1
|
Livesey MG, Bains SS, Stern JM, Chen Z, Dubin JA, Monárrez R, Remily EA, Ingari JV. Cannabis Use in Patients With Distal Radius Fractures: A Moment of Unity? Hand (N Y) 2025; 20:263-268. [PMID: 37787484 PMCID: PMC11833905 DOI: 10.1177/15589447231196905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
BACKGROUND As legalization of cannabis spreads, an increasing number of patients who use cannabis are being seen in the clinical setting. This study examined the impact of cannabis and tobacco use on postoperative complications following open reduction and internal fixation (ORIF) of distal radius fractures. METHODS A national, all-payer database was queried to identify patients who underwent ORIF of a distal radius fracture between 2015 and 2020 (n = 970 747). Patients were stratified into the following groups: (1) tobacco use (n = 86 941), (2) cannabis use (n = 898), (3) tobacco and cannabis use (n = 9842), and (4) neither tobacco nor cannabis use ("control", 747 892). Multivariable logistic regression was used to identify risk factors for infection, nonunion, and malunion within the first postoperative year. RESULTS Concomitant use of tobacco and cannabis was associated with a higher rate of nonunion (5.0%) compared to tobacco or cannabis use alone (P < .001). Multivariate analysis identified cannabis-only use (odds ratio [OR] 1.25), tobacco-only use (OR 2.17), and concurrent tobacco and cannabis use (OR 1.78) as risk factors for infection within the first postoperative year. Similarly, cannabis-only use (OR 1.47), tobacco-only use (OR 1.92), and concurrent tobacco and cannabis use (OR 2.52) were associated with an increased risk of malunion. CONCLUSIONS Cannabis use is associated with an elevated risk of infection and malunion following operative management of a distal radius fracture. Concomitant use of cannabis and tobacco poses an elevated risk of nonunion and malunion compared to tobacco use alone.
Collapse
Affiliation(s)
- Michael G. Livesey
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, USA
| | | | | | - Zhongming Chen
- Rubin Institute for Advanced Orthopedics, Baltimore, MD, USA
| | - Jeremy A. Dubin
- Rubin Institute for Advanced Orthopedics, Baltimore, MD, USA
| | - Rubén Monárrez
- Rubin Institute for Advanced Orthopedics, Baltimore, MD, USA
| | - Ethan A. Remily
- Rubin Institute for Advanced Orthopedics, Baltimore, MD, USA
| | - John V. Ingari
- Rubin Institute for Advanced Orthopedics, Baltimore, MD, USA
| |
Collapse
|
2
|
Aurilia C, Palmini G, Donati S, Falsetti I, Galli G, Margheriti L, Iantomasi T, Moro A, Brandi ML. The Presence of the Endocannabinoid System in an In Vitro Model of Gorham-Stout Disease and Its Possible Role in the Pathogenesis. Int J Mol Sci 2025; 26:1143. [PMID: 39940911 PMCID: PMC11818735 DOI: 10.3390/ijms26031143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Gorham-Stout syndrome (GSD), also known as disappearing bone disease, is an extremely rare bone disorder, characterized by a huge bone loss, which is followed by a lack of new matrix deposition and an excessive proliferation of both blood vessels and lymphatics. Unfortunately, the biological causes of GSD are still unknown. Recent studies that have tried to understand the etiopathogenesis of GSD have been principally focused on the vascular and osteoclastogenic aspects, not considering the possibility of a lack of osteoblast function. Nowadays, a diagnosis is still difficult, and is often made by exclusion of the presence of other pathologies, as well as on radiological evidence, and finally confirmed by histological examination. Treatment also remains a critical issue for clinicians today, who mostly try to control the progression of the disease. Over the last two decades, clear evidence has emerged that the endocannabinoid system plays an important role in bone metabolism, leading scientists to hypothesize that it could be involved in physiological and pathological bone processes. In this work, we analyzed the presence of the ES in a primary cell line of human mesenchymal stem cells derived from a GSD patient for the first time, to understand if and how this complex network may play a role in the pathogenesis of the syndrome. Our preliminary results demonstrated that the ES is also present in the pathological tissue. Moreover, the qRT-PCR analysis showed an altered expression of the different ES components (i.e., CNR1, CNR2, TRPV1, and GPR55). We observed an upregulation of CNR1 and TRPV1 expression, while the opposite trend was noticed for CNR2 and GPR55 expression. Thus, these results could lead us to speculate that possible deregulation of the ES may play an important role in the lack of bone regeneration in GSD patients. However, further studies will be necessary to confirm the role of the ES in the progression of GSD and understand whether the natural components of Cannabis Sativa could play a therapeutic role in the treatment of the disease.
Collapse
MESH Headings
- Humans
- Osteolysis, Essential/metabolism
- Osteolysis, Essential/pathology
- Osteolysis, Essential/genetics
- Osteolysis, Essential/etiology
- Endocannabinoids/metabolism
- Mesenchymal Stem Cells/metabolism
- Mesenchymal Stem Cells/pathology
- TRPV Cation Channels/metabolism
- TRPV Cation Channels/genetics
- Cell Line
- Receptors, Cannabinoid/metabolism
- Receptors, Cannabinoid/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
Collapse
Affiliation(s)
- Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.A.); (S.D.); (I.F.); (G.G.); (T.I.)
| | - Gaia Palmini
- Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), 50141 Florence, Italy;
| | - Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.A.); (S.D.); (I.F.); (G.G.); (T.I.)
| | - Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.A.); (S.D.); (I.F.); (G.G.); (T.I.)
| | - Gianna Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.A.); (S.D.); (I.F.); (G.G.); (T.I.)
| | - Lorenzo Margheriti
- Stabilimento Chimico Farmaceutico Militare (SCFM)—Agenzia Industrie Difesa (AID), 50141 Florence, Italy; (L.M.); (A.M.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.A.); (S.D.); (I.F.); (G.G.); (T.I.)
| | - Arcangelo Moro
- Stabilimento Chimico Farmaceutico Militare (SCFM)—Agenzia Industrie Difesa (AID), 50141 Florence, Italy; (L.M.); (A.M.)
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), 50141 Florence, Italy;
| |
Collapse
|
3
|
Zeng F, Wade A, Harbert K, Patel S, Holley JS, Dehghanpuor CK, Hopwood T, Marino S, Sophocleous A, Idris AI. Classical cannabinoid receptors as target in cancer-induced bone pain: a systematic review, meta-analysis and bioinformatics validation. Sci Rep 2024; 14:5782. [PMID: 38461339 PMCID: PMC10924854 DOI: 10.1038/s41598-024-56220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
To test the hypothesis that genetic and pharmacological modulation of the classical cannabinoid type 1 (CB1) and 2 (CB2) receptors attenuate cancer-induced bone pain, we searched Medline, Web of Science and Scopus for relevant skeletal and non-skeletal cancer studies from inception to July 28, 2022. We identified 29 animal and 35 human studies. In mice, a meta-analysis of pooled studies showed that treatment of osteolysis-bearing males with the endocannabinoids AEA and 2-AG (mean difference [MD] - 24.83, 95% confidence interval [95%CI] - 34.89, - 14.76, p < 0.00001) or the synthetic cannabinoid (CB) agonists ACPA, WIN55,212-2, CP55,940 (CB1/2-non-selective) and AM1241 (CB2-selective) (MD - 28.73, 95%CI - 45.43, - 12.02, p = 0.0008) are associated with significant reduction in paw withdrawal frequency. Consistently, the synthetic agonists AM1241 and JWH015 (CB2-selective) increased paw withdrawal threshold (MD 0.89, 95%CI 0.79, 0.99, p < 0.00001), and ACEA (CB1-selective), AM1241 and JWH015 (CB2-selective) reduced spontaneous flinches (MD - 4.85, 95%CI - 6.74, - 2.96, p < 0. 00001) in osteolysis-bearing male mice. In rats, significant increase in paw withdrawal threshold is associated with the administration of ACEA and WIN55,212-2 (CB1/2-non-selective), JWH015 and AM1241 (CB2-selective) in osteolysis-bearing females (MD 8.18, 95%CI 6.14, 10.21, p < 0.00001), and treatment with AM1241 (CB2-selective) increased paw withdrawal thermal latency in males (mean difference [MD]: 3.94, 95%CI 2.13, 5.75, p < 0.0001), confirming the analgesic capabilities of CB1/2 ligands in rodents. In human, treatment of cancer patients with medical cannabis (standardized MD - 0.19, 95%CI - 0.35, - 0.02, p = 0.03) and the plant-derived delta-9-THC (20 mg) (MD 3.29, CI 2.24, 4.33, p < 0.00001) or its synthetic derivative NIB (4 mg) (MD 2.55, 95%CI 1.58, 3.51, p < 0.00001) are associated with reduction in pain intensity. Bioinformatics validation of KEGG, GO and MPO pathway, function and process enrichment analysis of mouse, rat and human data revealed that CB1 and CB2 receptors are enriched in a cocktail of nociceptive and sensory perception, inflammatory, immune-modulatory, and cancer pathways. Thus, we cautiously conclude that pharmacological modulators of CB1/2 receptors show promise in the treatment of cancer-induced bone pain, however further assessment of their effects on bone pain in genetically engineered animal models and cancer patients is warranted.
Collapse
Affiliation(s)
- Feier Zeng
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Abbie Wade
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Kade Harbert
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Shrina Patel
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Joshua S Holley
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Cornelia K Dehghanpuor
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Thomas Hopwood
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Silvia Marino
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences (UAMS), BioMed II, 238-2, Little Rock, AR, USA
| | - Antonia Sophocleous
- Department of Life Sciences, School of Sciences, European University Cyprus, 6 Diogenes Street, 1516, Nicosia, Cyprus.
| | - Aymen I Idris
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
4
|
Di Paola A, Marrapodi MM, Di Martino M, Giliberti G, Di Feo G, Rana D, Ahmed S, Argenziano M, Rossi F, Roberti D. Bone Health Impairment in Patients with Hemoglobinopathies: From Biological Bases to New Possible Therapeutic Strategies. Int J Mol Sci 2024; 25:2902. [PMID: 38474150 DOI: 10.3390/ijms25052902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Hemoglobinopathies are monogenic disorders affecting hemoglobin synthesis. Thalassemia and sickle cell disease (SCD) are considered the two major hemoglobinopathies. Thalassemia is a genetic disorder and one of the major hemoglobinopathies determined by an impairment of globin chain production, which causes an alteration of erythropoiesis, an improvement in hemolysis, and an alteration of iron homoeostasis. In SCD, the mutations are on the β-globin chain of hemoglobin which results in a substitution of glutamic acid by valine with consequent formation of Hemoglobin S (HbS). Several factors are involved in bone metabolism alteration in patients with hemoglobinopathies, among them hormonal deficiency, bone marrow hyperplasia, iron overload, inflammation, and increased bone turnover. Bone metabolism is the result of balance maintenance between bone deposition and bone resorption, by osteoblasts (OBs) and osteoclasts (OCs). An impairment of this balance is responsible for the onset of bone diseases, such as osteoporosis (OP). Therefore, here we will discuss the alteration of bone metabolism in patients with hemoglobinopathies and the possible therapeutic strategies to contain and/or counteract bone health impairment in these patients, taking into consideration not only the pharmacological treatments already used in the clinical armamentarium, but also the new possible therapeutic strategies.
Collapse
Affiliation(s)
- Alessandra Di Paola
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Martina Di Martino
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giulia Giliberti
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giuseppe Di Feo
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Deeksha Rana
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Shakeel Ahmed
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maura Argenziano
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Domenico Roberti
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
5
|
Ibrahim I, Syamala S, Ayariga JA, Xu J, Robertson BK, Meenakshisundaram S, Ajayi OS. Modulatory Effect of Gut Microbiota on the Gut-Brain, Gut-Bone Axes, and the Impact of Cannabinoids. Metabolites 2022; 12:1247. [PMID: 36557285 PMCID: PMC9781427 DOI: 10.3390/metabo12121247] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The gut microbiome is a collection of microorganisms and parasites in the gastrointestinal tract. Many factors can affect this community's composition, such as age, sex, diet, medications, and environmental triggers. The relationship between the human host and the gut microbiota is crucial for the organism's survival and development, whereas the disruption of this relationship can lead to various inflammatory diseases. Cannabidiol (CBD) and tetrahydrocannabinol (THC) are used to treat muscle spasticity associated with multiple sclerosis. It is now clear that these compounds also benefit patients with neuroinflammation. CBD and THC are used in the treatment of inflammation. The gut is a significant source of nutrients, including vitamins B and K, which are gut microbiota products. While these vitamins play a crucial role in brain and bone development and function, the influence of gut microbiota on the gut-brain and gut-bone axes extends further and continues to receive increasing scientific scrutiny. The gut microbiota has been demonstrated to be vital for optimal brain functions and stress suppression. Additionally, several studies have revealed the role of gut microbiota in developing and maintaining skeletal integrity and bone mineral density. It can also influence the development and maintenance of bone matrix. The presence of the gut microbiota can influence the actions of specific T regulatory cells, which can lead to the development of bone formation and proliferation. In addition, its metabolites can prevent bone loss. The gut microbiota can help maintain the bone's equilibrium and prevent the development of metabolic diseases, such as osteoporosis. In this review, the dual functions gut microbiota plays in regulating the gut-bone axis and gut-brain axis and the impact of CBD on these roles are discussed.
Collapse
Affiliation(s)
- Iddrisu Ibrahim
- The Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| | - Soumyakrishnan Syamala
- Departments of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Joseph Atia Ayariga
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| | - Junhuan Xu
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| | - Boakai K. Robertson
- The Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| | - Sreepriya Meenakshisundaram
- Department of Microbiology and Biotechnology, JB Campus, Bangalore University, Bangalore 560 056, Karnataka, India
| | - Olufemi S. Ajayi
- The Industrial Hemp Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| |
Collapse
|
6
|
Clouse G, Penman S, Hadjiargyrou M, Komatsu DE, Thanos PK. Examining the role of cannabinoids on osteoporosis: a review. Arch Osteoporos 2022; 17:146. [PMID: 36401719 DOI: 10.1007/s11657-022-01190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/11/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE Prior research studies have shown that the endocannabinoid system, influenced by CBD and THC, plays a role in bone remodeling. As both the research on cannabis and use of cannabis continue to grow, novel medicinal uses of both its constituents as well as the whole plant are being discovered. This review examines the role of cannabinoids on osteoporosis, more specifically, the endocannabinoid system and its role in bone remodeling and the involvement of the cannabinoid receptors 1 and 2 in bone health, as well as the effects of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and synthetic cannabinoids on bone. METHODS A comprehensive literature search of online databases including PUBMED was utilized. RESULTS A total of 29 studies investigating the effects of cannabis and/or its constituents as well as the activation or inactivation of cannabinoid receptors 1 and 2 were included and discussed. CONCLUSION While many of the mechanisms are still not yet fully understood, both preclinical and clinical studies show that the effects of cannabis mediated through the endocannabinoid system may prove to be an effective treatment option for individuals with osteoporosis.
Collapse
Affiliation(s)
- Grace Clouse
- Behavioral Neuropharmacology and Neuroimaging Laboratory On Addictions (BNNLA), Research Institute On Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Samantha Penman
- Behavioral Neuropharmacology and Neuroimaging Laboratory On Addictions (BNNLA), Research Institute On Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY, USA
| | - David E Komatsu
- Department of Orthopedics, Stony Brook University, Stony Brook, NY, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory On Addictions (BNNLA), Research Institute On Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA. .,Department of Psychology, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
7
|
Wilson-Barnes SL, Lanham-New SA, Lambert H. Modifiable risk factors for bone health & fragility fractures. Best Pract Res Clin Rheumatol 2022; 36:101758. [PMID: 35750569 DOI: 10.1016/j.berh.2022.101758] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoporosis is an ageing disorder characterised by poor microstructural architecture of the bone and an increase in the risk of fragility fractures, which often leads to hospitalisation and eventually a loss of mobility and independence. By 2050, it is estimated that more than 30 million people in Europe will be affected by bone diseases, and European hospitalisation alone can approximately cost up to 3.5 billion euros each year [1]. Although inherited variation in bone mineral density (BMD) is pre-determined by up to 85% [2], there is a window of opportunity to optimise BMD and reduce fracture risk through key modifiable lifestyle factors during the life course. An optimal diet rich in micronutrients, such as calcium, vitamin D, and potassium, has long been considered an important modifiable component of bone health, which is attributed to their direct roles within bone metabolism. Recently, there has been emerging evidence to suggest that protein and even an adequate intake of fruit and vegetables may also play an important role in improving BMD [3,4]. Maintaining a physically active lifestyle is not only protective from non-communicable diseases such as cardiovascular disease but it also has been shown to lessen the risk of fractures later in life, thereby making it an imperative modifiable factor for bone health, particularly as it also supports peak bone mass attainment during childhood/adolescence and can facilitate the maintenance of bone mass throughout adulthood [5]. Other key lifestyle factors that could be potentially modified to reduce the risk of osteoporosis or osteoporotic fractures later in life include smoking status, alcohol intake, and body composition [6]. Therefore, the principle aim of this review is to highlight the recent evidence pertaining to modifiable lifestyle factors that contribute to optimal bone health and the prevention of fragility fractures in later life.
Collapse
Affiliation(s)
- Saskia L Wilson-Barnes
- Department of Nutritional Sciences, School of Biosciences & Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK.
| | - Susan A Lanham-New
- Department of Nutritional Sciences, School of Biosciences & Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Helen Lambert
- Department of Nutritional Sciences, School of Biosciences & Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
8
|
Sui K, Tveter KM, Bawagan FG, Buckendahl P, Martinez SA, Jaffri ZH, MacDonell AT, Wu Y, Duran RM, Shapses SA, Roopchand DE. Cannabidiol-Treated Ovariectomized Mice Show Improved Glucose, Energy, and Bone Metabolism With a Bloom in Lactobacillus. Front Pharmacol 2022; 13:900667. [PMID: 35800441 PMCID: PMC9255917 DOI: 10.3389/fphar.2022.900667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Loss of ovarian 17β-estradiol (E2) in postmenopause is associated with gut dysbiosis, inflammation, and increased risk of cardiometabolic disease and osteoporosis. The risk-benefit profile of hormone replacement therapy is not favorable in postmenopausal women therefore better treatment options are needed. Cannabidiol (CBD), a non-psychotropic phytocannabinoid extracted from hemp, has shown pharmacological activities suggesting it has therapeutic value for postmenopause, which can be modeled in ovariectomized (OVX) mice. We evaluated the efficacy of cannabidiol (25 mg/kg) administered perorally to OVX and sham surgery mice for 18 weeks. Compared to VEH-treated OVX mice, CBD-treated OVX mice had improved oral glucose tolerance, increased energy expenditure, improved whole body areal bone mineral density (aBMD) and bone mineral content as well as increased femoral bone volume fraction, trabecular thickness, and volumetric bone mineral density. Compared to VEH-treated OVX mice, CBD-treated OVX mice had increased relative abundance of fecal Lactobacillus species and several gene expression changes in the intestine and femur consistent with reduced inflammation and less bone resorption. These data provide preclinical evidence supporting further investigation of CBD as a therapeutic for postmenopause-related disorders.
Collapse
Affiliation(s)
- Ke Sui
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Kevin M. Tveter
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Fiona G. Bawagan
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Patricia Buckendahl
- Molecular Imaging Center, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Savannah A. Martinez
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Zehra H. Jaffri
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Avery T. MacDonell
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Yue Wu
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Rocio M. Duran
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sue A. Shapses
- Department of Nutritional Sciences, NJ Institute for Food Nutrition and Health, Rutgers, The State University of New Jersey, and the Department of Medicine, Rutgers-RWJ Medical School, New Brunswick, NJ, United States
| | - Diana E. Roopchand
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
9
|
Khunluck T, Lertsuwan K, Chutoe C, Sooksawanwit S, Inson I, Teerapornpuntakit J, Tohtong R, Charoenphandhu N. Activation of cannabinoid receptors in breast cancer cells improves osteoblast viability in cancer-bone interaction model while reducing breast cancer cell survival and migration. Sci Rep 2022; 12:7398. [PMID: 35513484 PMCID: PMC9072415 DOI: 10.1038/s41598-022-11116-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
The endocannabinoid system has been postulated to help restrict cancer progression and maintain osteoblastic function during bone metastasis. Herein, the effects of cannabinoid receptor (CB) type 1 and 2 activation on breast cancer cell and osteoblast interaction were investigated by using ACEA and GW405833 as CB1 and CB2 agonists, respectively. Our results showed that breast cancer cell (MDA-MB-231)-derived conditioned media markedly decreased osteoblast-like UMR-106 cell viability. In contrast, media from MDA-MB-231 cells pre-treated with GW405833 improved UMR-106 cell viability. MDA-MB-231 cells were apparently more susceptible to both CB agonists than UMR-106 cells. Thereafter, we sought to answer the question as to how CB agonists reduced MDA-MB-231 cell virulence. Present data showed that co-activation of CB1 and CB2 exerted cytotoxic effects on MDA-MB-231 cells by increasing apoptotic cell death through suppression of the NF-κB signaling pathway in an ROS-independent mechanism. ACEA or GW405833 alone or in combination also inhibited MDA-MB-231 cell migration. Thus, it can be concluded that the endocannabinoid system is able to provide protection during breast cancer bone metastasis by interfering cancer and bone cell interaction as well as by the direct suppression of cancer cell growth and migration.
Collapse
Affiliation(s)
- Tueanjai Khunluck
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Kornkamon Lertsuwan
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. .,Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| | - Chartinun Chutoe
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Supagarn Sooksawanwit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ingon Inson
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
10
|
Heath D, Ghali A, Momtaz D, Lee L, Hogue G. Marijuana Use Results in Increased Time to Union in Surgically Treated Pediatric Fracture Patients. J Orthop Trauma 2022; 36:e106-e110. [PMID: 34387569 DOI: 10.1097/bot.0000000000002242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify the impact of marijuana use on fracture healing in surgically treated pediatric patients. DESIGN Retrospective review. SETTING Level 1 trauma center, single-center study. PATIENTS/PARTICIPANTS Surgically treated pediatric patients 10-18 years with extremity fractures from 2010 to 2020. Conservatively treated patients and patients with nonunions were excluded from the study. Three hundred thirty-nine patients were included in the study, 21 of which were confirmed marijuana users by toxicology screening. INTERVENTION Surgical treatment of extremity fractures by any type of fixation. MAIN OUTCOME MEASUREMENTS Time to union was the primary outcome and was defined as radiographic evidence of bridging callus on all sides of the fracture and absence of the previous fracture line. Analysis of covariance, logistic regression analysis, and Fisher exact tests were used to establish the relationship between all collected variables and time to radiographic union. RESULTS The average time to union for marijuana users (159.1 ± 69.5 days, 95% confidence interval) was significantly longer than for nonusers (80.3 ± 7.8 days), P < 0.001. The odds of having a time to union of greater than 4 months and greater than 6 months were 4.17 (P = 0.00192) and 6.19 (P = 0.000159), respectively, for marijuana users compared with nonusers. CONCLUSION Marijuana users demonstrated longer time to union in surgically treated pediatric fracture patients. LEVEL OF EVIDENCE Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- David Heath
- Department of Orthopaedics, UT Health San Antonio, San Antonio, TX; and
| | - Abdullah Ghali
- Department of Orthopaedics, UT Health San Antonio, San Antonio, TX; and
| | - David Momtaz
- Department of Orthopaedics, UT Health San Antonio, San Antonio, TX; and
| | - Lynda Lee
- Department of Orthopaedics, UT Health San Antonio, San Antonio, TX; and
| | - Grant Hogue
- Department of Orthopaedics, Harvard Medical School, Boston Children's Hospital, Boston, MA
| |
Collapse
|
11
|
Heath DM, Koslosky EJ, Bartush KC, Hogue GD. Marijuana in Orthopaedics: Effects on Bone Health, Wound-Healing, Surgical Complications, and Pain Management. JBJS Rev 2022; 10:01874474-202202000-00011. [PMID: 35180183 DOI: 10.2106/jbjs.rvw.21.00184] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
» Marijuana use is on the rise in the United States, and there is a paucity of information on the effects of cannabis and its chemical constituents on bone health, wound-healing, surgical complications, and pain management. » Current evidence suggests that cannabidiol (CBD) may enhance bone health and metabolism, while Δ9-tetrahydrocannabinol (Δ9-THC), the major psychoactive component in marijuana, has an inhibitory effect. » Marijuana users are at higher risk for delayed bone-healing, demonstrate lower bone mineral density, are at increased risk for fracture, and may experience postoperative complications such as increased opioid use and hyperemesis.
Collapse
Affiliation(s)
- David M Heath
- Department of Orthopaedics, UT Health San Antonio, San Antonio, Texas
| | | | | | - Grant D Hogue
- Department of Orthopaedics, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Xin Y, Tang A, Pan S, Zhang J. Components of the Endocannabinoid System and Effects of Cannabinoids Against Bone Diseases: A Mini-Review. Front Pharmacol 2022; 12:793750. [PMID: 35126132 PMCID: PMC8815309 DOI: 10.3389/fphar.2021.793750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The endocannabinoid system (ECS) is involved in multiple physiological processes, including appetite regulation, pain perception, motor function development, and immune response regulation. Cannabinoids have been approved for the clinical treatment of nausea and vomiting caused by cytostatic therapy or cancer chemotherapy, loss of appetite in HIV/AIDS-associated cachexia, refractory spasms induced by multiple sclerosis, chronic pain, and urinary incontinence. Methods: Check out the research on ECS and bone diseases in the past 20 years. Results: Many studies have demonstrated that endocannabinoids (eCBs) and cannabinoid receptors (CBRs) are expressed in bone and synovial tissues, playing important roles in bone metabolism. Preclinical studies using cannabis-based therapies in animal models have shown that cannabinoids (CBs) can alleviate the development of osteoarthritis (OA), prevent osteoporosis (OP), reduce cancer-induced osteolytic destruction, and improve fracture healing, highlighting the therapeutic potential of CBs for human bone diseases. Conclusions: The present review summarizes various components of the ECS in bone diseases and their potential as a therapeutic target.
Collapse
|
13
|
Fraher D, Mann RJ, Dubuisson MJ, Ellis MK, Yu T, Walder K, Ward AC, Winkler C, Gibert Y. The endocannabinoid system and retinoic acid signaling combine to influence bone growth. Mol Cell Endocrinol 2021; 529:111267. [PMID: 33839219 PMCID: PMC8127411 DOI: 10.1016/j.mce.2021.111267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 01/26/2023]
Abstract
Osteoporosis is an increasing burden on public health as the world-wide population ages and effective therapeutics are severely needed. Two pathways with high potential for osteoporosis treatment are the retinoic acid (RA) and endocannabinoid system (ECS) signaling pathways. We sought to elucidate the roles that these pathways play in bone development and maturation. Here, we use chemical treatments to modulate the RA and ECS pathways at distinct early, intermediate, and late times bone development in zebrafish. We further assessed osteoclast activity later in zebrafish and medaka. Finally, by combining sub-optimal doses of AR and ECS modulators, we show that enhancing RA signaling or reducing the ECS promote bone formation and decrease osteoclast abundance and activity. These data demonstrate that RA signaling and the ECS can be combined as sub-optimal doses to influence bone growth and may be key targets for potential therapeutics.
Collapse
Affiliation(s)
- Daniel Fraher
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, Deakin University School of Medicine, Geelong, VIC, 3216, Australia
| | - Robert J Mann
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, Deakin University School of Medicine, Geelong, VIC, 3216, Australia
| | - Matthew J Dubuisson
- University of Mississippi Medical Center, Dept of Cell and Molecular Biology, 2500 North State Street, Jackson, MS, 39216, USA
| | - Megan K Ellis
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, Deakin University School of Medicine, Geelong, VIC, 3216, Australia
| | - Tingsheng Yu
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore
| | - Ken Walder
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, Deakin University School of Medicine, Geelong, VIC, 3216, Australia
| | - Alister C Ward
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, Deakin University School of Medicine, Geelong, VIC, 3216, Australia
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore
| | - Yann Gibert
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, Deakin University School of Medicine, Geelong, VIC, 3216, Australia; University of Mississippi Medical Center, Dept of Cell and Molecular Biology, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
14
|
Modulation of Endocannabinoid Tone in Osteoblastic Differentiation of MC3T3-E1 Cells and in Mouse Bone Tissue over Time. Cells 2021; 10:cells10051199. [PMID: 34068882 PMCID: PMC8157192 DOI: 10.3390/cells10051199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Bone is a highly complex and metabolically active tissue undergoing a continuous remodeling process, which endures throughout life. A complex cell-signaling system that plays role in regulating different physiological processes, including bone remodeling, is the endocannabinoid system (ECS). Bone mass expresses CB1 and CB2 cannabinoid receptors and enzymatic machinery responsible for the metabolism of their endogenous ligands, endocannabinoids (AEA and 2-AG). Exogenous AEA is reported to increase the early phase of human osteoblast differentiation in vitro. However, regarding this cell context little is known about how endocannabinoids and endocannabinoid-related N-acylethanolamines like PEA and OEA are modulated, in vitro, during cell differentiation and, in vivo, over time up to adulthood. Here we characterized the endocannabinoid tone during the different phases of the osteoblast differentiation process in MC3T3-E1 cells, and we measured endocannabinoid levels in mouse femurs at life cycle stages characterized by highly active bone growth (i.e., of juvenile, young adult, and mature adult bone). Endocannabinoid tone was significantly altered during osteoblast differentiation, with substantial OEA increment, decline in 2-AG and AEA, and consistent modulation of their metabolic enzymes in maturing and mineralized MC3T3-E1 cells. Similarly, in femurs, we found substantial, age-related, decline in 2-AG, OEA, and PEA. These findings can expand existing knowledge underlying physiological bone cell function and contribute to therapeutic strategies for preventing bone-related metabolic changes accruing through lifespan.
Collapse
|
15
|
Marino S, Carrasco G, Li B, Shah KM, Lath DL, Sophocleous A, Lawson MA, Idris AI. JZL184, A Monoacylglycerol Lipase Inhibitor, Induces Bone Loss in a Multiple Myeloma Model of Immunocompetent Mice. Calcif Tissue Int 2020; 107:72-85. [PMID: 32285169 PMCID: PMC7271071 DOI: 10.1007/s00223-020-00689-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
Multiple myeloma (MM) patients develop osteolysis characterised by excessive osteoclastic bone destruction and lack of osteoblast bone formation. Pharmacological manipulation of monoacylglycerol lipase (MAGL), an enzyme responsible for the degradation of the endocannabinoid 2-arachidonoyl glycerol (2-AG), reduced skeletal tumour burden and osteolysis associated with osteosarcoma and advanced breast and prostate cancers. MM and hematopoietic, immune and bone marrow cells express high levels of type 2 cannabinoid receptor and osteoblasts secrete 2-AG. However, the effects of MAGL manipulation on MM have not been investigated. Here, we report that treatment of pre-osteoclasts with non-cytotoxic concentrations of JZL184, a verified MAGL inhibitor, enhanced MM- and RANKL-induced osteoclast formation and size in vitro. Exposure of osteoblasts to JZL184 in the presence of MM cell-derived factors reduced osteoblast growth but had no effect on the ability of these cells to mature or form bone nodules. In vivo, administration of JZL184 induced a modest, yet significant, bone loss at both trabecular and cortical compartments of long bones of immunocompetent mice inoculated with the syngeneic 5TGM1-GFP MM cells. Notably, JZL184 failed to inhibit the in vitro growth of a panel of mouse and human MM cell lines, or reduce tumour burden in mice. Thus, MAGL inhibitors such as JZL184 can exacerbate MM-induced bone loss.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
- IU School of Medicine, Division of Hematology/Oncology, Indiana University, Indianapolis, USA
| | - Giovana Carrasco
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Boya Li
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Karan M Shah
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Darren L Lath
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Antonia Sophocleous
- Department of Life Sciences, School of Sciences, European University Cyprus, 6 Diogenes Street, Nicosia, 1516, Cyprus
| | - Michelle A Lawson
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Aymen I Idris
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
16
|
Visceral Fat Is a Negative Determinant of Bone Health in Obese Postmenopausal Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17113996. [PMID: 32512872 PMCID: PMC7312497 DOI: 10.3390/ijerph17113996] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
The protective effect of obesity on bone health has been challenged by studies that link visceral adiposity to poor bone microarchitecture in young obese men and women. In postmenopausal women, the role of visceral adipose tissue (VAT) on bone turnover markers (BTMs) has not been investigated. The aim was to investigate the impact of VAT on BTMs, total bone mineral density (BMD), vitamin D metabolites and parathyroid levels (1-84 PTH) levels in postmenopausal women. A total of 76 lean and overweight women (without osteoporosis) underwent VAT measurements by dual-energy X-ray absorptiometry (iDXA). Blood samples were analyzed for serum C-terminal telopeptide of type 1 collagen (CTX-1), osteocalcin, bone-specific alkaline phosphatase (bone ALP), 1–84 PTH and vitamin D (25 hydroxyvitamin D, 25(OH)D) levels. VAT volumes ranged from 91 to 3392 cm3 and body mass index (BMI) ranged from 18.3 to 53.9 kg/m2. Women in the highest VAT quartile had significantly lower CTX-1, 25(OH)D, osteocalcin and the highest BMD (p < 0.05, for all). While VAT positively associated with BMD, after controlling for BMI, VAT was a negative predictor of BMD (β = 0.368, p < 0.05). VAT was an independent negative predictor of CTX-1 (β = −0.263, p < 0.05) and osteocalcin levels (β = −0.277, p < 0.05). Among all measures of adiposity, VAT was the strongest independent determinant of BMD and BTMs. In clinical settings, VAT, and not BMI, may be a sensitive predictor of bone health in obese women.
Collapse
|
17
|
Zhang F, Özdemir B, Nguyen PQ, Andrukhov O, Rausch-Fan X. Methanandamide diminish the Porphyromonas gingivalis lipopolysaccharide induced response in human periodontal ligament cells. BMC Oral Health 2020; 20:107. [PMID: 32295577 PMCID: PMC7161139 DOI: 10.1186/s12903-020-01087-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The endocannabinoid system is involved in the regulation of periodontal tissue homeostasis. Synthetic cannabinoid methanandamide (Meth-AEA) has improved stability and affinity to cannabinoid receptors compared to its endogenous analog anandamide. In the present study, we investigated the effect of methanandamide on the production of pro-inflammatory mediators in primary human periodontal ligament cells (hPdLCs). METHODS hPdLCs were treated with Meth-AEA for 24 h, and the resulting production of interleukin (IL)-6, IL-8, and monocyte chemotactic protein (MCP)-1 was measured in the absence or the presence of Porphyromonas gingivalis lipopolysaccharide (LPS). Additionally, the effect of Meth-AEA on the proliferation/viability of hPdLCs was measured by the MTT method. RESULTS Methanandamide at a concentration of 10 μM significantly inhibited P. gingivalis LPS induced production of IL-6, IL-8, and MCP-1. Basal production of IL-6 and IL-8 was slightly enhanced by 10 μM Meth-AEA. No effect of Meth-AEA on the basal production of MCP-1 was observed. Meth-AEA in concentrations up to 10 μM did not affect the proliferation/viability of hPdLCs, but significantly inhibited it at a concentration of 30 μM. CONCLUSION Our study suggests that the inflammatory response in periodontal ligament cells could be influenced by the activation of the cannabinoid system, which might be potentially involved in the progression of periodontal disease.
Collapse
Affiliation(s)
- Fengqiu Zhang
- Department of Periodontology, Capital Medical University School of Stomatology, Beijing, China
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Burcu Özdemir
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Phuong Quynh Nguyen
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| |
Collapse
|
18
|
Tsuchiya M, Kayamori K, Wada A, Komaki M, Ohata Y, Hamagaki M, Sakamoto K, Ikeda T. A Novel, Tumor-Induced Osteoclastogenesis Pathway Insensitive to Denosumab but Interfered by Cannabidiol. Int J Mol Sci 2019; 20:ijms20246211. [PMID: 31835378 PMCID: PMC6940789 DOI: 10.3390/ijms20246211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/21/2022] Open
Abstract
Bone metabolism is strictly regulated, and impaired regulation caused by hormonal imbalances induces systemic bone loss. Local bone loss caused by tumor invasion into bone is suggested to be induced by the generation of cytokines, which affect bone metabolism, by tumor cells. The major cause of systemic and local bone losses is excess bone resorption by osteoclasts, which differentiate from macrophages by receptor activator of nuclear factor kappa-B ligand (RANKL) or tumor necrosis factor-alpha (TNF-α). We previously found a novel pathway for tumor-induced osteoclastogenesis targeting osteoclast precursor cells (OPCs). Tumor-induced osteoclastogenesis was resistant to RANKL and TNF-α inhibitors. In the present study, we confirmed that exosomes derived from oral squamous cell carcinoma (OSCC) cells induced osteoclasts from OPCs. We also showed that the depletion of exosomes from culture supernatants of OSCC cells partially interfered with osteoclastogenesis, and cannabidiol, an innoxious cannabinoid without psychotropic effects, almost completely suppressed tumor-induced osteoclastogenesis. Osteoclastogenesis and its interference by cannabidiol were independent of the expression of nuclear factor of T cell c1 (NFATc1). These results show that osteoclastogenesis induced by OSCC cells targeting OPCs is a novel osteoclastogenic pathway independent of NFATc1 expression that is partially caused by tumor-derived exosomes and suppressed by cannabidiol.
Collapse
Affiliation(s)
- Maiko Tsuchiya
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; (M.T.); (K.K.); (M.H.); (K.S.)
| | - Kou Kayamori
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; (M.T.); (K.K.); (M.H.); (K.S.)
| | - Akane Wada
- Department of Oral Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; (A.W.); (Y.O.)
| | - Motohiro Komaki
- Department of Highly Advanced Stomatology (Periodontology), Graduate School of Dentistry, Kanagawa Dental University, 3-31-6 Tsuruya-cho, Kanagawa-ku, Yokosuka-city, Kanagawa 221-0835, Japan;
| | - Yae Ohata
- Department of Oral Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; (A.W.); (Y.O.)
| | - Miwako Hamagaki
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; (M.T.); (K.K.); (M.H.); (K.S.)
| | - Kei Sakamoto
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; (M.T.); (K.K.); (M.H.); (K.S.)
| | - Tohru Ikeda
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; (M.T.); (K.K.); (M.H.); (K.S.)
- Correspondence: ; Tel.: +81-3-5803-5451
| |
Collapse
|
19
|
Marino S, de Ridder D, Bishop RT, Renema N, Ponzetti M, Sophocleous A, Capulli M, Aljeffery A, Carrasco G, Gens MD, Khogeer A, Ralston SH, Gertsch J, Lamoureux F, Heymann D, Rucci N, Idris AI. Paradoxical effects of JZL184, an inhibitor of monoacylglycerol lipase, on bone remodelling in healthy and cancer-bearing mice. EBioMedicine 2019; 44:452-466. [PMID: 31151929 PMCID: PMC6606522 DOI: 10.1016/j.ebiom.2019.05.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer-associated bone disease is a serious complication in bone sarcomas and metastatic carcinomas of breast and prostate origin. Monoacylglycerol lipase (MAGL) is an enzyme of the endocannabinoid system, and is responsible for the degradation of the most abundant endocannabinoid in bone, 2-arachidonoyl glycerol (2AG). METHODS The effects of the verified MAGL inhibitor on bone remodelling were assessed in healthy mice and in mouse models of bone disease caused by prostate and breast cancers and osteosarcoma. FINDINGS JZL184 reduced osteolytic bone metastasis in mouse models of breast and prostate cancers, and inhibited skeletal tumour growth, metastasis and the formation of ectopic bone in models of osteosarcoma. Additionally, JZL184 suppressed cachexia and prolonged survival in mice injected with metastatic osteosarcoma and osteotropic cancer cells. Functional and histological analysis revealed that the osteoprotective action of JZL184 in cancer models is predominately due to inhibition of tumour growth and metastasis. In the absence of cancer, however, exposure to JZL184 exerts a paradoxical reduction of bone volume via an effect that is mediated by both Cnr1 and Cnr2 cannabinoid receptors. INTERPRETATION MAGL inhibitors such as JZL184, or its novel analogues, may be of value in the treatment of bone disease caused by primary bone cancer and bone metastasis, however, activation of the skeletal endocannabinoid system may limit their usefulness as osteoprotective agents.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK; Bone and Cancer Group, Edinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XR, UK
| | - Daniëlle de Ridder
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Ryan T Bishop
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Nathalie Renema
- INSERM, U1238, University of Nantes, Faculty of Medicine, 1 rue Gaston Veil, 44035 Nantes, Cedex 1, France
| | - Marco Ponzetti
- University of L'Aquila, Department of Biotechnological and Applied Clinical Sciences, L'Aquila, Italy
| | - Antonia Sophocleous
- Rheumatic disease unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK; Department of Life Sciences, School of Sciences, European University Cyprus, 6 Diogenes Street, 1516 Nicosia, Cyprus
| | - Mattia Capulli
- University of L'Aquila, Department of Biotechnological and Applied Clinical Sciences, L'Aquila, Italy
| | - Abdullah Aljeffery
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Giovana Carrasco
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | | | - Asim Khogeer
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK; Bone and Cancer Group, Edinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XR, UK
| | - Stuart H Ralston
- Rheumatic disease unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Francois Lamoureux
- INSERM, U1238, University of Nantes, Faculty of Medicine, 1 rue Gaston Veil, 44035 Nantes, Cedex 1, France
| | - Dominique Heymann
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK; INSERM, U1232, CRCINA, Institut de Cancérologie de l'Ouest, University of Nantes, Université d'Angers, Blvd Jacques Monod, 44805 Saint-Herblain, France
| | - Nadia Rucci
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK; University of L'Aquila, Department of Biotechnological and Applied Clinical Sciences, L'Aquila, Italy
| | - Aymen I Idris
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK; Bone and Cancer Group, Edinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XR, UK.
| |
Collapse
|
20
|
Apostu D, Lucaciu O, Mester A, Benea H, Oltean-Dan D, Onisor F, Baciut M, Bran S. Cannabinoids and bone regeneration. Drug Metab Rev 2019; 51:65-75. [PMID: 30702341 DOI: 10.1080/03602532.2019.1574303] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bone is a complex tissue with unique properties such as high strength and regeneration capabilities while carrying out multiple functions. Bone regeneration occurs both in physiological situations (bone turnover) and in pathological situations (e.g. fractures), being performed by osteoblasts and osteoclasts. If this process is inadequate, fracture nonunion or aseptic loosening of implants occurs and requires a complex treatment. Exogenous factors are currently used to increase bone regeneration process when needed, such as bisphosphonates and vitamin D, but limitations do exist. Cannabinoid system has been shown to have positive effects on bone metabolism. Cannabinoids at bone level mainly act on two receptors called CB-1 and CB-2, but GPR55, GPR119, TPRV1, TPRV4 receptors may also be involved. The CB-2 receptors are found in bone cells at higher levels compared to other receptors. Endocannabinods represented by anandamide and 2-arachidonoylglycerol, can stimulate osteoblast formation, bone formation and osteoclast activity. CB-2 agonists including HU-308, HU-433, JWH133, and JWH015 can stimulate osteoblast proliferation and activity, while CB-2 antagonists such as AM630 and SR144528 can inhibit osteoclast differentiation and function. CB-1 antagonist AM251 has been shown to inhibit osteoclast differentiation and activity, while GPR55 antagonist cannabidiol increases osteoblast activity and decreases osteoclast function. An optimal correlation of dose, duration, moment of action, and affinity can lead to an increased bone regeneration capacity, with important benefits in many pathological situations which involve bone tissue. As adverse reactions of cannabinoids have not been described in patients under controlled medication, cannabinoids can represent future treatment for bone regeneration.
Collapse
Affiliation(s)
- Dragos Apostu
- a Department of Orthopedics and Traumatology , University of Medicine and Pharmacy "Iuliu Hatieganu" , Cluj-Napoca , Romania
| | - Ondine Lucaciu
- b Department of Oral Rehabilitation, Oral Health and Dental Office Management , University of Medicine and Pharmacy "Iuliu Hatieganu" , Cluj-Napoca , Romania
| | - Alexandru Mester
- b Department of Oral Rehabilitation, Oral Health and Dental Office Management , University of Medicine and Pharmacy "Iuliu Hatieganu" , Cluj-Napoca , Romania
| | - Horea Benea
- a Department of Orthopedics and Traumatology , University of Medicine and Pharmacy "Iuliu Hatieganu" , Cluj-Napoca , Romania
| | - Daniel Oltean-Dan
- a Department of Orthopedics and Traumatology , University of Medicine and Pharmacy "Iuliu Hatieganu" , Cluj-Napoca , Romania
| | - Florin Onisor
- c Department of Maxillofacial Surgery and Implantology , University of Medicine and Pharmacy "Iuliu Hatieganu" , Cluj-Napoca , Romania
| | - Mihaela Baciut
- c Department of Maxillofacial Surgery and Implantology , University of Medicine and Pharmacy "Iuliu Hatieganu" , Cluj-Napoca , Romania
| | - Simion Bran
- c Department of Maxillofacial Surgery and Implantology , University of Medicine and Pharmacy "Iuliu Hatieganu" , Cluj-Napoca , Romania
| |
Collapse
|
21
|
The Endocannabinoid/Endovanilloid System in Bone: From Osteoporosis to Osteosarcoma. Int J Mol Sci 2019; 20:ijms20081919. [PMID: 31003519 PMCID: PMC6514542 DOI: 10.3390/ijms20081919] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022] Open
Abstract
Bone is a dynamic tissue, whose homeostasis is maintained by a fine balance between osteoclast (OC) and osteoblast (OB) activity. The endocannabinoid/endovanilloid (EC/EV) system’s receptors are the cannabinoid receptor type 1 (CB1), the cannabinoid receptor type 2 (CB2), and the transient receptor potential cation channel subfamily V member 1 (TRPV1). Their stimulation modulates bone formation and bone resorption. Bone diseases are very common worldwide. Osteoporosis is the principal cause of bone loss and it can be caused by several factors such as postmenopausal estrogen decrease, glucocorticoid (GC) treatments, iron overload, and chemotherapies. Studies have demonstrated that CB1 and TRPV1 stimulation exerts osteoclastogenic effects, whereas CB2 stimulation has an anti-osteoclastogenic role. Moreover, the EC/EV system has been demonstrated to have a role in cancer, favoring apoptosis and inhibiting cell proliferation. In particular, in bone cancer, the modulation of the EC/EV system not only reduces cell growth and enhances apoptosis but it also reduces cell invasion and bone pain in mouse models. Therefore, EC/EV receptors may be a useful pharmacological target in the prevention and treatment of bone diseases. More studies to better investigate the biochemical mechanisms underlining the EC/EV system effects in bone are needed, but the synthesis of hybrid molecules, targeting these receptors and capable of oppositely regulating bone homeostasis, seems to be a promising and encouraging prospective in bone disease management.
Collapse
|
22
|
Zhu M, Yu B, Bai J, Wang X, Guo X, Liu Y, Lin J, Hu S, Zhang W, Tao Y, Hu C, Yang H, Xu Y, Geng D. Cannabinoid Receptor 2 Agonist Prevents Local and Systemic Inflammatory Bone Destruction in Rheumatoid Arthritis. J Bone Miner Res 2019; 34:739-751. [PMID: 30508319 DOI: 10.1002/jbmr.3637] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
Abstract
Cannabinoid receptor 2 (CB2) has been implicated as an important clinical regulator of inflammation and malignant osteolysis. Here, we observed that CB2 expression was markedly higher in the collagen-induced arthritis (CIA) mice synovium and bone tissues than in the noninflamed synovium and bone tissues. The CB2 selective agonist (JWH133) but not antagonist (SR144528) suppressed CIA in mice without toxic effects, as demonstrated by the decreased synovial hyperplasia, inflammatory responses, cartilage damage, and periarticular and systemic bone destruction. JWH133 treatment decreased the infiltration of pro-inflammatory M1-like macrophages and repolarized macrophages from the M1 to M2 phenotype. Similarly, activation of CB2 increased the expression of anti-inflammatory cytokine interleukin (IL)-10 and reduced the expression of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), IL-1β, and IL-6. In addition, JWH133 treatment attenuated osteoclast formation and osteoclastic bone resorption, and reduced the expression of receptor activators of the nuclear factor-κB (NF-κB) ligand (RANKL), matrix metallopeptidase-9 (MMP-9), tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK), and nuclear factor of activated T-cells 1 (NFAT-1) in CIA mice and osteoclast precursors, which were obviously blocked by pretreatment with SR144528. Mechanistically, JWH133 inhibited RANKL-induced NF-κB activation in the osteoclast precursors. We found that JWH133 ameliorates pathologic bone destruction in CIA mice via the inhibition of osteoclastogenesis and modulation of inflammatory responses, thereby highlighting its potential as a treatment for human rheumatoid arthritis. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mo Zhu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Binqin Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaobin Guo
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayi Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Su Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen Zhang
- Orthopedics Institute, Soochow University, Suzhou, China
| | - Yunxia Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
23
|
Sophocleous A, Marino S, Kabir D, Ralston SH, Idris AI. Combined deficiency of the Cnr1 and Cnr2 receptors protects against age-related bone loss by osteoclast inhibition. Aging Cell 2017; 16:1051-1061. [PMID: 28752643 PMCID: PMC5595693 DOI: 10.1111/acel.12638] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2017] [Indexed: 01/01/2023] Open
Abstract
The endocannabinoid system plays a role in regulating bone mass and bone cell activity and inactivation of the type 1 (Cnr1) or type 2 (Cnr2) cannabinoid receptors influences peak bone mass and age‐related bone loss. As the Cnr1 and Cnr2 receptors have limited homology and are activated by different ligands, we have evaluated the effects of combined deficiency of Cnr1 and 2 receptors (Cnr1/2−/−) on bone development from birth to old age and studied ovariectomy induced bone loss in female mice. The Cnr1/2−/− mice had accelerated bone accrual at birth when compared with wild type littermates, and by 3 months of age, they had higher trabecular bone mass. They were also significantly protected against ovariectomy‐induced bone loss due to a reduction in osteoclast number. The Cnr1/2−/− mice had reduced age‐related bone loss when compared with wild‐type due to a reduction in osteoclast number. Although bone formation was reduced and bone marrow adiposity increased in Cnr1/2−/− mice, the osteoclast defect outweighed the reduction in bone formation causing preservation of bone mass with aging. This contrasts with the situation previously reported in mice with inactivation of the Cnr1 or Cnr2 receptors individually where aged‐related bone loss was greater than in wild‐type. We conclude that the Cnr1 and Cnr2 receptors have overlapping but nonredundant roles in regulating osteoclast and osteoblast activities. These observations indicate that combined inhibition of Cnr1 and Cnr2 receptors may be beneficial in preventing age‐related bone loss, whereas blockade of individual receptors may be detrimental.
Collapse
Affiliation(s)
- Antonia Sophocleous
- Bone and Cancer Group; Edinburgh Cancer Research Centre; University of Edinburgh; Crewe Road Edinburgh EH4 2XR UK
- Rheumatic Disease Unit; MRC Institute of Genetics and Molecular Medicine; University of Edinburgh; Crewe Road Edinburgh EH4 2XU UK
- Department of Life Sciences; School of Sciences; European University Cyprus; 6 Diogenes Street 1516 Nicosia Cyprus
| | - Silvia Marino
- Bone and Cancer Group; Edinburgh Cancer Research Centre; University of Edinburgh; Crewe Road Edinburgh EH4 2XR UK
- Department of Oncology and Metabolism; Medical School; Beech Hill Road Sheffield S10 2RX UK
| | - Dilruba Kabir
- Bone and Cancer Group; Edinburgh Cancer Research Centre; University of Edinburgh; Crewe Road Edinburgh EH4 2XR UK
| | - Stuart H. Ralston
- Rheumatic Disease Unit; MRC Institute of Genetics and Molecular Medicine; University of Edinburgh; Crewe Road Edinburgh EH4 2XU UK
| | - Aymen I. Idris
- Bone and Cancer Group; Edinburgh Cancer Research Centre; University of Edinburgh; Crewe Road Edinburgh EH4 2XR UK
- Department of Oncology and Metabolism; Medical School; Beech Hill Road Sheffield S10 2RX UK
| |
Collapse
|
24
|
Li D, Lin Z, Meng Q, Wang K, Wu J, Yan H. Cannabidiol administration reduces sublesional cancellous bone loss in rats with severe spinal cord injury. Eur J Pharmacol 2017; 809:13-19. [PMID: 28479140 DOI: 10.1016/j.ejphar.2017.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 11/16/2022]
Abstract
Patients with spinal cord injury (SCI) undergo severe loss of bone mineral below the level of lesion, and data on available treatment options after SCI is scarce. The aim of this work was to investigate the therapeutic effect of cannabidiol (CBD), a non-psychoactive cannabis, on sublesional bone loss in a rat model of SCI. The adult male rats were exposed to surgical transection of the cord and treated with CBD for consecutive 14 days. It was found that CBD treatment elevated the serum levels of osteocalcin, reduced the serum levels of collagen type I cross-linked C-telopeptide, and enhanced bone mineral density of tibiae and femurs. Treatment of SCI rats with CBD enhanced bone volume, trabecular thickness, and trabecular number, and reduced trabecular separation in proximal tibiae, and increased ultimate compressive load, stiffness, and energy to max force of femoral diaphysis. Treatment of SCI rats with CBD upregulated mRNA expression of alkaline phosphatase and osteoprotegerin and downregulated mRNA expression of receptor activator of NF-κB ligand and tartrate-resistant acid phosphatase in femurs. Furthermore, treatment of SCI rats with CBD enhanced mRNA expression of wnt3a, Lrp5 and ctnnb1 in femurs. In conclusion, CBD administration attenuated SCI-induced sublesional cancellous bone loss.
Collapse
Affiliation(s)
- Dehao Li
- Medical Department, General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Zilin Lin
- Medical Department, General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Qingyi Meng
- Emergency Department, General Hospital of the People's Liberation Army, Beijing 100853, China.
| | - Kun Wang
- Medical Department, General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Jiajia Wu
- Medical Department, General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Hongda Yan
- Department of Political Affairs, General Hospital of the People's Liberation Army, Beijing 100853, China
| |
Collapse
|
25
|
Kelly MEM, Lehmann C, Zhou J. The Endocannabinoid System in Local and Systemic Inflammation. ACTA ACUST UNITED AC 2017. [DOI: 10.4199/c00151ed1v01y201702isp074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Sophocleous A, Robertson R, Ferreira NB, McKenzie J, Fraser WD, Ralston SH. Heavy Cannabis Use Is Associated With Low Bone Mineral Density and an Increased Risk of Fractures. Am J Med 2017; 130:214-221. [PMID: 27593602 DOI: 10.1016/j.amjmed.2016.07.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 07/30/2016] [Accepted: 07/30/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate possible associations between recreational cannabis use and bone health in humans. METHODS Cross-sectional study of individuals recruited from primary care in the UK between 2011 and 2013. Cases were regular smokers of cannabis divided into moderate (n = 56) and heavy user (n = 144) subgroups depending on whether they reported fewer or more than 5000 cannabis smoking episodes during their lifetime. Controls comprised 114 cigarette smokers. RESULTS Heavy cannabis users had lower total hip bone mineral density (mean ± SD Z-score: -0.20 ± 0.9 vs +0.2 ± 0.9, P < .0005), lower spine bone mineral density (-0.5 ± 1.2 vs 0.0 ± 1.2, P < .0005), and lower body mass index (BMI; 26.5 ± 6.0 vs 29.0 ± 7.0, P = .01) than controls. Fracture rate was also increased in heavy users (rate ratio = 2.17; 95% confidence interval, 1.59-2.95; P < .001). When compared with controls, serum cross-linked C-telopeptide of type 1 collagen (CTX) concentrations were raised in heavy cannabis users (0.3 ± 0.1 vs 0.2 ± 0.1 pg/mL, P = .045), as were serum N-terminal propeptide of type 1 procollagen (P1NP) concentrations (47.1 ± 19.2 vs 41.2 ± 17.8 pg/mL, P = .01). Serum total 25-hydroxyvitamin D concentrations were reduced in heavy users compared with controls (25.3 ± 16.8 vs 36.9 ± 26.7 nmol/L, P = .002). Multiple regression analysis revealed that heavy cannabis use was an independent predictor of spine bone mineral density, accounting for 5.4% of the variance (P = .035), and total hip bone mineral density, accounting for 5.8% of the variance (P = .001), but mediation analysis suggested that the effect on spine bone mineral density was indirect and mediated through low body mass index. CONCLUSIONS Heavy cannabis use is associated with low bone mineral density, low BMI, high bone turnover, and an increased risk of fracture. Heavy cannabis use negatively impacts on bone health both directly and indirectly through an effect on BMI.
Collapse
Affiliation(s)
- Antonia Sophocleous
- Rheumatology and Bone Diseases Unit, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, UK
| | - Roy Robertson
- Muirhouse Medical Group, Edinburgh, UK; Centre for Population Health Sciences, University of Edinburgh, UK
| | - Nuno B Ferreira
- Department of Clinical and Health Psychology, University of Edinburgh, UK
| | - James McKenzie
- Rheumatology and Bone Diseases Unit, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, UK; Muirhouse Medical Group, Edinburgh, UK
| | | | - Stuart H Ralston
- Rheumatology and Bone Diseases Unit, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, UK.
| |
Collapse
|
27
|
Franks LN, Ford BM, Prather PL. Selective Estrogen Receptor Modulators: Cannabinoid Receptor Inverse Agonists with Differential CB1 and CB2 Selectivity. Front Pharmacol 2016; 7:503. [PMID: 28066250 PMCID: PMC5177629 DOI: 10.3389/fphar.2016.00503] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/07/2016] [Indexed: 12/16/2022] Open
Abstract
Selective estrogen receptor modulators (SERMs) are used to treat estrogen receptor (ER)-positive breast cancer and osteoporosis. Interestingly, tamoxifen and newer classes of SERMs also exhibit cytotoxic effects in cancers devoid of ERs, indicating a non-estrogenic mechanism of action. Indicative of a potential ER-independent target, reports demonstrate that tamoxifen binds to cannabinoid receptors (CBRs) with affinity in the low μM range and acts as an inverse agonist. To identify cannabinoids with improved pharmacological properties relative to tamoxifen, and further investigate the use of different SERM scaffolds for future cannabinoid drug development, this study characterized the affinity and activity of SERMs in newer structural classes at CBRs. Fourteen SERMs from five structurally distinct classes were screened for binding to human CBRs. Compounds from four of five SERM classes examined bound to CBRs. Subsequent studies fully characterized CBR affinity and activity of one compound from each class. Ospemifine (a triphenylethylene) selectively bound to CB1Rs, while bazedoxifine (an indole) bound to CB2Rs with highest affinity. Nafoxidine (a tetrahydronaphthalene) and raloxifene (RAL; a benzothiaphene) bound to CB1 and CB2Rs non-selectively. All four compounds acted as inverse agonists at CB1 and CB2Rs, reducing basal G-protein activity with IC50 values in the nM to low μM range. Ospemifine, bazedoxifene and RAL also acted as inverse agonists to elevate basal intracellular cAMP levels in intact CHO-hCB2 cells. The four SERMs examined also acted as CB1 and CB2R antagonists in the cAMP assay, producing rightward shifts in the concentration-effect curve of the CBR agonist CP-55,940. In conclusion, newer classes of SERMs exhibit improved pharmacological characteristics (e.g., in CBR affinity and selectivity) relative to initial studies with tamoxifen, and thus suggest that different SERM scaffolds may be useful for development of safe and selective drugs acting via CBRs.
Collapse
Affiliation(s)
- Lirit N Franks
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock AR, USA
| | - Benjamin M Ford
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock AR, USA
| | - Paul L Prather
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock AR, USA
| |
Collapse
|
28
|
Khalid AB, Goodyear SR, Ross RA, Aspden RM. Mechanical and material properties of cortical and trabecular bone from cannabinoid receptor-1-null (Cnr1−/−) mice. Med Eng Phys 2016; 38:1044-54. [DOI: 10.1016/j.medengphy.2016.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/18/2016] [Accepted: 06/27/2016] [Indexed: 12/29/2022]
|
29
|
|
30
|
Dunn SL, Wilkinson JM, Crawford A, Bunning RAD, Le Maitre CL. Expression of Cannabinoid Receptors in Human Osteoarthritic Cartilage: Implications for Future Therapies. Cannabis Cannabinoid Res 2016; 1:3-15. [PMID: 28861474 PMCID: PMC5576594 DOI: 10.1089/can.2015.0001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction: Cannabinoids have shown to reduce joint damage in animal models of arthritis and reduce matrix metalloproteinase expression in primary human osteoarthritic (OA) chondrocytes. The actions of cannabinoids are mediated by a number of receptors, including cannabinoid receptors 1 and 2 (CB1 and CB2), G-protein-coupled receptors 55 and 18 (GPR55 and GPR18), transient receptor potential vanilloid-1 (TRPV1), and peroxisome proliferator-activated receptors alpha and gamma (PPARα and PPARγ). However, to date very few studies have investigated the expression and localization of these receptors in human chondrocytes, and expression during degeneration, and thus their potential in clinical applications is unknown. Methods: Human articular cartilage from patients with symptomatic OA was graded histologically and the expression and localization of cannabinoid receptors within OA cartilage and underlying bone were determined immunohistochemically. Expression levels across regions of cartilage and changes with degeneration were investigated. Results: Expression of all the cannabinoid receptors investigated was observed with no change with grade of degeneration seen in the expression of CB1, CB2, GPR55, PPARα, and PPARγ. Conversely, the number of chondrocytes within the deep zone of cartilage displaying immunopositivity for GPR18 and TRPV1 was significantly decreased in degenerate cartilage. Receptor expression was higher in chondrocytes than in osteocytes in the underlying bone. Conclusions: Chondrocytes from OA joints were shown to express a wide range of cannabinoid receptors even in degenerate tissues, demonstrating that these cells could respond to cannabinoids. Cannabinoids designed to bind to receptors inhibiting the catabolic and pain pathways within the arthritic joint, while avoiding psychoactive effects, could provide potential arthritis therapies.
Collapse
Affiliation(s)
- Sara L Dunn
- Faculty of Health and Wellbeing, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Jeremy Mark Wilkinson
- Academic Unit of Bone Metabolism, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Aileen Crawford
- Centre for Biomaterials and Tissue Engineering, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Rowena A D Bunning
- Faculty of Health and Wellbeing, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Christine L Le Maitre
- Faculty of Health and Wellbeing, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
31
|
Carnovali M, Ottria R, Pasqualetti S, Banfi G, Ciuffreda P, Mariotti M. Effects of bioactive fatty acid amide derivatives in zebrafish scale model of bone metabolism and disease. Pharmacol Res 2015; 104:1-8. [PMID: 26707833 DOI: 10.1016/j.phrs.2015.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 12/26/2022]
Abstract
The endocannabinoid system (which includes fatty acid derivatives, receptors, and metabolizing enzymes) is involved in a variety of physiological processes, including bone metabolism in which it regulates the function of osteoblasts and osteoclasts, as well as differentiation of their precursors. The zebrafish (Danio rerio) provides a useful animal model for bone research since zebrafish bones develop rapidly and are anatomically similar to mammalian bones. Putative orthologues and paralogs of endocannabinoid genes have recently been identified in zebrafish, demonstrating the presence of cannabinoid type 1 (CB1) and type 2 (CB2) receptors with affinity to endocannabinoid ligands. To identify therapeutic molecules potentially useful in bone-related diseases, we evaluated the in vivo effects of exposure to long-chain fatty acid amides in adult zebrafish. Using a well-established zebrafish scale model, we found that anandamide and N-linoleoylethanolamine are able to stimulate bone formation by increasing alkaline phosphatase activity in physiological conditions. In addition, they prevent the alteration of bone markers in a prednisolone-induced osteoporosis model in adult zebrafish scales, whereas their esterified forms do not. These data suggest that long-chain fatty acid amides are involved in regulating bone metabolism in zebrafish scales and that the CB2 receptor is a key mediator in this process.
Collapse
Affiliation(s)
- M Carnovali
- Gruppo Ospedaliero San Donato Foundation, Milan, Italy
| | - R Ottria
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - S Pasqualetti
- Gruppo Ospedaliero San Donato Foundation, Milan, Italy
| | - G Banfi
- IRCCS Galeazzi Orthopedic Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - P Ciuffreda
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - M Mariotti
- IRCCS Galeazzi Orthopedic Institute, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
32
|
Lowin T, Straub RH. Cannabinoid-based drugs targeting CB1 and TRPV1, the sympathetic nervous system, and arthritis. Arthritis Res Ther 2015; 17:226. [PMID: 26343051 PMCID: PMC4561168 DOI: 10.1186/s13075-015-0743-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammation in rheumatoid arthritis (RA) is accompanied by activation of the sympathetic nervous system, which can support the immune system to perpetuate inflammation. Several animal models of arthritis already demonstrated a profound influence of adrenergic signaling on the course of RA. Peripheral norepinephrine release from sympathetic terminals is controlled by cannabinoid receptor type 1 (CB1), which is activated by two major endocannabinoids (ECs), arachidonylethanolamine (anandamide) and 2-arachidonylglycerol. These ECs also modulate function of transient receptor potential channels (TRPs) located on sensory nerve fibers, which are abundant in arthritic synovial tissue. TRPs not only induce the sensation of pain but also support inflammation via secretion of pro-inflammatory neuropeptides. In addition, many cell types in synovial tissue express CB1 and TRPs. In this review, we focus on CB1 and transient receptor potential vanilloid 1 (TRPV1)-mediated effects on RA since most anti-inflammatory mechanisms induced by cannabinoids are attributed to cannabinoid receptor type 2 (CB2) activation. We demonstrate how CB1 agonism or antagonism can modulate arthritic disease. The concept of functional antagonism with continuous CB1 activation is discussed. Since fatty acid amide hydrolase (FAAH) is a major EC-degrading enzyme, the therapeutic possibility of FAAH inhibition is studied. Finally, the therapeutic potential of ECs is examined since they interact with cannabinoid receptors and TRPs but do not produce central side effects.
Collapse
Affiliation(s)
- Torsten Lowin
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, University Hospital of Regensburg, D-93053, Regensburg, Germany.
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, University Hospital of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
33
|
Sophocleous A, Börjesson AE, Salter DM, Ralston SH. The type 2 cannabinoid receptor regulates susceptibility to osteoarthritis in mice. Osteoarthritis Cartilage 2015; 23:1586-94. [PMID: 25937028 DOI: 10.1016/j.joca.2015.04.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/27/2015] [Accepted: 04/22/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cannabinoid receptors and their ligands have been implicated in the regulation of various physiological processes but their role in osteoarthritis has not been investigated. The aim of this study was to evaluate the role of the type 2 cannabinoid receptor (Cnr2) in regulating susceptibility to osteoarthritis in mice. METHODS We analysed the severity of knee osteoarthritis as assessed by the Osteoarthritis Research Society International (OARSI) scoring system in mice with targeted deletion of Cnr2 (Cnr2(-/-)) and wild type (WT) littermates. Studies were conducted in mice subjected to surgical destabilisation of the medial meniscus (DMM) and in those with spontaneous age-related osteoarthritis (OA). RESULTS Osteoarthritis was more severe following DMM in the medial compartment of the knee in Cnr2(-/-) compared with WT mice (mean ± sem score = 4.9 ± 0.5 vs 3.6 ± 0.3; P = 0.017). Treatment of WT mice with the CB2-selective agonist HU308 following DMM reduced the severity of OA in the whole joint (HU308 = 8.4 ± 0.2 vs vehicle = 10.4 ± 0.6; P = 0.007). Spontaneous age related osteoarthritis was also more severe in the medial compartment of the knee in 12-month old Cnr2(-/-) mice compared with WT (5.6 ± 0.5 vs 3.5 ± 0.3, P = 0.008). Cultured articular chondrocytes from Cnr2(-/-) mice produced less proteoglycans in vitro than wild type chondrocytes. CONCLUSION These studies demonstrate that the Cnr2 pathway plays a role in the pathophysiology of osteoarthritis in mice and shows that pharmacological activation of CB2 has a protective effect. Further studies of the role of cannabinoid receptors in the pathogenesis of osteoarthritis in man are warranted.
Collapse
Affiliation(s)
- A Sophocleous
- Rheumatology and Bone Diseases Unit, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - A E Börjesson
- Rheumatology and Bone Diseases Unit, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - D M Salter
- Osteoarticular Research Group, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - S H Ralston
- Rheumatology and Bone Diseases Unit, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
34
|
Özdemir B, Shi B, Bantleon HP, Moritz A, Rausch-Fan X, Andrukhov O. Endocannabinoids and inflammatory response in periodontal ligament cells. PLoS One 2014; 9:e107407. [PMID: 25226300 PMCID: PMC4165771 DOI: 10.1371/journal.pone.0107407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/09/2014] [Indexed: 01/08/2023] Open
Abstract
Endocannabinoids are associated with multiple regulatory functions in several tissues. The main endocannabinoids, anandamide (AEA) and 2-arachidonylglycerol (2-AG), have been detected in the gingival crevicular fluid of periodontitis patients, but the association between periodontal disease or human periodontal ligament cells (hPdLCs) and endocannabinoids still remain unclear. The aim of the present study was to examine the effects of AEA and 2-AG on the proliferation/viability and cytokine/chemokine production of hPdLCs in the presence/absence of Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS). The proliferation/viability of hPdLCs was measured using 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT)-assay. Interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemotactic protein-1 (MCP-1) levels were examined at gene expression and protein level by real-time PCR and ELISA, respectively. AEA and 2-AG did not reveal any significant effects on proliferation/viability of hPdLCs in the absence of P. gingivalis LPS. However, hPdLCs viability was significantly increased by 10-20 µM AEA in the presence of P. gingivalis LPS (1 µg/ml). In the absence of P. gingivalis LPS, AEA and 2-AG did not exhibit any significant effect on the expression of IL-8 and MCP-1 expression in hPdLCs, whereas IL-6 expression was slightly enhanced by 10 µM 2-AG and not affected by AEA. In P.gingivalis LPS stimulated hPdLCs, 10 µM AEA down-regulated gene-expression and protein production of IL-6, IL-8, and MCP-1. In contrast, 10 µM 2-AG had an opposite effect and induced a significant up-regulation of gene and protein expression of IL-6 and IL-8 (P<0.05) as well as gene-expression of MCP-1 in P. gingivalis LPS stimulated hPdLCs. Our data suggest that AEA appears to have an anti-inflammatory and immune suppressive effect on hPdLCs' host response to P.gingivalis LPS, whereas 2-AG appears to promote detrimental inflammatory processes. In conclusion, AEA and 2-AG might play an important role in the modulation of periodontal inflammation.
Collapse
Affiliation(s)
- Burcu Özdemir
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
- Division of Oral Biology, Bernhard Gottlieb School of Dentistry, Medical University, Vienna, Austria
| | - Bin Shi
- Division of Oral Biology, Bernhard Gottlieb School of Dentistry, Medical University, Vienna, Austria
- Department of Oral Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hans Peter Bantleon
- Division of Orthodontics, Bernhard Gottlieb School of Dentistry, Medical University, Vienna, Austria
| | - Andreas Moritz
- Division of Conservative Dentistry, Periodontology and Prophylaxis, Bernhard Gottlieb School of Dentistry, Medical University, Vienna, Austria
| | - Xiaohui Rausch-Fan
- Division of Oral Biology, Bernhard Gottlieb School of Dentistry, Medical University, Vienna, Austria
- Division of Orthodontics, Bernhard Gottlieb School of Dentistry, Medical University, Vienna, Austria
| | - Oleh Andrukhov
- Division of Oral Biology, Bernhard Gottlieb School of Dentistry, Medical University, Vienna, Austria
| |
Collapse
|
35
|
Zofková I, Matucha P. New insights into the physiology of bone regulation: the role of neurohormones. Physiol Res 2014; 63:421-7. [PMID: 24702491 DOI: 10.33549/physiolres.932668] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bone metabolism is regulated by interaction between two skeletal cells - osteoclasts and osteoblasts. Function of these cells is controlled by a number of humoral factors, including neurohormones, which ensure equilibrium between bone resorption and bone formation. Influence of neurohormones on bone metabolism is often bimodal and depends on the tissue, in which the hormone is expressed. While hypothalamic beta-1 and beta-2-adrenergic systems stimulate bone formation, beta-2 receptors in bone tissue activate osteoclatogenesis and increases bone resorption. Chronic stimulation of peripheral beta-2 receptors is known to quicken bone loss and alter the mechanical quality of the skeleton. This is supported by the observation of a low incidence of hip fractures in patients treated with betablockers. A bimodal osteo-tropic effect has also been observed with serotonin. While serotonin synthetized in brain has osteo-anabolic effects, serotonin released from the duodenum inhibits osteoblast activity and decreases bone formation. On the other hand, both cannabinoid systems (CB1 receptors in the brain and CB2 in bone tissue) are unambiguously osteo-protective, especially with regard to the aging skeleton. Positive (protective) effects on bone have also been shown by some hypophyseal hormones, such as thyrotropin (which inhibits bone resorption) and adrenocorticotropic hormone and oxytocin, both of which stimulate bone formation. Low oxytocin levels have been shown to potentiate bone loss induced by hypoestrinism in postmenopausal women, as well as in girls with mental anorexia. In addition to reviewing neurohormones with anabolic effects, this article also reviews neurohormones with unambiguously catabolic effects on the skeleton, such as neuropeptide Y and neuromedin U. An important aim of research in this field is the synthesis of new molecules that can stimulate osteo-anabolic or inhibiting osteo-catabolic processes.
Collapse
Affiliation(s)
- I Zofková
- Institute of Endocrinology, Prague, Czech Republic. ;
| | | |
Collapse
|
36
|
Sophocleous A, Idris AI, Ralston SH. Genetic background modifies the effects of type 2 cannabinoid receptor deficiency on bone mass and bone turnover. Calcif Tissue Int 2014; 94:259-68. [PMID: 24036631 DOI: 10.1007/s00223-013-9793-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/16/2013] [Indexed: 12/25/2022]
Abstract
Cannabinoid receptors and their ligands play significant roles in regulating bone metabolism. Previous studies of type 1 cannabinoid receptor-deficient mice have shown that genetic background influences the skeletal phenotype. Here, we investigated the effects of genetic background on the skeletal phenotype of mice with type 2 cannabinoid receptor deficiency (Cnr2 (-/-)). We studied Cnr2 (-/-) mice on a CD1 background and compared the findings with those previously reported in Cnr2 (-/-) C57BL/6 mice. Young female Cnr2 (-/-) CD1 mice had low bone turnover and high trabecular bone mass compared with wild-type (WT), contrasting with the situation in Cnr2 (-/-) C57BL/6 mice where trabecular bone mass has been reported to be similar to WT. The Cnr2 (-/-) CD1 mice lost more trabecular bone at the tibia with age than WT due to reduced bone formation, and at 12 months there was no difference in trabecular bone volume between genotypes. This differs from the phenotype previously reported in C57BL/6 Cnr2 (-/-) mice, where bone turnover is increased and bone mass reduced with age. There were no substantial differences in skeletal phenotype between Cnr2 (-/-) and WT in male mice. Cortical bone phenotype was similar in Cnr2 (-/-) and WT mice of both genders. Deficiency of Cnr2 has site- and gender-specific effects on the skeleton, mainly affecting trabecular bone, which are influenced by genetic differences between mouse strains. Further evaluation of the pathways responsible might yield new insights into the mechanisms by which cannabinoid receptors regulate bone metabolism.
Collapse
Affiliation(s)
- Antonia Sophocleous
- Rheumatic Diseases Unit, Centre for Molecular Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | | | | |
Collapse
|
37
|
Sadie-Van Gijsen H, Hough FS, Ferris WF. Determinants of bone marrow adiposity: the modulation of peroxisome proliferator-activated receptor-γ2 activity as a central mechanism. Bone 2013; 56:255-65. [PMID: 23800517 DOI: 10.1016/j.bone.2013.06.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/04/2013] [Accepted: 06/12/2013] [Indexed: 12/23/2022]
Abstract
Although the presence of adipocytes in the bone marrow is a normal physiological phenomenon, the role of these cells in bone homeostasis and during pathological states has not yet been fully delineated. As osteoblasts and adipocytes originate from a common progenitor, with an inverse relationship existing between osteoblastogenesis and adipogenesis, bone marrow adiposity often negatively correlates with osteoblast number and bone mineral density. Bone adiposity can be affected by several physiological and pathophysiological factors, with abnormal, elevated marrow fat resulting in a pathological state. This review focuses on the regulation of bone adiposity by physiological factors, including aging, mechanical loading and growth factor expression, as well as the pathophysiological factors, including diseases such as anorexia nervosa and dyslipidemia, and pharmacological agents such as thiazolidinediones and statins. Although these factors regulate bone marrow adiposity via a plethora of different intracellular signaling pathways, these diverse pathways often converge on the modulation of the expression and/or activity of the pro-adipogenic transcription factor peroxisome proliferator-activated receptor (PPAR)-γ2, suggesting that any factor that affects PPAR-γ2 may have an impact on the fat content of bone.
Collapse
Affiliation(s)
- H Sadie-Van Gijsen
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg 7505, South Africa.
| | | | | |
Collapse
|
38
|
Gowran A, McKayed K, Campbell VA. The cannabinoid receptor type 1 is essential for mesenchymal stem cell survival and differentiation: implications for bone health. Stem Cells Int 2013; 2013:796715. [PMID: 23864865 PMCID: PMC3707275 DOI: 10.1155/2013/796715] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/30/2013] [Accepted: 06/04/2013] [Indexed: 12/27/2022] Open
Abstract
Significant loss of bone due to trauma, underlying metabolic disease, or lack of repair due to old age surpasses the body's endogenous bone repair mechanisms. Mesenchymal stem cells (MSCs) are adult stem cells which may represent an ideal cell type for use in cell-based tissue engineered bone regeneration strategies. The body's endocannabinoid system has been identified as a central regulator of bone metabolism. The aim of the study was to elucidate the role of the cannabinoid receptor type 1 in the differentiation and survival of MSCs. We show that the cannabinoid receptor type 1 has a prosurvival function during acute cell stress. Additionally, we show that the phytocannabinoid, Δ(9)-Tetrahydrocannabinol, has a negative impact on MSC survival and osteogenesis. Overall, these results show the potential for the modulation of the cannabinoid system in cell-based tissue engineered bone regeneration strategies whilst highlighting cannabis use as a potential cause for concern in the management of orthopaedic patients.
Collapse
Affiliation(s)
- Aoife Gowran
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
39
|
Di Marzo V, De Petrocellis L. Why do cannabinoid receptors have more than one endogenous ligand? Philos Trans R Soc Lond B Biol Sci 2013; 367:3216-28. [PMID: 23108541 DOI: 10.1098/rstb.2011.0382] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The endocannabinoid system was revealed following the understanding of the mechanism of action of marijuana's major psychotropic principle, Δ(9)-tetrahydrocannabinol, and includes two G-protein-coupled receptors (GPCRs; the cannabinoid CB1 and CB2 receptors), their endogenous ligands (the endocannabinoids, the best studied of which are anandamide and 2-arachidonoylglycerol (2-AG)), and the proteins that regulate the levels and activity of these receptors and ligands. However, other minor lipid metabolites different from, but chemically similar to, anandamide and 2-AG have also been suggested to act as endocannabinoids. Thus, unlike most other GPCRs, cannabinoid receptors appear to have more than one endogenous agonist, and it has been often wondered what could be the physiological meaning of this peculiarity. In 1999, it was proposed that anandamide might also activate other targets, and in particular the transient receptor potential of vanilloid type-1 (TRPV1) channels. Over the last decade, this interaction has been shown to occur both in peripheral tissues and brain, during both physiological and pathological conditions. TRPV1 channels can be activated also by another less abundant endocannabinoid, N-arachidonoyldopamine, but not by 2-AG, and have been proposed by some authors to act as ionotropic endocannabinoid receptors. This article will discuss the latest discoveries on this subject, and discuss, among others, how anandamide and 2-AG differential actions at TRPV1 and cannabinoid receptors contribute to making this signalling system a versatile tool available to organisms to fine-tune homeostasis.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto Chimica Biomolecolare, CNR, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, NA, Italy.
| | | |
Collapse
|
40
|
Wu CS, Chen H, Sun H, Zhu J, Jew CP, Wager-Miller J, Straiker A, Spencer C, Bradshaw H, Mackie K, Lu HC. GPR55, a G-protein coupled receptor for lysophosphatidylinositol, plays a role in motor coordination. PLoS One 2013; 8:e60314. [PMID: 23565223 PMCID: PMC3614963 DOI: 10.1371/journal.pone.0060314] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/25/2013] [Indexed: 12/15/2022] Open
Abstract
The G-protein coupled receptor 55 (GPR55) is activated by lysophosphatidylinositols and some cannabinoids. Recent studies found prominent roles for GPR55 in neuropathic/inflammatory pain, cancer and bone physiology. However, little is known about the role of GPR55 in CNS development and function. To address this question, we performed a detailed characterization of GPR55 knockout mice using molecular, anatomical, electrophysiological, and behavioral assays. Quantitative PCR studies found that GPR55 mRNA was expressed (in order of decreasing abundance) in the striatum, hippocampus, forebrain, cortex, and cerebellum. GPR55 deficiency did not affect the concentrations of endocannabinoids and related lipids or mRNA levels for several components of the endocannabinoid system in the hippocampus. Normal synaptic transmission and short-term as well as long-term synaptic plasticity were found in GPR55 knockout CA1 pyramidal neurons. Deleting GPR55 function did not affect behavioral assays assessing muscle strength, gross motor skills, sensory-motor integration, motor learning, anxiety or depressive behaviors. In addition, GPR55 null mutant mice exhibited normal contextual and auditory-cue conditioned fear learning and memory in a Pavlovian conditioned fear test. In contrast, when presented with tasks requiring more challenging motor responses, GPR55 knockout mice showed impaired movement coordination. Taken together, these results suggest that GPR55 plays a role in motor coordination, but does not strongly regulate CNS development, gross motor movement or several types of learned behavior.
Collapse
Affiliation(s)
- Chia-Shan Wu
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hongmei Chen
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hao Sun
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jie Zhu
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chris P. Jew
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - James Wager-Miller
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Alex Straiker
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Corinne Spencer
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Heather Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Hui-Chen Lu
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
41
|
Yang P, Wang L, Feng R, Almehizia AA, Tong Q, Myint KZ, Ouyang Q, Alqarni MH, Wang L, Xie XQ. Novel triaryl sulfonamide derivatives as selective cannabinoid receptor 2 inverse agonists and osteoclast inhibitors: discovery, optimization, and biological evaluation. J Med Chem 2013; 56:2045-58. [PMID: 23406429 DOI: 10.1021/jm3017464] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cannabinoid receptors have gained increasing attention as drug targets for developing potential therapeutic ligands. Here, we report the discovery and optimization of triaryl sulfonamides as a novel series possessing significant CB2 receptor affinity and selectivity. Four sets of triaryl ligands were designed and synthesized for further structural modifications and led to the identification of eight compounds as potent and selective CB2 inverse agonists with high binding affinity (CB2K(i) < 10 nM). Especially, compound 57 exhibited the strongest binding affinity on the CB2 receptor (CB2K(i) of 0.5 nM) and the best selectivity over the CB1 receptor (selectivity index of 2594). Importantly, 57 also showed potent inhibitory activity on osteoclast formation, and it was confirmed by a cell viability assay that the inhibition effects were not derived from the cytotoxicity. Finally, 3D QSAR studies confirmed our SAR findings that three bulky groups play an important role for CB2 receptor binding affinity.
Collapse
Affiliation(s)
- Peng Yang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
The 17-β-oestradiol inhibits osteoclast activity by increasing the cannabinoid CB2 receptor expression. Pharmacol Res 2013; 68:7-15. [DOI: 10.1016/j.phrs.2012.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 11/20/2022]
|
43
|
Tauber S, Paulsen K, Wolf S, Synwoldt P, Pahl A, Schneider-Stock R, Ullrich O. Regulation of MMP-9 by a WIN-binding site in the monocyte-macrophage system independent from cannabinoid receptors. PLoS One 2012; 7:e48272. [PMID: 23139770 PMCID: PMC3491062 DOI: 10.1371/journal.pone.0048272] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/21/2012] [Indexed: 11/21/2022] Open
Abstract
The cannabinoid system is known to be involved in the regulation of inflammatory processes. Therefore, drugs targeting cannabinoid receptors are considered as candidates for anti-inflammatory and tissue protective therapy. We demonstrated that the prototypical cannabinoid agonist R(+)WIN55,212-2 (WIN) reduced the secretion of matrix metalloproteinase-9 (MMP-9) in a murine model of cigarette-smoke induced lung inflammation. In experiments using primary cells and cell lines of the monocyte-macrophage-system we found that binding of the cannabinoid-receptor agonist WIN to a stereo-selective, specific binding site in cells of the monocyte-macrophage-system induced a significant down-regulation of MMP-9 secretion and disturbance of intracellular processing, which subsequently down-regulated MMP-9 mRNA expression via a ERK1/2-phosphorylation-dependent pathway. Surprisingly, the anti-inflammatory effect was independent from classical cannabinoid receptors. Our experiments supposed an involvement of TRPV1, but other yet unidentified sites are also possible. We conclude that cannabinoid-induced control of MMP-9 in the monocyte-macrophage system via a cannabinoid-receptor independent pathway represents a general option for tissue protection during inflammation, such as during lung inflammation and other diseases associated with inflammatory tissue damage.
Collapse
Affiliation(s)
- Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute of Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Katrin Paulsen
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute of Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Susanne Wolf
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | | | | | - Regine Schneider-Stock
- Institute of Pathology, Erlangen, Germany
- Institute of Pathology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute of Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
44
|
Yang P, Myint KZ, Tong Q, Feng R, Cao H, Almehizia AA, Alqarni MH, Wang L, Bartlow P, Gao Y, Gertsch J, Teramachi J, Kurihara N, Roodman GD, Cheng T, Xie XQ. Lead discovery, chemistry optimization, and biological evaluation studies of novel biamide derivatives as CB2 receptor inverse agonists and osteoclast inhibitors. J Med Chem 2012; 55:9973-87. [PMID: 23072339 DOI: 10.1021/jm301212u] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
N,N'-((4-(Dimethylamino)phenyl)methylene)bis(2-phenylacetamide) was discovered by using 3D pharmacophore database searches and was biologically confirmed as a new class of CB(2) inverse agonists. Subsequently, 52 derivatives were designed and synthesized through lead chemistry optimization by modifying the rings A-C and the core structure in further SAR studies. Five compounds were developed and also confirmed as CB(2) inverse agonists with the highest CB(2) binding affinity (CB(2)K(i) of 22-85 nM, EC(50) of 4-28 nM) and best selectivity (CB(1)/CB(2) of 235- to 909-fold). Furthermore, osteoclastogenesis bioassay indicated that PAM compounds showed great inhibition of osteoclast formation. Especially, compound 26 showed 72% inhibition activity even at the low concentration of 0.1 μM. The cytotoxicity assay suggested that the inhibition of PAM compounds on osteoclastogenesis did not result from its cytotoxicity. Therefore, these PAM derivatives could be used as potential leads for the development of a new type of antiosteoporosis agent.
Collapse
Affiliation(s)
- Peng Yang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The endocannabinoid (eCB) system is involved in processes as diverse as control of appetite, perception of pain and the limitation of cancer cell growth and invasion. The enzymes responsible for eCB breakdown are attractive pharmacological targets, and fatty acid amide hydrolase inhibitors, which potentiate the levels of the eCB anandamide, are now undergoing pharmaceutical development. 'Drugable' selective inhibitors of monoacylglycerol lipase, a key enzyme regulating the levels of the other main eCB, 2-arachidonoylglycerol, were however not identified until very recently. Their availability has resulted in a large expansion of our knowledge concerning the pharmacological consequences of monoacylglycerol lipase inhibition and hence the role(s) played by the enzyme in the body. In this review, the pharmacology of monoacylglycerol lipase will be discussed, together with an analysis of the therapeutic potential of monoacylglycerol lipase inhibitors as analgesics and anticancer agents.
Collapse
Affiliation(s)
- C J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Sweden.
| |
Collapse
|
46
|
Fitzcharles MA, McDougall J, Ste-Marie PA, Padjen I. Clinical implications for cannabinoid use in the rheumatic diseases: Potential for help or harm? ACTA ACUST UNITED AC 2012; 64:2417-25. [DOI: 10.1002/art.34522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
47
|
Whyte LS, Ford L, Ridge SA, Cameron GA, Rogers MJ, Ross RA. Cannabinoids and bone: endocannabinoids modulate human osteoclast function in vitro. Br J Pharmacol 2012; 165:2584-97. [PMID: 21649637 DOI: 10.1111/j.1476-5381.2011.01519.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Both CB(1) and CB(2) cannabinoid receptors have been shown to play a role in bone metabolism. Crucially, previous studies have focussed on the effects of cannabinoid ligands in murine bone cells. This study aimed to investigate the effects of cannabinoids on human bone cells in vitro. EXPERIMENTAL APPROACH Quantitative RT-PCR was used to determine expression of cannabinoid receptors and liquid chromatography-electrospray ionization tandem mass spectrometry was used to determine the presence of endocannabinoids in human bone cells. The effect of cannabinoids on human osteoclast formation, polarization and resorption was determined by assessing the number of cells expressing α(v) β(3) or with F-actin rings, or measurement of resorption area. KEY RESULTS Human osteoclasts express both CB(1) and CB(2) receptors. CB(2) expression was significantly higher in human monocytes compared to differentiated osteoclasts. Furthermore, the differentiation of human osteoclasts from monocytes was associated with a reduction in 2-AG levels and an increase in anandamide (AEA) levels. Treatment of osteoclasts with LPS significantly increased levels of AEA. Nanomolar concentrations of AEA and the synthetic agonists CP 55 940 and JWH015 stimulated human osteoclast polarization and resorption; these effects were attenuated in the presence of CB(1) and/or CB(2) antagonists. CONCLUSIONS AND IMPLICATIONS Low concentrations of cannabinoids activate human osteoclasts in vitro. There is a dynamic regulation of the expression of the CB(2) receptor and the production of the endocannabinoids during the differentiation of human bone cells. These data suggest that small molecules modulating the endocannabinoid system could be important therapeutics in human bone disease. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.
Collapse
Affiliation(s)
- L S Whyte
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| | | | | | | | | | | |
Collapse
|
48
|
Latest advances in novel cannabinoid CB(2) ligands for drug abuse and their therapeutic potential. Future Med Chem 2012; 4:187-204. [PMID: 22300098 DOI: 10.4155/fmc.11.179] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The field of cannabinoid (CB) drug research is experiencing a challenge as the CB(1) antagonist Rimonabant, launched in 2006 as an anorectic/anti-obesity drug, was withdrawn from the European market due to the complications of suicide and depression as side effects. There is interest in developing CB(2) drugs without CB(1) psychotropic side effects for drug-abuse treatment and therapeutic medication. The CB(1) receptor was discovered predominantly in the brain, whereas the CB(2) is mainly expressed in peripheral cells and tissues, and is involved in immune signal transduction. Conversely, the CB(2) receptor was recently detected in the CNS, for example, in the microglial cells and the neurons. While the CB(2) neurons activity remains controversial, the CB(2) receptor is an attractive therapeutic target for neuropathic pain, immune system, cancer and osteoporosis without psychoactivity. This review addresses CB drug abuse and therapeutic potential with a focus on the most recent advances on new CB(2) ligands from the literature as well as patents.
Collapse
|
49
|
Abstract
A key feature of osteoarthritis and rheumatoid arthritis is the loss of articular cartilage. Cartilage breakdown is mediated by complex interactions of proinflammatory cytokines, such as IL-1, inflammatory mediators, including nitric oxide and prostaglandin E2, and proteases, including matrix metalloproteinases and aggrecanases, such as ADAMTS-4 and -5. Cannabinoids have been shown to reduce joint damage in animal models of arthritis. They have also been shown to prevent IL-1-induced matrix breakdown of collagen and proteoglycan, indicating that cannabinoids may mediate chondroprotective effects. Cannabinoids produce their effects via several cannabinoid receptors and it is important to identify the key cannabinoids and their receptors that are involved in chondroprotection. This review aims to outline the current and future prospects of cannabinoids as anti-arthritic therapeutics, in terms of their ability to prevent cartilage breakdown.
Collapse
|
50
|
Kleyer J, Nicolussi S, Taylor P, Simonelli D, Furger E, Anderle P, Gertsch J. Cannabinoid receptor trafficking in peripheral cells is dynamically regulated by a binary biochemical switch. Biochem Pharmacol 2012; 83:1393-412. [PMID: 22387618 DOI: 10.1016/j.bcp.2012.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 12/20/2022]
Abstract
The cannabinoid G protein-coupled receptors (GPCRs) CB₁ and CB₂ are expressed in different peripheral cells. Localization of GPCRs in the cell membrane determines signaling via G protein pathways. Here we show that unlike in transfected cells, CB receptors in cell lines and primary human cells are not internalized upon agonist interaction, but move between cytoplasm and cell membranes by ligand-independent trafficking mechanisms. Even though CB receptors are expressed in many cells of peripheral origin they are not always localized in the cell membrane and in most cancer cell lines the ratios between CB₁ and CB₂ receptor gene and surface expression vary significantly. In contrast, CB receptor cell surface expression in HL60 cells is subject to significant oscillations and CB₂ receptors form oligomers and heterodimers with CB₁ receptors, showing synchronized surface expression, localization and trafficking. We show that hydrogen peroxide and other nonspecific protein tyrosine phosphatase inhibitors (TPIs) such as phenylarsine oxide trigger both CB₂ receptor internalization and externalization, depending on receptor localization. Phorbol ester-mediated internalization of CB receptors can be inhibited via this switch. In primary human immune cells hydrogen peroxide and other TPIs lead to a robust internalization of CB receptors in monocytes and an externalization in T cells. This study describes, for the first time, the dynamic nature of CB receptor trafficking in the context of a biochemical switch, which may have implications for studies on the cell-type specific effects of cannabinoids and our understanding of the regulation of CB receptor cell surface expression.
Collapse
Affiliation(s)
- Jonas Kleyer
- Institute of Biochemistry and Molecular Medicine, Swiss National Centre of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|