1
|
Simon M, Owusu S, Bracher S, Bosshardt DD, Pretterklieber M, Zysset P. Automatic segmentation of cortical bone microstructure: Application and analysis of three proximal femur sites. Bone 2025; 193:117404. [PMID: 39863009 DOI: 10.1016/j.bone.2025.117404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Osteoporosis is the most common bone metabolic unbalance, leading to fragility fractures, which are known to be associated with structural changes in the bone. Cortical bone accounts for 80 % of the skeleton mass and undergoes remodeling throughout life, leading to changes in its thickness and microstructure. Although many studies quantified the different cortical bone structures using CT techniques (3D), they are often realised on a small number of samples. Therefore, the work presented here proposes a method to quantify cortical bone microstructure using 2D histology, shows its application on a set of 94 samples and compares to 3D methods. Fresh frozen human femur pairs from 47 donors aged between 57 and 96 years were obtained from the Medical University of Vienna. Bone samples were cut from 3 sites: proximal part of the diaphysis, inferior and superior segments of the neck. The samples were stained with toluidine blue and imaged under light microscopy. After manual segmentation of a few regions of interest by multiple operators, a convolutional neural network was trained in combination with a random forest for automatic segmentation. The segmentation analysis compares morphology and structure distribution of Haversian canals, osteocyte lacunae, and cement lines with literature, between anatomical sites, sex, left and right sides, and relation to ageing. Morphological analysis of the segmentation gives results similar to the literature. Comparison between male and female donors shows no significant differences. There is no significant difference between left and right femur on paired samples but significant differences are observed between anatomical locations. The structures' relative amounts do not present significant changes with age but only weak tendencies. Nevertheless, a strong correlation was observed between osteocyte lacunae density and bone areal fraction. This study presents a full process to stain and automatically segment digital cortical bone images. Its application to a large sample set of proximal femora provides strong statistics on the cortical bone structures morphology and distribution. Similarities observed between sides and sexes together with differences observed between sites could indicate that mechanical loading might be a main driver for bone microstructure. Additionally, the relationship between osteocyte lacunae density and bone areal fraction could suggest that bone porosity is regulated by osteocyte survival.
Collapse
Affiliation(s)
- Mathieu Simon
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland.
| | - Silvia Owusu
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Stefan Bracher
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Dieter D Bosshardt
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Michael Pretterklieber
- Division of macroscopical and clinical Anatomy, Medical University of Graz, Graz, Austria
| | - Philippe Zysset
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Lv X, Wang J, Wei F. A persistent mineralization process in alveolar bone throughout the postnatal growth stage in rats. Arch Oral Biol 2024; 167:106062. [PMID: 39094423 DOI: 10.1016/j.archoralbio.2024.106062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Alveolar bone quality is essential for the maxillofacial integrity and function, and depends on alveolar bone mineralization. This study aims to investigate the in vivo changes in alveolar bone mineralization, from the perspective of mineral deposition and crystal transition in postnatal rats. DESIGN Nine postnatal time points of Wistar rats, ranging from day 1 to 56, were set to obtain the maxillary alveolar bone samples. Each time point consisted of ninety rats, with 45 females and 45 males. Macromorphology of alveolar bone was reconducted by Micro-Computed Tomography and the mineral content was quantified via Thermogravimetric analysis, Scanning Electron Microscope, High-Resolution Transmission Electron Microscopy and vibrational spectroscopy. Furthermore, the crystallinity and composition were characterized by vibrational spectroscopy, X-ray Diffraction, X-ray Photoelectron Spectroscopy and Selected Area Electron Diffraction. RESULTS The progressive increase of mineral deposition was accompanied by substantial growth in alveolar bone mass and volume in postnatal rats. Whereas the mineral percentage initially decreased and then increased, reaching a nadir on postnatal day 14 (P14) when tooth eruption was first observed. Besides, localized mineralization was initiated by the formation of amorphous precursors and then converted into mineral crystals, while there was no statistically significant change in the average crystallinity of the bone during growth. CONCLUSION Mineralization of alveolar bone is ongoing throughout the early growth in postnatal rats. Mineral deposition increases with age, whereas the crystallinity remains stable within a certain range. Besides, the mineral percentage reaches its lowest point on P14, which may be attributed to tooth eruption.
Collapse
Affiliation(s)
- Xinli Lv
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong 250012, China
| | - Jixiao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong 250012, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Sharma S, Shankar V, Rajender S, Mithal A, Rao SD, Chattopadhyay N. Impact of anti-fracture medications on bone material and strength properties: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1426490. [PMID: 39257899 PMCID: PMC11384599 DOI: 10.3389/fendo.2024.1426490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024] Open
Abstract
Background and aims Reduced bone mineral density (BMD) and microarchitectural deterioration contribute to increased fracture risk. Although the effects of anti-fracture medications (AFMs) on BMD are well-documented, their impact on bone material properties (BMPs) remains poorly characterized. Accordingly, we conducted a systematic review and meta-analysis to evaluate the effects of AFMs on BMPs. Based on data availability, we further categorized AFMs into anti-resorptives, bisphosphonates alone, and strontium ranelate subgroups to perform additional analyses of BMPs in osteoporotic patients. Methods We did a comprehensive search of three databases, namely, PubMed, Web of Science, and Google Scholar, using various permutation combinations, and used Comprehensive Meta-Analysis software to analyze the extracted data. Results The 15 eligible studies (randomized and non-randomized) compared the following: (1) 301 AFM-treated patients with 225 on placebo; (2) 191 patients treated with anti-resorptives with 131 on placebo; (3) 86 bisphosphonate-treated patients with 66 on placebo; and (4) 84 strontium ranelate-treated patients with 70 on placebo. Pooled analysis showed that AFMs significantly decreased cortical bone crystallinity [standardized difference in means (SDM) -1.394] and collagen maturity [SDM -0.855], and collagen maturity in cancellous bone [SDM -0.631]. Additionally, anti-resorptives (bisphosphonates and denosumab) significantly increased crystallinity [SDM 0.387], mineral-matrix ratio [SDM 0.771], microhardness [SDM 0.858], and contact hardness [SDM 0.952] of cortical bone. Anti-resorptives increased mineral-matrix ratio [SDM 0.543] and microhardness [SDM 0.864] and decreased collagen maturity [SDM -0.539] in cancellous bone. Restricted analysis of only bisphosphonate-treated studies showed a significant decrease in collagen maturity [SDM -0.650] in cancellous bone and an increase in true hardness [SDM 1.277] in cortical bone. In strontium ranelate-treated patients, there was no difference in BMPs compared to placebo. Conclusion Collectively, our study suggests that AFMs improve bone quality, which explains their anti-fracture ability that is not fully accounted for by increased BMD in osteoporosis patients.
Collapse
Affiliation(s)
- Shivani Sharma
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vijay Shankar
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, India
| | - Singh Rajender
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ambrish Mithal
- Institute of Endocrinology and Diabetes, Max Healthcare, New Delhi, India
| | - Sudhaker D. Rao
- Division of Endocrinology Diabetes and Bone & Mineral Disorders, and Bone and Mineral Research Laboratory, Henry Ford Health/Michigan State University College of Human Medicine, Detroit, MI, United States
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Arvelo DM, Garcia-Sacristan C, Chacón E, Tarazona P, Garcia R. Interfacial water on collagen nanoribbons by 3D AFM. J Chem Phys 2024; 160:164714. [PMID: 38656444 DOI: 10.1063/5.0205611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Collagen is the most abundant structural protein in mammals. Type I collagen in its fibril form has a characteristic pattern structure that alternates two regions called gap and overlap. The structure and properties of collagens are highly dependent on the water and mineral content of the environment. Here, we apply 3D AFM to characterize at angstrom-scale resolution the interfacial water structure of collagen nanoribbons. For a neutral tip, the interfacial water structure is characterized by the oscillation of the water particle density distribution with a value of 0.3 nm (hydration layers). The interfacial structure does not depend on the collagen region. For a negatively charged tip, the interfacial structure might depend on the collagen region. Hydration layers are observed in overlap regions, while in gap regions, the interfacial solvent structure is dominated by electrostatic interactions. These interactions generate interlayer distances of 0.2 nm.
Collapse
Affiliation(s)
- Diana M Arvelo
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | | | - Enrique Chacón
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | - Pedro Tarazona
- Departamento de Física Teórica de la Materia Condensada, IFIMAC Condensed Matter Physics Center, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| |
Collapse
|
5
|
Raimann A, Misof BM, Fratzl P, Fratzl-Zelman N. Bone Material Properties in Bone Diseases Affecting Children. Curr Osteoporos Rep 2023; 21:787-805. [PMID: 37897675 DOI: 10.1007/s11914-023-00822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/30/2023]
Abstract
PURPOSE OF REVIEW Metabolic and genetic bone disorders affect not only bone mass but often also the bone material, including degree of mineralization, matrix organization, and lacunar porosity. The quality of juvenile bone is moreover highly influenced by skeletal growth. This review aims to provide a compact summary of the present knowledge on the complex interplay between bone modeling and remodeling during skeletal growth and to alert the reader to the complexity of bone tissue characteristics in children with bone disorders. RECENT FINDINGS We describe cellular events together with the characteristics of the different tissues and organic matrix organization (cartilage, woven and lamellar bone) occurring during linear growth. Subsequently, we present typical alterations thereof in disorders leading to over-mineralized bone matrix compared to those associated with low or normal mineral content based on bone biopsy studies. Growth spurts or growth retardation might amplify or mask disease-related alterations in bone material, which makes the interpretation of bone tissue findings in children complex and challenging.
Collapse
Affiliation(s)
- Adalbert Raimann
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Medical University of Vienna, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Barbara M Misof
- Vienna Bone and Growth Center, Vienna, Austria
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| | - Nadja Fratzl-Zelman
- Vienna Bone and Growth Center, Vienna, Austria.
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria.
| |
Collapse
|
6
|
de Wildt BWM, Zhao F, Lauwers I, van Rietbergen B, Ito K, Hofmann S. Characterization of three-dimensional bone-like tissue growth and organization under influence of directional fluid flow. Biotechnol Bioeng 2023. [PMID: 37148472 DOI: 10.1002/bit.28418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/04/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
The transition in the field of bone tissue engineering from bone regeneration to in vitro models has come with the challenge of recreating a dense and anisotropic bone-like extracellular matrix (ECM). Although the mechanism by which bone ECM gains its structure is not fully understood, mechanical loading and curvature have been identified as potential contributors. Here, guided by computational simulations, we evaluated cell and bone-like tissue growth and organization in a concave channel with and without directional fluid flow stimulation. Human mesenchymal stromal cells were seeded on donut-shaped silk fibroin scaffolds and osteogenically stimulated for 42 days statically or in a flow perfusion bioreactor. After 14, 28, and 42 days, constructs were investigated for cell and tissue growth and organization. As a result, directional fluid flow was able to improve organic tissue growth but not organization. Cells tended to orient in the tangential direction of the channel, possibly attributed to its curvature. Based on our results, we suggest that organic ECM production but not anisotropy can be stimulated through the application of fluid flow. With this study, an initial attempt in three-dimensions was made to improve the resemblance of in vitro produced bone-like ECM to the physiological bone ECM.
Collapse
Affiliation(s)
- Bregje W M de Wildt
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Feihu Zhao
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Biomedical Engineering, Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Iris Lauwers
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
7
|
Al-Qudsy L, Hu YW, Xu H, Yang PF. Mineralized Collagen Fibrils: An Essential Component in Determining the Mechanical Behavior of Cortical Bone. ACS Biomater Sci Eng 2023; 9:2203-2219. [PMID: 37075172 DOI: 10.1021/acsbiomaterials.2c01377] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Bone comprises mechanically different materials in a specific hierarchical structure. Mineralized collagen fibrils (MCFs), represented by tropocollagen molecules and hydroxyapatite nanocrystals, are the fundamental unit of bone. The mechanical characterization of MCFs provides the unique adaptive mechanical competence to bone to withstand mechanical load. The structural and mechanical role of MCFs is critical in the deformation mechanisms of bone and the marvelous strength and toughness possessed by bone. However, the role of MCFs in the mechanical behavior of bone across multiple length scales is not fully understood. In the present study, we shed light upon the latest progress regarding bone deformation at multiple hierarchical levels and emphasize the role of MCFs during bone deformation. We propose the concept of hierarchical deformation of bone to describe the interconnected deformation process across multiple length scales of bone under mechanical loading. Furthermore, how the deterioration of bone caused by aging and diseases impairs the hierarchical deformation process of the cortical bone is discussed. The present work expects to provide insights on the characterization of MCFs in the mechanical properties of bone and lays the framework for the understanding of the multiscale deformation mechanics of bone.
Collapse
Affiliation(s)
- Luban Al-Qudsy
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Medical Instrumentation Engineering Techniques, Electrical Engineering Technical College, Middle Technical University, 8998+QHJ Baghdad, Iraq
| | - Yi-Wei Hu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Peng-Fei Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
8
|
Allahyari P, Silani M, Yaghoubi V, Milovanovic P, Schmidt FN, Busse B, Qwamizadeh M. On the fracture behavior of cortical bone microstructure: The effects of morphology and material characteristics of bone structural components. J Mech Behav Biomed Mater 2023; 137:105530. [PMID: 36334581 DOI: 10.1016/j.jmbbm.2022.105530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Bone encompasses a complex arrangement of materials at different length scales, which endows it with a range of mechanical, chemical, and biological capabilities. Changes in the microstructure and characteristics of the material, as well as the accumulation of microcracks, affect the bone fracture properties. In this study, two-dimensional finite element models of the microstructure of cortical bone were considered. The eXtended Finite Element Method (XFEM) developed by Abaqus software was used for the analysis of the microcrack propagation in the model as well as for local sensitivity analysis. The stress-strain behavior obtained for the different introduced models was substantially different, confirming the importance of bone tissue microstructure for its failure behavior. Considering the role of interfaces, the results highlighted the effect of cement lines on the crack deflection path and global fracture behavior of the bone microstructure. Furthermore, bone micromorphology and areal fraction of cortical bone tissue components such as osteons, cement lines, and pores affected the bone fracture behavior; specifically, pores altered the crack propagation path since increasing porosity reduced the maximum stress needed to start crack propagation. Therefore, cement line structure, mineralization, and areal fraction are important parameters in bone fracture. The parameter-wise sensitivity analysis demonstrated that areal fraction and strain energy release rate had the greatest and the lowest effect on ultimate strength, respectively. Furthermore, the component-wise sensitivity analysis revealed that for the areal fraction parameter, pores had the greatest effect on ultimate strength, whereas for the other parameters such as elastic modulus and strain energy release rate, cement lines had the most important effect on the ultimate strength. In conclusion, the finding of the current study can help to predict the fracture mechanisms in bone by taking the morphological and material properties of its microstructure into account.
Collapse
Affiliation(s)
- P Allahyari
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - M Silani
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - V Yaghoubi
- Structural Integrity & Composites, Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS, Delft, Netherlands
| | - P Milovanovic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - F N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany
| | - B Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany
| | - M Qwamizadeh
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany.
| |
Collapse
|
9
|
Antifatigue and microbiome reshaping effects of yak bone collagen peptides on Balb/c mice. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Pearce DJ, Hitchens PL, Malekipour F, Ayodele B, Lee PVS, Whitton RC. Biomechanical and Microstructural Properties of Subchondral Bone From Three Metacarpophalangeal Joint Sites in Thoroughbred Racehorses. Front Vet Sci 2022; 9:923356. [PMID: 35847629 PMCID: PMC9277662 DOI: 10.3389/fvets.2022.923356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Fatigue-induced subchondral bone (SCB) injury is common in racehorses. Understanding how subchondral microstructure and microdamage influence mechanical properties is important for developing injury prevention strategies. Mechanical properties of the disto-palmar third metacarpal condyle (MCIII) correlate poorly with microstructure, and it is unknown whether the properties of other sites within the metacarpophalangeal (fetlock) joint are similarly complex. We aimed to investigate the mechanical and structural properties of equine SCB from specimens with minimal evidence of macroscopic disease. Three sites within the metacarpophalangeal joint were examined: the disto-palmar MCIII, disto-dorsal MCIII, and proximal sesamoid bone. Two regions of interest within the SCB were compared, a 2 mm superficial and an underlying 2 mm deep layer. Cartilage-bone specimens underwent micro-computed tomography, then cyclic compression for 100 cycles at 2 Hz. Disto-dorsal MCIII specimens were loaded to 30 MPa (n = 10), while disto-palmar MCIII (n = 10) and proximal sesamoid (n = 10) specimens were loaded to 40 MPa. Digital image correlation determined local strains. Specimens were stained with lead-uranyl acetate for volumetric microdamage quantification. The dorsal MCIII SCB had lower bone volume fraction (BVTV), bone mineral density (BMD), and stiffness compared to the palmar MCIII and sesamoid bone (p < 0.05). Superficial SCB had higher BVTV and lower BMD than deeper SCB (p < 0.05), except at the palmar MCIII site where there was no difference in BVTV between depths (p = 0.419). At all sites, the deep bone was stiffer (p < 0.001), although the superficial to deep gradient was smaller in the dorsal MCIII. Hysteresis (energy loss) was greater superficially in palmar MCIII and sesamoid (p < 0.001), but not dorsal MCIII specimens (p = 0.118). The stiffness increased with cyclic loading in total cartilage-bone specimens (p < 0.001), but not in superficial and deep layers of the bone, whereas hysteresis decreased with the cycle for all sites and layers (p < 0.001). Superficial equine SCB is uniformly less stiff than deeper bone despite non-uniform differences in bone density and damage levels. The more compliant superficial layer has an important role in energy dissipation, but whether this is a specific adaptation or a result of microdamage accumulation is not clear.
Collapse
Affiliation(s)
- Duncan J. Pearce
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Peta L. Hitchens
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Fatemeh Malekipour
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Babatunde Ayodele
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Peter Vee Sin Lee
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - R. Chris Whitton
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
- *Correspondence: R. Chris Whitton
| |
Collapse
|
11
|
Choe HJ, Koo BK, Yi KH, Kong SH, Kim JH, Shin CS, Chai JW, Kim SW. Skeletal effects of combined bisphosphonates treatment and parathyroidectomy in osteoporotic patients with primary hyperparathyroidism. J Bone Miner Metab 2022; 40:292-300. [PMID: 34761302 DOI: 10.1007/s00774-021-01279-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Bone loss caused by primary hyperparathyroidism (PHPT) is an indication for parathyroidectomy (PTX). However, whether adding bisphosphonates would be superior to PTX alone to increase bone mass remains unclear. We thus aimed to compare the skeletal effects of the combination treatment of bisphosphonates and PTX with PTX alone. MATERIALS AND METHODS In this retrospective analysis, bone mineral density (BMD) changes after 1 year of combination treatment and PTX alone were compared. We also analyzed the correlation between changes in serum biochemical parameters and BMD after 1 year of treatment in both groups. RESULTS The baseline characteristics of patients treated with PTX alone (n = 24) and combination treatment (n = 26) were comparable. BMD significantly increased after 1 year of treatment in both groups (all p < 0.001), and the increase in BMD at the femur neck was higher in the PTX alone group than in the combination group (p = 0.011). There was a decreasing trend in serum alkaline phosphatase (ALP) levels in PTX alone compared to the combination treatment group (p = 0.053). In the study cohort, lower BMD and higher ALP levels at baseline were associated with higher 1-year BMD changes at all sites. Interestingly, a significant association was found between changes in ALP and BMD at the femur neck in the PTX alone group (p = 0.003), but abolished in the combination group (p = 0.946). CONCLUSIONS There is no additional benefit of BMD in combination treatment with bisphosphonates and PTX over PTX alone in osteoporotic patients with PHPT. Combined bisphosphonate treatment might interfere with the increase in bone mass caused by PTX.
Collapse
Affiliation(s)
- Hun Jee Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
- Division of Endocrinology and Metabolism, Seoul National University Hospital, Seoul, 03080, Korea
| | - Bo Kyung Koo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
- Division of Endocrinology and Metabolism, Seoul Metropolitan Government Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
| | - Ka Hee Yi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
- Division of Endocrinology and Metabolism, Seoul Metropolitan Government Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
| | - Sung Hye Kong
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
- Division of Endocrinology and Metabolism, Seoul National University Hospital, Seoul, 03080, Korea
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
- Division of Endocrinology and Metabolism, Seoul National University Hospital, Seoul, 03080, Korea
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
- Division of Endocrinology and Metabolism, Seoul National University Hospital, Seoul, 03080, Korea
| | - Jee Won Chai
- Department of Radiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Radiology, Seoul Metropolitan Government Boramae Medical Center, Seoul, 07061, Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Division of Endocrinology and Metabolism, Seoul Metropolitan Government Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea.
| |
Collapse
|
12
|
Stimulation of Metabolic Activity and Cell Differentiation in Osteoblastic and Human Mesenchymal Stem Cells by a Nanohydroxyapatite Paste Bone Graft Substitute. MATERIALS 2022; 15:ma15041570. [PMID: 35208112 PMCID: PMC8877199 DOI: 10.3390/ma15041570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023]
Abstract
Advances in nanotechnology have been exploited to develop new biomaterials including nanocrystalline hydroxyapatite (nHA) with physical properties close to those of natural bone mineral. While clinical data are encouraging, relatively little is understood regarding bone cells’ interactions with synthetic graft substitutes based on this technology. The aim of this research was therefore to investigate the in vitro response of both osteoblast cell lines and primary osteoblasts to an nHA paste. Cellular metabolic activity was assessed using the cell viability reagent PrestoBlue and quantitative, real-time PCR was used to determine gene expression related to osteogenic differentiation. A potential role of calcium-sensing receptor (CaSR) in the response of osteoblastic cells to nHA was also investigated. Indirect contact of the nHA paste with human osteoblastic cells (Saos-2, MG63, primary osteoblasts) and human bone marrow-derived mesenchymal stem cells enhanced the cell metabolic activity. The nHA paste also stimulated gene expression of runt-related transcription factor 2, collagen 1, alkaline phosphatase, and osteocalcin, thereby indicating an osteogenic response. CaSR was not involved in nHA paste-induced increases in cellular metabolic activity. This investigation demonstrated that the nHA paste has osteogenic properties that contribute to clinical efficacy when employed as an injectable bone graft substitute.
Collapse
|
13
|
Theoretical Evidence of Osteoblast Self-Inhibition after Activation of the Genetic Regulatory Network Controlling Mineralization. J Theor Biol 2022; 537:111005. [PMID: 35031309 DOI: 10.1016/j.jtbi.2022.111005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 01/16/2023]
Abstract
Bone is a hard-soft biomaterial built through a self-assembly process under genetic regulatory network (GRN) monitoring. This paper aims to capture the behavior of the bone GRN part that controls mineralization by using a mathematical model. Here, we provide an advanced review of empirical evidence about interactions between gene coding (i) transcription factors and (ii) bone proteins. These interactions are modeled with nonlinear differential equations using Michaelis-Menten and Hill functions. Compared to empirical evidence, the two best systems (among 126=2,985,984 possibilities) use factors of inhibition from the start of the activation of each gene. It reveals negative indirect interactions coming from either negative feedback loops or the recently depicted micro-RNAs. The difference between the two systems also lies in the BSP equation and two ways for activating and reducing its production. Thus, it highlights the critical role of BSP in the bone GRN that acts on bone mineralization. Our study provides the first theoretical evidence of a necessary genetic inhibition for bone mineralization with this work.
Collapse
|
14
|
Wang RL, Ruan DD, Hu YN, Gan YM, Lin XF, Fang ZT, Liao LS, Tang FQ, He WB, Luo JW. Genetic Analysis and Functional Study of a Pedigree With Bruck Syndrome Caused by PLOD2 Variant. Front Pediatr 2022; 10:878172. [PMID: 35601416 PMCID: PMC9120662 DOI: 10.3389/fped.2022.878172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Bruck syndrome (BS) is a rare autosomal recessive inherited osteogenesis imperfecta disease characterized by increased bone fragility and joint contracture. The pathogenic gene of type I BS is FKBPl0, whereas that of type II BS is PLOD2. No significant difference has been found in the clinical phenotype between the two types of BS. In this study, we performed genetic analysis of a BS pedigree caused by PLOD2 variant and studied the corresponding cellular function. METHODS Serum biochemistry, parathyroid hormone (PTH), 25-hydroxyvitamin D [25-(OH) D], osteocalcin, and 24-h urinary calcium levels of a family member with BS was assessed. The genes of the proband were analyzed by second-generation sequencing and exon capture techniques. Sanger sequencing was also performed for the suspected responsible variant of the family member. Wild- and variant-type lentivirus plasmids were constructed by gene cloning and transfected into HEK293T cells. Cell function was verified by real-time quantitative polymerase chain reaction, western blotting, and immunofluorescence detection. RESULTS In this pedigree, the proband was found to have a homozygous variant c.1856G > A (p.Arg619His) in exon 17 of PLOD2 (NM_182943.3). His consanguineous parents and sisters were p.Arg619His heterozygous carriers. The mRNA expression of PLOD2 in the constructed p.Arg619His variant cells was significantly upregulated, while the expression of PLOD2 and collagen I protein in the cell lysate was significantly downregulated. Immunofluorescence revealed that the wild-type PLOD2 was mainly located in the cytoplasm, and the expression of the PLOD2 protein after c.1856G > A variant was significantly downregulated, with almost no expression, aligning with the western blot results. The serum sodium, potassium, calcium, phosphorus, magnesium, alkaline phosphatase, PTH, 25-(OH) D, osteocalcin, and 24 h urinary calcium levels of the proband, his parents, and sisters were normal. CONCLUSION Through gene and cell function analyses, PLOD2 Arg619His missense variant was preliminarily confirmed to cause BS by reducing protein expression.
Collapse
Affiliation(s)
- Ruo-Li Wang
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.,Department of Emergency, Fujian Provincial Hospital, Fuzhou, China.,Fujian Trauma Medical Center, Fuzhou, China
| | - Dan-Dan Ruan
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Ya-Nan Hu
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Yu-Mian Gan
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Xin-Fu Lin
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.,Department of Pediatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Zhu-Ting Fang
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.,Department of Intervention, Fujian Provincial Hospital, Fuzhou, China
| | - Li-Sheng Liao
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.,Department of Hematology, Fujian Provincial Hospital, Fuzhou, China
| | - Fa-Qiang Tang
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.,Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, China
| | - Wu-Bing He
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.,Department of Emergency, Fujian Provincial Hospital, Fuzhou, China.,Fujian Trauma Medical Center, Fuzhou, China
| | - Jie-Wei Luo
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.,Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
15
|
Dirkes RK, Welly RJ, Mao J, Kinkade J, Vieira-Potter VJ, Rosenfeld CS, Bruzina PS. Gestational and lactational exposure to BPA, but not BPS, negatively impacts trabecular microarchitecture and cortical geometry in adult male offspring. Bone Rep 2021; 15:101147. [PMID: 34820485 PMCID: PMC8599108 DOI: 10.1016/j.bonr.2021.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
Bisphenol-A (BPA) and bisphenol-S (BPS) are endocrine disrupting chemicals (EDCs) found primarily in plastics. Estrogen is a primary hormonal regulator of skeletal growth and development; however, the impact of gestational BPA or BPS exposure on skeletal health of offspring remains relatively unknown. Here, adult female mice were randomized into three treatment groups: 200 μg BPA/kg BW (BPA), 200 μg BPS/kg BW (BPS) or control (CON). Animals were then further randomized to exercising (EX) or sedentary (SED) groups. Treatment continued through mating, gestation, and lactation. One male offspring from each dam (n = 6-8/group) was assessed at 16 weeks of age to evaluate effects of EDC exposure on the adult skeleton. Cortical geometry of the mid-diaphysis and trabecular microarchitecture of the distal femur were assessed via micro-CT. Biomechanical strength and mineral apposition rate of the femoral diaphysis were assessed via three-point bending and dynamic histomorphometry, respectively. Two-factor ANOVA or ANCOVA were used to determine the effects of maternal EX and BPA or BPS on trabecular and cortical bone outcomes. Maternal EX led to a significant decrease in body fat percentage and bone stiffness, independent of EDC exposure. Offspring exposed to BPA had significantly lower trabecular bone volume, trabecular number, connectivity density, cortical thickness, and greater trabecular spacing compared to BPS or CON animals. In conclusion, gestational BPA, but not BPS, exposure negatively impacted trabecular microarchitecture and cortical geometry in adult male offspring. If these findings translate to humans, this could have significant public health impacts on expecting women or those seeking to become pregnant.
Collapse
Affiliation(s)
- Rebecca K. Dirkes
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States of America
| | - Rebecca J. Welly
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States of America
| | - Jiude Mao
- Biomedical Sciences, Christopher S. Bond Life Sciences Center, MU Institute for Data Science and Informatics, Thompson Center for Autism and Behavioral Disorders, Genetics Area Program, University of Missouri, Columbia, MO, United States of America
| | - Jessica Kinkade
- Biomedical Sciences, Christopher S. Bond Life Sciences Center, MU Institute for Data Science and Informatics, Thompson Center for Autism and Behavioral Disorders, Genetics Area Program, University of Missouri, Columbia, MO, United States of America
| | | | - Cheryl S. Rosenfeld
- Biomedical Sciences, Christopher S. Bond Life Sciences Center, MU Institute for Data Science and Informatics, Thompson Center for Autism and Behavioral Disorders, Genetics Area Program, University of Missouri, Columbia, MO, United States of America
| | - Pamela S. Bruzina
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
16
|
Lin Z, Tao Y, Huang Y, Xu T, Niu W. Applications of marine collagens in bone tissue engineering. Biomed Mater 2021; 16:042007. [PMID: 33793421 DOI: 10.1088/1748-605x/abf0b6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
For decades, collagen has been among the most widely used biomaterials with several biomedical applications. Recently, researchers have shown a keen interest in collagen obtained from marine sources because of its biocompatibility, biodegradability, ease of extractability, safety, low immunogenicity, and low production costs. A wide variety of marine collagen-based scaffolds have been developed for bone tissue engineering, and these scaffolds display excellent biological effects. This review aims to provide an overview of the biological effects of marine collagen in bone engineering, such as promoting osteogenesis and collagen synthesis, inhibiting inflammation, inducing the differentiation of cartilage, and improving bone mineral density. Marine collagen holds great promise as a biomaterial in bone tissue engineering.
Collapse
Affiliation(s)
- Zhidong Lin
- The Second Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People's Republic of China. East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | | | | | | | | |
Collapse
|
17
|
Surowiec RK, Ram S, Idiyatullin D, Goulet R, Schlecht SH, Galban CJ, Kozloff KM. In vivo quantitative imaging biomarkers of bone quality and mineral density using multi-band-SWIFT magnetic resonance imaging. Bone 2021; 143:115615. [PMID: 32853850 PMCID: PMC7770067 DOI: 10.1016/j.bone.2020.115615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/29/2022]
Abstract
Bone is a composite biomaterial of mineral crystals, organic matrix, and water. Each contributes to bone quality and strength and may change independently, or together, with disease progression and treatment. Even so, there is a near ubiquitous reliance on ionizing x-ray-based approaches to measure bone mineral density (BMD) which is unable to fully characterize bone strength and may not adequately predict fracture risk. Characterization of treatment efficacy in bone diseases of altered remodeling is complicated by the lack of imaging modality able to safely monitor material-level and biochemical changes in vivo. To improve upon the current state of bone imaging, we tested the efficacy of Multi Band SWeep Imaging with Fourier Transformation (MB-SWIFT) magnetic resonance imaging (MRI) as a readout of bone derangement in an estrogen deficient ovariectomized (OVX) rat model during growth. MB-SWIFT MRI-derived BMD correlated significantly with BMD measured using micro-computed tomography (μCT). In this rodent model, growth appeared to overcome estrogen deficiency as bone mass continued to increase longitudinally over the duration of the study. Nonetheless, after 10 weeks of intervention, MB-SWIFT detected significant changes consistent with estrogen deficiency in cortical water, cortical matrix organization (T1), and marrow fat. Findings point to MB-SWIFT's ability to quantify BMD in good agreement with μCT while providing additive quantitative outcomes about bone quality in a manner consistent with estrogen deficiency. These results indicate MB-SWIFT as a non-ionizing imaging strategy with value for bone imaging and may be a promising technique to progress to the clinic for monitoring and clinical management of patients with bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Rachel K Surowiec
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Sundaresh Ram
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Djaudat Idiyatullin
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Robert Goulet
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Stephen H Schlecht
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Craig J Galban
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth M Kozloff
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
Fayolle C, Labrune M, Berteau JP. Raman spectroscopy investigation shows that mineral maturity is greater in CD-1 than in C57BL/6 mice distal femurs after sexual maturity. Connect Tissue Res 2020; 61:409-419. [PMID: 30922120 DOI: 10.1080/03008207.2019.1601184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim of the study mice are the most often used pre-clinical lab models for studying the pathologies of bone mineralization. However, recent evidence suggests that two of the most often used mice strains (C57BL/6J and CD-1) might show differences in the bone mineralization process. This study sought to investigate the main compositional properties of bone tissue between nonpathological C57BL/6J and CD-1 murine knee joints. Materials and Methods : to this end, medial and lateral condylar subchondral bones and the adjacent diaphyseal cortical bone of 13 murine femurs (n = 7 C57BL/6J and n = 6 CD-1 at eight weeks old, just after sexual maturation) were analyzed with ex vivo Raman spectroscopy. Results : regardless of the bone tissue analyzed, our results showed that CD-1 laboratory mice present a more mature mineral phase than C57BL/6J laboratory mice, but present no difference in maturity of the collagen phase. For both strains, the subchondral bone of the medial condylar and cortical bone from the diaphysis have similar compositional properties, and CD-1 presents less variation than C57BL/6J. Furthermore, we depict a novel parametric relationship between the crystallinity and carbonate-to-amide-I ratio that might help in deciphering the mineral maturation process that occurs during bone's mineralization. Conclusions : Our results suggest that the timing of bone maturation might be different between non-pathological C57BL/6J and CD-1 murine knee femurs.
Collapse
Affiliation(s)
- Clémence Fayolle
- Department of Physical Therapy, City University of New York, College of Staten Island , New York, NY, USA.,Department of Biomedical Engineering, Compiegne, Sorbonne University, Universite Technologique de Compiegne , France
| | - Mélody Labrune
- Department of Physical Therapy, City University of New York, College of Staten Island , New York, NY, USA.,Department of Biomedical Engineering, Compiegne, Sorbonne University, Universite Technologique de Compiegne , France
| | - Jean-Philippe Berteau
- Department of Physical Therapy, City University of New York, College of Staten Island , New York, NY, USA.,New York Center for Biomedical Engineering, City University of New York, City College , New York, NY, USA.,Nanoscience Initiatives, Advanced Science Research Center, City University of New York, City College , New York, NY, USA
| |
Collapse
|
19
|
Reznikov N, Alsheghri AA, Piché N, Gendron M, Desrosiers C, Morozova I, Sanchez Siles JM, Gonzalez-Quevedo D, Tamimi I, Song J, Tamimi F. Altered topological blueprint of trabecular bone associates with skeletal pathology in humans. Bone Rep 2020; 12:100264. [PMID: 32420414 PMCID: PMC7218160 DOI: 10.1016/j.bonr.2020.100264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/11/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Bone is a hierarchically organized biological material, and its strength is usually attributed to overt factors such as mass, density, and composition. Here we investigate a covert factor – the topological blueprint, or the network organization pattern of trabecular bone. This generally conserved metric of an edge-and-node simplified presentation of trabecular bone relates to the average coordination/valence of nodes and the equiangular 3D offset of trabeculae emanating from these nodes. We compare the topological blueprint of trabecular bone in presumably normal, fractured osteoporotic, and osteoarthritic samples (all from human femoral head, cross-sectional study). We show that bone topology is altered similarly in both fragility fracture and in joint degeneration. Decoupled from the morphological descriptors, the topological blueprint subjected to simulated loading associates with an abnormal distribution of strain, local stress concentrations and lower resistance to the standardized load in pathological samples, in comparison with normal samples. These topological effects show no correlation with classic morphological descriptors of trabecular bone. The negative effect of the altered topological blueprint may, or may not, be partly compensated for by the morphological parameters. Thus, naturally occurring optimization of trabecular topology, or a lack thereof in skeletal disease, might be an additional, previously unaccounted for, contributor to the biomechanical performance of bone, and might be considered as a factor in the life-long pathophysiological trajectory of common bone ailments. Mechanical performance of the skeleton results from many factors and their interplay. Topological blueprint as a basic trabecular design plan is an understudied factor. Topological blueprint deviation undermines mechanical properties of trabecular bone. Higher bone mass or thicker trabeculae do not compensate for deviant topology.
Collapse
Affiliation(s)
- Natalie Reznikov
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College, Montréal, QC H3A 1G1, Canada.,Object Research Systems Inc., 760 Saint-Paul St W, Montréal, QC H3C 1M4, Canada
| | - Ammar A Alsheghri
- Department of Mining and Materials Engineering, McGill University, 3610 University St., Montréal, QC H3A 0C5, Canada
| | - Nicolas Piché
- Object Research Systems Inc., 760 Saint-Paul St W, Montréal, QC H3C 1M4, Canada
| | - Mathieu Gendron
- Object Research Systems Inc., 760 Saint-Paul St W, Montréal, QC H3C 1M4, Canada
| | | | - Ievgeniia Morozova
- Trikon Technologies Inc., 208 Rue Joseph-Carrier, Vaudreuil-Dorion, QC J7V 5V5, Canada
| | | | | | - Iskandar Tamimi
- Regional University Hospital of Málaga, 84 Av. de Carlos Haya, 29010 Málaga, Spain
| | - Jun Song
- Department of Mining and Materials Engineering, McGill University, 3610 University St., Montréal, QC H3A 0C5, Canada
| | - Faleh Tamimi
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College, Montréal, QC H3A 1G1, Canada
| |
Collapse
|
20
|
Taylor EA, Donnelly E, Yao X, Johnson ML, Amugongo SK, Kimmel DB, Lane NE. Sequential Treatment of Estrogen Deficient, Osteopenic Rats with Alendronate, Parathyroid Hormone (1-34), or Raloxifene Alters Cortical Bone Mineral and Matrix Composition. Calcif Tissue Int 2020; 106:303-314. [PMID: 31784772 DOI: 10.1007/s00223-019-00634-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022]
Abstract
Anti-resorptive and anabolic treatments can be used sequentially to treat osteoporosis, but their effects on bone composition are incompletely understood. Osteocytes may influence bone tissue composition with sequential therapies because bisphosphonates diffuse into the canalicular network and anabolic treatments increase osteocyte lacunar size. Cortical bone composition of osteopenic, ovariectomized (OVX) rats was compared to that of Sham-operated rats and OVX rats given monotherapy or sequential regimens of single approved anti-osteoporosis medications. Adult female Sprague-Dawley rats were OVX (N = 37) or Sham-OVXd (N = 6). After 2 months, seven groups of OVX rats were given three consecutive 3-month periods of treatment with vehicle (V), h-PTH (1-34) (P), alendronate (A), or raloxifene (R), using the following orders: VVV, PVV, RRR, RPR, AAA, AVA, and APA. Compositional properties around osteocyte lacunae of the left tibial cortex were assessed from Raman spectra in perilacunar and non-perilacunar bone matrix regions. Sequential treatments involving parathyroid hormone (PTH) caused lower mean collagen maturity relative to monotherapies. Mean mineral:matrix ratio was 2.2% greater, mean collagen maturity was 1.4% greater, and mean carbonate:phosphate ratio was 2.2% lower in the perilacunar than in the non-perilacunar bone matrix region (all P < 0.05). These data demonstrate cortical bone tissue composition differences around osteocytes caused by sequential treatment with anti-osteoporosis medications. We speculate that the region-specific differences demonstrate the ability of osteocytes to alter bone tissue composition adjacent to lacunae.
Collapse
Affiliation(s)
- Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
- Research Division, Hospital for Special Surgery, New York, NY, USA
| | - Xiaomei Yao
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Mark L Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sarah K Amugongo
- Center for Musculoskeletal Health, University of California Davis Medical Center, Sacramento, CA, USA
| | - Donald B Kimmel
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, University of California Davis Medical Center, Sacramento, CA, USA.
- Health Center, University of California At Davis, 4625 Second Avenue, Suite 2006, Sacramento, CA, 95817, USA.
| |
Collapse
|
21
|
Molino G, Palmieri MC, Montalbano G, Fiorilli S, Vitale-Brovarone C. Biomimetic and mesoporous nano-hydroxyapatite for bone tissue application: a short review. Biomed Mater 2020; 15:022001. [DOI: 10.1088/1748-605x/ab5f1a] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Seeman E, Martin TJ. Antiresorptive and anabolic agents in the prevention and reversal of bone fragility. Nat Rev Rheumatol 2020; 15:225-236. [PMID: 30755735 DOI: 10.1038/s41584-019-0172-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone volume, microstructure and its material composition are maintained by bone remodelling, a cellular activity carried out by bone multicellular units (BMUs). BMUs are focally transient teams of osteoclasts and osteoblasts that respectively resorb a volume of old bone and then deposit an equal volume of new bone at the same location. Around the time of menopause, bone remodelling becomes unbalanced and rapid, and an increased number of BMUs deposit less bone than they resorb, resulting in bone loss, a reduction in bone volume and microstructural deterioration. Cortices become porous and thin, and trabeculae become thin, perforated and disconnected, causing bone fragility. Antiresorptive agents reduce fracture risk by reducing the rate of bone remodelling so that fewer BMUs are available to remodel bone. Bone fragility is not abolished by these drugs because existing microstructural deterioration is not reversed, unsuppressed remodelling continues producing microstructural deterioration and unremodelled bone that becomes more mineralized can become brittle. Anabolic agents reduce fracture risk by stimulating new bone formation, which partly restores bone volume and microstructure. To guide fracture prevention, this Review provides an overview of the structural basis of bone fragility, the mechanisms of remodelling and how anabolic and antiresorptive agents target remodelling defects.
Collapse
Affiliation(s)
- Ego Seeman
- Departments of Endocrinology and Medicine, Austin Health, University of Melbourne, Melbourne, Victoria, Australia. .,Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, Victoria, Australia.
| | - T J Martin
- Department of Medicine and St Vincent's Institute, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
|
24
|
Baptista F, Lopes E, Matute-Llorente Á, Teles J, Zymbal V. Adaptation of Proximal Femur to Mechanical Loading in Young Adults: Standard Vs Localized Regions Evaluated by DXA. J Clin Densitom 2020; 23:73-81. [PMID: 30274880 DOI: 10.1016/j.jocd.2018.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 11/28/2022]
Abstract
Regions of the proximal femur with less adaptive protection by mechanical loading may be at increased risk of structural failure. Since the size and location of these regions diverge from those defined by the dual-energy X-ray absorptiometry manufacturers the purpose of this study was to compare areal bone mineral density (aBMD) of different regions of the proximal femur considering impact loads from physical activity (PA). The participants were 134 young adults divided into 2 groups according to the impact of PA performed in the last 12 mo: high-impact PA and low-impact PA. The aBMD of the proximal femur was assessed by dual-energy X-ray absorptiometry at the standard femoral neck, intertrochanter, and trochanter, and at specific locations of the superolateral femoral neck and intertrochanteric region. The bone-specific physical activity questionnaire was used to estimate the impact load of PA. Comparisons between groups were adjusted for body height and body lean mass. Interaction analysis between sex and PA groups were conducted with analysis of variance. Comparisons of aBMD between bone regions were analyzed separately for men and women with repeated measures analysis of variance. In the high-impact PA group, men benefit more than women at all bone regions, except the aBMD at intertrochanteric region. Analyses of repeated measures did not reveal any significant interaction effect between bone regions (standard vs specific) and PA groups (low vs high-impact). In conclusion, aBMD differences due to mechanical loading were more pronounced in men than in women; the magnitude of the aBMD differences as a result of different levels of PA was similar between standard and localized regions.
Collapse
Affiliation(s)
- Fátima Baptista
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal.
| | - Edgar Lopes
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| | - Ángel Matute-Llorente
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Department of Physiatry and Nursing, Faculty of Health and Sports Sciences, Universidad de Zaragoza, Zaragoza, Spain
| | - Júlia Teles
- Mathematics Unit, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| | - Vera Zymbal
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
25
|
Creecy A, Uppuganti S, Girard MR, Schlunk SG, Amah C, Granke M, Unal M, Does MD, Nyman JS. The age-related decrease in material properties of BALB/c mouse long bones involves alterations to the extracellular matrix. Bone 2020; 130:115126. [PMID: 31678497 PMCID: PMC6885131 DOI: 10.1016/j.bone.2019.115126] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022]
Abstract
One possibility for the disproportionate increase in fracture risk with aging relative to the decrease in bone mass is an accumulation of changes to the bone matrix which deleteriously affect fracture resistance. In order to effectively develop new targets for osteoporosis, a preclinical model of the age-related loss in fracture resistance needs to be established beyond known age-related decreases in bone mineral density and bone volume fraction. To that end, we examined long bones of male and female BALB/c mice at 6-mo. and 20-mo. of age and assessed whether material and matrix properties of cortical bone significantly differed between the age groups. The second moment of area of the diaphysis (minimum and maximum principals for femur and radius, respectively) as measured by ex vivo micro-computed tomography (μCT) was higher at 20-mo. than at 6-mo. for both males and females, but ultimate moment as measured by three-point bending tests did not decrease with age. Cortical thickness was lower with age for males, but higher for old females. Partially accounting for differences in structure, material estimates of yield, ultimate stress, and toughness (left femur) were 12.6%, 11.1%, and 40.9% lower, respectively, with age for both sexes. The ability of the cortical bone to resist crack growth (right femur) was also 18.1% less for the old than for the young adult mice. These decreases in material properties were not due to changes in intracortical porosity as pore number decreased with age. Rather, age-related alterations in the matrix were observed for both sexes: enzymatic and non-enzymatic crosslinks by high performance liquid chromatography increased (femur), volume fraction of bound water by 1H-nuclear magnetic resonance relaxometry decreased (femur), cortical tissue mineral density by μCT increased (femur and radius), and an Amide I sub-peak ratio I1670/I1640 by Raman spectroscopy increased (tibia). Overall, there are multiple matrix changes to potentially target that could prevent the age-related decrease in fracture resistance observed in BALB/c mouse.
Collapse
Affiliation(s)
- Amy Creecy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States; Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Madeline R Girard
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Siegfried G Schlunk
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Chidi Amah
- Meharry Medical College, Nashville, TN 37208, United States
| | - Mathilde Granke
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Mustafa Unal
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Mechanical Engineering, Karamanoglu Mehmetbey University, Karaman, 70100, Turkey
| | - Mark D Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Jeffry S Nyman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States; Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States.
| |
Collapse
|
26
|
Dirkes RK, Winn NC, Jurrissen TJ, Lubahn DB, Vieira-Potter VJ, Padilla J, Hinton PS. Global estrogen receptor-α knockout has differential effects on cortical and cancellous bone in aged male mice. Facets (Ott) 2020. [DOI: 10.1139/facets-2019-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Estrogen receptor-α knockout (ERKO) in female rodents results in bone loss associated with increased osteocyte sclerostin expression; whether this also occurs in males is unknown. Here, we examined the effects of ERKO on femoral cortical geometry, trabecular microarchitecture, and osteocyte sclerostin expression of the femur and lumbar vertebrae. At 14 months of age, male ERKO and wild-type (WT) littermates ( n = 6 per group) were sacrificed, and femora and vertebra were collected. Cortical geometry and trabecular microarchitecture were assessed via micro-computed tomography; osteocyte sclerostin expression was assessed via immunohistochemistry. ANCOVA with body weight was used to compare ERKO and WT for cortical geometry; t-tests were used for all other outcomes. Regardless of skeletal site, ERKO mice had greater trabecular bone volume and trabecular number and decreased trabecular separation compared with WT. In the femoral diaphysis, ERKO had lower total area, cortical area, and cortical thickness compared with WT. The percentage of sclerostin+ osteocytes was increased in ERKO animals in cortical bone but not in cancellous bone of the femur or the lumbar vertebrae. In conclusion, ERKO improved trabecular microarchitecture in aged male mice, but negatively altered femoral cortical geometry associated with a trend towards increased cortical sclerostin expression.
Collapse
Affiliation(s)
- Rebecca K. Dirkes
- Nutrition and Exercise Physiology, University of Missouri, 204 Gwynn Hall, Columbia, MO 65211, USA
| | - Nathan C. Winn
- Nutrition and Exercise Physiology, University of Missouri, 204 Gwynn Hall, Columbia, MO 65211, USA
| | - Thomas J. Jurrissen
- Nutrition and Exercise Physiology, University of Missouri, 204 Gwynn Hall, Columbia, MO 65211, USA
| | - Dennis B. Lubahn
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
- Child Health, University of Missouri, 400 N. Keene Street, Suite 010, Columbia, MO 65211, USA
| | | | - Jaume Padilla
- Nutrition and Exercise Physiology, University of Missouri, 204 Gwynn Hall, Columbia, MO 65211, USA
- Child Health, University of Missouri, 400 N. Keene Street, Suite 010, Columbia, MO 65211, USA
- Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr., Columbia, MO 65211, USA
| | - Pamela S. Hinton
- Nutrition and Exercise Physiology, University of Missouri, 204 Gwynn Hall, Columbia, MO 65211, USA
| |
Collapse
|
27
|
Shah FA, Sayardoust S, Omar O, Thomsen P, Palmquist A. Does Smoking Impair Bone Regeneration in the Dental Alveolar Socket? Calcif Tissue Int 2019; 105:619-629. [PMID: 31535164 DOI: 10.1007/s00223-019-00610-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022]
Abstract
Smoking is a major risk factor for dental implant failure. In addition to higher marginal bone loss around implants, the cellular and molecular responses to injury and implant physicochemical properties are also differentially affected in smokers. The purpose of this work is to determine if smoking impairs bone microstructure and extracellular matrix composition within the dental alveolar socket after tooth extraction. Alveolar bone biopsies obtained from Smokers (> 10 cigarettes per day for at least 10 years) and Ctrl (never-smokers), 7-146 months after tooth extraction, were investigated using X-ray micro-computed tomography, backscattered electron scanning electron microscopy, and Raman spectroscopy. Both Smokers and Ctrl exhibited high inter- and intra-individual heterogeneity in bone microstructure, which varied between dense cortical and porous trabecular architecture. Regions of disorganised/woven bone were more prevalent during early healing. Remodelled lamellar bone was predominant at longer healing periods. Bone mineral density, bone surface-to-volume ratio, mineral crystallinity, the carbonate-to-phosphate ratio, the mineral-to-matrix ratio, the collagen crosslink ratio, and the amounts of amino acids phenylalanine and proline/hydroxyproline were also comparable between Smokers and Ctrl. Bone microstructure and composition within the healing dental alveolar socket are not significantly affected by moderate-to-heavy smoking.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Shariel Sayardoust
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Periodontology, Institute for Postgraduate Dental Education, Jönköping, Sweden
| | - Omar Omar
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Molino G, Dalpozzi A, Ciapetti G, Lorusso M, Novara C, Cavallo M, Baldini N, Giorgis F, Fiorilli S, Vitale-Brovarone C. Osteoporosis-related variations of trabecular bone properties of proximal human humeral heads at different scale lengths. J Mech Behav Biomed Mater 2019; 100:103373. [DOI: 10.1016/j.jmbbm.2019.103373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Accepted: 07/25/2019] [Indexed: 11/30/2022]
|
29
|
Shah FA, Sayardoust S, Thomsen P, Palmquist A. Extracellular matrix composition during bone regeneration in the human dental alveolar socket. Bone 2019; 127:244-249. [PMID: 31176735 DOI: 10.1016/j.bone.2019.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/28/2022]
Abstract
Within the dental alveolar socket, the sequence of events following tooth extraction involves deposition of a provisional connective tissue matrix that is later replaced by woven bone and eventually by lamellar bone. Bone regeneration within the dental alveolar socket is unique since the space occupied by the root(s) of a tooth does not originally contain any bone. However, extracellular matrix composition of the healing alveolar socket has not previously been investigated. Here, alveolar bone biopsies representing early (7-46 months, < 4y) and late (48-60 months; 4-5y) healing periods were investigated using Raman spectroscopy, X-ray micro-computed tomography and backscattered electron scanning electron microscopy. Partially or completely edentulous individuals and those with a smoking habit were not excluded. Between < 4y and 4-5y, mineral crystallinity and bone mineral density increase, phenylalanine, proline/hydroxyproline, and bone surface-to-volume ratio decrease, while the carbonate-to-phosphate ratio, the mineral-to-matrix ratio, and the collagen crosslink ratio remain relatively unchanged. Observed exclusively at 4-5y, hypermineralised osteocyte lacunae contain spherical and rhomboidal mineral nodules. Spearman correlation analysis reveals several significant, high (ρ = 0.7-0.9; p ≤ 0.01) and moderate (ρ = 0.5-0.7; p ≤ 0.01) correlations. Mineral crystallinity and proline/hydroxyproline, the carbonate-to-phosphate ratio and phenylalanine, mineral crystallinity and bone surface-to-volume ratio, the carbonate-to-phosphate ratio and bone surface-to-volume ratio, proline/hydroxyproline and bone mineral density, and bone mineral density and bone surface-to-volume ratio are negatively correlated. Mineral crystallinity and bone mineral density, and proline/hydroxyproline and bone surface-to-volume ratio are positively correlated. Although bone regeneration in the dental alveolar socket follows typical bone healing patterns, the compositional and microstructural patterns reveal mature bone at <4y with indications of better mechanical competence at 4-5y.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Shariel Sayardoust
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Periodontology, Institute for Postgraduate Dental Education, Jönköping, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
de Wildt BW, Ansari S, Sommerdijk NA, Ito K, Akiva A, Hofmann S. From bone regeneration to three-dimensional in vitro models: tissue engineering of organized bone extracellular matrix. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Martin V, Ribeiro IA, Alves MM, Gonçalves L, Claudio RA, Grenho L, Fernandes MH, Gomes P, Santos CF, Bettencourt AF. Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:15-26. [PMID: 31029308 DOI: 10.1016/j.msec.2019.03.056] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/22/2019] [Accepted: 03/17/2019] [Indexed: 01/06/2023]
Abstract
3D-printing and additive manufacturing can be powerful techniques to design customized structures and produce synthetic bone grafts with multifunctional effects suitable for bone repair. In our work we aimed the development of novel multifunctionalized 3D printed poly(lactic acid) (PLA) scaffolds with bioinspired surface coatings able to reduce bacterial biofilm formation while favoring human bone marrow-derived mesenchymal stem cells (hMSCs) activity. For that purpose, 3D printing was used to prepare PLA scaffolds that were further multifunctionalized with collagen (Col), minocycline (MH) and bioinspired citrate- hydroxyapatite nanoparticles (cHA). PLA-Col-MH-cHA scaffolds provide a closer structural support approximation to native bone architecture with uniform macroporous, adequate wettability and an excellent compressive strength. The addition of MH resulted in an adequate antibiotic release profile that by being compatible with local drug delivery therapy was translated into antibacterial activities against Staphylococcus aureus, a main pathogen associated to bone-related infections. Subsequently, the hMSCs response to these scaffolds revealed that the incorporation of cHA significantly stimulated the adhesion, proliferation and osteogenesis-related gene expression (RUNX2, OCN and OPN) of hMSCs. Furthermore, the association of a bioinspired material (cHA) with the antibiotic MH resulted in a combined effect of an enhanced osteogenic activity. These findings, together with the antibiofilm activity depicted strengthen the appropriateness of this 3D-printed PLA-Col-MH-cHA scaffold for future use in bone repair. By targeting bone repair while mitigating the typical infections associated to bone implants, our 3D scaffolds deliver an integrated strategy with the combined effects further envisaging an increase in the success rate of bone-implanted devices.
Collapse
Affiliation(s)
- Victor Martin
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Isabel A Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marta M Alves
- CQE Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ricardo A Claudio
- EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, Campus IPS, 2910 Setúbal, Portugal; IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Liliana Grenho
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, U. Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal
| | - Maria H Fernandes
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, U. Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal
| | - Pedro Gomes
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, U. Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal
| | - Catarina F Santos
- CQE Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal; EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, Campus IPS, 2910 Setúbal, Portugal.
| | - Ana F Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
32
|
Abstract
It is well known that bone loss accompanies aging in both men and women and contributes to skeletal fragility in the older population, but changes that occur to the bone tissue matrix itself are less well known. These changes in bone quality aggravate the skeletal fragility associated with loss of bone mass. Bone tissue quality is affected by age-related changes in bone mineral, collagen and its cross-linking profiles, water compartments and even non-collagenous proteins. It is commonly assumed that greater tissue mineralization accompanies aging as bone turnover slows down in elderly individuals, but the data for this are weak. However, there may be changes in the quality of the mineral crystals, and the substitutions found within the crystal. Both enzymatically-mediated and non-enzymatically-mediated collagen cross-links multiply with age. The former tend to make the bone stiffer and stronger, but the latter, while making the bone stiffer can also make it more brittle and more likely to fracture. Bone pore water that is not bound to collagen or mineral increases with age as bone mass is lost, but water that is bound to collagen and mineral declines with age. These changes contribute to skeletal fragility by reducing the amount that bone can deform before fracturing. Finally, non-collagenous proteins have physical properties that can alter matrix mechanical properties and can also have molecular signaling functions that regulate bone remodeling. Whether these change with age, how they change, and how this affects skeletal fragility with aging is still largely a black box, and requires much more investigation. The roles of any of these factors in skeletal fragility are difficult to assess clinically as there is no easy or economical way to evaluate them, but a picture of fragility in the aging skeleton is incomplete without them.
Collapse
Affiliation(s)
- David B Burr
- Dept. of Anatomy and Cell Biology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, United States of America; Dept. of Biomedical Engineering, Indiana University-Purdue University, Indianapolis (IUPUI), United States of America.
| |
Collapse
|
33
|
Kaflak A, Moskalewski S, Kolodziejski W. The solid-state proton NMR study of bone using a dipolar filter: apatite hydroxyl contentversusanimal age. RSC Adv 2019; 9:16909-16918. [PMID: 35516370 PMCID: PMC9064436 DOI: 10.1039/c9ra01902b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022] Open
Abstract
The hydroxyl content of bone apatite mineral has been measured using proton solid-state NMR performed with a multiple-pulse dipolar filter under slow magic angle spinning (MAS). This new method succeeded in resolving and relatively enhancing the main hydroxyl peak at ca. 0 ppm from whole bone, making it amenable to rigorous quantitative analysis. The proposed methodology, involving line fitting, the measurement of the apatite concentration in the studied material and adequate calibration, was proved to be convenient and suitable for monitoring bone mineral hydroxylation in different species and over the lifetime of the animal. It was found that the hydroxyl content in the cranial bone mineral of pig and rats remained in the 5–10% range, with reference to stoichiometric hydroxyapatite. In rats, the hydroxyl content showed a non-monotonic increase with age, which was governed by biological processes rather than by chemical, thermodynamically driven apatite maturation. Mineral hydroxylation in whole bone can be accurately studied using proton MAS NMR with a multiple-pulse dipolar filter.![]()
Collapse
Affiliation(s)
- Agnieszka Kaflak
- Medical University of Warsaw
- Faculty of Pharmacy
- Department of Analytical Chemistry and Biomaterials
- Warsaw 02-097
- Poland
| | - Stanisław Moskalewski
- Medical University of Warsaw
- Department of Histology and Embryology
- Warsaw 02-004
- Poland
| | - Waclaw Kolodziejski
- Medical University of Warsaw
- Faculty of Pharmacy
- Department of Analytical Chemistry and Biomaterials
- Warsaw 02-097
- Poland
| |
Collapse
|
34
|
Damasiewicz MJ, Nickolas TL. Rethinking Bone Disease in Kidney Disease. JBMR Plus 2018; 2:309-322. [PMID: 30460334 PMCID: PMC6237213 DOI: 10.1002/jbm4.10117] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/05/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
Renal osteodystrophy (ROD) is the bone component of chronic kidney disease mineral and bone disorder (CKD-MBD). ROD affects bone quality and strength through the numerous hormonal and metabolic disturbances that occur in patients with kidney disease. Collectively these disorders in bone quality increase fracture risk in CKD patients compared with the general population. Fractures are a serious complication of kidney disease and are associated with higher morbidity and mortality compared with the general population. Furthermore, at a population level, fractures are at historically high levels in patients with end-stage kidney disease (ESKD), whereas in contrast the general population has experienced a steady decline in fracture incidence rates. Based on these findings, it is clear that a paradigm shift is needed in our approach to diagnosing and managing ROD. In clinical practice, our ability to diagnose ROD and initiate antifracture treatments is impeded by the lack of accurate noninvasive methods that identify ROD type. The past decade has seen advances in the noninvasive measurement of bone quality and strength that have been studied in kidney disease patients. Below we review the current literature pertaining to the epidemiology, pathology, diagnosis, and management of ROD. We aim to highlight the pressing need for a greater awareness of this condition and the need for the implementation of strategies that prevent fractures in kidney disease patients. Research is needed for more accurate noninvasive assessment of ROD type, clinical studies of existing osteoporosis therapies in patients across the spectrum of kidney disease, and the development of CKD-specific treatments. © 2018 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Matthew J Damasiewicz
- Department of NephrologyMonash HealthClaytonAustralia
- Department of MedicineMonash UniversityClaytonAustralia
| | - Thomas L Nickolas
- Columbia University Medical CenterDepartment of MedicineDivision of NephrologyNew YorkNYUSA
| |
Collapse
|
35
|
Preethi Soundarya S, Haritha Menon A, Viji Chandran S, Selvamurugan N. Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int J Biol Macromol 2018; 119:1228-1239. [PMID: 30107161 DOI: 10.1016/j.ijbiomac.2018.08.056] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 01/01/2023]
Abstract
In the recent years, a paradigm shift is taking place where metallic/synthetic implants and tissue grafts are being replaced by tissue engineering approach. A well designed three-dimensional scaffold is one of the fundamental tools to guide tissue formation in vitro and in vivo. Bone is a highly dynamic and an integrative tissue, and thus enormous efforts have been invested in bone tissue engineering to design a highly porous scaffold which plays a critical role in guiding bone growth and regeneration. Numerous techniques have been developed to fabricate highly interconnected, porous scaffold for bone tissue engineering applications with the help of biomolecules such as chitosan, collagen, gelatin, silk, etc. We aim, in this review, to provide an overview of different types of fabrication techniques for scaffold preparation in bone tissue engineering using biological macromolecules.
Collapse
Affiliation(s)
- S Preethi Soundarya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - A Haritha Menon
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - S Viji Chandran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
36
|
Fielder M, Nair AK. Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale. Biomech Model Mechanobiol 2018; 18:57-68. [PMID: 30088113 DOI: 10.1007/s10237-018-1067-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022]
Abstract
Bone is a biomaterial with a structural load-bearing function. Investigating the biomechanics of bone at the nanoscale is important in application to tissue engineering, the development of bioinspired materials, and for characterizing factors such as age, trauma, or disease. At the nanoscale, bone is composed of fibrils that are primarily a composite of collagen, apatite crystals (mineral), and water. Though several studies have been done characterizing the mechanics of fibrils, the effects of variation and distribution of water and mineral content in fibril gap and overlap regions are unexplored. We investigate how the deformation mechanisms of collagen fibrils change as a function of mineral and water content. We use molecular dynamics to study the mechanics of collagen fibrils of 0 wt%, 20 wt%, and 40 wt% mineralization and 0 wt%, 2 wt%, and 4 wt% hydration under applied tensile stresses. We observe that the stress-strain behavior becomes more nonlinear with an increase in hydration, and an increase in mineral content for hydrated fibrils under tensile stress reduces the nonlinear stress versus strain behavior caused by hydration. The Young's modulus of both non-mineralized and mineralized fibrils decreases as the water content increases. As the water content increases, the gap/overlap ratio increases by approximately 40% for the non-mineralized cases and 16% for the highly mineralized cases. Our results indicate that variations in mineral and water content change the distribution of water in collagen fibrils and that the water distribution changes the deformation of gap and overlap regions under tensile loading.
Collapse
Affiliation(s)
- Marco Fielder
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Arun K Nair
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, USA. .,Institute for Nanoscience and Engineering, University of Arkansas, 731 W. Dickson Street, Fayetteville, AR, USA.
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW While thinning of the cortices or trabeculae weakens bone, age-related changes in matrix composition also lower fracture resistance. This review summarizes how the organic matrix, mineral phase, and water compartments influence the mechanical behavior of bone, thereby identifying characteristics important to fracture risk. RECENT FINDINGS In the synthesis of the organic matrix, tropocollagen experiences various post-translational modifications that facilitate a highly organized fibril of collagen I with a preferred orientation giving bone extensibility and several toughening mechanisms. Being a ceramic, mineral is brittle but increases the strength of bone as its content within the organic matrix increases. With time, hydroxyapatite-like crystals experience carbonate substitutions, the consequence of which remains to be understood. Water participates in hydrogen bonding with organic matrix and in electrostatic attractions with mineral phase, thereby providing stability to collagen-mineral interface and ductility to bone. Clinical tools sensitive to age- and disease-related changes in matrix composition that the affect mechanical behavior of bone could potentially improve fracture risk assessment.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amy Creecy
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Orthopedic Institute, Medical Center East, South Tower, Suite 4200, Nashville, TN, 37232, USA.
| |
Collapse
|
38
|
Hinton PS, Ortinau LC, Dirkes RK, Shaw EL, Richard MW, Zidon TZ, Britton SL, Koch LG, Vieira-Potter VJ. Soy protein improves tibial whole-bone and tissue-level biomechanical properties in ovariectomized and ovary-intact, low-fit female rats. Bone Rep 2018; 8:244-254. [PMID: 29922706 PMCID: PMC6005802 DOI: 10.1016/j.bonr.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Osteoporosis and related fractures, decreased physical activity, and metabolic dysfunction are serious health concerns for postmenopausal women. Soy protein might counter the negative effects of menopause on bone and metabolic health due to the additive or synergistic effects of its bioactive components. OBJECTIVE To evaluate the effects of ovariectomy (OVX) and a soy-protein diet (SOY) on bone outcomes in female, low-capacity running (LCR) rats selectively bred for low aerobic fitness as a model of menopause. METHODS At 27 weeks of age, LCR rats (N = 40) underwent OVX or sham (SHAM) surgery and were randomized to one of two isocaloric and isonitrogenous plant-protein-based dietary treatments: 1) soy-protein (SOY; soybean meal); or, 2) control (CON, corn-gluten meal), resulting in four treatment groups. During the 30-week dietary intervention, animals were provided ad libitum access to food and water; body weight and food intake were measured weekly. At completion of the 30-week intervention, body composition was measured using EchoMRI; animals were fasted overnight, euthanized, and blood and hindlimbs collected. Plasma markers of bone formation (osteocalcin, OC; N-terminal propeptide of type I procollagen, P1NP) and resorption (tartrate-resistant acid phosphatase, TRAP5b; C-terminal telopeptide of type I collagen, CTx) were measured using ELISA. Tibial trabecular microarchitecture and cortical geometry were evaluated using μCT; and torsional loading to failure was used to assess cortical biomechanical properties. Advanced glycation end-product (AGE) content of the femur was measured using a fluorimetric assay, and was expressed relative to collagen content measured by a colorimetric OH-proline assay. Two-factor ANOVA or ANOVCA was used to test for significant main and interactive effects of ovarian status (OV STAT: OVX vs. SHAM) and DIET (SOY vs. CON); final body weight was included as a covariate for body-weight-dependent cortical geometry and biomechanical properties. RESULTS OVX had significantly greater CTx than SHAM; SOY did not affect bone turnover markers. OVX adversely affected trabecular microarchitecture as evidenced by reduced BV/TV, trabecular thickness (Tb.Th), trabecular number (Tb.N), and connectivity density (Conn.D), and by increased trabecular separation (Tb.Sp) and structural model index (SMI). SOY increased BV/TV only in ovary-intact animals. There was no effect of OVX or SOY on tibial cortical geometry. In SHAM and OVX rats, SOY significantly improved whole-bone strength and stiffness; SOY also increased tissue-level stiffness and tended to increase tissue-level strength (p = 0.067). There was no effect of OVX or SOY on AGE content. CONCLUSION Soy protein improved cortical bone biomechanical properties in female low-fit rats, regardless of ovarian hormone status.
Collapse
Key Words
- Bone
- CON, control diet
- CTx, C-terminal telopeptide of type I collagen
- Conn.D, connectivity density
- G, shear modulus of elasticity
- Ks, torsional stiffness
- LCR, low-capacity runners
- Menopause
- OC, osteocalcin
- OVX, ovariectomy
- Osteoporosis
- Ovariectomy
- P1NP, N-terminal propeptide of type I procollagen
- SHM, Sham
- SOY, Soy-protein-based diet
- Soy protein
- Su, ultimate tensile strength
- TRAP5b, tartrate-resistant acid phosphatase
- Tb.N, trabecular number
- Tb.Sp, trabecular separation
- Tb.Th, trabecular thickness
- Tmax, maximal torque
Collapse
Affiliation(s)
- Pamela S. Hinton
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Laura C. Ortinau
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Rebecca K. Dirkes
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Emily L. Shaw
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Matthew W. Richard
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Terese Z. Zidon
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Steven L. Britton
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lauren G. Koch
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
39
|
Depalle B, Duarte AG, Fiedler IAK, Pujo-Menjouet L, Buehler MJ, Berteau JP. The different distribution of enzymatic collagen cross-links found in adult and children bone result in different mechanical behavior of collagen. Bone 2018; 110:107-114. [PMID: 29414596 DOI: 10.1016/j.bone.2018.01.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/28/2022]
Abstract
Enzymatic collagen cross-linking has been shown to play an important role in the macroscopic elastic and plastic deformation of bone across ages. However, its direct contribution to collagen fibril deformation is unknown. The aim of this study is to determine how covalent intermolecular connections from enzymatic collagen cross-links contribute to collagen fibril elastic and plastic deformation of adults and children's bone matrix. We used ex vivo data previously obtained from biochemical analysis of children and adults bone samples (n = 14; n = 8, respectively) to create 22 sample-specific computational models of cross-linked collagen fibrils. By simulating a tensile test for each fibril, we computed the modulus of elasticity (E), ultimate tensile and yield stress (σu and σy), and elastic, plastic and total work (We, Wp and Wtot) for each collagen fibril. We present a novel difference between children and adult bone in the deformation of the collagen phase and suggest a link between collagen fibril scale and macroscale for elastic behavior in children bone under the influence of immature enzymatic cross-links. We show a parametric linear correlation between We and immature enzymatic collagen cross-links at the collagen fibril scale in the children population that is similar to the one we found at the macroscale in our previous study. Finally, we suggest the key role of covalent intermolecular connections to stiffness parameters (e.g. elastic modulus and We) in children's collagen fibril and to toughness parameters in adult's collagen fibril, respectively.
Collapse
Affiliation(s)
- Baptiste Depalle
- Department of Materials, Imperial College London, UK; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, USA
| | - Andre G Duarte
- Department of Physical Therapy, College of Staten Island, USA
| | | | | | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, USA
| | - Jean-Philippe Berteau
- Department of Physical Therapy, College of Staten Island, USA; New York Center for Biomedical Engineering, City College of New York, USA.
| |
Collapse
|
40
|
Boskey AL, Spevak L, Ma Y, Wang H, Bauer DC, Black DM, Schwartz AV. Insights into the bisphosphonate holiday: a preliminary FTIRI study. Osteoporos Int 2018; 29:699-705. [PMID: 29204959 DOI: 10.1007/s00198-017-4324-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 11/21/2017] [Indexed: 12/23/2022]
Abstract
UNLABELLED Bone composition evaluated by FTIRI analysis of iliac crest biopsies from post-menopausal women treated with alendronate for 10 years, continuously or alendronate for 5 years, followed by a 5-year alendronate-holiday, only differed with the discontinued biopsies having increased cortical crystallinity and heterogeneity of acid phosphate substitution and decreased trabecular crystallinity heterogeneity. INTRODUCTION Bisphosphonates (BP) are the most commonly used and effective drugs to prevent fragility fractures; however, concerns exist that prolonged use may lead to adverse events. Recent recommendations suggest consideration of a BP "holiday" in individuals taking long-term BP therapy not at high risk of fracture. Data supporting or refuting this recommendation based on bone quality are limited. We hypothesized that a "holiday" of 5 years would cause no major bone compositional changes. METHODS We analyzed the 31 available biopsies from the FLEX-Long-term Extension of FIT (Fracture Intervention Trial) using Fourier transform infrared imaging (FTIRI). Biopsies from two groups of post-menopausal women, a "Continuously treated group" (N = 16) receiving alendronate for ~ 10 years and a "Discontinued group" (N = 15), alendronate treated for 5 years taking no antiresorptive medication during the following 5 years. Iliac crest bone biopsies were provided at 10 years. RESULTS Key FTIRI parameters, mineral-to-matrix ratio, carbonate-to-phosphate ratio, acid phosphate substitution, and collagen cross-link ratio as well as heterogeneity of these parameters were similar for Continuously treated and Discontinued groups in age-adjusted models. The Discontinued group had 2% greater cortical crystallinity (p = 0.01), 31% greater cortical acid phosphate heterogeneity (p = 0.02), and 24% lower trabecular crystallinity heterogeneity (p = 0.02). CONCLUSIONS Discontinuation of alendronate for 5 years did not affect key FTIRI parameters, supporting the hypothesis that discontinuation would have little impact on bone composition. Modest differences were observed in three parameters that are not likely to affect bone mechanical properties. These preliminary data suggest that a 5-year BP holiday is not harmful to bone composition.
Collapse
Affiliation(s)
- A L Boskey
- Hospital for Special Surgery, New York, NY, USA
| | - L Spevak
- Hospital for Special Surgery, New York, NY, USA
| | - Y Ma
- The George Washington University, Washington, DC, USA
| | - H Wang
- The George Washington University, Washington, DC, USA
| | - D C Bauer
- University of California San Francisco, San Francisco, CA, USA
| | - D M Black
- University of California San Francisco, San Francisco, CA, USA
| | - A V Schwartz
- University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
41
|
Boskey AL, Imbert L. Bone quality changes associated with aging and disease: a review. Ann N Y Acad Sci 2018; 1410:93-106. [PMID: 29265417 DOI: 10.1111/nyas.13572] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
Bone quality encompasses all the characteristics of bone that, in addition to density, contribute to its resistance to fracture. In this review, we consider changes in architecture, porosity, and composition, including collagen structure, mineral composition, and crystal size. These factors all are known to vary with tissue and animal ages, and health status. Bone morphology and presence of microcracks, which also contribute to bone quality, will not be discussed in this review. Correlations with mechanical performance for collagen cross-linking, crystallinity, and carbonate content are contrasted with mineral content. Age-dependent changes in humans and rodents are discussed in relation to rodent models of disease. Examples are osteoporosis, osteomalacia, osteogenesis imperfecta (OI), and osteopetrosis in both humans and animal models. Each of these conditions, along with aging, is associated with increased fracture risk for distinct reasons.
Collapse
Affiliation(s)
- Adele L Boskey
- Mineralized Tissue Laboratory, Hospital for Special Surgery, New York, New York.,Department of Biochemistry, Weill Cornell Medical College, New York, New York
| | - Laurianne Imbert
- Mineralized Tissue Laboratory, Hospital for Special Surgery, New York, New York
| |
Collapse
|
42
|
Shah FA, Stoica A, Cardemil C, Palmquist A. Multiscale characterization of cortical bone composition, microstructure, and nanomechanical properties in experimentally induced osteoporosis. J Biomed Mater Res A 2017; 106:997-1007. [PMID: 29143443 DOI: 10.1002/jbm.a.36294] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/27/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
Abstract
Cortical bone plays a vital role in determining overall bone strength. We investigate the structural, compositional, and nanomechanical properties of cortical bone following ovariectomy (OVX) of 12-week-old Sprague Dawley rats, since this animal model is frequently employed to evaluate the performance of implantable biomaterials in compromised bone healing conditions. Morphological parameters and material properties of bone in the geometrical center of the femoral cortex were investigated four and eight weeks post-OVX and in unoperated controls (Ctrl), using X-ray micro-computed tomography, backscattered electron scanning electron microscopy, Raman spectroscopy, and nanoindentation. The OVX animals showed increase in body weight, diminished bone mineral density, increased intracortical porosity, but increased bone mass through periosteal apposition (e.g., increases in periosteal perimeter, cortical cross-sectional thickness, and cross-sectional area). However, osteocyte densities, osteocyte lacunar dimensions, and the nanomechanical behavior on the single mineralized collagen fibril level remained unaffected. Our correlative multiscale investigation provides structural, chemical, and nanomechanical evidence substantiating earlier reports suggesting that rats ovariectomized at 12 weeks undergo simultaneous bone loss and growth, resulting in the effects of OVX being less obvious. Periosteal apposition contradicts the conventional view of bone loss in osteoporosis but appears advantageous for the greater functional demand imposed on the skeleton by increased body weight and fragility induced by increased intracortical porosity. Through a variety of morphological changes, it is likely that 12-week-old rats are able to adapt to OVX-related microstructural and compositional alterations. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 997-1007, 2018.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Göteborg, Sweden
| | - Adrian Stoica
- Plasma Technologies, CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Carina Cardemil
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Göteborg, Sweden.,Department of Oral and Maxillofacial Surgery, Linköping University Hospital, Linköping, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Göteborg, Sweden
| |
Collapse
|
43
|
Pérez-Sáez MJ, Prieto-Alhambra D, Díez-Pérez A, Pascual J. Advances in the evaluation of bone health in kidney transplant patients. Nefrologia 2017; 38:27-33. [PMID: 29137893 DOI: 10.1016/j.nefro.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/26/2017] [Accepted: 04/05/2017] [Indexed: 01/10/2023] Open
Abstract
Bone disease related to chronic kidney disease and, particularly, to kidney transplant patients is a common cause or morbidity and mortality, especially due to a higher risk of osteoporotic fractures. Despite the fact that this has been known for decades, to date, an appropriate diagnostic strategy has yet to be established. Apart from bone biopsy, which is invasive and scarcely used, no other technique is available to accurately establish the risk of fracture in kidney patients. Techniques applied to the general population, such as bone densitometry, have not been subjected to sufficient external validation and their use is not systematic. This means that the identification of patients at risk of fracture and therefore those who are candidates for preventive strategies is an unmet need. Bone strength, defined as the ability of the bone to resist fracture, is determined by bone mineral density (measured by bone densitometry), trabecular architecture and bone tissue quality. The trabecular bone score estimates bone microarchitecture, and low values have been described as an independent predictor of increased fracture risk. Bone microindentation is a minimally invasive technique that measures resistance of the bone to micro-cracks (microscopic separation of mineralised collagen fibres), and therefore bone tissue biomechanical properties. The superiority over bone densitometry of the correlation between the parameters measured by trabecular bone score and microindentation with the risk of fracture in diverse populations led us to test its feasibility in chronic kidney disease and kidney transplant patients.
Collapse
Affiliation(s)
- María José Pérez-Sáez
- Servicio de Nefrología, Hospital del Mar, Barcelona, España; Institut Mar d'Investigacions Mediques, Barcelona, España; REDinREN, Instituto Carlos III, Madrid, España
| | - Daniel Prieto-Alhambra
- Institut Mar d'Investigacions Mediques, Barcelona, España; Oxford NIHR Musculoskeletal Biomedical Research Unit. Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences. University of Oxford, Oxford, Inglaterra, Reino Unido; CIBERFES, Instituto Carlos III, Madrid, España
| | - Adolfo Díez-Pérez
- Institut Mar d'Investigacions Mediques, Barcelona, España; CIBERFES, Instituto Carlos III, Madrid, España; Servicio de Medicina Interna, Hospital del Mar, Universidad Autonóma de Barcelona, España
| | - Julio Pascual
- Servicio de Nefrología, Hospital del Mar, Barcelona, España; Institut Mar d'Investigacions Mediques, Barcelona, España; REDinREN, Instituto Carlos III, Madrid, España.
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW In this paper, we review the epidemiology, diagnosis, and pathogenesis of fractures and renal osteodystrophy. RECENT FINDINGS The role of bone quality in the pathogenesis of fracture susceptibility in chronic kidney disease (CKD) is beginning to be elucidated. Bone quality refers to bone material properties, such as cortical and trabecular microarchitecture, mineralization, turnover, microdamage, and collagen content and structure. Recent data has added to our understanding of the effects of CKD on alterations to bone quality, emerging data on the role of abnormal collagen structure on bone strength, the potential of non-invasive methods to inform our knowledge of bone quality, and how we can use these methods to inform strategies that protect against bone loss and fractures. However, more prospective data is required. CKD is associated with abnormal bone quality and strength which results in high fracture incidence.
Collapse
Affiliation(s)
- Erin M B McNerny
- Indiana University School of Medicine, Indianapolis, IN, USA
- Division of Nephrology, Department of Medicine, Columbia University Medical Center, 622 West 168th Street, PH4-124, New York, NY, 10032, USA
| | - Thomas L Nickolas
- Indiana University School of Medicine, Indianapolis, IN, USA.
- Division of Nephrology, Department of Medicine, Columbia University Medical Center, 622 West 168th Street, PH4-124, New York, NY, 10032, USA.
| |
Collapse
|
45
|
Brayda-Bruno M, Viganò M, Cauci S, Vitale JA, de Girolamo L, De Luca P, Lombardi G, Banfi G, Colombini A. Plasma vitamin D and osteo-cartilaginous markers in Italian males affected by intervertebral disc degeneration: Focus on seasonal and pathological trend of type II collagen degradation. Clin Chim Acta 2017; 471:87-93. [PMID: 28545772 DOI: 10.1016/j.cca.2017.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/02/2017] [Accepted: 05/21/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To evaluate plasma vitamin D and cross-linked C-telopeptides of type I (CTx-I) and type II (CTx-II) collagen concentrations in males with lumbar intervertebral disc degeneration (IVD) compared to healthy controls. Improved knowledge might suggest to optimize the vitamin D status of IVD patients and contribute to clarify mechanisms of cartilage degradation. METHODS 79 Italian males with lumbar IVD assessed by Magnetic Resonance Imaging (MRI) and 79 age, sex and BMI-matched healthy controls were enrolled. Plasma 25hydroxyvitamin D (25(OH)D), CTx-I and CTx-II were measured by immunoassays. Circannual seasonality, correlation between biomarkers concentrations and clinical variables were assessed. RESULTS Overall subjects 25(OH)D and CTx-II showed month rhythmicity with acrophase in August/September and October/November, and nadir in February/March and April/May, respectively. An inverse correlation between 25(OH)D and CTx-I, and a direct correlation between CTx-II and CTx-I were observed. IVD patients, particularly with osteochondrosis, showed higher CTx-II than healthy controls. CONCLUSIONS Month of sampling may affect plasma 25(OH)D and CTx-II concentrations. The correlation between CTx-I and CTx-II suggests an interplay between the osteo-cartilaginous endplate and the fibro-cartilaginous disc. The results of this study highlighted that osteochondrosis associates with increased cartilaginous catabolism. Vitamin D supplementation seems more necessary in winter for lumbar IVD patients.
Collapse
Affiliation(s)
- Marco Brayda-Bruno
- Scoliosis Unit, Department of Orthopedics and Traumatology-Spine Surgery III, IRCCS Galeazzi Orthopaedic Institute, via R. Galeazzi 4, 20161 Milan, Italy.
| | - Marco Viganò
- Orthopaedic Biotechnology Lab, IRCCS Galeazzi Orthopaedic Institute, via R. Galeazzi 4, 20161 Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 1, 20126 Milan, Italy.
| | - Sabina Cauci
- Department of Medical Area, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Jacopo A Vitale
- Laboratory of Biological Structure Mechanics, IRCCS Galeazzi Orthopaedic Institute, via R. Galeazzi 4, 20161 Milan, Italy.
| | - Laura de Girolamo
- Orthopaedic Biotechnology Lab, IRCCS Galeazzi Orthopaedic Institute, via R. Galeazzi 4, 20161 Milan, Italy.
| | - Paola De Luca
- Orthopaedic Biotechnology Lab, IRCCS Galeazzi Orthopaedic Institute, via R. Galeazzi 4, 20161 Milan, Italy.
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Galeazzi Orthopaedic Institute, via R. Galeazzi 4, 20161 Milan, Italy.
| | - Giuseppe Banfi
- Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milan, Italy.
| | - Alessandra Colombini
- Orthopaedic Biotechnology Lab, IRCCS Galeazzi Orthopaedic Institute, via R. Galeazzi 4, 20161 Milan, Italy.
| |
Collapse
|
46
|
Bjørnerem Å, Ghasem-Zadeh A, Wang X, Bui M, Walker SP, Zebaze R, Seeman E. Irreversible Deterioration of Cortical and Trabecular Microstructure Associated With Breastfeeding. J Bone Miner Res 2017; 32:681-687. [PMID: 27736021 DOI: 10.1002/jbmr.3018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 01/07/2023]
Abstract
Estrogen deficiency associated with menopause is accompanied by an increase in the rate of bone remodeling and the appearance of a remodeling imbalance; each of the greater number of remodeling transactions deposits less bone than was resorbed, resulting in microstructural deterioration. The newly deposited bone is also less completely mineralized than the older bone resorbed. We examined whether breastfeeding, an estrogen-deficient state, compromises bone microstructure and matrix mineral density. Distal tibial and distal radial microarchitecture were quantified using high-resolution peripheral quantitative computed tomography in 58 women before, during, and after breastfeeding and in 48 controls during follow-up of 1 to 5 years. Five months of exclusive breastfeeding increased cortical porosity by 0.6% (95% confidence interval [CI] 0.3-0.9), reduced matrix mineralization density by 0.26% (95% CI 0.12-0.41) (both p < 0.01), reduced trabecular number by 0.22 per mm (95% CI 0.15-0.28), and increased trabecular separation by 0.07 mm (95% CI 0.05-0.08) (all p < 0.001). Relative to prebreastfeeding, at a median of 2.6 years (range 1 to 4.8) after cessation of breastfeeding, cortical porosity remained 0.58 SD (95% CI 0.48-0.68) higher, matrix mineralization density remained 1.28 SD (95% CI 1.07-1.49) lower, and trabeculae were 1.33 SD (95% CI 1.15-1.50) fewer and 1.06 SD (95% CI 0.91-1.22) more greatly separated (all p < 0.001). All deficits were greater than in controls. The results were similar at distal radius. Bone microstructure may be irreversibly deteriorated after cessation of breastfeeding at appendicular sites. Studies are needed to establish whether this deterioration compromises bone strength and increases fracture risk later in life. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Åshild Bjørnerem
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Obstetrics and Gynecology, University Hospital of North Norway, Tromsø, Norway
| | - Ali Ghasem-Zadeh
- Endocrine Centre and Department of Medicine, Austin Health, University of Melbourne, Melbourne, Australia
| | - Xiaofang Wang
- Endocrine Centre and Department of Medicine, Austin Health, University of Melbourne, Melbourne, Australia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Susan P Walker
- Mercy Hospital for Women, Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Australia
| | - Roger Zebaze
- Endocrine Centre and Department of Medicine, Austin Health, University of Melbourne, Melbourne, Australia
| | - Ego Seeman
- Endocrine Centre and Department of Medicine, Austin Health, University of Melbourne, Melbourne, Australia.,Institute of Health and Ageing, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
47
|
Herrera S, Diez-Perez A. Clinical experience with microindentation in vivo in humans. Bone 2017; 95:175-182. [PMID: 27840302 DOI: 10.1016/j.bone.2016.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 12/28/2022]
Abstract
Densitometry and imaging techniques are currently used in clinical settings to measure bone quantity and spatial structure. Recently, Reference Point Indentation has opened the possibility of directly assessing the mechanical characteristics of cortical bone in living individuals, adding a new dimension to the assessment of bone strength. Impact microindentation was specifically developed for clinical studies and has been tested in several populations where there are discrepancies between bone density and fracture propensity, such as type 2 diabetes, atypical femoral fracture, stress fractures, glucocorticoid treatment, patients with osteopenia and fragility fractures, and individuals infected with HIV, among others. Microindentation will complement, not replace, existing bone analysis methods, particularly where bone mineral density does not fully explain fracture propensity. The available evidence provides solid proof of concept; future studies will fully define the role of microindentation for the assessment of bone health both in clinics and in research.
Collapse
Affiliation(s)
- Sabina Herrera
- Department of Internal Medicine, Hospital del Mar Institute of Medical Investigation, Autonomous University of Barcelona, Barcelona, Spain
| | - Adolfo Diez-Perez
- Department of Internal Medicine, Hospital del Mar Institute of Medical Investigation, Autonomous University of Barcelona, Barcelona, Spain.
| |
Collapse
|
48
|
Kaflak A, Chmielewski D, Kolodziejski W. Solid-state NMR study of discrete environments of bone mineral nanoparticles using phosphorus-31 relaxation. J Appl Biomed 2016. [DOI: 10.1016/j.jab.2016.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
49
|
Riedel C, Zimmermann EA, Zustin J, Niecke M, Amling M, Grynpas M, Busse B. The incorporation of fluoride and strontium in hydroxyapatite affects the composition, structure, and mechanical properties of human cortical bone. J Biomed Mater Res A 2016; 105:433-442. [DOI: 10.1002/jbm.a.35917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/06/2016] [Accepted: 09/27/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Christoph Riedel
- Department of Osteology and Biomechanics; University Medical Center Hamburg-Eppendorf; Lottestrasse 55A Hamburg 22529 Germany
| | - Elizabeth A. Zimmermann
- Department of Osteology and Biomechanics; University Medical Center Hamburg-Eppendorf; Lottestrasse 55A Hamburg 22529 Germany
| | - Jozef Zustin
- Department of Pathology; University Medical Center Hamburg-Eppendorf; Martinistrasse 52 Hamburg 20246 Germany
| | - Manfred Niecke
- Institute of Experimental Physics, University of Hamburg; Luruper Chaussee 149 Hamburg 22761 Germany
| | - Michael Amling
- Department of Osteology and Biomechanics; University Medical Center Hamburg-Eppendorf; Lottestrasse 55A Hamburg 22529 Germany
| | - Marc Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital; 25 Orde Street Toronto Ontario M5T 3H7 Canada
| | - Björn Busse
- Department of Osteology and Biomechanics; University Medical Center Hamburg-Eppendorf; Lottestrasse 55A Hamburg 22529 Germany
| |
Collapse
|
50
|
Pore network microarchitecture influences human cortical bone elasticity during growth and aging. J Mech Behav Biomed Mater 2016; 63:164-173. [DOI: 10.1016/j.jmbbm.2016.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/30/2022]
|