1
|
Yi Z, Song S, Bai Y, Zhang G, Wang Y, Chen Z, Chen X, Deng B, Liu X, Jin Z. Atoh8 expression inhibition promoted osteogenic differentiation of ADSCs and inhibited cell proliferation in vitro and rat bone defect models. Adipocyte 2025; 14:2494089. [PMID: 40356232 PMCID: PMC12077435 DOI: 10.1080/21623945.2025.2494089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/02/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
Stem cell-based bone tissue engineering offers a promising approach for treating oral and cranio-maxillofacial bone defects. This study investigated the role of Atoh8, a key regulator in various cells, in the osteogenic potential of adipose-derived stem cells (ADSCs). ADSCs transfected with small interfering RNA (siRNA) targeting Atoh8 were evaluated for proliferation, migration, adhesion, and osteogenic capacity. In vivo, 20 SD rats were used to assess bone regeneration using Atoh8-knockdown ADSC sheets, with new bone formation quantified via micro-CT and histological analysis. Atoh8 knockdown in vitro reduced ADSC proliferation and migration but enhanced osteogenic differentiation and upregulation of osteogenic-related factors. This approach improved bone healing in rat defect models, accelerating repair both in vitro and in vivo. The findings underscore the clinical potential of ADSCs in bone tissue engineering and elucidate Atoh8's regulatory role in ADSC osteogenesis, providing a novel therapeutic strategy for enhancing bone regeneration through targeted modulation of stem cell differentiation pathways.
Collapse
Affiliation(s)
- Zian Yi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi’an, China
| | - Shuang Song
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Yuxin Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral Implantology, School of Stomatology, Air Force Medical University, Xi’an, China
| | - Guanhua Zhang
- Department of Stomatology, Electric Power Teaching Hospital, Capital Medical University, Beijing, China
| | - Yuxi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral Implantology, School of Stomatology, Air Force Medical University, Xi’an, China
| | - Zijun Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral Implantology, School of Stomatology, Air Force Medical University, Xi’an, China
| | - Xuefeng Chen
- Lianbang Research Institute of Oral Technology, Lianbang Hospital of Stomatology, Xi’an, China
| | - Banglian Deng
- Lianbang Research Institute of Oral Technology, Lianbang Hospital of Stomatology, Xi’an, China
| | - Xiangdong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Trauma and Orthognathic Surgery, School of Stomatology, Air Force Medical University, Xi’an, China
| | - Zuolin Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi’an, China
| |
Collapse
|
2
|
Donati S, Palmini G, Aurilia C, Falsetti I, Marini F, Galli G, Zonefrati R, Iantomasi T, Margheriti L, Franchi A, Beltrami G, Masi L, Moro A, Brandi ML. Establishment and Molecular Characterization of a Human Stem Cell Line from a Primary Cell Culture Obtained from an Ectopic Calcified Lesion of a Tumoral Calcinosis Patient Carrying a Novel GALNT3 Mutation. Genes (Basel) 2025; 16:263. [PMID: 40149415 PMCID: PMC11942111 DOI: 10.3390/genes16030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Tumoral calcinosis (TC) is an extremely rare inherited disease characterized by multilobulated, dense ectopic calcified masses, usually in the periarticular soft tissue regions. In a previous study, we isolated a primary cell line from an ectopic lesion of a TC patient carrying a previously undescribed GALNT3 mutation. Here, we researched whether a stem cell (SC) subpopulation, which may play a critical role in TC progression, could be present within these lesions. METHODS A putative SC subpopulation was initially isolated by the sphere assay (marked as TC1-SC line) and characterized for its stem-like phenotype through several cellular and molecular assays, including colony forming unit assay, immunofluorescence staining for mesenchymal SC (MSC) markers, gene expression analyses for embryonic SC (ESC) marker genes, and multidifferentiation capacity. In addition, a preliminary expression pattern of osteogenesis-related pathways miRNAs and genes were assessed in the TC1-SC by quantitative Real-Time PCR (qPCR). RESULTS These cells were capable of differentiating into both the adipogenic and the osteogenic lineages. Moreover, they showed the presence of the MSC and ESC markers, confirmed respectively by using immunofluorescence and qualitative reverse transcriptase PCR (RT-PCR), and a good rate of clonogenic capacity. Finally, qPCR data revealed a signature of miRNAs (i.e., miR-21, miR-23a-3p, miR-26a, miR-27a-3p, miR-27b-3p, and miR-29b-3p) and osteogenic marker genes (i.e., ALP, RUNX2, COLIA1, OPG, OCN, and CCN2) characteristic for the established TC1-SC line. CONCLUSIONS The establishment of this in vitro cell model system could advance the understanding of mechanisms underlying TC pathogenesis, thereby paving the way for the discovery of new diagnostic and novel gene-targeted therapeutic approaches for TC.
Collapse
Affiliation(s)
- Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Gaia Palmini
- FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141 Florence, Italy; (G.P.); (F.M.); (R.Z.)
| | - Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Francesca Marini
- FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141 Florence, Italy; (G.P.); (F.M.); (R.Z.)
| | - Gianna Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Roberto Zonefrati
- FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141 Florence, Italy; (G.P.); (F.M.); (R.Z.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Lorenzo Margheriti
- Stabilimento Chimico Farmaceutico Militare (SCFM)—Agenzia Industrie Difesa (AID), 50141 Florence, Italy; (L.M.); (A.M.)
| | - Alessandro Franchi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Giovanni Beltrami
- Department of Orthopaedic Oncology and Reconstructive Surgery, Azienda Ospedaliero, Universitaria Careggi, 50134 Firenze, Italy;
| | - Laura Masi
- Metabolic Bone Diseases Unit, University Hospital of Florence, AOU Careggi, 50139 Florence, Italy;
| | - Arcangelo Moro
- Stabilimento Chimico Farmaceutico Militare (SCFM)—Agenzia Industrie Difesa (AID), 50141 Florence, Italy; (L.M.); (A.M.)
| | - Maria Luisa Brandi
- FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141 Florence, Italy; (G.P.); (F.M.); (R.Z.)
| |
Collapse
|
3
|
Lu X, Zhao Y, Peng X, Lu C, Wu Z, Xu H, Qin Y, Xu Y, Wang Q, Hao Y, Geng D. Comprehensive Overview of Interface Strategies in Implant Osseointegration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202418849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 01/05/2025]
Abstract
AbstractWith the improvement of implant design and the expansion of application scenarios, orthopedic implants have become a common surgical option for treating fractures and end‐stage osteoarthritis. Their common goal is rapidly forming and long‐term stable osseointegration. However, this fixation effect is limited by implant surface characteristics and peri‐implant bone tissue activity. Therefore, this review summarizes the strategies of interface engineering (osteogenic peptides, growth factors, and metal ions) and treatment methods (porous nanotubes, hydrogel embedding, and other load‐release systems) through research on its biological mechanism, paving the way to achieve the adaptation of both and coordination between different strategies. With the transition of the osseointegration stage, interface engineering strategies have demonstrated varying therapeutic effects. Especially, the activity of osteoblasts runs almost through the entire process of osseointegration, and their physiological activities play a dominant role in bone formation. Furthermore, diseases impacting bone metabolism exacerbate the difficulty of achieving osseointegration. This review aims to assist future research on osseointegration engineering strategies to improve implant‐bone fixation, promote fracture healing, and enhance post‐implantation recovery.
Collapse
Affiliation(s)
- Xiaoheng Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuhu Zhao
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Xiaole Peng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University 1 Youyi Street Chongqing 400016 China
| | - Chengyao Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Zebin Wu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Hao Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yi Qin
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Qing Wang
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center The Affiliated Suzhou Hospital of Nanjing Medical University 242 Guangji Street Suzhou Jiangsu 215006 China
| | - Dechun Geng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| |
Collapse
|
4
|
Pieles O, Morsczeck C. The Role of Protein Kinase C During the Differentiation of Stem and Precursor Cells into Tissue Cells. Biomedicines 2024; 12:2735. [PMID: 39767642 PMCID: PMC11726769 DOI: 10.3390/biomedicines12122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/05/2025] Open
Abstract
Protein kinase C (PKC) plays an essential role during many biological processes including development from early embryonic stages until the terminal differentiation of specialized cells. This review summarizes the current knowledge about the involvement of PKC in molecular processes during the differentiation of stem/precursor cells into tissue cells with a particular focus on osteogenic, adipogenic, chondrogenic and neuronal differentiation by using a comprehensive approach. Interestingly, studies examining the overall role of PKC, or one of its three isoform groups (classical, novel and atypical PKCs), often showed controversial results. A discrete observation of distinct isoforms demonstrated that the impact on differentiation differs highly between the isoforms, and that during a certain process, the influence of only some isoforms is crucial, while others are less important. In particular, PKCβ inhibits, and PKCδ strongly supports osteogenesis, whereas it is the other way around for adipogenesis. PKCε is another isoform that overwhelmingly supports adipogenic differentiation. In addition, PKCα plays an important role in chondrogenesis, while neuronal differentiation has been positively associated with numerous isoforms including classical, novel and atypical PKCs. In a cellular context, various upstream mediators, like the canonical and non-canonical Wnt pathways, endogenously control PKC activity and thus, their activity interferes with the influence of PKC on differentiation. Downstream of PKC, several proteins and pathways build the molecular bridge between the enzyme and the control of differentiation, of which only a few have been well characterized so far. In this context, PKC also cooperates with other kinases like Akt or protein kinase A (PKA). Furthermore, PKC is capable of directly phosphorylating transcription factors with pivotal function for a certain developmental process. Ultimately, profound knowledge about the role of distinct PKC isoforms and the involved signaling pathways during differentiation constitutes a promising tool to improve the use of stem cells in regenerative therapies by precisely manipulating the activity of PKC or downstream effectors.
Collapse
Affiliation(s)
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany;
| |
Collapse
|
5
|
Sarabia-Sánchez MA, Robles-Flores M. WNT Signaling in Stem Cells: A Look into the Non-Canonical Pathway. Stem Cell Rev Rep 2024; 20:52-66. [PMID: 37804416 PMCID: PMC10799802 DOI: 10.1007/s12015-023-10610-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 10/09/2023]
Abstract
Tissue homeostasis is crucial for multicellular organisms, wherein the loss of cells is compensated by generating new cells with the capacity for proliferation and differentiation. At the origin of these populations are the stem cells, which have the potential to give rise to cells with both capabilities, and persevere for a long time through the self-renewal and quiescence. Since the discovery of stem cells, an enormous effort has been focused on learning about their functions and the molecular regulation behind them. Wnt signaling is widely recognized as essential for normal and cancer stem cell. Moreover, β-catenin-dependent Wnt pathway, referred to as canonical, has gained attention, while β-catenin-independent Wnt pathways, known as non-canonical, have remained conspicuously less explored. However, recent evidence about non-canonical Wnt pathways in stem cells begins to lay the foundations of a conceivably vast field, and on which we aim to explain this in the present review. In this regard, we addressed the different aspects in which non-canonical Wnt pathways impact the properties of stem cells, both under normal conditions and also under disease, specifically in cancer.
Collapse
Affiliation(s)
- Miguel Angel Sarabia-Sánchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
6
|
Iusupova AO, Pakhtusov NN, Slepova OA, Belenkov YN, Privalova EV, Bure IV, Vetchinkina EA, Nemtsova MV. MiRNA-21a, miRNA-145, and miRNA-221 Expression and Their Correlations with WNT Proteins in Patients with Obstructive and Non-Obstructive Coronary Artery Disease. Int J Mol Sci 2023; 24:17613. [PMID: 38139440 PMCID: PMC10744268 DOI: 10.3390/ijms242417613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
MicroRNAs and the WNT signaling cascade regulate the pathogenetic mechanisms of atherosclerotic coronary artery disease (CAD) development. OBJECTIVE To evaluate the expression of microRNAs (miR-21a, miR-145, and miR-221) and the role of the WNT signaling cascade (WNT1, WNT3a, WNT4, and WNT5a) in obstructive CAD and ischemia with no obstructive coronary arteries (INOCA). METHOD The cross-sectional observational study comprised 94 subjects. The expression of miR-21a, miR-145, miR-221 (RT-PCR) and the protein levels of WNT1, WNT3a, WNT4, WNT5a, LRP6, and SIRT1 (ELISA) were estimated in the plasma of 20 patients with INOCA (66.5 [62.8; 71.2] years; 25% men), 44 patients with obstructive CAD (64.0 [56.5; 71,0] years; 63.6% men), and 30 healthy volunteers without risk factors for cardiovascular diseases (CVD). RESULTS Higher levels of WNT1 (0.189 [0.184; 0.193] ng/mL vs. 0.15 [0.15-0.16] ng/mL, p < 0.001) and WNT3a (0.227 [0.181; 0.252] vs. 0.115 [0.07; 0.16] p < 0.001) were found in plasma samples from patients with obstructive CAD, whereas the INOCA group was characterized by higher concentrations of WNT4 (0.345 [0.278; 0.492] ng/mL vs. 0.203 [0.112; 0.378] ng/mL, p = 0.025) and WNT5a (0.17 [0.16; 0.17] ng/mL vs. 0.01 [0.007; 0.018] ng/mL, p < 0.001). MiR-221 expression level was higher in all CAD groups compared to the control group (p < 0.001), whereas miR-21a was more highly expressed in the control group than in the obstructive (p = 0.012) and INOCA (p = 0.003) groups. Correlation analysis revealed associations of miR-21a expression with WNT1 (r = -0.32; p = 0.028) and SIRT1 (r = 0.399; p = 0.005) protein levels in all CAD groups. A positive correlation between miR-145 expression and the WNT4 protein level was observed in patients with obstructive CAD (r = 0.436; p = 0.016). Based on multivariate regression analysis, a mathematical model was constructed that predicts the type of coronary lesion. WNT3a and LRP6 were the independent predictors of INOCA (p < 0.001 and p = 0.002, respectively). CONCLUSIONS Activation of the canonical cascade of WNT-β-catenin prevailed in patients with obstructive CAD, whereas in the INOCA and control groups, the activity of the non-canonical pathway was higher. It can be assumed that miR-21a has a negative effect on the formation of atherosclerotic CAD. Alternatively, miR-145 could be involved in the development of coronary artery obstruction, presumably through the regulation of the WNT4 protein. A mathematical model with WNT3a and LRP6 as predictors allows for the prediction of the type of coronary artery lesion.
Collapse
Affiliation(s)
- Alfiya Oskarovna Iusupova
- Department of Hospital Therapy No 1, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia (O.A.S.); (Y.N.B.)
| | - Nikolay Nikolaevich Pakhtusov
- Department of Hospital Therapy No 1, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia (O.A.S.); (Y.N.B.)
| | - Olga Alexandrovna Slepova
- Department of Hospital Therapy No 1, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia (O.A.S.); (Y.N.B.)
| | - Yuri Nikitich Belenkov
- Department of Hospital Therapy No 1, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia (O.A.S.); (Y.N.B.)
| | - Elena Vitalievna Privalova
- Department of Hospital Therapy No 1, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia (O.A.S.); (Y.N.B.)
| | - Irina Vladimirovna Bure
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (I.V.B.); (E.A.V.); (M.V.N.)
- Research Institute of Molecular and Personalized Medicine, Russian Medical Academy of Continuous Professional Education, 125445 Moscow, Russia
| | - Ekaterina Alexandrovna Vetchinkina
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (I.V.B.); (E.A.V.); (M.V.N.)
| | - Marina Vyacheslavovna Nemtsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (I.V.B.); (E.A.V.); (M.V.N.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
7
|
Sadowska JM, Ziminska M, Ferreira C, Matheson A, Balouch A, Bogle J, Wojda S, Redmond J, Elkashif A, Dunne N, McCarthy HO, Donahue S, O'Brien FJ. Development of miR-26a-activated scaffold to promote healing of critical-sized bone defects through angiogenic and osteogenic mechanisms. Biomaterials 2023; 303:122398. [PMID: 37979514 DOI: 10.1016/j.biomaterials.2023.122398] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/19/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Very large bone defects significantly diminish the vascular, blood, and nutrient supply to the injured site, reducing the bone's ability to self-regenerate and complicating treatment. Delivering nanomedicines from biomaterial scaffolds that induce host cells to produce bone-healing proteins is emerging as an appealing solution for treating these challenging defects. In this context, microRNA-26a mimics (miR-26a) are particularly interesting as they target the two most relevant processes in bone regeneration-angiogenesis and osteogenesis. However, the main limitation of microRNAs is their poor stability and issues with cytosolic delivery. Thus, utilising a collagen-nanohydroxyapatite (coll-nHA) scaffold in combination with cell-penetrating peptide (RALA) nanoparticles, we aimed to develop an effective system to deliver miR-26a nanoparticles to regenerate bone defects in vivo. The microRNA-26a complexed RALA nanoparticles, which showed the highest transfection efficiency, were incorporated into collagen-nanohydroxyapatite scaffolds and in vitro assessment demonstrated the miR-26a-activated scaffolds effectively transfected human mesenchymal stem cells (hMSCs) resulting in enhanced production of vascular endothelial growth factor, increased alkaline phosphatase activity, and greater mineralisation. After implantation in critical-sized rat calvarial defects, micro CT and histomorphological analysis revealed that the miR-26a-activated scaffolds improved bone repair in vivo, producing new bone of superior quality, which was highly mineralised and vascularised compared to a miR-free scaffold. This innovative combination of osteogenic collagen-nanohydroxyapatite scaffolds with multifunctional microRNA-26a complexed nanoparticles provides an effective carrier delivering nanoparticles locally with high efficacy and minimal off-target effects and demonstrates the potential of targeting osteogenic-angiogenic coupling using scaffold-based nanomedicine delivery as a new "off-the-shelf" product capable of healing complex bone injuries.
Collapse
Affiliation(s)
- Joanna M Sadowska
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Monika Ziminska
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Cole Ferreira
- Department of Biomedical Engineering, University of Massachusetts Amherst, USA
| | - Austyn Matheson
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Auden Balouch
- Department of Biomedical Engineering, University of Massachusetts Amherst, USA
| | - Jasmine Bogle
- Department of Biomedical Engineering, University of Massachusetts Amherst, USA
| | - Samantha Wojda
- Department of Biomedical Engineering, University of Massachusetts Amherst, USA
| | - John Redmond
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Ahmed Elkashif
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Nicholas Dunne
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland; School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Seth Donahue
- Department of Biomedical Engineering, University of Massachusetts Amherst, USA
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland; Department of Biomedical Engineering, University of Massachusetts Amherst, USA; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland.
| |
Collapse
|
8
|
Morsczeck C, De Pellegrin M, Reck A, Reichert TE. Evaluation of Current Studies to Elucidate Processes in Dental Follicle Cells Driving Osteogenic Differentiation. Biomedicines 2023; 11:2787. [PMID: 37893160 PMCID: PMC10604663 DOI: 10.3390/biomedicines11102787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
When research on osteogenic differentiation in dental follicle cells (DFCs) began, projects focused on bone morphogenetic protein (BMP) signaling. The BMP pathway induces the transcription factor DLX3, whichh in turn induces the BMP signaling pathway via a positive feedback mechanism. However, this BMP2/DLX3 signaling pathway only seems to support the early phase of osteogenic differentiation, since simultaneous induction of BMP2 or DLX3 does not further promote differentiation. Recent data showed that inhibition of classical protein kinase C (PKCs) supports the mineralization of DFCs and that osteogenic differentiation is sensitive to changes in signaling pathways, such as protein kinase B (PKB), also known as AKT. Small changes in the lipidome seem to confirm the participation of AKT and PKC in osteogenic differentiation. In addition, metabolic processes, such as fatty acid biosynthesis, oxidative phosphorylation, or glycolysis, are essential for the osteogenic differentiation of DFCs. This review article attempts not only to bring the various factors into a coherent picture of osteogenic differentiation in DFCs, but also to relate them to recent developments in other types of osteogenic progenitor cells.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany (A.R.); (T.E.R.)
| | | | | | | |
Collapse
|
9
|
Chambers P, Ziminska M, Elkashif A, Wilson J, Redmond J, Tzagiollari A, Ferreira C, Balouch A, Bogle J, Donahue SW, Dunne NJ, McCarthy HO. The osteogenic and angiogenic potential of microRNA-26a delivered via a non-viral delivery peptide for bone repair. J Control Release 2023; 362:489-501. [PMID: 37673308 DOI: 10.1016/j.jconrel.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Bone-related injuries and diseases are among the most common causes of morbidity worldwide. Current bone-regenerative strategies such as auto- and allografts are invasive by nature, with adverse effects such as pain, infection and donor site morbidity. MicroRNA (miRNA) gene therapy has emerged as a promising area of research, with miRNAs capable of regulating multiple gene pathways simultaneously through the repression of post-transcriptional mRNAs. miR-26a is a key regulator of osteogenesis and has been found to be upregulated following bone injury, where it induces osteodifferentiation of mesenchymal stem cells (MSCs) and facilitates bone formation. This study demonstrates, for the first time, that the amphipathic, cell-penetrating peptide RALA can efficiently deliver miR-26a to MSCs in vitro to regulate osteogenic signalling. Transfection with miR-26a significantly increased expression of osteogenic and angiogenic markers at both gene and protein level. Using a rat calvarial defect model with a critical size defect, RALA/miR-26a NPs were delivered via an injectable, thermo-responsive Cs-g-PNIPAAm hydrogel to assess the impact on both rate and quality of bone healing. Critical defects treated with the RALA/miR-26a nanoparticles (NPs) had significantly increased bone volume and bone mineral density at 8 weeks, with increased blood vessel formation and mechanical properties. This study highlights the utility of RALA to deliver miR-26a for the purpose of bone healing within an injectable biomaterial, warranting further investigation of dose-related efficacy of the therapeutic across a range of in vivo models.
Collapse
Affiliation(s)
- Phillip Chambers
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Monika Ziminska
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ahmed Elkashif
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jordan Wilson
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - John Redmond
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Antzela Tzagiollari
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Cole Ferreira
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States
| | - Auden Balouch
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States
| | - Jasmine Bogle
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States
| | - Seth W Donahue
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States
| | - Nicholas J Dunne
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
10
|
Afonso GJM, Cavaleiro C, Valero J, Mota SI, Ferreiro E. Recent Advances in Extracellular Vesicles in Amyotrophic Lateral Sclerosis and Emergent Perspectives. Cells 2023; 12:1763. [PMID: 37443797 PMCID: PMC10340215 DOI: 10.3390/cells12131763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe and incurable neurodegenerative disease characterized by the progressive death of motor neurons, leading to paralysis and death. It is a rare disease characterized by high patient-to-patient heterogeneity, which makes its study arduous and complex. Extracellular vesicles (EVs) have emerged as important players in the development of ALS. Thus, ALS phenotype-expressing cells can spread their abnormal bioactive cargo through the secretion of EVs, even in distant tissues. Importantly, owing to their nature and composition, EVs' formation and cargo can be exploited for better comprehension of this elusive disease and identification of novel biomarkers, as well as for potential therapeutic applications, such as those based on stem cell-derived exosomes. This review highlights recent advances in the identification of the role of EVs in ALS etiopathology and how EVs can be promising new therapeutic strategies.
Collapse
Affiliation(s)
- Gonçalo J. M. Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Carla Cavaleiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Jorge Valero
- Instituto de Neurociencias de Castilla y León, University of Salamanca, 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Department of Cell Biology and Pathology, University of Salamanca, 37007 Salamanca, Spain
| | - Sandra I. Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
11
|
Sanada Y, Ikuta Y, Ding C, Yimiti D, Kato Y, Nakasa T, Mizuno S, Takahashi S, Huang W, Lotz MK, Adachi N, Miyaki S. miR-26a deficiency is associated with bone loss and reduced muscle strength but does not affect severity of cartilage damage in osteoarthritis. Mech Ageing Dev 2023; 212:111806. [PMID: 37003368 DOI: 10.1016/j.mad.2023.111806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Osteoarthritis (OA) is the most common age-related joint disease. However, the role of many microRNAs (miRNA) in skeletal development and OA pathogenesis has not been sufficiently elucidated using genetically modified mice with gain- and loss-of-function models. We generated Cartilage-specific miR-26a overexpressing (Col2a1-Cre;miR-26a Tgfl/fl: Cart-miR-26a Tg) mice and global miR-26a knockout (miR-26a KO) mice. The purpose of the present study was to determine the role of miR-26a in OA pathogenesis using aging and surgically induced models. Skeletal development of Cart-miR-26a Tg and miR-26a KO mice was grossly normal. Knee joints were evaluated by histological grading systems. In surgically-induced OA and aging models (12 and 18 months of age), Cart-miR-26a Tg mice and miR-26a KO mice exhibited OA-like changes such as proteoglycan loss and cartilage fibrillation with no significant differences in OARSI score (damage of articular cartilage) compared with control mice. However, miR-26a KO mice reduced muscle strength and bone mineral density at 12 months of age. These findings indicated that miR-26a modulates bone loss and muscle strength but has no essential role in aging-related or post-traumatic OA.
Collapse
Affiliation(s)
- Yohei Sanada
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan, 734-8552; Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Yasunari Ikuta
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Chenyang Ding
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Yoshio Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan, 305-8566
| | - Tomoyuki Nakasa
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan, 734-8552; Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan, 305-8575
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan, 305-8575
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA, 91010
| | - Martin K Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA, 92037
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Shigeru Miyaki
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan, 734-8552; Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552.
| |
Collapse
|
12
|
Effect and Related Mechanism of Platelet-Rich Plasma on the Osteogenic Differentiation of Human Adipose-Derived Stem Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1256002. [PMID: 35978628 PMCID: PMC9377928 DOI: 10.1155/2022/1256002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Objective Human adipose-derived stem cells (hADSCs) are ideal seed cells for the regeneration of alveolar bone defects. Platelet-rich plasma (PRP), which is rich in growth factors, promotes tissue repair. The purpose of the present study was to investigate whether PRP promotes the osteogenic differentiation of hADSCs and to perform high-throughput sequencing to explore the possible mechanism. Methods hADSCs were divided into the three following groups: CON group, OM group, and PRP group. Osteogenesis was detected by Alizarin Red staining on day 14. Total RNA was extracted from the OM and PRP groups for high-throughput sequencing. The target genes of the differentially expressed osteogenic-related miRNAs were predicted, and combined miRNA/mRNA analysis was then performed. The mRNA and protein expression levels of hsa-miR-212-5p, type 1 cannabinoid receptor (CNR1), alkaline phosphatase (ALP), Runx2, osteocalcin (OCN), and collagen 1 A1 (COL1A1) in the OM and PRP groups were detected by qRT–PCR and Western blot analyses. The binding between hsa-miR-212-5p and CNR1 was detected by a dual-luciferase reporter assay. Results Both the OM and PRP groups exhibited enhanced proliferation of hADSCs, and the differences at 48 h and 72 h were statistically significant (P < 0.05). The PRP group had significantly more calcium nodules than the CON group (P < 0.05). Through high-throughput sequencing analysis, differential miRNA and mRNA expression profiles were obtained. During hADSC osteogenesis, the expression of hsa-miR-212-5p was downregulated, and the expression of CNR1 was upregulated. hsa-miR-212-5p was found to bind directly to the 3′ UTR of CNR1. Conclusions The present findings indicated that downregulation of hsa-miR-212-5p and upregulation of CNR1 may be involved in the process by which PRP promotes the osteogenic differentiation of hADSCs.
Collapse
|
13
|
Zhang Y, Li X, Li J, Liu D, Zhai L, Wang X, Abdurahman A, Yokota H, Zhang P. Knee Loading Enhances the Migration of Adipose-Derived Stem Cells to the Osteoarthritic Sites Through the SDF-1/CXCR4 Regulatory Axis. Calcif Tissue Int 2022; 111:171-184. [PMID: 35429248 DOI: 10.1007/s00223-022-00976-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/30/2022] [Indexed: 11/02/2022]
Abstract
Osteoarthritis (OA) is a whole joint disorder that is characterized by cartilage damage and abnormal remodeling of subchondral bone. Injecting adipose-derived stem cells (ASCs) into the knee joint cavity can assist in repairing osteoarthritic joints, but their ability to migrate to the damaged site is limited. Our previous studies have shown that knee loading can improve the symptoms of OA, but the effect and mechanism of knee loading on the migration of ASCs in OA remain unclear. We employed a mouse model of OA in the knee and applied knee loading (1 N at 5 Hz for 6 min/day for 2 weeks) after the intra-articular injection of ASCs. The cartilage and subchondral bone repair were assessed by histopathological analysis. Immunofluorescence assays were also used to analyze the migration of ASCs. Using cell cultures, we evaluated the migration of ASCs using the transwell migration and wound healing assays. In vivo experiments showed that knee loading promoted the migration of ASCs, increased the local SDF-1 level, and accelerated the repair of the OA-damaged sites. Mechanistically, the observed effects were blocked by the SDF-1/CXCR4 inhibitor. The in vitro results further revealed that knee loading promoted the migration of ASCs and the inhibition of SDF-1/CXCR4 significantly suppressed the beneficial loading effect. The results herein suggested that the migration of ASCs was enhanced by knee loading through the SDF-1/CXCR4 regulatory axis, and mechanical loading promoted the joint-protective effect of ASCs.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Lidong Zhai
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Xuetong Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Abdusami Abdurahman
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China.
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China.
- Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
14
|
Shao X, Hu Z, Zhan Y, Ma W, Quan L, Lin Y. MiR‐26a‐tetrahedral
framework nucleic acids mediated osteogenesis of adipose‐derived mesenchymal stem cells. Cell Prolif 2022; 55:e13272. [PMID: 35661456 PMCID: PMC9251048 DOI: 10.1111/cpr.13272] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
Objectives Delivery systems that provide time and space control have a good application prospect in tissue regeneration applications, as they can effectively improve the process of wound healing and tissue repair. In our experiments, we constructed a novel micro‐RNA delivery system by linking framework nucleic acid nanomaterials to micro‐RNAs to promote osteogenic differentiation of mesenchymal stem cells. Materials and Methods To verify the successful preparation of tFNAs–miR‐26a, the size of tFNAs–miR‐26a were observed by non‐denaturing polyacrylamide gel electrophoresis and dynamic light scattering techniques. The expression of osteogenic differentiation‐related genes and proteins was investigated by confocal microscope, PCR and western blot to detect the impact of tFNAs–miR‐26a on ADSCs. And finally, Wnt/β‐catenin signaling pathway related proteins and genes were detected by confocal microscope, PCR and western blot to study the relevant mechanism. Results By adding this novel complex, the osteogenic differentiation ability of mesenchymal stem cells was significantly improved, and the expression of alkaline phosphatase (ALP) on the surface of the cell membrane and the formation of calcium nodules in mesenchymal stem cells were significantly increased on days 7 and 14 of induction of osteogenic differentiation, respectively. Gene and protein expression levels of ALP (an early marker associated with osteogenic differentiation), RUNX2 (a metaphase marker), and OPN (a late marker) were significantly increased. We also studied the relevant mechanism of action and found that the novel nucleic acid complex promoted osteogenic differentiation of mesenchymal stem cells by activating the canonical Wnt signaling pathway. Conclusions This study may provide a new research direction for the application of novel nucleic acid nanomaterials in bone tissue regeneration.
Collapse
Affiliation(s)
- Xiaoru Shao
- Department of Stomatology Affiliated Hospital of Jining Medical University Jining Shandong China
- College of TCM, Shandong University of Traditional Chinese Medicine Jinan Shandong China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| | - Zhong Hu
- Department of Stomatology Affiliated Hospital of Jining Medical University Jining Shandong China
| | - Yuxi Zhan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| | - Li Quan
- Business College China West Normal University Nanchong Sichuan China
- Sichuan Inspection and Testing Center for Dental Devices and Materials Ziyang Sichuan China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| |
Collapse
|
15
|
Chung YH, Cheng YT, Kao YH, Tsai WC, Huang GK, Chen YT, Shen YC, Tai MH, Chiang PH. MiR-26a-5p as a useful therapeutic target for upper tract urothelial carcinoma by regulating WNT5A/β-catenin signaling. Sci Rep 2022; 12:6955. [PMID: 35484165 PMCID: PMC9050734 DOI: 10.1038/s41598-022-08091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 03/01/2022] [Indexed: 11/15/2022] Open
Abstract
The role of miRNAs in cancer and their possible function as therapeutic agents are interesting and needed further investigation. The miR-26a-5p had been demonstrated as a tumor suppressor in various cancers. However, the importance of miR-26a-5p regulation in upper tract urothelial carcinoma (UTUC) remains unclear. Here, we aimed to explore the miR-26a-5p expression in UTUC tissues and to identify its regulatory targets and signal network involved in UTUC tumorigenesis. The miR-26a-5p expression was validated by quantitative real-time polymerase chain reaction (qPCR) using renal pelvis tissue samples from 22 patients who were diagnosed with UTUC and 64 cases of renal pelvis tissue microarray using in situ hybridization staining. BFTC-909 UTUC cells were used to examine the effects of miR-26a-5p genetic delivery on proliferation, migration and expression of epithelial-to-mesenchymal transition (EMT) markers. MiR-26a-5p was significantly down-regulated in UTUC tumors compared to adjacent normal tissue and was decreased with histological grades. Moreover, restoration of miR-26a-5p showed inhibition effects on proliferation and migration of BFTC-909 cells. In addition, miR-26a-5p delivery regulated the EMT marker expression and inhibited WNT5A/β-catenin signaling and expression of downstream molecules including NF-κB and MMP-9 in BFTC-909 cells. This study demonstrated that miR-26a-5p restoration may reverse EMT process and regulate WNT5A/β-catenin signaling in UTUC cells. Further studies warranted to explore the potential roles in biomarkers for diagnostics and prognosis, as well as novel therapeutics targets for UTUC treatment.
Collapse
Affiliation(s)
- Yueh-Hua Chung
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, ROC
| | - Yuan-Tso Cheng
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung, 82445, Taiwan, ROC
| | - Wan-Chi Tsai
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Gong-Kai Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Yen-Ta Chen
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Yuan-Chi Shen
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, ROC.
| | - Po-Hui Chiang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC.
| |
Collapse
|
16
|
Trappc9 Deficiency Impairs the Plasticity of Stem Cells. Int J Mol Sci 2022; 23:ijms23094900. [PMID: 35563289 PMCID: PMC9101649 DOI: 10.3390/ijms23094900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Genetic mutations of trappc9 cause intellectual disability with the atrophy of brain structures and variable obesity by poorly understood mechanisms. Trappc9-deficient mice develop phenotypes resembling pathological changes in humans and appear overweight shortly after weaning, and thus are useful for studying the pathogenesis of obesity. Here, we investigated the effects of trappc9 deficiency on the proliferation and differentiation capacity of adipose-derived stem cells (ASCs). We isolated ASCs from mice before overweight was developed and found that trappc9-null ASCs exhibited signs of premature senescence and cell death. While the lineage commitment was retained, trappc9-null ASCs preferred adipogenic differentiation. We observed a profound accumulation of lipid droplets in adipogenic cells derived from trappc9-deficient ASCs and marked differences in the distribution patterns and levels of calcium deposited in osteoblasts obtained from trappc9-null ASCs. Biochemical studies revealed that trappc9 deficiency resulted in an upregulated expression of rab1, rab11, and rab18, and agitated autophagy in ASCs. Moreover, we found that the content of neural stem cells in both the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus vastly declined in trappc9-null mice. Collectively, our results suggest that obesity, as well as brain structure hypoplasia induced by the deficiency of trappc9, involves an impairment in the plasticity of stem cells.
Collapse
|
17
|
Bin-Bin Z, Da-Wa ZX, Chao L, Lan-Tao Z, Tao W, Chuan L, Chao-Zheng L, De-Chun L, Chang F, Shu-Qing W, Zu-Nan D, Xian-Wei P, Zhang ZX, Ke-Wen L. M2 macrophagy-derived exosomal miRNA-26a-5p induces osteogenic differentiation of bone mesenchymal stem cells. J Orthop Surg Res 2022; 17:137. [PMID: 35246197 PMCID: PMC8895825 DOI: 10.1186/s13018-022-03029-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/18/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cells have always been a heated research topic in bone tissue regeneration and repair because of their self-renewal and multi-differentiation potential. A large number of studies have been focused on finding the inducing factors that will promote the osteogenic differentiation of bone marrow mesenchymal stem cells. Previous studies have shown that macrophage exosomes or miRNA-26a-5p can make it work, but the function of this kind of substance on cell osteogenic differentiation has not been public. METHODS M2 macrophages are obtained from IL-4 polarized bone marrow-derived macrophages. Exosomes were isolated from the supernatant of M2 macrophages and identified via transmission electron microscopy (TEM), western blotting, and DLS. Chondrogenic differentiation potential was detected by Alcian blue staining. Oil red O staining was used to detect the potential for lipogenic differentiation. And MTT would detect the proliferative capacity of cells. Western blot was performed to detect differential expression of osteogenic differentiation-related proteins. RESULTS The results showed that M2 macrophage exosomes will promote bone differentiation and at the same time inhibit lipid differentiation. In addition, M2 macrophage-derived exosomes have the function of promoting the expression of SOX and Aggrecan suppressing the level of MMP13. The exosome inhibitor GW4689 suppresses miRNA-26a-5p in M2 macrophage exosomes, and the treated exosomes do not play an important role in promoting bone differentiation. Moreover, miRNA-26a-5p can enable to promote bone differentiation and inhibit lipid differentiation. miRNA-26a-5p can promote the expression of ALP (alkaline phosphatase), RUNX-2 (Runt-related transcription factor 2), OPN(osteopontin), and Col-2(collagen type II). Therefore, it is speculated that exosomal miRNA-26a-5p is indispensable in osteogenic differentiation. CONCLUSIONS The present study indicated that M2 macrophage exosomes carrying miRNA-26a-5p can induce osteogenic differentiation of bone marrow-derived stem cells to inhibit lipogenic differentiation, and miRNA-26a-5p will also promote the expression of osteogenic differentiation-related proteins ALP, RUNX-2, OPN, and Col-2.
Collapse
Affiliation(s)
- Zhang Bin-Bin
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Zha Xi Da-Wa
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Li Chao
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Zhang Lan-Tao
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Wu Tao
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Lu Chuan
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Liu Chao-Zheng
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Li De-Chun
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Feng Chang
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Wei Shu-Qing
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Dong Zu-Nan
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Pei Xian-Wei
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China
| | - Zhi-Xia Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Out-Patient, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Li Ke-Wen
- Department of Joint Surgery, Qinghai University Affiliated Hospital, Xining, 810000, Qinghai Province, China.
| |
Collapse
|
18
|
Wnt-Signaling Regulated by Glucocorticoid-Induced miRNAs. Int J Mol Sci 2021; 22:ijms222111778. [PMID: 34769207 PMCID: PMC8584097 DOI: 10.3390/ijms222111778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids (GCs) are pleiotropic hormones which regulate innumerable physiological processes. Their comprehensive effects are due to the diversity of signaling mechanism networks. MiRNAs, small, non-coding RNAs contribute to the fine tuning of signaling pathways and reciprocal regulation between GCs and miRNAs has been suggested. Our aim was to investigate the expressional change and potential function of GC mediated miRNAs. The miRNA expression profile was measured in three models: human adrenocortical adenoma vs. normal tissue, steroid-producing H295R cells and in hormonally inactive HeLa cells before and after dexamethasone treatment. The gene expression profile in 82 control and 57 GC-affected samples was evaluated in GC producing and six different GC target tissue types. Tissue-specific target prediction (TSTP) was applied to identify the most relevant miRNA-mRNA interactions. Glucocorticoid treatment resulted in cell type-dependent miRNA expression changes. However, 19.5% of the influenced signaling pathways were common in all three experiments, of which the Wnt-signaling pathway seemed to be the most affected. Transcriptome data and TSTP showed similar results, as the Wnt pathway was significantly altered in both the GC-producing adrenal gland and all investigated GC target tissue types. In different cell types, different miRNAs led to the regulation of similar pathways. Wnt signaling may be one of the most important signaling pathways affected by hypercortisolism. It is, at least in part, regulated by miRNAs that mediate the glucocorticoid effect. Our findings on GC producing and GC target tissues suggest that the alteration of Wnt signaling (together with other pathways) may be responsible for the leading symptoms observed in Cushing's syndrome.
Collapse
|
19
|
Singh V. Intracellular metabolic reprogramming mediated by micro-RNAs in differentiating and proliferating cells under non-diseased conditions. Mol Biol Rep 2021; 48:8123-8140. [PMID: 34643930 DOI: 10.1007/s11033-021-06769-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Intracellular metabolic reprogramming is a critical process the cells carry out to increase biomass, energy fulfillment and genome replication. Cells reprogram their demands from internal catabolic or anabolic activities in coordination with multiple genes and microRNAs which further control the critical processes of differentiation and proliferation. The microRNAs reprogram the metabolism involving mitochondria, the nucleus and the biochemical processes utilizing glucose, amino acids, lipids, and nucleic acids resulting in ATP production. The processes of glycolysis, tricarboxylic acid cycle, or oxidative phosphorylation are also mediated by micro-RNAs maintaining cells and organs in a non-diseased state. Several reports have shown practical applications of metabolic reprogramming for clinical utility to assess various diseases, mostly studying cancer and immune-related disorders. Cells under diseased conditions utilize glycolysis for abnormal growth or proliferation, respectively, affecting mitochondrial paucity and biogenesis. Similar metabolic processes also affect gene expressions and transcriptional regulation for carrying out biochemical reactions. Metabolic reprogramming is equally vital for regulating cell environment to maintain organs and tissues in non-diseased states. This review offers in depth insights and analysis of how miRNAs regulate metabolic reprogramming in four major types of cells undergoing differentiation and proliferation, i.e., immune cells, neuronal cells, skeletal satellite cells, and cardiomyocytes under a non-diseased state. Further, the work systematically summarizes and elaborates regulation of genetic switches by microRNAs through predominantly through cellular reprogramming and metabolic processes for the first time. The observations will lead to a better understanding of disease initiation during the differentiation and proliferation stages of cells, as well as fresh approaches to studying clinical onset of linked metabolic diseases targeting metabolic processes.
Collapse
Affiliation(s)
- Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
20
|
The Adipose-Derived Stem Cell and Endothelial Cell Coculture System-Role of Growth Factors? Cells 2021; 10:cells10082074. [PMID: 34440843 PMCID: PMC8394058 DOI: 10.3390/cells10082074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/10/2021] [Indexed: 01/17/2023] Open
Abstract
Adequate vascularization is a fundamental prerequisite for bone regeneration, formation and tissue engineering applications. Endothelialization of scaffold materials is a promising strategy to support neovascularization and bone tissue formation. Besides oxygen and nutrition supply, the endothelial network plays an important role concerning osteogenic differentiation of osteoprogenitor cells and consecutive bone formation. In this study we aimed to enhance the growth stimulating, proangiogenic and osteogenic features of the ADSC and HUVEC coculture system by means of VEGFA165 and BMP2 application. We were able to show that sprouting phenomena and osteogenic differentiation were enhanced in the ADSC/HUVEC coculture. Furthermore, apoptosis was unidirectionally decreased in HUVECs, but these effects were not further enhanced upon VEGFA165 or BMP2 application. In summary, the ADSC/HUVEC coculture system per se is a powerful tool for bone tissue engineering applications.
Collapse
|
21
|
Extracellular Vesicles: Potential Mediators of Psychosocial Stress Contribution to Osteoporosis? Int J Mol Sci 2021; 22:ijms22115846. [PMID: 34072559 PMCID: PMC8199340 DOI: 10.3390/ijms22115846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 02/08/2023] Open
Abstract
Osteoporosis is characterized by low bone mass and damage to the bone tissue’s microarchitecture, leading to increased fracture risk. Several studies have provided evidence for associations between psychosocial stress and osteoporosis through various pathways, including the hypothalamic-pituitary-adrenocortical axis, the sympathetic nervous system, and other endocrine factors. As psychosocial stress provokes oxidative cellular stress with consequences for mitochondrial function and cell signaling (e.g., gene expression, inflammation), it is of interest whether extracellular vesicles (EVs) may be a relevant biomarker in this context or act by transporting substances. EVs are intercellular communicators, transfer substances encapsulated in them, modify the phenotype and function of target cells, mediate cell-cell communication, and, therefore, have critical applications in disease progression and clinical diagnosis and therapy. This review summarizes the characteristics of EVs, their role in stress and osteoporosis, and their benefit as biological markers. We demonstrate that EVs are potential mediators of psychosocial stress and osteoporosis and may be beneficial in innovative research settings.
Collapse
|
22
|
Liu A, Lin D, Zhao H, Chen L, Cai B, Lin K, Shen SG. Optimized BMSC-derived osteoinductive exosomes immobilized in hierarchical scaffold via lyophilization for bone repair through Bmpr2/Acvr2b competitive receptor-activated Smad pathway. Biomaterials 2021; 272:120718. [PMID: 33838528 DOI: 10.1016/j.biomaterials.2021.120718] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-exos), with its inherent capacity to modulate cellular behavior, are emerging as a novel cell-free therapy for bone regeneration. Herein, focusing on practical applying problems, the osteoinductivity of MSC-exos produced by different stem cell sources (rBMSCs/rASCs) and culture conditions (osteoinductive/common) were systematically compared to screen out an optimized osteogenic exosome (BMSC-OI-exo). Via bioinformatic analyses by miRNA microarray and in vitro pathway verification by gene silencing and miRNA transfection, we first revealed that the osteoinductivity of BMSC-OI-exo was attributed to multi-component exosomal miRNAs (let-7a-5p, let-7c-5p, miR-328a-5p and miR-31a-5p). These miRNAs targeted Acvr2b/Acvr1 and regulated the competitive balance of Bmpr2/Acvr2b toward Bmpr-elicited Smad1/5/9 phosphorylation. On these bases, lyophilized delivery of BMSC-OI-exo on hierarchical mesoporous bioactive glass (MBG) scaffold was developed to realize bioactivity maintenance and sustained release by entrapment in the surface microporosity of the scaffold. In a rat cranial defect model, the loading of BMSC-OI-exo efficiently enhanced the bone forming capacity of the scaffold and induced rapid initiation of bone regeneration. This paper could provide empirical bases of MSC-exo-based therapy for bone regeneration and theoretical bases of MSC-exo-induced osteogenesis mechanism. The BMSC-OI-exo-loaded MBG scaffold developed here represented a promising bone repairing strategy for future clinical application.
Collapse
Affiliation(s)
- Anqi Liu
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Dan Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China.
| | - Hanjiang Zhao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Long Chen
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Bolei Cai
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China; State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China.
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China.
| | - Steve Gf Shen
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China; Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
23
|
Kong D, Chen T, Zheng X, Yang T, Zhang Y, Shao J. Comparative profile of exosomal microRNAs in postmenopausal women with various bone mineral densities by small RNA sequencing. Genomics 2021; 113:1514-1521. [PMID: 33785399 DOI: 10.1016/j.ygeno.2021.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/28/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022]
Abstract
To explore the role of plasma miRNAs in exosomes in early postmenopausal women. Small RNA sequencing was implemented to clarify the expression of miRNA in plasma exosomes obtained from 15 postmenopausal women, divided into groups of osteoporosis, osteopenia, and normal bone mass based on bone mineral density. Differentially expressed miRNAs (DEMs) were identified by comparing miRNA expression profiles. Five putative miRNAs, miR-224-3p, miR-25-5p, miR-302a-3p, miR-642a-3p, and miR-766-5p were confirmed by real-time PCR; miRNA target genes were obtained from 4 databases: miRWalk, miRDB, RNA22, and TargetScan. The miRNA-mRNA- Kyoto Encyclopedia of Genes and Genomes (KEGG) networks were analyzed, and the DEMs' potential role was investigated by gene ontology terms and KEGG pathway annotation. The results suggest that characterizing plasma exosomal miRNA profiles of early postmenopausal women by small RNA sequencing could identify novel exo-miRNAs involved in bone remodeling, and miR-642a-3p maybe contribute to the prediction and diagnosis of early postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Dece Kong
- Department of Orthopedics, Pudong New Area Gongli Hospital, School of Clinical Medicine, Shanghai University, Shanghai 200135, China
| | - Tianning Chen
- Graduate School of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
| | - Xinhui Zheng
- Graduate School of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
| | - Tieyi Yang
- Department of Orthopedics, Pudong New Area Gongli Hospital, School of Clinical Medicine, Shanghai University, Shanghai 200135, China.
| | - Yan Zhang
- Department of Orthopedics, Pudong New Area Gongli Hospital, School of Clinical Medicine, Shanghai University, Shanghai 200135, China
| | - Jin Shao
- Department of Orthopedics, Pudong New Area Gongli Hospital, School of Clinical Medicine, Shanghai University, Shanghai 200135, China.
| |
Collapse
|
24
|
Fu D, Yang S, Lu J, Lian H, Qin K. LncRNA NORAD promotes bone marrow stem cell differentiation and proliferation by targeting miR-26a-5p in steroid-induced osteonecrosis of the femoral head. Stem Cell Res Ther 2021; 12:18. [PMID: 33413642 PMCID: PMC7792292 DOI: 10.1186/s13287-020-02075-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/06/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Steroid-induced osteonecrosis of the femoral head (SONFH) is a devastating orthopedic disease, which seriously affects the quality of life of patients. The study aims to investigate the effects of LncRNA NORAD on SONFH. METHODS Human bone marrow-derived mesenchymal stem cells (hBMSCs) were isolated from the proximal femur of patients during routine orthopedic surgery and then cultured with dexamethasone (Dex) and transfected with NORAD overexpression vector, siRNA-NORAD and miR-26a-5p mimics. The mRNA expression of NORAD, miR-26a-5p, OPG, RANK, and RANKL was detected by RT-qPCR. Cell proliferation and apoptosis was measured by CCK-8 assay and flow cytometry, respectively. The protein expression of RUNX2, OPG, RANK, and RANKL was detected by western blot. The dual-luciferase reporter gene assay was performed to confirm the binding between NORAD and miR-26a-5p. RESULTS NORAD expression was downregulated in SONFH tissues, while miR-26a-5p expression was upregulated. Overexpression of NORAD improved DEX-induced inhibition of proliferation and differentiation, and promotion of apoptosis in hBMSCs, while knockdown of NORAD led to the opposite results. Moreover, NORAD improved DEX-induced inhibition of proliferation and differentiation, and promotion of apoptosis by regulation of miR-26a-5p in hBMSCs. CONCLUSIONS NORAD expression was downregulated in SONFH tissues, while miR-26a-5p expression was upregulated. NORAD improved DEX-induced inhibition of proliferation and differentiation, and promotion of apoptosis by regulation of miR-26a-5p in hBMSCs.
Collapse
Affiliation(s)
- Dapeng Fu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, People's Republic of China.
| | - Sheng Yang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, People's Republic of China
| | - Jianmin Lu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, People's Republic of China
| | - Haoyi Lian
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, People's Republic of China
| | - Kairong Qin
- Department of Biomedical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| |
Collapse
|
25
|
Ghorbaninejad M, Khademi-Shirvan M, Hosseini S, Baghaban Eslaminejad M. Epidrugs: novel epigenetic regulators that open a new window for targeting osteoblast differentiation. Stem Cell Res Ther 2020; 11:456. [PMID: 33115508 PMCID: PMC7594482 DOI: 10.1186/s13287-020-01966-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/05/2020] [Indexed: 01/01/2023] Open
Abstract
Efficient osteogenic differentiation of mesenchymal stem cells (MSCs) is a critical step in the treatment of bone defects and skeletal disorders, which present challenges for cell-based therapy and regenerative medicine. Thus, it is necessary to understand the regulatory agents involved in osteogenesis. Epigenetic mechanisms are considered to be the primary mediators that regulate gene expression during MSC differentiation. In recent years, epigenetic enzyme inhibitors have been used as epidrugs in cancer therapy. A number of studies mentioned the role of epigenetic inhibitors in the regulation of gene expression patterns related to osteogenic differentiation. This review attempts to provide an overview of the key regulatory agents of osteogenesis: transcription factors, signaling pathways, and, especially, epigenetic mechanisms. In addition, we propose to introduce epigenetic enzyme inhibitors (epidrugs) and their applications as future therapeutic approaches for bone defect regeneration.
Collapse
Affiliation(s)
- Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maliheh Khademi-Shirvan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
26
|
Mutschall H, Winkler S, Weisbach V, Arkudas A, Horch RE, Steiner D. Bone tissue engineering using adipose-derived stem cells and endothelial cells: Effects of the cell ratio. J Cell Mol Med 2020; 24:7034-7043. [PMID: 32394620 PMCID: PMC7299704 DOI: 10.1111/jcmm.15374] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 12/29/2022] Open
Abstract
The microvascular endothelial network is essential for bone formation and regeneration. In this context, endothelial cells not only support vascularization but also influence bone physiology via cell contact-dependent mechanisms. In order to improve vascularization and osteogenesis in tissue engineering applications, several strategies have been developed. One promising approach is the coapplication of endothelial and adipose derived stem cells (ADSCs). In this study, we aimed at investigating the best ratio of human umbilical vein endothelial cells (HUVECs) and osteogenic differentiated ADSCs with regard to proliferation, apoptosis, osteogenesis and angiogenesis. For this purpose, cocultures of ADSCs and HUVECs with ratios of 25%:75%, 50%:50% and 75%:25% were performed. We were able to prove that cocultivation supports proliferation whereas apoptosis was unidirectional decreased in cocultured HUVECs mediated by a p-BAD-dependent mechanism. Moreover, coculturing ADSCs and HUVECs stimulated matrix mineralization and the activity of alkaline phosphatase (ALP). Increased gene expression of the proangiogenic markers eNOS, Flt, Ang2 and MMP3 as well as sprouting phenomena in matrigel assays proved the angiogenic potential of the coculture. In summary, coculturing ADSCs and HUVECs stimulates proliferation, cell survival, osteogenesis and angiogenesis particularly in the 50%:50% coculture.
Collapse
Affiliation(s)
- Hilkea Mutschall
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sophie Winkler
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dominik Steiner
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
27
|
Proteomic Analysis of Exosomes from Adipose-Derived Mesenchymal Stem Cells: A Novel Therapeutic Strategy for Tissue Injury. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6094562. [PMID: 32190672 PMCID: PMC7073480 DOI: 10.1155/2020/6094562] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
Abstract
Exosomes are extracellular membranous nanovesicles that mediate local and systemic cell-to-cell communication by transporting functional molecules, such as proteins, into target cells, thereby affecting the behavior of receptor cells. Exosomes originating from adipose-derived mesenchymal stem cells (ADSCs) are considered a multipotent and abundant therapeutic tool for tissue injury. To investigate ADSC-secreted exosomes and their potential function in tissue repair, we isolated exosomes from the supernatants of ADSCs via ultracentrifugation, characterized them via transmission electron microscopy, nanoparticle tracking analysis, and Western blot analysis. Then, we determined their protein profile via proteomic analysis. Results showed that extracellular vesicles, which have an average diameter of 116 nm, exhibit a cup-shaped morphology and express exosomal markers. A total of 1,185 protein groups were identified in the exosomes. Gene Ontology analysis indicated that exosomal proteins are mostly derived from cells mainly involved in protein binding. Protein annotation via the Cluster of Orthologous Groups system indicated that most proteins were involved in general function prediction, posttranslational modification, protein turnover, and chaperoning. Further, pathway analysis revealed that most of the proteins obtained participated in metabolic pathways, focal adhesion, regulation of the actin cytoskeleton, and microbial metabolism. Some tissue repair-related signaling pathways were also discovered. The identified molecules might serve as potential therapeutic targets for future studies.
Collapse
|
28
|
Chen R, Ren L, Cai Q, Zou Y, Fu Q, Ma Y. The role of epigenetic modifications in the osteogenic differentiation of adipose-derived stem cells. Connect Tissue Res 2019; 60:507-520. [PMID: 31203665 DOI: 10.1080/03008207.2019.1593395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the last decade, stem cells have drawn extensive attention from scientists due to their full potential in tissue engineering, gene therapy, and cell therapy. Adipose-derived stem cells (ADSCs), which represent one type of mesenchymal stem cell (MSC), hold great promise in bone tissue engineering due to their painless collection procedure, their ability to self-renew and their multi-lineage differentiation properties. Major epigenetic mechanisms, which involve DNA methylation, histone modifications and RNA interference (RNAi), are known to represent one of the determining factors of ADSC fate and differentiation. Understanding the epigenetic modifications of ADSCs may provide a clue for improving stem cell therapy in bone repair and regeneration. The aim of this review is to present the recent advances in understanding the epigenetic mechanisms that facilitate ADSC differentiation into an osteogenic lineage, in addition to the characteristics of the main epigenetic modifications.
Collapse
Affiliation(s)
- Ruixin Chen
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University , Guangzhou , China.,Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , China
| | - Lin Ren
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University , Guangzhou , China.,Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , China
| | - Qingwei Cai
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University , Guangzhou , China.,Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , China
| | - Yang Zou
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University , Guangzhou , China.,Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , China
| | - Qiang Fu
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University , Guangzhou , China.,Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , China
| | - Yuanyuan Ma
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University , Guangzhou , China.,Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , China
| |
Collapse
|
29
|
Deng B, Zhu W, Duan Y, Hu Y, Chen X, Song S, Yi Z, Song Y. Exendin‑4 promotes osteogenic differentiation of adipose‑derived stem cells and facilitates bone repair. Mol Med Rep 2019; 20:4933-4942. [PMID: 31661134 PMCID: PMC6854547 DOI: 10.3892/mmr.2019.10764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammation-related bone defects pose a heavy burden on patients and orthopedic surgeons. Although stem-cell-based bone repair has developed rapidly, it is of great significance to characterize bio-active molecules that facilitate bone regeneration. It is reported that a glucagon-like peptide 1 receptor agonist, exendin-4, promoted bone regeneration mediated by the transplantation of adipose-derived stem cells in a metaphyseal defect mouse model of femur injury. However, the underlying mechanism is unclear. Bone imaging, immunohistochemistry real-time PCR and western blot analysis were used in the present study, and the results revealed that exendin-4 increased the transcription of the osteogenic differentiation-related genes and induced osteogenic differentiation in situ. Furthermore, the present data obtained from sorted adipose-derived stem cells revealed that exendin-4 promoted osteogenic differentiation and inhibited adipogenic differentiation in vitro. These findings indicated that exendin-4 facilitates osteogenic differentiation of transplanted adipose-derived stem cells for bone repair and illuminated clinical prospects of both adipose-derived stem cells and exendin-4 in stem-cell-based bone defect repair.
Collapse
Affiliation(s)
- Banglian Deng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Oral Implantation, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wenzhong Zhu
- Department of Stomatology, Shaanxi Province Geriatric Hospital, Xi'an, Shaanxi 710005, P.R. China
| | - Yansheng Duan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Oral Implantation, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuqian Hu
- Department of Stomatology, The Faculty of Medicine, Eastern University of Liaoning, Shenyang, Liaoning 110000, P.R. China
| | - Xuefeng Chen
- Xuefeng Dental Care Huaian, Huaian, Jiangsu 223000, P.R. China
| | - Shuang Song
- Health Science Center, Peking University, Beijing 100000, P.R. China
| | - Zian Yi
- Department of Stomatology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yingliang Song
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Oral Implantation, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
30
|
Yuan X, Han L, Lin H, Guo Z, Huang Y, Li S, Long T, Tang W, Tian W, Long J. The role of antimiR-26a-5p/biphasic calcium phosphate in repairing rat femoral defects. Int J Mol Med 2019; 44:857-870. [PMID: 31257525 PMCID: PMC6658005 DOI: 10.3892/ijmm.2019.4249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Although miRNAs have been implicated in the osteogenic differentiation of stem cells, their role in bone repair and reconstruction in tissue‑engineered bone grafts remains unclear. We previously reported that microRNA (miR)‑26a‑5p inhibited the osteogenic differentiation of adipose‑derived mesenchymal stem cells (ADSCs), and that antimiR‑26a‑5p exerted the opposite effect. In the present study, the role of miR‑26a‑5p‑ and antimiR‑26a‑5p‑modified ADSCs combined with biphasic calcium phosphate (BCP) scaffolds was evaluated in a rat femur defect model. The aim of the present study was to improve the understanding of the role of miR‑26a‑5p in bone regeneration in vivo, as well as to provide a new method to optimize the osteogenic ability of BCPs. ADSCs were infected with Lv‑miR‑26a‑5p, Lv‑miR‑NC, Lv‑antimiR‑26a‑5p or Lv‑antimiR‑NC respectively, and then combined with BCP scaffolds to repair rat femoral defects. Using X‑rays, micro‑computed tomography and histology at 2, 4, and 8 weeks postoperatively, the quantity and rate of bone regeneration were analyzed, revealing that they were the highest in animals treated with antimiR‑26a‑5p and the lowest in the miR‑26a‑5p treatment group. The expression levels of osteocalcin, collagen I, Runt‑related transcription factor 2, Wnt family member 5A and calmodulin‑dependent protein kinase II proteins were positively correlated with the bone formation rate. Taken together, the present results demonstrated that miR‑26a‑5p inhibited bone formation while antimiR‑26a‑5p accelerated bone formation via the Wnt/Ca2+ signaling pathway. Therefore, antimiR‑26a‑5p‑modified ADSCs combined with BCP scaffolds may be used to construct an effective tissue‑engineering bone graft for bone repair and reconstruction.
Collapse
Affiliation(s)
- Xiaoyan Yuan
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
- Department of Aesthetic Medicine, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610017
| | - Lu Han
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Zeyou Guo
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Yanling Huang
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
| | - Shasha Li
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
| | - Ting Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
| | - Wei Tang
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Weidong Tian
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
| | - Jie Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| |
Collapse
|
31
|
Akkouch A, Eliason S, Sweat ME, Romero-Bustillos M, Zhu M, Qian F, Amendt BA, Hong L. Enhancement of MicroRNA-200c on Osteogenic Differentiation and Bone Regeneration by Targeting Sox2-Mediated Wnt Signaling and Klf4. Hum Gene Ther 2019; 30:1405-1418. [PMID: 31288577 DOI: 10.1089/hum.2019.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MicroRNA (miR)-200c functions in antitumorigenesis and mediates inflammation and osteogenic differentiation. In this study, we discovered that miR-200c was upregulated in human bone marrow mesenchymal stromal cells (hBMSCs) during osteogenic differentiation. Inhibition of endogenous miR-200c resulted in downregulated osteogenic differentiation of hBMSCs and reduced bone volume in the maxilla and mandible of a transgenic mouse model. Overexpression of miR-200c by transfection of naked plasmid DNA (pDNA) encoding miR-200c significantly promoted the biomarkers of osteogenic differentiation in hBMSCs, including alkaline phosphatase, Runt-related transcription factor 2, osteocalcin, and mineral deposition. The pDNA encoding miR-200c also significantly enhanced bone formation and regeneration in calvarial defects of rat models. In addition, miR-200c overexpression was shown to downregulate SRY (sex determining region Y)-box 2 (Sox2) and Kruppel-like factor 4 by directly targeting 3'-untranslated regions and upregulate the activity of Wnt signaling inhibited by Sox2. These results strongly indicated that miR-200c may serve as a unique osteoinductive agent applied for bone healing and regeneration.
Collapse
Affiliation(s)
- Adil Akkouch
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa
| | - Steven Eliason
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa.,Center for Craniofacial Anomalies Research, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Mason E Sweat
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | | | - Min Zhu
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa
| | - Fang Qian
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa
| | - Brad A Amendt
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa.,Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa.,Center for Craniofacial Anomalies Research, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Liu Hong
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa.,Center for Craniofacial Anomalies Research, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
32
|
Long H, Zhu Y, Lin Z, Wan J, Cheng L, Zeng M, Tang Y, Zhao R. miR-381 modulates human bone mesenchymal stromal cells (BMSCs) osteogenesis via suppressing Wnt signaling pathway during atrophic nonunion development. Cell Death Dis 2019; 10:470. [PMID: 31209205 PMCID: PMC6572824 DOI: 10.1038/s41419-019-1693-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
The osteogenic differentiation of human bone mesenchymal stromal cells (BMSCs) has been considered as a central issue in fracture healing. Wnt signaling could promote BMSC osteogenic differentiation through inhibiting PPARγ. During atrophic nonunion, Wnt signaling-related factors, WNT5A and FZD3 proteins, were significantly reduced, along with downregulation of Runx2, ALP, and Collagen I and upregulation of PPARγ. Here, we performed a microarray analysis to identify differentially expressed miRNAs in atrophic nonunion tissues that were associated with Wnt signaling through targeting related factors. Of upregulated miRNAs, miR-381 overexpression could significantly inhibit the osteogenic differentiation in primary human BMSCs while increase in PPARγ protein level. Through binding to the 3'UTR of WNT5A and FZD3, miR-381 modulated the osteogenic differentiation via regulating β-catenin nucleus translocation. Moreover, PPARγ, an essential transcription factor inhibiting osteogenic differentiation, could bind to the promoter region of miR-381 to activate its expression. Taken together, PPARγ-induced miR-381 upregulation inhibits the osteogenic differentiation in human BMSCs through miR-381 downstream targets, WNT5A and FZD3, and β-catenin nucleus translocation in Wnt signaling. The in vivo study also proved that inhibition of miR-381 promoted the fracture healing. Our finding may provide a novel direction for atrophic nonunion treatment.
Collapse
Affiliation(s)
- Haitao Long
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yong Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhangyuan Lin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jun Wan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Liang Cheng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yifu Tang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ruibo Zhao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
33
|
Ghosh N, Hossain U, Mandal A, Sil PC. The Wnt signaling pathway: a potential therapeutic target against cancer. Ann N Y Acad Sci 2019; 1443:54-74. [PMID: 31017675 DOI: 10.1111/nyas.14027] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/05/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
Abstract
The role of the evolutionarily conserved Wnt signaling pathway is well documented in several cellular processes, such as cell proliferation, differentiation, cell motility, and maintenance of the stem cell niche. The very first indication that aberrant Wnt signaling can cause carcinogenesis came from a finding that the mutation of the adenomatous polyposis coli gene (APC) predisposes a person to colorectal carcinoma. Later, with progressing research it became clear that abnormal activation or mutation of the genes related to this pathway could drive tumorigenesis. Here, we review recent advances in research regarding Wnt signaling regulation and its role in several cancer subtypes. Additionally, the utility of Wnt pathway-targeted cancer therapy intervention is also highlighted, with an overview of current approaches to target the Wnt pathway in oncogenesis and the future scopes and challenges associated with them.
Collapse
Affiliation(s)
- Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Uday Hossain
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Ankita Mandal
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
34
|
Peng S, Song C, Li H, Cao X, Ma Y, Wang X, Huang Y, Lan X, Lei C, Chaogetu B, Chen H. Circular RNA SNX29 Sponges miR-744 to Regulate Proliferation and Differentiation of Myoblasts by Activating the Wnt5a/Ca 2+ Signaling Pathway. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:481-493. [PMID: 31051333 PMCID: PMC6495097 DOI: 10.1016/j.omtn.2019.03.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/16/2022]
Abstract
Myogenesis is a complex and precisely orchestrated process that is highly regulated by several non-coding RNAs and signal pathways. Circular RNAs (circRNAs) represent a novel subclass of endogenous non-coding RNAs that have been identified in multiple species and tissues and play a vital role in post-transcriptional regulation in eukaryotes, but the precise molecular mechanism of action remains largely unknown. Here, we screened a candidate circRNA derived from the SNX29 gene, termed circSNX29 from our previous circRNAs sequencing data of bovine skeletal muscle, and further characterized its regulation and function during muscle development. The overexpression of circSNX29 facilitated myoblasts differentiation and inhibited cell proliferation. Computational analysis using RNAhybrid showed the potential for circSNX29 to sponge to miR-744 with nine potential binding sites. We tested this via a luciferase screening assay and found that circSNX29 directly interacted with miR-744 and downregulation of miR-744 efficiently reversed the suppression of Wnt5a and CaMKIIδ. Importantly, through the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis, Fluo-4, AM, cell permeant-calcium ion fluorescent probing, and western blotting assays, we found that overexpression of Wnt5a and circSNX29 activated the non-canonical Wnt5a/Ca2+ pathway. Overall, the evidence generated by our study elucidates the regulatory mechanisms of circSNX29 to function as a sponge for miRNA-744 in bovine primary myoblasts.
Collapse
Affiliation(s)
- Shujun Peng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chengchuang Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiukai Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yilei Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaogang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Buren Chaogetu
- Animal Disease Control Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha 817000, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
35
|
Wei R, Zhang L, Hu W, Wu J, Zhang W. Long non-coding RNA AK038897 aggravates cerebral ischemia/reperfusion injury via acting as a ceRNA for miR-26a-5p to target DAPK1. Exp Neurol 2019; 314:100-110. [PMID: 30703362 DOI: 10.1016/j.expneurol.2019.01.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/18/2018] [Accepted: 01/12/2019] [Indexed: 12/31/2022]
|
36
|
Chiarella E, Aloisio A, Scicchitano S, Lucchino V, Montalcini Y, Galasso O, Greco M, Gasparini G, Mesuraca M, Bond HM, Morrone G. ZNF521 Represses Osteoblastic Differentiation in Human Adipose-Derived Stem Cells. Int J Mol Sci 2018; 19:ijms19124095. [PMID: 30567301 PMCID: PMC6321315 DOI: 10.3390/ijms19124095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 01/02/2023] Open
Abstract
Human adipose-derived stem cells (hADSCs) are multipotent mesenchymal cells that can differentiate into adipocytes, chondrocytes, and osteocytes. During osteoblastogenesis, the osteoprogenitor cells differentiate into mature osteoblasts and synthesize bone matrix components. Zinc finger protein 521 (ZNF521/Zfp521) is a transcription co-factor implicated in the regulation of hematopoietic, neural, and mesenchymal stem cells, where it has been shown to inhibit adipogenic differentiation. The present study is aimed at determining the effects of ZNF521 on the osteoblastic differentiation of hADSCs to clarify whether it can influence their osteogenic commitment. The enforced expression or silencing of ZNF521 in hADSCs was achieved by lentiviral vector transduction. Cells were cultured in a commercial osteogenic medium for up to 20 days. The ZNF521 enforced expression significantly reduced osteoblast development as assessed by the morphological and molecular criteria, resulting in reduced levels of collagen I, alkaline phosphatase, osterix, osteopontin, and calcium deposits. Conversely, ZNF521 silencing, in response to osteoblastic stimuli, induced a significant increase in early molecular markers of osteogenesis and, at later stages, a remarkable enhancement of matrix mineralization. Together with our previous findings, these results show that ZNF521 inhibits both adipocytic and osteoblastic maturation in hADSCs and suggest that its expression may contribute to maintaining the immature properties of hADSCs.
Collapse
Affiliation(s)
- Emanuela Chiarella
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Annamaria Aloisio
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Stefania Scicchitano
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Valeria Lucchino
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany.
| | - Ylenia Montalcini
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Olimpio Galasso
- Department of Orthopedic & Trauma Surgery, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Manfredi Greco
- Department of Plastic Surgery, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Giorgio Gasparini
- Department of Orthopedic & Trauma Surgery, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Maria Mesuraca
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Heather M Bond
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| | - Giovanni Morrone
- Department of Clinical and Experimental Medicine, Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University "Magna Græcia", Catanzaro 88100, Italy.
| |
Collapse
|
37
|
Zhou L, Feng Y, Dai J, Ouyang J. [Research progress of miRNA regulation in differentiation of adipose-derived stem cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:1506-1511. [PMID: 29806396 DOI: 10.7507/1002-1892.201706076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Objective To review the research progress of miRNA regulation in the differentiation of adipose-derived stem cells (ADSCs). Methods The recent literature associated with miRNAs and differentiation of ADSCs was reviewed. The regulatory mechanism was analyzed in detail and summarized. Results The results indicate that the expression of miRNAs changes during differentiation of ADSCs. In addition, miRNAs regulate the differentiation of ADSCs into adipocytes, osteoblasts, chondrocytes, neurons, and hepatocytes by regulating the signaling pathways involved in cell differentiation. Conclusion Through controlling the differentiation of ADSCs by miRNAs, the suitable seed cell for tissue engineering can be established. The review will provide a theoretical basis for molecular targeted therapy and stem cell therapy in clinic.
Collapse
Affiliation(s)
- Lanting Zhou
- Medical College, Hubei University of Arts and Science, Xiangyang Hubei, 441053, P.R.China;Department of Anatomy, Southern Medical University, Guangzhou Guangdong, 510515, P.R.China
| | - Yanting Feng
- Department of Anatomy, Southern Medical University, Guangzhou Guangdong, 510515, P.R.China
| | - Jingxing Dai
- Department of Anatomy, Southern Medical University, Guangzhou Guangdong, 510515, P.R.China
| | - Jun Ouyang
- Department of Anatomy, Southern Medical University, Guangzhou Guangdong, 510515,
| |
Collapse
|
38
|
Shaw N, Erickson C, Bryant SJ, Ferguson VL, Krebs MD, Hadley-Miller N, Payne KA. Regenerative Medicine Approaches for the Treatment of Pediatric Physeal Injuries. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:85-97. [PMID: 28830302 DOI: 10.1089/ten.teb.2017.0274] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The physis, or growth plate, is a cartilaginous region at the end of children's long bones that serves as the primary center for longitudinal growth and characterizes the immature skeleton. Musculoskeletal injury, including fracture, infection, malignancy, or iatrogenic damage, has risk of physeal damage. Physeal injuries account for 30% of pediatric fractures and may result in impaired bone growth. Once damaged, cartilage tissue within the physis is often replaced by unwanted bony tissue, forming a "bony bar" that can lead to complications such as complete growth arrest, angular or rotational deformities, and altered joint mechanics. Children with a bony bar occupying <50% of the physis usually undergo bony bar resection and insertion of an interpositional material, such as a fat graft, to prevent recurrence and allow the surrounding uninjured physeal tissue to restore longitudinal bone growth. Clinical success for this procedure is <35% and often the bony bar and associated growth impairments return. Children who are not candidates for bony bar resection due to a physeal bar occupying >50% of their physis undergo corrective osteotomy or bone lengthening procedures. These approaches are complex and have variable success rates. As such, there is a critical need for regenerative approaches to not only prevent initial bony bar formation but also regenerate healthy physeal cartilage following injury. This review describes physeal anatomy, mechanisms of physeal injury, and current treatment options with associated limitations. Furthermore, we provide an overview of the current research using cell-based therapies, growth factors, and biomaterials in the different animal models of injury along with strategic directions for modulating intrinsic injury pathways to inhibit bony bar formation and/or promote physeal tissue formation. Pediatric physeal injuries constitute a unique niche within regenerative medicine for which there is a critical need for research to decrease child morbidity related to this injurious process.
Collapse
Affiliation(s)
- Nichole Shaw
- 1 Department of Orthopedics, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Christopher Erickson
- 1 Department of Orthopedics, University of Colorado Anschutz Medical Campus , Aurora, Colorado.,2 Department of Bioengineering, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Stephanie J Bryant
- 3 Department of Chemical and Biological Engineering, University of Colorado Boulder , Boulder, Colorado.,4 BioFrontiers Institute, University of Colorado Boulder , Boulder, Colorado.,5 Material Science and Engineering Program, University of Colorado Boulder , Boulder, Colorado
| | - Virginia L Ferguson
- 4 BioFrontiers Institute, University of Colorado Boulder , Boulder, Colorado.,5 Material Science and Engineering Program, University of Colorado Boulder , Boulder, Colorado.,6 Department of Mechanical Engineering, University of Colorado Boulder , Boulder, Colorado
| | - Melissa D Krebs
- 7 Department of Chemical and Biological Engineering, Colorado School of Mines , Golden, Colorado.,8 Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Nancy Hadley-Miller
- 1 Department of Orthopedics, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Karin A Payne
- 1 Department of Orthopedics, University of Colorado Anschutz Medical Campus , Aurora, Colorado.,8 Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|
39
|
Hu F, Xu P, Sun B, Xiao Z. Differences in the MicroRNA profiles of subcutaneous adipose-derived stem cells and omental adipose-derived stem cells. Gene 2017; 625:55-63. [PMID: 28483594 DOI: 10.1016/j.gene.2017.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 01/09/2023]
Abstract
Adipose-derived stem cells (ASCs) isolated from subcutaneous (SC) and omentum (O) share similar characteristics, but the differences in their microRNA profiles are mostly unknown. In this study, besides significant differences in cell morphology and the differentiation ability of the two types of ASCs, the microRNA expression profiles of the cell lines were determined using SOLiD next-generation sequencing. The in-depth analysis found that miR-214, miR-222, miR-181a, miR-26a and miR-23/27/24 clusters and miR-375 act as "markers" to distinguish the different fat deposit-derived ASCs. Additionally, the global miRNA-mRNA interaction differences were revealed, and the results of the GO term enrichment and KEGG pathway in the DAVID tool showed that the molecular function, biological process and signaling pathways showed some different in the two types of ASCs. Our findings provided a clue to a more thorough understanding of the difference between SC-ASCs and O-ASCs and indicate their different potentials for clinical use.
Collapse
Affiliation(s)
- Feihu Hu
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, China; Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Peng Xu
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, China
| | - Bo Sun
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, China
| | - Zhongdang Xiao
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
40
|
Lafourcade C, Ramírez JP, Luarte A, Fernández A, Wyneken U. MiRNAs in Astrocyte-Derived Exosomes as Possible Mediators of Neuronal Plasticity. J Exp Neurosci 2016; 10:1-9. [PMID: 27547038 PMCID: PMC4978198 DOI: 10.4137/jen.s39916] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 12/21/2022] Open
Abstract
Astrocytes use gliotransmitters to modulate neuronal function and plasticity. However, the role of small extracellular vesicles, called exosomes, in astrocyte-to-neuron signaling is mostly unknown. Exosomes originate in multivesicular bodies of parent cells and are secreted by fusion of the multivesicular body limiting membrane with the plasma membrane. Their molecular cargo, consisting of RNA species, proteins, and lipids, is in part cell type and cell state specific. Among the RNA species transported by exosomes, microRNAs (miRNAs) are able to modify gene expression in recipient cells. Several miRNAs present in astrocytes are regulated under pathological conditions, and this may have far-reaching consequences if they are loaded in exosomes. We propose that astrocyte-derived miRNA-loaded exosomes, such as miR-26a, are dysregulated in several central nervous system diseases; thus potentially controlling neuronal morphology and synaptic transmission through validated and predicted targets. Unraveling the contribution of this new signaling mechanism to the maintenance and plasticity of neuronal networks will impact our understanding on the physiology and pathophysiology of the central nervous system.
Collapse
Affiliation(s)
- Carlos Lafourcade
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Chile
| | - Juan Pablo Ramírez
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Chile
| | - Alejandro Luarte
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Chile
| | - Anllely Fernández
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Chile
| | - Ursula Wyneken
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Chile
| |
Collapse
|