclear layer (ONL). Physiological responses using scotopic electroretinograms (ERG) reveal b-wave amplitudes from TIMP1-treated retinas are significantly greater than from saline-treated rd1 retinas (P<0.05). In later degenerative stages of rd1 retinas, photopic b-wave amplitudes from TIMP1-treated rd1 retinas are significantly larger than from saline-treated rd1 retinas (P<0.05). Our findings demonstrate that TIMP1 delays photoreceptor cell death. Furthermore, this study provides new insights into how TIMP1 works in the mouse animal model of RP.
Collapse
Affiliation(s)
- Hwa Sun Kim
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Andrew Vargas
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Yun Sung Eom
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Justin Li
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Kyra L. Yamamoto
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Cheryl Mae Craft
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Eun-Jin Lee
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Li M, Du A, Xu J, Ma Y, Cao H, Yang C, Yang XD, Xing CG, Chen M, Zhu W, Zhang S, Cao J. Neurogenic differentiation factor NeuroD confers protection against radiation-induced intestinal injury in mice. Sci Rep 2016; 6:30180. [PMID: 27436572 PMCID: PMC4951798 DOI: 10.1038/srep30180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/28/2016] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract, especially the small intestine, is particularly sensitive to radiation, and is prone to radiation-induced injury as a result. Neurogenic differentiation factor (NeuroD) is an evolutionarily-conserved basic helix-loop-helix (bHLH) transcription factor. NeuroD contains a protein transduction domain (PTD), which allows it to be exogenously delivered across the membrane of mammalian cells, whereupon its transcription activity can be unleashed. Whether NeuroD has therapeutic effects for radiation-induced injury remains unclear. In the present study, we prepared a NeuroD-EGFP recombinant protein, and explored its protective effects on the survival and intestinal damage induced by ionizing radiation. Our results showed that NeuroD-EGFP could be transduced into small intestine epithelial cells and tissues. NeuroD-EGFP administration significantly increased overall survival of mice exposed to lethal total body irradiation (TBI). This recombinant NeuroD also reduced radiation-induced intestinal mucosal injury and apoptosis, and improved crypt survival. Expression profiling of NeuroD-EGFP-treated mice revealed upregulation of tissue inhibitor of metalloproteinase 1 (TIMP-1), a known inhibitor of apoptosis in mammalian cells. In conclusion, NeuroD confers protection against radiation-induced intestinal injury, and provides a novel therapeutic clinical option for the prevention of intestinal side effects of radiotherapy and the treatment of victims of incidental exposure.
Collapse
Affiliation(s)
- Ming Li
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Aonan Du
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jing Xu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yanchao Ma
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Han Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chao Yang
- Department of Transfusion Medicine, The General Hospital of the PLA Rocket Force, Beijing 100088, China
| | - Xiao-Dong Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chun-Gen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ming Chen
- Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Wei Zhu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuyu Zhang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.,Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
TIMP-1 Inhibits Apoptosis in Lung Adenocarcinoma Cells via Interaction with Bcl-2. PLoS One 2015; 10:e0137673. [PMID: 26366732 PMCID: PMC4569297 DOI: 10.1371/journal.pone.0137673] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/20/2015] [Indexed: 01/06/2023] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are multifaceted molecules that exhibit properties beyond their classical proteinase inhibitory function. Although TIMP-1 is a known inhibitor of apoptosis in mammalian cells, the mechanisms by which it exerts its effects are not well-established. Our earlier studies using H2009 lung adenocarcinoma cells, implanted in the CNS, showed that TIMP-1 overexpressing H2009 cells (HB-1), resulted in more aggressive tumor kinetics and increased vasculature. The present study was undertaken to elucidate the role of TIMP-1 in the context of apoptosis, using the same lung cancer cell lines. Overexpressing TIMP-1 in a lung adenocarcinoma cell line H2009 resulted in an approximately 3-fold increased expression of Bcl-2, with a marked reduction in apoptosis upon staurosporine treatment. This was an MMP-independent function as a clone expressing TIMP-1 mutant T2G, lacking MMP inhibition activity, inhibited apoptosis as strongly as TIMP1 overexpressing clones, as determined by inhibition of PARP cleavage. Immunoprecipitation of Bcl-2 from cell lysates also co-immunoprecipitated TIMP-1, indicative of an interaction between these two proteins. This interaction was specific for TIMP-1 as TIMP-2 was not present in the Bcl-2 pull-down. Additionally, we show a co-dependency of TIMP-1 and Bcl-2 RNA and protein levels, such that abrogating Bcl-2 causes a downregulation of TIMP-1 but not TIMP-2. Finally, we demonstrate that TIMP-1 dependent inhibition of apoptosis occurs through p90RSK, with phosphorylation of the pro-apoptotic protein BAD at serine 112, ultimately reducing Bax levels and increasing mitochondrial permeability. Together, these studies define TIMP-1 as an important cancer biomarker and demonstrate the potential TIMP-1 as a crucial therapeutic target.
Collapse
|
9
|
Samal R, Ameling S, Dhople V, Sappa PK, Wenzel K, Völker U, Felix SB, Hammer E, Könemann S. Brain derived neurotrophic factor contributes to the cardiogenic potential of adult resident progenitor cells in failing murine heart. PLoS One 2015; 10:e0120360. [PMID: 25799225 PMCID: PMC4370398 DOI: 10.1371/journal.pone.0120360] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/05/2015] [Indexed: 12/22/2022] Open
Abstract
Aims Resident cardiac progenitor cells show homing properties when injected into the injured but not to the healthy myocardium. The molecular background behind this difference in behavior needs to be studied to elucidate how adult progenitor cells can restore cardiac function of the damaged myocardium. Since the brain derived neurotrophic factor (BDNF) moderates cardioprotection in injured hearts, we focused on delineating its regulatory role in the damaged myocardium. Methods and Results Comparative gene expression profiling of freshly isolated undifferentiated Sca-1 progenitor cells derived either from heart failure transgenic αMHC-CyclinT1/Gαq overexpressing mice or wildtype littermates revealed transcriptional variations. Bdnf expression was up regulated 5-fold during heart failure which was verified by qRT-PCR and confirmed at protein level. The migratory capacity of Sca-1 cells from transgenic hearts was improved by 15% in the presence of 25ng/ml BDNF. Furthermore, BDNF-mediated effects on Sca-1 cells were studied via pulsed Stable Isotope Labeling of Amino acids in Cell Culture (pSILAC) proteomics approach. After BDNF treatment significant differences between newly synthesized proteins in Sca-1 cells from control and transgenic hearts were observed for CDK1, SRRT, HDGF, and MAP2K3 which are known to regulate cell cycle, survival and differentiation. Moreover BDNF repressed the proliferation of Sca-1 cells from transgenic hearts. Conclusion Comparative profiling of resident Sca-1 cells revealed elevated BDNF levels in the failing heart. Exogenous BDNF (i) stimulated migration, which might improve the homing ability of Sca-1 cells derived from the failing heart and (ii) repressed the cell cycle progression suggesting its potency to ameliorate heart failure.
Collapse
Affiliation(s)
- Rasmita Samal
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Vishnu Dhople
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Praveen Kumar Sappa
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Kristin Wenzel
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research) partner site, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research) partner site, Greifswald, Germany
| | - Stephan B. Felix
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research) partner site, Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research) partner site, Greifswald, Germany
- * E-mail: (EH); (SK)
| | - Stephanie Könemann
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research) partner site, Greifswald, Germany
- * E-mail: (EH); (SK)
| |
Collapse
|
10
|
Du S, Mao G, Zhu T, Luan Z, Du Y, Gu H. TIMP1 in conditioned media of human adipose stromal cells protects neurons against oxygen-glucose deprivation injury. Neurosci Lett 2015; 584:56-9. [DOI: 10.1016/j.neulet.2014.09.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 11/26/2022]
|
11
|
Systemic treatment with erythropoietin protects the neurovascular unit in a rat model of retinal neurodegeneration. PLoS One 2014; 9:e102013. [PMID: 25013951 PMCID: PMC4094460 DOI: 10.1371/journal.pone.0102013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 06/12/2014] [Indexed: 12/14/2022] Open
Abstract
Rats expressing a transgenic polycystic kidney disease (PKD) gene develop photoreceptor degeneration and subsequent vasoregression, as well as activation of retinal microglia and macroglia. To target the whole neuroglialvascular unit, neuro- and vasoprotective Erythropoietin (EPO) was intraperitoneally injected into four –week old male heterozygous PKD rats three times a week at a dose of 256 IU/kg body weight. For comparison EPO-like peptide, lacking unwanted side effects of EPO treatment, was given five times a week at a dose of 10 µg/kg body weight. Matched EPO treated Sprague Dawley and water-injected PKD rats were held as controls. After four weeks of treatment the animals were sacrificed and analysis of the neurovascular morphology, glial cell activity and pAkt localization was performed. The number of endothelial cells and pericytes did not change after treatment with EPO or EPO-like peptide. There was a nonsignificant reduction of migrating pericytes by 23% and 49%, respectively. Formation of acellular capillaries was significantly reduced by 49% (p<0.001) or 40% (p<0.05). EPO-treatment protected against thinning of the central retina by 10% (p<0.05), a composite of an increase of the outer nuclear layer by 12% (p<0.01) and in the outer segments of photoreceptors by 26% (p<0.001). Quantification of cell nuclei revealed no difference. Microglial activity, shown by gene expression of CD74, decreased by 67% (p<0.01) after EPO and 36% (n.s.) after EPO-like peptide treatment. In conclusion, EPO safeguards the neuroglialvascular unit in a model of retinal neurodegeneration and secondary vasoregression. This finding strengthens EPO in its protective capability for the whole neuroglialvascular unit.
Collapse
|
12
|
Ries C. Cytokine functions of TIMP-1. Cell Mol Life Sci 2014; 71:659-72. [PMID: 23982756 PMCID: PMC11113289 DOI: 10.1007/s00018-013-1457-3] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 12/13/2022]
Abstract
The tissue inhibitors of metalloproteinases (TIMPs) are well recognized for their role in extracellular matrix remodeling by controlling the activity of matrix metalloproteinases (MMPs). Independent of MMP inhibition, TIMPs act as signaling molecules with cytokine-like activities thereby influencing various biological processes including cell growth, apoptosis, differentiation, angiogenesis, and oncogenesis. Recent studies on TIMP-1's cytokine functions have identified complex regulatory networks involving a specific surface receptor and subsequent signaling pathways including miRNA-mediated posttranscriptional regulation of gene expression that ultimately control the fate and behavior of the cells. The present review summarizes the current knowledge on TIMP-1 as a cytokine modulator of cell functions, outlines recent progress in defining molecular pathways that transmit TIMP-1 signals from the cell periphery into the nucleus, and discusses TIMP-1's role as a cytokine in the pathophysiology of cancer and other human diseases.
Collapse
Affiliation(s)
- Christian Ries
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich, Pettenkoferstrasse 9b, 80336, Munich, Germany,
| |
Collapse
|
13
|
Musiał K, Zwolińska D. Hsp27 as a marker of cell damage in children on chronic dialysis. Cell Stress Chaperones 2012; 17:675-82. [PMID: 22528051 PMCID: PMC3468681 DOI: 10.1007/s12192-012-0339-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/28/2012] [Accepted: 03/30/2012] [Indexed: 12/23/2022] Open
Abstract
Intracellular heat shock protein (Hsp) 27 is a potent anti-apoptotic factor that, among other activities, prevents the binding of membrane receptor Fas to its ligand FasL. However, the potential role of extracellular Hsp27 and possibilities to control it have not been clarified. Moreover, there are no data on relations between Hsp27, sFas/sFasL system, matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in patients with chronic kidney disease (CKD)-neither children nor adults. The aim of this study was to evaluate serum concentrations of Hsp27 and their potential regulators (sFas, sFasL, MMP-7, TIMP-1) in children with CKD and on chronic dialysis. Twenty-six CKD children stage 5 still on conservative treatment, 19 patients on hemodialysis (HD), 22 children on automated peritoneal dialysis (APD), and 30 controls were examined. Serum concentrations of Hsp27, sFas, sFasL, MMP-7, and TIMP-1 were assessed by ELISA. Median values of Hsp27 were significantly elevated in all dialyzed patients vs. those in pre-dialysis period and vs. controls, the highest values being observed in subjects on HD. Regression analysis revealed that MMP-7, TIMP-1, sFas, and sFasL were the best predictors of Hsp27 concentrations in dialyzed patients. Children with CKD are prone to Hsp27 dysfunction, aggravated by the dialysis commencement, and more pronounced in patients on hemodialysis. Correlations between Hsp27 and examined parameters suggest the potential role for Hsp27 as a marker of cell damage in the pediatric population on chronic dialysis.
Collapse
Affiliation(s)
- Kinga Musiał
- Department of Pediatric Nephrology, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland
| | - Danuta Zwolińska
- Department of Pediatric Nephrology, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland
| |
Collapse
|
14
|
Musiał K, Zwolińska D. The sFas/sFasL ratio as a novel marker of inflammation in children with chronic kidney disease. Clin Chim Acta 2012; 414:7-11. [PMID: 22898262 DOI: 10.1016/j.cca.2012.07.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/05/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Membrane Fas-FasL binding triggers apoptosis, enhanced in chronic kidney disease (CKD). However, the role of soluble forms, sFas and sFasL, remains unclear. Matrix metalloproteinases (MMPs) are known converters of sFasL from the membrane-bound form, but there are no data on relations between sFas/sFasL, MMPs, their tissue inhibitors (TIMPs) or inflammatory/endothelial factors in CKD patients. We aimed to evaluate correlations between sFas, sFasL, MMP-2, MMP-7, MMP-9, TIMP-1, TIMP-2, and the role of sFas/sFasL as markers of inflammation and endothelial dysfunction. METHODS Serum concentrations of sFas, sFasL, MMPs, TIMPs, hsCRP, IL-4 and sE-selectin were assessed by ELISA in 65 CKD children and in 30 controls. RESULTS sFas, sFasL, sFas/sFasL ratio, MMPs, TIMPs, sE-selectin and IL-4 levels were significantly enhanced in CKD patients vs. controls. sFas/sFasL ratio correlated with inflammatory/endothelial markers. sE-selectin was the best predictor of sFas and sFas/sFasL ratio. MMP-9, TIMP-1 and IL-4 predicted most accurately the sFasL concentrations. CONCLUSIONS CKD children present with progressive sFas/sFasL dysfunction. Relations between sFas/sFasL, MMPs and TIMPs indicate the potential role of metalloproteinases in the sFas/sFasL regulation. Correlations with hsCRP, sE-selectin and IL-4 suggest that sFas/sFasL ratio may become a new marker of inflammation and endothelial dysfunction in children with CKD.
Collapse
Affiliation(s)
- Kinga Musiał
- Department of Pediatric Nephrology, Wrocław Medical University, Borowska 213, 50–556 Wrocław, Poland
| | | |
Collapse
|
15
|
Boggio E, Indelicato M, Orilieri E, Mesturini R, Mazzarino MC, Campagnoli MF, Ramenghi U, Dianzani U, Chiocchetti A. Role of tissue inhibitor of metalloproteinases-1 in the development of autoimmune lymphoproliferation. Haematologica 2010; 95:1897-904. [PMID: 20595097 DOI: 10.3324/haematol.2010.023085] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Inherited defects decreasing function of the Fas death receptor cause autoimmune lymphoproliferative syndrome and its variant Dianzani's autoimmune lymphoproliferative disease. Analysis of the lymphocyte transcriptome from a patient with this latter condition detected striking over-expression of osteopontin and tissue inhibitor of metalloproteinases-1. Since previous work on osteopontin had detected increased serum levels in these patients, associated with variations of its gene, the aim of this work was to extend the analysis to tissue inhibitor of metalloproteinases-1. DESIGN AND METHODS Tissue inhibitor of metalloproteinases-1 levels were evaluated in sera and culture supernatants from patients and controls by enzyme-linked immunosorbent assay. Activation- and Fas-induced cell death were induced, in vitro, using anti-CD3 and anti-Fas antibodies, respectively. RESULTS Tissue inhibitor of metalloproteinases-1 levels were higher in sera from 32 patients (11 with autoimmune lymphoproliferative syndrome and 21 with Dianzani's autoimmune lymphoproliferative disease) than in 50 healthy controls (P<0.0001), unassociated with variations of the tissue inhibitor of metalloproteinases-1 gene. Both groups of patients also had increased serum levels of osteopontin. In vitro experiments showed that osteopontin increased tissue inhibitor of metalloproteinases-1 secretion by peripheral blood monocytes. Moreover, tissue inhibitor of metalloproteinases-1 significantly inhibited both Fas- and activation-induced cell death of lymphocytes. CONCLUSIONS These data suggest that high osteopontin levels may support high tissue inhibitor of metalloproteinases-1 levels in autoimmune lymphoproliferative syndrome and Dianzani's autoimmune lymphoproliferative disease, and hence worsen the apoptotic defect in these diseases.
Collapse
Affiliation(s)
- Elena Boggio
- Department of Medical Sciences, Interdisciplinary Research Center of Autoimmune Diseases, A AvogadroUniversity of Eastern Piedmont, Novara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Schiltz C, Prouillet C, Marty C, Merciris D, Collet C, de Vernejoul MC, Geoffroy V. Bone loss induced by Runx2 over-expression in mice is blunted by osteoblastic over-expression of TIMP-1. J Cell Physiol 2009; 222:219-29. [PMID: 19780057 DOI: 10.1002/jcp.21941] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Runx2 gene is essential for osteoblast differentiation and function. In vivo over-expression of Runx2 in osteoblasts increases bone resorption, and blocks terminal osteoblast differentiation. Several lines of evidence suggest that osteoblastic matrix metalloproteinases (MMPs) could contribute to the increased bone resorption observed in mice over-expressing Runx2 (Runx2 mice). The goal of our study was to use a transgenic approach to find out whether the inhibition of osteoblastic MMPs can reduce the bone loss induced by the over-expression of Runx2. We analyzed the effect of the in vivo over-expression of the TIMP-1 in osteoblasts on the severe osteopenic phenotype in Runx2 mice. Females with the different genotypes (WT, Runx2, TIMP-1 and TIMP-1/Runx2) were analyzed for bone density, architecture, osteoblastic and osteoclastic activity and gene expression using qPCR. TIMP-1 over-expression reduces the bone loss in adult Runx2 mice. The prevention of the bone loss in TIMP-1/Runx2 mice was due to a combination of reduced bone resorption and sustained bone formation. We present evidence that the ability of osteoblastic cells to induce osteoclastic differentiation is lower in TIMP-1/Runx2 mice than in Runx2 mice, probably due to a reduction in the expression of RANK-L and of the Runx2 transgene. Osteoblast primary cells from TIMP-1/Runx2 mice, but not from Runx2 mice, were able to differentiate into fully mature osteoblasts producing high osteocalcin levels. In conclusion, our findings suggest that osteoblastic MMPs can affect osteoblast differentiation. Our work also indicates that osteoblastic MMPs are partly responsible for the bone loss observed in Runx2 transgenic mice.
Collapse
|
17
|
Xie H, Tang LL, Luo XH, Wu XY, Wu XP, Zhou HD, Yuan LQ, Liao EY. Suppressive effect of dexamethasone on TIMP-1 production involves murine osteoblastic MC3T3-E1 cell apoptosis. Amino Acids 2009; 38:1145-53. [DOI: 10.1007/s00726-009-0325-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 07/09/2009] [Indexed: 01/18/2023]
|
18
|
Chao C, Ghorpade A. Production and Roles of Glial Tissue Inhibitor of Metalloproteinases-1 in Human Immunodeficiency Virus-1-Associated Dementia Neuroinflammation: A Review. ACTA ACUST UNITED AC 2009; 5:314-320. [PMID: 20585405 DOI: 10.3844/ajidsp.2009.314.319] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PROBLEM STATEMENT: Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) and its cognate targets, the Matrix Metalloproteinases (MMPs), were differentially expressed in human brain samples with or without HIV-1 infection or HIV-1 Encephalitis (HIVE). APPROACH: A through literature review demonstrated that cell culture models of Central Nervous System (CNS) cell types had been used to illustrate the intricate temporal patterns of TIMP-1/MMP expression, regulated by a variety of inflammatory cytokines. RESULTS: As MMPs and TIMP-1 can significantly altered the extracellular environment and cell signaling, the differential regulation of TIMP-1/MMP expression in neuroinflammation can impact neuronal function and survival in disease conditions. TIMP-1 pro-survival effects had been demonstrated in a variety of cell types including CNS neurons, protecting cells from a wide range of stress and insults. TIMP-1, also known to interact with non-MMP targets, altered cell behavior. In this review, we discussed the possibility that the upregulation of TIMP-1 by glia in acute neuroinflammation may be a neuroprotective response. CONCLUSION: It will be important to delineate the effects of TIMP-1 on neurons and identify receptors and downstream signaling pathways, in order to evaluate TIMP-1 as a therapeutic strategy for neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- C Chao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | | |
Collapse
|
19
|
Kuvaja P, Talvensaari-Mattila A, Turpeenniemi-Hujanen T. High preoperative plasma TIMP-1 is prognostic for early relapse in primary breast carcinoma. Int J Cancer 2008; 123:846-51. [PMID: 18506691 DOI: 10.1002/ijc.23531] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
TIMP-1 is a natural inhibitor of extracellular matrix degrading enzymes called matrix metalloproteinases. In addition to its capacity to inhibit matrix degradation, TIMP-1 has been shown to promote cell growth and inhibit apoptosis. The expression of TIMP-1 in tumor tissue, as well as in circulating blood, has therefore been shown to associate with worsened survival in several malignancies. In our study, a prospective series of 213 patients with primary breast carcinoma was assessed. Circulating pre- and postoperative TIMP-1 levels were assayed using enzyme-linked immunosorbent assay analysis. It was shown that high preoperative plasma TIMP-1 was a powerful predictor of systemic early relapse in breast carcinoma, with HR 8.1 (95% CI 1.8-37.6) (p = 0.007) as a log-transformed continuous variable in Cox regression univariate analysis. It was shown to be independent of, and superior to, nodal status as a prognostic variable in multivariate analysis, and not associated with any known prognostic clinicopathological parameters. Kaplan-Meier analysis showed that the patients belonging to the highest quartile of circulating TIMP-1 levels had a worsened recurrence-free survival of 79% compared to 94% RFS among patients in the lower quartiles (p = 0.016). The postoperative levels of circulating plasma TIMP-1 were not found to be prognostic for relapse. In conclusion, preoperative plasma TIMP-1 was found to be a powerful prognostic factor for early systemic relapse in primary breast carcinoma.
Collapse
Affiliation(s)
- Paula Kuvaja
- Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland.
| | | | | |
Collapse
|
20
|
Mateos-Cáceres PJ, López-Farré AJ, Morata PC, Ramos-Mozo P, Macaya C, Serrano FJ, Moñux G. Pravastatin increases the expression of the tissue inhibitor of matrix metalloproteinase-1 and the oncogeneBaxin human aortic abdominal aneurysms. Can J Physiol Pharmacol 2008; 86:431-7. [DOI: 10.1139/y08-060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of pravastatin on matrix metalloproteinase-9 (MMP-9) and the level of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 was studied in explants of human abdominal aortic aneurysm (AAA) obtained from 13 patients. The effect of pravastatin on the apoptotic status of human AAA explants was also examined. Total MMP-9 content did not differ in human AAA explants incubated in vitro in the presence or absence of pravastatin (10−6mol/L) for 48 h. TIMP-1 levels were significantly increased in pravastatin-incubated AAA explants, but TIMP-2 production was not modified by pravastatin. Western blot experiments showed that, whereas Bax expression was increased in pravastatin-incubated AAA explants, the expression of Bcl-2 was not modified. On the other hand, the ratio of the expression of Bax to Bcl-2, an apoptotic index, was not modified by pravastatin. In the human AAA explants, the increase in Bax expression, but not the increase in TIMP-1 expression elicited by pravastatin, was reversed by l-mevalonate, a downstream HMG-CoA reductase metabolite, suggesting that the expression of Bax and TIMP-1 followed HMG-CoA reductase-dependent and -independent pathways, respectively. In conclusion, pravastatin increases both TIMP-1 and Bax expression in human AAA explants without changes in either MMP-9 activity or the apoptotic status.
Collapse
Affiliation(s)
- Petra J. Mateos-Cáceres
- Vascular Surgery Department, Cardiovascular Institute, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain
- Cardiovascular Research Unit, Cardiovascular Institute, Hospital Clínico San Carlos, Madrid 28040, Spain
| | - Antonio J. López-Farré
- Vascular Surgery Department, Cardiovascular Institute, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain
- Cardiovascular Research Unit, Cardiovascular Institute, Hospital Clínico San Carlos, Madrid 28040, Spain
| | - Pilar C. Morata
- Vascular Surgery Department, Cardiovascular Institute, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain
- Cardiovascular Research Unit, Cardiovascular Institute, Hospital Clínico San Carlos, Madrid 28040, Spain
| | - Priscila Ramos-Mozo
- Vascular Surgery Department, Cardiovascular Institute, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain
- Cardiovascular Research Unit, Cardiovascular Institute, Hospital Clínico San Carlos, Madrid 28040, Spain
| | - Carlos Macaya
- Vascular Surgery Department, Cardiovascular Institute, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain
- Cardiovascular Research Unit, Cardiovascular Institute, Hospital Clínico San Carlos, Madrid 28040, Spain
| | - Francisco J. Serrano
- Vascular Surgery Department, Cardiovascular Institute, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain
- Cardiovascular Research Unit, Cardiovascular Institute, Hospital Clínico San Carlos, Madrid 28040, Spain
| | - Guillermo Moñux
- Vascular Surgery Department, Cardiovascular Institute, Hospital Clínico San Carlos, C/Profesor Martín Lagos s/n, Madrid 28040, Spain
- Cardiovascular Research Unit, Cardiovascular Institute, Hospital Clínico San Carlos, Madrid 28040, Spain
| |
Collapse
|
21
|
Abstract
The tumor microenvironment, composed of non-cancer cells and their stroma, has become recognized as a major factor influencing the growth of cancer. The microenvironment has been implicated in the regulation of cell growth, determining metastatic potential and possibly determining location of metastatic disease, and impacting the outcome of therapy. While the stromal cells are not malignant per se, their role in supporting cancer growth is so vital to the survival of the tumor that they have become an attractive target for chemotherapeutic agents. In this review, we will discuss the various cellular and molecular components of the stromal environment, their effects on cancer cell dynamics, and the rationale and implications of targeting this environment for control of cancer. Additionally, we will emphasize the role of the bone marrow-derived cell in providing cells for the stroma.
Collapse
Affiliation(s)
- Hanchen Li
- Division of Gastroenterology, Department of Medicine and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|