1
|
Vernia F, Ribichini E, Burrelli Scotti G, Latella G. Nutritional Deficiencies and Reduced Bone Mineralization in Ulcerative Colitis. J Clin Med 2025; 14:3202. [PMID: 40364233 PMCID: PMC12072929 DOI: 10.3390/jcm14093202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/03/2025] [Accepted: 05/04/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Inadequate dietary intake of vitamin D, vitamin K, and calcium, as well as sub-optimal sunlight exposure, can lead to bone loss in the general population, and more so in patients with ulcerative colitis, who are burdened by additional predisposing factors for osteoporosis, such as chronic inflammation and cortisone use. However, micronutrient deficiencies, if present, are easily corrected by nutritional intervention. While the relation between calcium and vitamin D and bone metabolism is well known, fewer data are available for vitamin K, for both healthy individuals and patients. The aim of this review is to provide an overview of recent reports focusing on nutritional deficits relevant to the development of osteoporosis/osteopenia in patients affected by ulcerative colitis. Methods: A systematic electronic search of the English literature up to January 2025 was performed using Medline and the Cochrane Library. Results: Despite being central in bone mineralization, data on dietary calcium intake in ulcerative colitis are relatively scarce, deriving mostly from mixed inflammatory bowel disease cohorts. Although lower than controls, dietary calcium intake approaches the recommended daily allowance, which establishes the necessary daily intake of nutrients. Conversely, vitamin D and vitamin K deficiencies are highly prevalent in ulcerative colitis patients. The widely shared opinion that milk and lactose-containing foods, as well as vegetables, worsen diarrhea is a prime determinant of inadequate vitamin D and vitamin K intake. Conclusions: Increased awareness of the importance of nutrition and the common occurrence of nutritional deficits represents the first step for the development of dietary intervention strategies to counteract the increased risk of osteoporosis in ulcerative colitis patients.
Collapse
Affiliation(s)
- Filippo Vernia
- Department of Life, Health, and Environmental Sciences, Division of Gastroenterology, Hepatology, and Nutrition, University of L’Aquila, Piazza S. Tommasi, 1-Coppito, 67100 L’Aquila, Italy;
| | - Emanuela Ribichini
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (E.R.); (G.B.S.)
| | - Giorgia Burrelli Scotti
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (E.R.); (G.B.S.)
| | - Giovanni Latella
- Department of Life, Health, and Environmental Sciences, Division of Gastroenterology, Hepatology, and Nutrition, University of L’Aquila, Piazza S. Tommasi, 1-Coppito, 67100 L’Aquila, Italy;
| |
Collapse
|
2
|
Dalle Carbonare L, Cominacini M, Trabetti E, Bombieri C, Pessoa J, Romanelli MG, Valenti MT. The bone microenvironment: new insights into the role of stem cells and cell communication in bone regeneration. Stem Cell Res Ther 2025; 16:169. [PMID: 40221779 PMCID: PMC11993959 DOI: 10.1186/s13287-025-04288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Mesenchymal stem cells (MSCs) play a crucial role in bone formation and remodeling. Intrinsic genetic factors and extrinsic environmental cues regulate their differentiation into osteoblasts. Within the bone microenvironment, a complex network of biochemical and biomechanical signals orchestrates bone homeostasis and regeneration. In addition, the crosstalk among MSCs, immune cells, and neighboring cells-mediated by extracellular vesicles and non-coding RNAs (such as circular RNAs and micro RNAs) -profoundly influences osteogenic differentiation and bone remodeling. Recent studies have explored specific signaling pathways that contribute to effective bone regeneration, highlighting the potential of manipulating the bone microenvironment to enhance MSC functionality. The integration of advanced biomaterials, gene editing techniques, and controlled delivery systems is paving the way for more targeted and efficient regenerative therapies. Furthermore, artificial intelligence could improve bone tissue engineering, optimize biomaterial design, and enable personalized treatment strategies. This review explores the latest advancements in bone regeneration, emphasizing the intricate interplay among stem cells, immune cells, and signaling molecules. By providing a comprehensive overview of these mechanisms and their clinical implications, we aim to shed light on future research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- L Dalle Carbonare
- Department of Engineering for the Innovation Medicine, University of Verona, 37100, Verona, Italy
| | - M Cominacini
- Department of Engineering for the Innovation Medicine, University of Verona, 37100, Verona, Italy
| | - E Trabetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy
| | - C Bombieri
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy
| | - J Pessoa
- Department of Medical Sciences and Institute of Biomedicine-Ibimed, University of Aveiro, 3810 - 193, Aveiro, Portugal
| | - M G Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy
| | - M T Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy.
| |
Collapse
|
3
|
Wu D, Huang Y, Zhao J, Long W, Wang B, Wang Y, Chen H, Wu R. Synovial macrophages drive severe joint destruction in established rheumatoid arthritis. Sci Rep 2025; 15:12111. [PMID: 40204828 PMCID: PMC11982296 DOI: 10.1038/s41598-025-93784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
To investigate the synovial pathological predictors associated with the progression to severe bone erosion in patients with established rheumatoid arthritis (RA). This retrospective study analyzed 41 active RA patients with a disease duration of more than 24 months at our center between March and December 2023. All of these patients underwent synovial biopsy to obtain synovial tissue. These patients were divided into two groups (mild group and severe group) based on the severity of bone erosion assessed by plain X-ray. HE and immunohistochemical staining for CD3, CD20, CD68, and CD138 were conducted on synovium. Stained cells positive for these markers were observed under microscope. the number of positive cells per 20× high-power field in the sublining layer was recorded for each marker. The mild group consisted of 25 patients (23 females) with a median age of 58 years and a median disease duration of 114 months. The severe group included 16 patients (13 females) with a median age of 56 years and a median disease duration of 120 months. There were no significant differences between the mild and severe groups in terms of age, gender, disease duration, RF, ACPA, ESR, and CRP (P > 0.05). However, the disease activity score in 28 joints (DAS-28) of severe group were significantly higher than mild group (5.16 vs. 4.53, P = 0.010). Inflammatory infiltration score observed with HE staining was significantly higher in severe group (P = 0.033), whereas synovial hyperplasia, neovascularization, and stromal activation did not show significant differences between the two groups. The results of immunohistochemistry revealed significantly higher expression of synovial CD68-positive cells in severe group. Multivariable logistic regression analysis showed that synovial CD68-positive cells (OR = 1.020, P = 0.011) were independent risk factors for progressive bone erosion in RA. Synovial macrophage infiltration is an independent risk factor leading to severe progression of bone erosion in RA.
Collapse
Affiliation(s)
- Dengfeng Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Yiping Huang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Jun Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Wei Long
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Bihua Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Yan Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Haili Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Rui Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
4
|
Yang M, Lu S, Li J, Zhu L. Carboxyaminotriazole: A bone savior in collagen-induced arthritis-Halting osteoclastogenesis via interleukin-1β downregulation. Life Sci 2025; 364:123440. [PMID: 39920985 DOI: 10.1016/j.lfs.2025.123440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
AIMS Rheumatoid arthritis (RA), a prevalent autoimmune disease, features inflammation and bone erosion, correlating with osteoclast hyperactivation and enhanced responsiveness to inflammatory factors. Reducing osteoclast formation and inflammatory mediator expression might avert bone erosion in RA. Carboxyaminotriazole (CAI) holds potential for treating autoinflammatory disorders and impeding cancer-related bone metastases. Yet, its bone-protective role and mechanism remain elusive. This study targets to explore the impacts and underlying mechanisms of CAI in preventing bone erosion in RA. MATERIALS AND METHODS A collagen-induced arthritis (CIA) rat model was utilized to evaluate the anti-RA potential of CAI. CCK-8, TRAP staining, TRAP activity assay, pit formation assay, RT-qPCR, Western blotting, immunofluorescence, and ELISA, were conducted to assess the effects and potential mechanisms of CAI in the management of RA. KEY FINDINGS CAI not only reduces inflammatory symptoms, but it also offers superior bone protection compared to methotrexate (MTX) and works synergistically with MTX, the preferred anchoring agent for the treatment of RA. In vitro studies show that CAI inhibits osteoclast differentiation and function, as well as the expression of specific genes, by inhibiting NF-κB/MAPK pathways and reducing IL-1β levels. The deletion of Il-1 and the application of IL-1β inhibitors suggest that CAI retards osteoclastogenesis through the downregulation of IL-1β. SIGNIFICANCE CAI may have therapeutic value in treating RA-related bone erosion, likely due to its inhibition of overactive osteoclasts by suppressing the NF-κB/MAPK pathways and the subsequent expression of IL-1β.
Collapse
Affiliation(s)
- Mei Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Shan Lu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Juan Li
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China.
| |
Collapse
|
5
|
Graue J, Timmen M, Schmitz K, Kronenberg D, Böhm M, Sivaraj KK, Bixel MG, Stange R. Anti-inflammatory treatment using alpha melanocyte stimulating hormone (α-MSH) does not alter osteoblasts differentiation and fracture healing. BMC Musculoskelet Disord 2025; 26:123. [PMID: 39915758 PMCID: PMC11800508 DOI: 10.1186/s12891-025-08374-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Alpha-melanocyte-stimulating-hormone (α-MSH) has been identified as a new anti-inflammatory treatment compound in rheumatoid arthritis (RA) and other inflammatory diseases. However, its direct effect on bone cell differentiation or on bone regeneration, which is an inflammatory process, too, has not been investigated, yet. Bone tissue is significantly affected in inflammatory joint diseases. Additionally, inflammatory signaling is essential -in bone regeneration during fracture healing. Therefore, we evaluated the impact of α-MSH-treatment on bone forming cells in an inflammatory setting in vitro and as a treatment approach in a murine fracture healing model in vivo. METHODS The influence of α-MSH treatment and melanocortin-receptor expression patterns was investigated in vitro in the presence of either IL-1β or/and TNF-α as an inflammatory stimulus. Osteoblast cell function was evaluated by analyzing proliferation and mineralisation capacities. Using quantitative real time PCR, we analyzed mRNA expression of receptors. To explore the impact of α-MSH on bone regeneration in vivo, treatment with α-MSH or NaCl (control) was performed in a murine fracture-healing model using a closed femur fracture stabilized with an intramedullary implant (female, n = 6-8 mice per group). RESULTS α-MSH-treatment did not impair either proliferation nor mineralisation of osteoblastic cells under native or inflammatory conditions (no significant differences found). All four melanocortin receptor-molecules were expressed in murine osteoblastic cells but in very limited amounts and this did not change upon treatment with inflammatory cytokines or α-MSH or both at the same time. Callus formation in fractured femurs of α-MSH-treated mice was slightly delayed at day 14 post fracture with regard to less cartilage formation (NaCl: 19.9%; α-MSH: 13.5%) and soft tissue remodeling (NaCl: 15.2%; α-MSH: 19.5%) but these results were not significantly different and fracture healing overall occurred in a regular way. CONCLUSION α-MSH has no negative impact on bone or bone-forming cells in native, inflammatory, or regenerative contexts. We can conclude from our results, that treatment of inflammatory diseases using α-MSH does not interfere significantly with bone regeneration in a murine fracture model and therefore treatment with α-MSH could be continued without negative effects on bone formation and bone regeneration in patients. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Johanna Graue
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University of Muenster, Albert-Schweitzer-Campus 1, D3, 48149, Muenster, Germany
| | - Melanie Timmen
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University of Muenster, Albert-Schweitzer-Campus 1, D3, 48149, Muenster, Germany
| | - Katharina Schmitz
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University of Muenster, Albert-Schweitzer-Campus 1, D3, 48149, Muenster, Germany
| | - Daniel Kronenberg
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University of Muenster, Albert-Schweitzer-Campus 1, D3, 48149, Muenster, Germany
| | - Markus Böhm
- Department of Dermatology, University Hospital Muenster, Von-Esmarch-Str. 58, 48149, Muenster, Germany
| | - Kishor K Sivaraj
- Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Muenster, Germany
| | - M Gabriele Bixel
- Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Muenster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University of Muenster, Albert-Schweitzer-Campus 1, D3, 48149, Muenster, Germany.
| |
Collapse
|
6
|
Yuan L, Jiang N, Li Y, Wang X, Wang W. RGS1 Enhancer RNA Promotes Gene Transcription by Recruiting Transcription Factor FOXJ3 and Facilitates Osteoclastogenesis Through PLC-IP3R-dependent Ca 2+ Response in Rheumatoid Arthritis. Inflammation 2025; 48:447-463. [PMID: 38904871 DOI: 10.1007/s10753-024-02067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
Recent evidence has highlighted the functions of enhancers in modulating transcriptional machinery and affecting the development of human diseases including rheumatoid arthritis (RA). Enhancer RNAs (eRNAs) are RNA molecules transcribed from active enhancer regions. This study investigates the specific function of eRNA in gene transcription and osteoclastogenesis in RA. Regulator of G protein signaling 1 (RGS1)-associated eRNA was highly activated in osteoclasts according to bioinformatics prediction. RGS1 mRNA was increased in mice with collagen-induced arthritis as well as in M-CSF/soluble RANKL-stimulated macrophages (derived from monocytes). This was ascribed to increased RGS1 eRNA activity. Silencing of 5'-eRNA blocked the binding between forkhead box J3 (FOXJ3) and the RGS1 promoter, thus suppressing RGS1 transcription. RGS1 accelerated osteoclastogenesis through PLC-IP3R-dependent Ca2+ response. Knockdown of either FOXJ3 or RGS1 ameliorated arthritis severity, improved pathological changes, and reduced osteoclastogenesis and bone erosion in vivo and in vitro. However, the effects of FOXJ3 silencing were negated by RGS1 overexpression. In conclusion, this study demonstrates that the RGS1 eRNA-driven transcriptional activation of the FOXJ3/RGS1 axis accelerates osteoclastogenesis through PLC-IP3R dependent Ca2+ response in RA. The finding may offer novel insights into the role of eRNA in gene transcription and osteoclastogenesis in RA.
Collapse
MESH Headings
- Animals
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/pathology
- RGS Proteins/genetics
- RGS Proteins/metabolism
- Mice
- Osteoclasts/metabolism
- Osteoclasts/pathology
- Osteogenesis/genetics
- Osteogenesis/physiology
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Forkhead Transcription Factors/metabolism
- Forkhead Transcription Factors/genetics
- Humans
- Transcription, Genetic
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/genetics
- Arthritis, Experimental/pathology
- Enhancer Elements, Genetic
- Calcium/metabolism
- Enhancer RNAs
Collapse
Affiliation(s)
- Lin Yuan
- Department of Health Management, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, P.R. of China
| | - Nan Jiang
- Department of Price, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, P.R. China
| | - Yuxuan Li
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, P.R. China
| | - Xin Wang
- Department of Health Management, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, P.R. of China
| | - Wei Wang
- Department of Health Management, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, P.R. of China.
| |
Collapse
|
7
|
Xu H, Luo Y, An Y, Wu X. The mechanism of action of indole-3-propionic acid on bone metabolism. Food Funct 2025; 16:406-421. [PMID: 39764708 DOI: 10.1039/d4fo03783a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity. Additionally, IPA provides indirect protection to bone health by regulating host immune responses and inflammation via activation of receptors such as the Aryl hydrocarbon Receptor (AhR) and the Pregnane X Receptor (PXR). This review summarizes the roles and signaling pathways of IPA in bone metabolism and its impact on various bone metabolic disorders. Furthermore, we discuss the therapeutic potential and limitations of IPA in treating bone metabolic diseases, aiming to offer novel strategies for clinical management.
Collapse
Affiliation(s)
- Huimin Xu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Yingzhe Luo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi An
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Xi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Sakai S, Fujiwara T, Yamaguchi R, Yokoyama N, Hara D, Akasaki Y, Nakashima Y. First Metatarsophalangeal Joint-Preserving Surgery Is Effective for Forefoot Deformity With Moderate to Severe Joint Destruction in Rheumatoid Arthritis. FOOT & ANKLE ORTHOPAEDICS 2025; 10:24730114251322790. [PMID: 40013106 PMCID: PMC11863219 DOI: 10.1177/24730114251322790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
Abstract
Background The study compares the clinical outcomes of first metatarsophalangeal (MTP) joint fusion vs joint-preserving surgery in rheumatoid arthritis (RA) patients with severe forefoot deformities. Methods This single-center retrospective study at Kyushu University Hospital reviewed RA patients who underwent either first MTP joint arthrodesis or joint-preserving surgery for hallux valgus (HV) deformity between January 2008 and December 2022. A total of 103 feet (73 cases) were analyzed, with 75 feet (58 cases) showing radiographic bone destruction of Larsen grade 3 or higher. One foot underwent resection arthroplasty, so ultimately 74 feet in 57 cases were evaluated. Surgical procedures included joint-preserving biplane osteotomy or arthrodesis with crossed screws. Clinical outcomes were measured using the Japanese Society for Surgery of the Foot (JSSF) Hallux scale, whereas radiographic assessments included HV angle (HVA). Propensity score matching was used to minimize bias when comparing postoperative outcomes between the arthrodesis and joint-preserving surgery groups. Results This study analyzed 74 feet undergoing either arthrodesis (27 feet) or joint-preserving surgery (47 feet) for HV. Patients in the 2 groups showed similar demographic and clinical characteristics except with respect to length of follow-up, which was greater in the arthrodesis group (5.1 ± 2.6 years vs 2.4 ± 2.0 years, P < .01) than the joint-preserving group. In the arthrodesis group, all patients underwent resection arthroplasty on the second to fifth toes. The joint-preserving group included first MTP joint surgery alone (n = 5) and first MTP joint and lesser MTP joint surgeries (resection arthroplasty, n = 29; joint-preserving surgery, n = 13). Functional scores significantly improved in both groups, with first metatarsophalangeal joint-preserving surgery yielding better postoperative outcomes. In cases of deformity recurrence, the recurrent cases exhibited greater immediate postsurgical HVA, but other foot function outcomes remained similar at the end of follow-up. Conclusion Joint-preserving surgery for advanced rheumatoid forefoot deformity showed better functional improvement than arthrodesis using the propensity score matching and comparable clinical outcomes, highlighting it as a potential treatment option for severe joint destruction. Level of Evidence Level Ⅳ, retrospective study.
Collapse
Affiliation(s)
- Soichiro Sakai
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshifumi Fujiwara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryosuke Yamaguchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiko Yokoyama
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Hara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukio Akasaki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Zhang X, Su R, Wang H, Wu R, Fan Y, Bin Z, Gao C, Wang C. The promise of Synovial Joint-on-a-Chip in rheumatoid arthritis. Front Immunol 2024; 15:1408501. [PMID: 39324139 PMCID: PMC11422143 DOI: 10.3389/fimmu.2024.1408501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Rheumatoid arthritis (RA) affects millions of people worldwide, but there are limited drugs available to treat it, so acquiring a more comprehensive comprehension of the underlying reasons and mechanisms behind inflammation is crucial, as well as developing novel therapeutic approaches to manage it and mitigate or forestall associated harm. It is evident that current in vitro models cannot faithfully replicate all aspects of joint diseases, which makes them ineffective as tools for disease research and drug testing. Organ-on-a-chip (OoC) technology is an innovative platform that can mimic the microenvironment and physiological state of living tissues more realistically than traditional methods by simulating the spatial arrangement of cells and interorgan communication. This technology allows for the precise control of fluid flow, nutrient exchange, and the transmission of physicochemical signals, such as bioelectrical, mechanical stimulation and shear force. In addition, the integration of cutting-edge technologies like sensors, 3D printing, and artificial intelligence enhances the capabilities of these models. Here, we delve into OoC models with a particular focus on Synovial Joints-on-a-Chip, where we outline their structure and function, highlighting the potential of the model to advance our understanding of RA. We integrate the actual evidence regarding various OoC models and their possible integration for multisystem disease study in RA research for the first time and introduce the prospects and opportunities of the chip in RA etiology and pathological mechanism research, drug research, disease prevention and human precision medicine. Although many challenges remain, OoC holds great promise as an in vitro model that approaches physiology and dynamics.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Hui Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Yuxin Fan
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Zexuan Bin
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital/Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| |
Collapse
|
10
|
Guo Y, Jiang S, Li H, Xie G, Pavel V, Zhang Q, Li Y, Huang C. Obesity induces osteoimmunology imbalance: Molecular mechanisms and clinical implications. Biomed Pharmacother 2024; 177:117139. [PMID: 39018871 DOI: 10.1016/j.biopha.2024.117139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
The notion that obesity can be a protective factor for bone health is a topic of ongoing debate. Increased body weight may have a positive impact on bone health due to its mechanical effects and the production of estrogen by adipose tissue. However, recent studies have found a higher risk of bone fracture and delayed bone healing in elderly obese patients, which may be attributed to the heightened risk of bone immune regulation disruption associated with obesity. The balanced functions of bone cells such as osteoclasts, osteoblasts, and osteocytes, would be subverted by aberrant and prolonged immune responses under obese conditions. This review aims to explore the intricate relationship between obesity and bone health from the perspective of osteoimmunology, elucidate the impact of disturbances in bone immune regulation on the functioning of bone cells, including osteoclasts, osteoblasts, and osteocytes, highlighting the deleterious effects of obesity on various diseases development such as rheumatoid arthritis (RA), osteoarthritis (AS), bone fracture, periodontitis. On the one hand, weight loss may achieve significant therapeutic effects on the aforementioned diseases. On the other hand, for patients who have difficulty in losing weight, the osteoimmunological therapies could potentially serve as a viable approach in halting the progression of these disease. Additional research in the field of osteoimmunology is necessary to ascertain the optimal equilibrium between body weight and bone health.
Collapse
Affiliation(s)
- Yating Guo
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Hengzhen Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guangyang Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Qidong Zhang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Yusheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Cheng Huang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
11
|
Kreienbuehl AS, Rogler G, Emanuel B, Biedermann L, Meier C, Juillerat P, Restellini S, Hruz P, Vavricka SR, Aeberli D, Seibold F. Bone health in patients with inflammatory bowel disease. Swiss Med Wkly 2024; 154:3407. [PMID: 38875461 DOI: 10.57187/s.3407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
Patients with inflammatory bowel disease (IBD) are prone to reduced bone mineral density and elevated overall fracture risk. Osteopenia affects up to 40% of patients with IBD (high regional variability). Besides disease activity, IBD specialists must consider possible side effects of medication and the presence of associated diseases and extraintestinal manifestations. Osteopenia and osteoporosis remain frequent problems in patients with IBD and are often underestimated because of widely differing screening and treatment practices. Malnutrition, chronic intestinal inflammation and corticosteroid intake are the major pathophysiological factors contributing to osteoporosis. Patients with IBD are screened for osteoporosis using dual-energy X-ray absorptiometry (DXA), which is recommended for all patients with a prolonged disease course of more than three months, with repeated corticosteroid administration, aged >40 years with a high FRAX risk score or aged <40 years with multiple risk factors. From a therapeutic perspective, besides good disease control, vitamin D supplementation and glucocorticoid sparing, several specific osteological options are available: bisphosphonates, receptor activator of nuclear factor kappa-B ligand (RANKL) inhibitors (denosumab), parathyroid hormone (PTH) analogues and selective estrogen receptor modulators. This review provides an overview of the pathophysiology, diagnosis, prevention and treatment of IBD-associated bone loss.
Collapse
Affiliation(s)
- Andrea S Kreienbuehl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Burri Emanuel
- Gastroenterology and Hepatology, University Medical Clinic, Kantonsspital Baselland, Liestal, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christian Meier
- Gastroenterology and Hepatology, University Medical Clinic, Kantonsspital Baselland, Liestal, Switzerland
| | - Pascal Juillerat
- Crohn's and Colitis Center, Gastroenterologie Beaulieu, Lausanne, Switzerland
- Gastroenterology, Clinic for Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie Restellini
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Hôpital de la Tour, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Switzerland
- McGill University Health Center, McGill University, Montréal, Québec, Canada
| | - Peter Hruz
- Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Stefan R Vavricka
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniel Aeberli
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
- Department of Internal Medicine, Spital Emmental, Burgdorf, Switzerland
| | - Frank Seibold
- Intesto, Gastroenterologische Praxis, Crohn-Colitis-Zentrum Bern, Bern, Switzerland
- University of Fribourg, Switzerland
| |
Collapse
|
12
|
Hong C, Kim J, Choi JW, Kim CH. Spontaneous Healing of the Lateral Semicircular Canal Labyrinthine Fistula Caused by Middle Ear Cholesteatoma. Otol Neurotol 2024; 45:605-606. [PMID: 38728566 DOI: 10.1097/mao.0000000000004195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Affiliation(s)
- ChanEui Hong
- Departments of Otorhinolaryngology-Head and Neck Surgery
| | - JiAh Kim
- Departments of Otorhinolaryngology-Head and Neck Surgery
| | - Jin Woo Choi
- Radiology, Konkuk University Medical Center, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Chang-Hee Kim
- Departments of Otorhinolaryngology-Head and Neck Surgery
| |
Collapse
|
13
|
Wang X, Kong Y, Li Z. Advantages of Chinese herbal medicine in treating rheumatoid arthritis: a focus on its anti-inflammatory and anti-oxidative effects. Front Med (Lausanne) 2024; 11:1371461. [PMID: 38515982 PMCID: PMC10954842 DOI: 10.3389/fmed.2024.1371461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Oxidative stress is a condition characterized by an imbalance between the oxidative and antioxidant processes within the human body. Rheumatoid arthritis (RA) is significantly influenced by the presence of oxidative stress, which acts as a pivotal factor in its pathogenesis. Elevated levels of mitochondrial reactive oxygen species (ROS) and inflammation have been found to be closely associated in the plasma of patients with RA. The clinical treatment strategies for this disease are mainly chemical drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), glucocorticoids (GCs) and biological agents, but it is difficult for patients to accept long-term drug treatment and its side effects. In the theory of traditional Chinese medicine (TCM), RA is thought to be caused by the attack of "wind, cold, damp humor," and herbs with the effect of removing wind and dampness are used to relieve pain. Chinese herbal medicine boasts a rich heritage in effectively attenuating the symptoms of RA, and its global recognition continues to ascend. In particular, RA-relevant anti-inflammatory/anti-oxidative effects of TCM herbs/herbal compounds. The main aim of this review is to make a valuable contribution to the expanding pool of evidence that advocates for the incorporation of Chinese herbal medicine in conventional treatment plans for RA.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Youqian Kong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zeguang Li
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
14
|
Yang M, Zhu L. Osteoimmunology: The Crosstalk between T Cells, B Cells, and Osteoclasts in Rheumatoid Arthritis. Int J Mol Sci 2024; 25:2688. [PMID: 38473934 DOI: 10.3390/ijms25052688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Rheumatoid arthritis (RA) is an ongoing inflammatory condition that affects the joints and can lead to severe damage to cartilage and bones, resulting in significant disability. This condition occurs when the immune system becomes overactive, causing osteoclasts, cells responsible for breaking down bone, to become more active than necessary, leading to bone breakdown. RA disrupts the equilibrium between osteoclasts and osteoblasts, resulting in serious complications such as localized bone erosion, weakened bones surrounding the joints, and even widespread osteoporosis. Antibodies against the receptor activator of nuclear factor-κB ligand (RANKL), a crucial stimulator of osteoclast differentiation, have shown great effectiveness both in laboratory settings and actual patient cases. Researchers are increasingly focusing on osteoclasts as significant contributors to bone erosion in RA. Given that RA involves an overactive immune system, T cells and B cells play a pivotal role by intensifying the immune response. The imbalance between Th17 cells and Treg cells, premature aging of T cells, and excessive production of antibodies by B cells not only exacerbate inflammation but also accelerate bone destruction. Understanding the connection between the immune system and osteoclasts is crucial for comprehending the impact of RA on bone health. By delving into the immune mechanisms that lead to joint damage, exploring the interactions between the immune system and osteoclasts, and investigating new biomarkers for RA, we can significantly improve early diagnosis, treatment, and prognosis of this condition.
Collapse
Affiliation(s)
- Mei Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
15
|
Schneider AH, Taira TM, Públio GA, da Silva Prado D, Donate Yabuta PB, Dos Santos JC, Machado CC, de Souza FFL, Rodrigues Venturini LG, de Oliveira RDR, Cunha TM, Alves-Filho JC, Louzada-Júnior P, Aparecida da Silva T, Fukada SY, Cunha FQ. Neutrophil extracellular traps mediate bone erosion in rheumatoid arthritis by enhancing RANKL-induced osteoclastogenesis. Br J Pharmacol 2024; 181:429-446. [PMID: 37625900 DOI: 10.1111/bph.16227] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND AND PURPOSE Rheumatoid arthritis (RA) is a chronic autoimmune disease that can cause bone erosion due to increased osteoclastogenesis. Neutrophils involvement in osteoclastogenesis remains uncertain. Given that neutrophil extracellular traps (NETs) can act as inflammatory mediators in rheumatoid arthritis, we investigated the role of NETs in stimulating bone loss by potentiating osteoclastogenesis during arthritis. EXPERIMENTAL APPROACH The level of NETs in synovial fluid from arthritis patients was assessed. Bone loss was evaluated by histology and micro-CT in antigen-induced arthritis (AIA)-induced WT mice treated with DNase or in Padi4-deficient mice (Padi4flox/flox LysMCRE ). The size and function of osteoclasts and the levels of RANKL and osteoprotegerin (OPG) released by osteoblasts that were incubated with NETs were measured. The expression of osteoclastogenic marker genes and protein levels were evaluated by qPCR and western blotting. To assess the participation of TLR4 and TLR9 in osteoclastogenesis, cells from Tlr4-/- and Tlr9-/- mice were cultured with NETs. KEY RESULTS Rheumatoid arthritis patients had higher levels of NETs in synovial fluid than osteoarthritis patients, which correlated with increased levels of RANKL/OPG. Moreover, patients with bone erosion had higher levels of NETs. Inhibiting NETs with DNase or Padi4 deletion alleviated bone loss in arthritic mice. Consistently, NETs enhanced RANKL-induced osteoclastogenesis that was dependent on TLR4 and TLR9 and increased osteoclast resorptive functions in vitro. In addition, NETs stimulated the release of RANKL and inhibited osteoprotegerin in osteoblasts, favouring osteoclastogenesis. CONCLUSIONS AND IMPLICATIONS Inhibiting NETs could be an alternative strategy to reduce bone erosion in arthritis patients.
Collapse
Affiliation(s)
- Ayda Henriques Schneider
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Thaise Mayumi Taira
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Bio-Molecular Sciences, School of Pharmaceutical Science, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Gabriel Azevedo Públio
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Douglas da Silva Prado
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Paula Barbim Donate Yabuta
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Jéssica Cristina Dos Santos
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Neurosciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Caio Cavalcante Machado
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Medicine, Clinical Immunology Division, Medicine Faculty of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Flávio Falcão Lima de Souza
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Medicine, Clinical Immunology Division, Medicine Faculty of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Lucas Gabriel Rodrigues Venturini
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Bio-Molecular Sciences, School of Pharmaceutical Science, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Renê Donizeti Ribeiro de Oliveira
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Medicine, Clinical Immunology Division, Medicine Faculty of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Thiago Mattar Cunha
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - José Carlos Alves-Filho
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Paulo Louzada-Júnior
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Medicine, Clinical Immunology Division, Medicine Faculty of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Tarcília Aparecida da Silva
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sandra Yasuyo Fukada
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Bio-Molecular Sciences, School of Pharmaceutical Science, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Fernando Queiróz Cunha
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
16
|
Ain QU, Zeeshan M, Mazhar D, Zeb A, Afzal I, Ullah H, Ali H, Rahdar A, Díez-Pascual AM. QbD-Based Fabrication of Biomimetic Hydroxyapatite Embedded Gelatin Nanoparticles for Localized Drug Delivery against Deteriorated Arthritic Joint Architecture. Macromol Biosci 2024; 24:e2300336. [PMID: 37815044 DOI: 10.1002/mabi.202300336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Biomaterials such as nanohydroxyapatite and gelatin are widely explored to improve damaged joint architecture associated with rheumatoid arthritis (RA). Besides joint damage, RA is associated with inflammation of joints and cartilage, which potentiates the need for both bone nucleation and therapeutic intervention. For such purpose, a modified nanoprecipitation method is used herein to fabricate tofacitinib (Tofa)-loaded nanohydroxyapatite (nHA) embedded gelatin (GLT) nanoparticles (NPs) (Tofa-nHA-GLT NPs). The quality by design (QbD) approach is chosen to assess the key parameters that determine the efficiency of the NPs, and are further optimized via Box-Behnken design of experiment. The particle size, polydispersity, zeta potential, and encapsulation efficiency (EE) of the prepared NPs are found to be 269 nm, 0.18, -20.5 mV, and 90.7%, respectively. Furthermore, the NPs have improved stability, skin permeability, and a sustained drug release pattern at pH 6.5 (arthritic joint pH). Moreover, rhodamine-B loaded nHA-GLT NPs demonstrates considerably higher cellular uptake by the murine-derived macrophages than free rhodamine-B solution. In vitro, cell-based experiments confirm the good cell biocompatibility with insignificant toxicity. Thus, QbD-based approach has successfully led to the development of Tofa-nHA-GLT NPs with the potential to target inflamed arthritic joint.
Collapse
Affiliation(s)
- Qurat Ul Ain
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mahira Zeeshan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, 44000, Pakistan
| | - Danish Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ahmed Zeb
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Iqra Afzal
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Hameed Ullah
- Department of Chemistry, Islamia College University, Peshawar, 25120, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol, 538-98615, Iran
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, Alcalá de Henares, Madrid, 28805, Spain
| |
Collapse
|
17
|
Zhao D, Wu L, Hong M, Zheng S, Wu X, Ye H, Chen F, Zhang D, Liu X, Meng X, Chen X, Chen S, Zhu J, Li J. DKK-1 and Its Influences on Bone Destruction: A Comparative Study in Collagen-Induced Arthritis Mice and Rheumatoid Arthritis Patients. Inflammation 2024; 47:129-144. [PMID: 37688661 DOI: 10.1007/s10753-023-01898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/11/2023]
Abstract
Dickkopf-1 (DKK-1) has been considered a master regulator of bone remodeling. As precursors of osteoclasts (OCs), myeloid-derived suppressor cells (MDSCs) were previously shown to participate in the process of bone destruction in rheumatoid arthritis (RA). However, the role of DKK-1 and MDSCs in RA is not yet fully understood. We investigated the relevance between the level of DKK-1 and the expression of MDSCs in different tissues and joint destruction in RA patients and collagen-induced arthritis (CIA) mouse models. Furthermore, the CIA mice were administered recombinant DKK-1 protein. The arthritis scores, bone destruction, and the percentage of MDSCs in the peripheral blood and spleen were monitored. In vitro, the differentiation of MDSCs into OCs was intervened with recombinant protein and inhibitor of DKK-1. The number of OCs differentiated and the protein expression of the Wnt/β-catenin signaling pathway were explored. The level of DKK-1 positively correlates with the frequency of MDSCs and bone erosion in RA patients and CIA mice. Strikingly, recombinant DKK-1 intervention significantly exacerbated arthritis scores and bone destruction, increasing the percentage of MDSCs in the peripheral blood and spleen in CIA mice. In vitro experiments showed that recombinant DKK-1 promoted the differentiation of MDSCs into OCs, reducing the expression of β-catenin and TCF4 and increasing the expression of CyclinD1. In contrast, the DKK-1 inhibitor had the opposite effect. Our findings highlight that DKK-1 promoted MDSCs expansion in RA and enhanced the differentiation of MDSCs into OCs via targeting the Wnt/β-catenin pathway, aggravating the bone destruction in RA.
Collapse
Affiliation(s)
- Di Zhao
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lisheng Wu
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Mukeng Hong
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Songyuan Zheng
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xianghui Wu
- Laboratory Animal Research Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haixin Ye
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Feilong Chen
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Dingding Zhang
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xinhang Liu
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiangyun Meng
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoyun Chen
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shixian Chen
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junqing Zhu
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Juan Li
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Cai X, Yao Y, Ren F, Zhang S. circTldc1 increases Tldc1 expression by targeting miR-485-5p to promote fibroblast-like synoviocytes proliferation in collagen-induced arthritis. Exp Cell Res 2024; 435:113928. [PMID: 38190869 DOI: 10.1016/j.yexcr.2024.113928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Abnormalities in the function of fibroblast-like synoviocytes (FLSs) are crucial factors leading to joint damage of rheumatoid arthritis. In recent years, the role of circular RNA (circRNA) in RA has gradually been revealed. However, the functional regulation of FLSs mediated by circRNA and its potential mechanisms remain unclear. In this study, we elucidated the expression profile of circRNA in FLSs, as well as the role and molecular mechanisms of circTldc1. Through sequencing and validation experiments on primary FLSs derived from collagen-induced arthritis (CIA) rats, we found that circTldc1 can promote FLSs proliferation and exacerbate CIA-induced joint damage. The data revealed that circTldc1's parent gene, Tldc1, is homologous to human Tldc1, and circTldc1 is located in the cytoplasm of FLSs, belonging to the exonic circRNA category. The results from bioinformatics analysis, molecular experiments on FLSs (manipulating circTldc1 expression in vitro), and animal experiments (local regulation of circTldc1 expression in vivo) collectively confirmed that circTldc1 promotes Tldc1 expression by targeting miR-485-5p. High expression of Tldc1 further enhances FLSs proliferation and inflammatory responses, thereby worsening joint damage in CIA rats. High expression of circTldc1 and its parent gene Tldc1 may serve as biomarkers for RA. Local regulation of circTldc1 and Tldc1 gene levels in the joint cavity may represent a potential strategy to improve joint damage and inflammation in RA.
Collapse
Affiliation(s)
- Xiaoyu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, 310006, China.
| | - Yao Yao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Fujia Ren
- Department of Pharmacy, Hangzhou Women's Hospital, Hangzhou, China
| | - Shiwei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
19
|
Bakinowska E, Kiełbowski K, Pawlik A. The Role of Extracellular Vesicles in the Pathogenesis and Treatment of Rheumatoid Arthritis and Osteoarthritis. Cells 2023; 12:2716. [PMID: 38067147 PMCID: PMC10706487 DOI: 10.3390/cells12232716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Cells can communicate with each other through extracellular vesicles (EVs), which are membrane-bound structures that transport proteins, lipids and nucleic acids. These structures have been found to mediate cellular differentiation and proliferation apoptosis, as well as inflammatory responses and senescence, among others. The cargo of these vesicles may include immunomodulatory molecules, which can then contribute to the pathogenesis of various diseases. By contrast, EVs secreted by mesenchymal stem cells (MSCs) have shown important immunosuppressive and regenerative properties. Moreover, EVs can be modified and used as drug carriers to precisely deliver therapeutic agents. In this review, we aim to summarize the current evidence on the roles of EVs in the progression and treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), which are important and prevalent joint diseases with a significant global burden.
Collapse
Affiliation(s)
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.)
| |
Collapse
|
20
|
Marasco E, Fabbriciani G, Rotunno L, Longhi M, De Luca P, de Girolamo L, Colombini A. Identification of biomarkers in patients with rheumatoid arthritis responsive to DMARDs but with progressive bone erosion. Front Immunol 2023; 14:1254139. [PMID: 37809106 PMCID: PMC10551039 DOI: 10.3389/fimmu.2023.1254139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Rheumatoid arthritis (RA) is an inflammatory autoimmune disease that may cause joint destruction and disability. The pharmacological treatment of RA aims at obtaining disease remission by effectively ceasing joint inflammation and arresting progressive bone erosions. Some patients present bone lesions accrual even after controlling joint inflammation with current therapies. Our study aimed to analyze lymphocyte subsets and levels of circulating cytokines in patients with RA with progressive bone erosions. Methods We enrolled 20 patients with a diagnosis of RA and 12 healthy donors (HD). Patients with RA were divided into patients with bone erosions (RA-BE+) and without bone erosions (RA-BE-). Lymphocyte subsets in peripheral blood were evaluated by flow cytometry. Circulating cytokines levels were evaluated by protein array. Results The distribution of lymphocyte subsets was not able to separate HD from AR patients and RA-BE+ and RA-BE- in cluster analysis. We observed a significant expansion of CXCR5- PD1+ T peripheral helper cells (Tph cells) and a reduction in both total memory B cells and switched memory B cells in RA patients compared to HD. We observed an expansion in the frequency of total B cells in RA-BE+ patients compared to RA-BE- patients. Unsupervised hierarchical clustering analysis of 39 cytokines resulted in a fairly good separation of HD from RA patients but not of RA-BE+ patients from RA-BE- patients. RA-BE+ patients showed significantly higher levels of IL-11 and IL-17A than RA-BE- patients. Conclusion We show that patients with progressive erosive disease are characterized by abnormalities in B cells and in cytokines with a proven role in bone reabsorption. Understanding the role played by B cells and the cytokine IL-11 and IL-17A in progressive erosive disease can help identify novel biomarkers of erosive disease and design treatment approaches aimed at halting joint damage in RA.
Collapse
Affiliation(s)
- Emiliano Marasco
- Division of Rheumatology, Ospedale Pediatrico Bambino Gesù IRCCS, Roma, Italy
- Ph.D. Course “Immunology, Molecular Medicine and Applied Biotechnology”, University of Rome Tor Vergata, Rome, Italy
| | | | - Laura Rotunno
- Unit of Rheumatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Matteo Longhi
- Unit of Rheumatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Paola De Luca
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Alessandra Colombini
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
21
|
Avila-Trejo AM, Rodríguez-Páez LI, Alcántara-Farfán V, Aguilar-Faisal JL. Multiple Factors Involved in Bone Damage Caused by Chikungunya Virus Infection. Int J Mol Sci 2023; 24:13087. [PMID: 37685893 PMCID: PMC10488091 DOI: 10.3390/ijms241713087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Chronic cases of chikungunya fever represent a public health problem in countries where the virus circulates. The disease is prolonged, in some cases, for years, resulting in disabling pain and bone erosion among other bone and joint problems. As time progresses, tissue damage is persistent, although the virus has not been found in blood or joints. The pathogenesis of these conditions has not been fully explained. Additionally, it has been considered that there are multiple factors that might intervene in the viral pathogenesis of the different conditions that develop. Other mechanisms involved in osteoarthritic diseases of non-viral origin could help explain how damage is produced in chronic conditions. The aim of this review is to analyze the molecular and cellular factors that could be involved in the tissue damage generated by different infectious conditions of the chikungunya virus.
Collapse
Affiliation(s)
- Amanda M. Avila-Trejo
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.M.A.-T.); (L.I.R.-P.); (V.A.-F.)
- Laboratorio de Medicina de Conservación, Secretaría de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Lorena I. Rodríguez-Páez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.M.A.-T.); (L.I.R.-P.); (V.A.-F.)
| | - Verónica Alcántara-Farfán
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.M.A.-T.); (L.I.R.-P.); (V.A.-F.)
| | - J. Leopoldo Aguilar-Faisal
- Laboratorio de Medicina de Conservación, Secretaría de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| |
Collapse
|
22
|
Liu X, Xu X, Li J, Shi L, Zeng Y, Tang S, Liu W, Jia L, Li Y, Zhang J. Isobavachalcone inhibits RANKL-induced osteoclastogenesis via miR-193-3p/NF-κB/NFATc1 signaling pathway in BMMs cells. Biosci Biotechnol Biochem 2023; 87:960-971. [PMID: 37291698 DOI: 10.1093/bbb/zbad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
Inhibition of extensive osteoclastogenesis and bone resorption is considered a potential therapeutic target for the treatment of osteoporosis. Isobavachalcone (IBC) is derived from the traditional Chinese herb Psoralea corylifolia Linn. We showed that IBC dose-dependently suppressed receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastogenesis in bone marrow monocyte/macrophage (BMMs) and osteoclastic bone-resorption function without cytotoxicity at a dose of no more than 8 µmin vitro. Mechanistically, the results of western blot and quantitative real-time polymerase chain reaction (qRT-PCR) indicated that IBC inhibited the RANKL-induced degradation of IκBα and phosphorylation of nuclear factor kappa B (NF-κB) in BMMs, and subsequently downregulated the expression of osteoclastic-specific genes and osteoclastogenesis-related proteins. TRAP staining and qRT-PCR showed that IBC can inhibit osteoclast differentiation by down-regulating the expression of miR-193-3p on osteoclast differentiation. Overall, our findings suggest that IBC may serve as a promising compound for the treatment of osteoporosis and other metabolic bone diseases.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pharmachemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Chang Sha, Hunan, China
| | - Xiaosa Xu
- Department of Pharmachemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Chang Sha, Hunan, China
| | - Jinping Li
- Department of Pharmachemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Chang Sha, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Chang Sha, Hunan, China
| | - Liying Shi
- Department of Pharmachemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Chang Sha, Hunan, China
| | - Ying Zeng
- Department of Cardiovascular Medicine, The First Hospital of Hunan University of Traditional Chinese Medicine, Chang Sha, Hunan, China
| | - Siyuan Tang
- Department of Community Nursing, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Department of Community Nursing, Central South University, Changsha, Hunan, China
| | - Lujuan Jia
- Department of Pharmachemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Chang Sha, Hunan, China
| | - Yuhong Li
- Department of Pharmachemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Chang Sha, Hunan, China
| | - Jie Zhang
- Pharmacy Department, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Yao H, Xiang L, Huang Y, Tan J, Shen Y, Li F, Geng F, Liu W, Li X, Gao Y. Guizhi Shaoyao Zhimu granules attenuate bone destruction in mice with collagen-induced arthritis by promoting mitophagy of osteoclast precursors to inhibit osteoclastogenesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154967. [PMID: 37490802 DOI: 10.1016/j.phymed.2023.154967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Guizhi Shaoyao Zhimu decoction, a traditional Chinese medicine formula used empirically for the treatment of rheumatoid arthritis (RA), has been shown to alleviate bone destruction in rats with collagen-induced arthritis (CIA). PURPOSE The aim of this study is to characterize the effects of Guizhi Shaoyao Zhimu granules (GSZGs) on bone destruction in RA and the underlying mechanism. STUDY DESIGN A CIA arthritis model using DBA/1 mice. The animals were divided into a normal group; CIA model group; low, medium, and high-dose GSZG groups (3, 6, and 9 g/kg/day); and a methotrexate group (1.14 mg/kg/w). In vitro, a cytokine induced osteoclastogenesis model was established. METHODS After 28 days of treatment, the paw volume was measured, bone destruction was examined by micro-CT, and the generation of osteoclasts in bone tissue was evaluated via tartrate-resistant acid phosphatase (TRAP) staining. Furthermore, the inhibitory effect and underlying mechanism of action of GSZG on RANKL-induced osteoclastogenesis were investigated in vitro. RESULTS The in vivo analyses demonstrated that the paw volume and degree of bone erosion of mice in the medium- and high-dose GSZG groups were significantly decreased compared to the CIA model group. In addition, GSZG treatment suppressed the excessive generation of osteoclasts in the bone tissue of CIA mice. In vitro, GSZG inhibited RANKL-induced osteoclastogenesis and osteoclast-mediated bone resorption. Specifically, it only inhibited the generation of osteoclast precursors (OCPs); it had no significant effect on the fusion of OCPs or maturation of osteoclasts. Finally, we showed that the inhibitory effect of GSZG on osteoclastogenesis was related to the promotion of PTEN-induced kinase protein 1 (PINK1)/Parkin pathway-mediated mitophagy of osteoclast precursors, which was verified using a PINK1 knockdown small interfering RNA in OCPs. CONCLUSION These findings indicate that GSZG is a candidate for the treatment of bone destruction in RA and provide a more detailed elucidation of the mechanism of GSZG anti-RA bone erosion, i.e., inhibition of the ROS/NF-κB axis through the PINK1/Parkin-mediated mitochondrial autophagic pathway to inhibit osteoclast precursor production, compared to the published literature.
Collapse
Affiliation(s)
- Huan Yao
- Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China; Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Pengzhou 611930, China.
| | - Li Xiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China.
| | - Yucheng Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China.
| | - Jin Tan
- Gooddoctor Pharmaceutical Group Co., Ltd., Anzhou Industrial Park, Mianyang 622651, Sichuan, China.
| | - Yongmei Shen
- Gooddoctor Pharmaceutical Group Co., Ltd., Anzhou Industrial Park, Mianyang 622651, Sichuan, China.
| | - Fangqiong Li
- Gooddoctor Pharmaceutical Group Co., Ltd., Anzhou Industrial Park, Mianyang 622651, Sichuan, China.
| | - Funeng Geng
- Gooddoctor Pharmaceutical Group Co., Ltd., Anzhou Industrial Park, Mianyang 622651, Sichuan, China
| | - Weiwei Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Xueping Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China.
| | - Yongxiang Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China.
| |
Collapse
|
24
|
Wu CY, Yang HY, Lai JH. Potential therapeutic targets beyond cytokines and Janus kinases for autoimmune arthritis. Biochem Pharmacol 2023; 213:115622. [PMID: 37230194 DOI: 10.1016/j.bcp.2023.115622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Synovial inflammation and destruction of articular cartilage and bone are hallmarks of autoimmune arthritis. Although current efforts to inhibit proinflammatory cytokines (biologics) or block Janus kinases (JAK) appear to be promising in many patients with autoimmune arthritis, adequate disease control is still lacking in a significant proportion of autoimmune arthritis patients. The possible adverse events from taking biologics and JAK inhibitors, such as infection, remain a major concern. Recent advances showing the effects of a loss of balance between regulatory T cells and T helper-17 cells as well as how the imbalance between osteoblastic and osteoclastic activities of bone cells exaggerates joint inflammation, bony destruction and systemic osteoporosis highlight an interesting area to explore in the search for better therapeutics. The recognition of the heterogenicity of synovial fibroblasts in osteoclastogenesis and their crosstalk with immune and bone cells provides an opportunity for identifying novel therapeutic targets for autoimmune arthritis. In this commentary, we comprehensively review the current knowledge regarding the interactions among heterogenic synovial fibroblasts, bone cells and immune cells and how they contribute to the immunopathogenesis of autoimmune arthritis, as well as the search for novel therapeutic targets not targeted by current biologics and JAK inhibitors.
Collapse
Affiliation(s)
- Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Huang-Yu Yang
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan.
| |
Collapse
|
25
|
Shen F, Huang X, He G, Shi Y. The emerging studies on mesenchymal progenitors in the long bone. Cell Biosci 2023; 13:105. [PMID: 37301964 DOI: 10.1186/s13578-023-01039-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/01/2023] [Indexed: 06/12/2023] Open
Abstract
Mesenchymal progenitors (MPs) are considered to play vital roles in bone development, growth, bone turnover, and repair. In recent years, benefiting from advanced approaches such as single-cell sequence, lineage tracing, flow cytometry, and transplantation, multiple MPs are identified and characterized in several locations of bone, including perichondrium, growth plate, periosteum, endosteum, trabecular bone, and stromal compartment. However, although great discoveries about skeletal stem cells (SSCs) and progenitors are present, it is still largely obscure how the varied landscape of MPs from different residing sites diversely contribute to the further differentiation of osteoblasts, osteocytes, chondrocytes, and other stromal cells in their respective destiny sites during development and regeneration. Here we discuss recent findings on MPs' origin, differentiation, and maintenance during long bone development and homeostasis, providing clues and models of how the MPs contribute to bone development and repair.
Collapse
Affiliation(s)
- Fangyuan Shen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaobin Huang
- Department of Oral and Maxillofacial Surgery/Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guangxu He
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, NO. 139 Middle Renmin Road, Changsha, Hunan, China.
| | - Yu Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Lei Q, Yang J, Li L, Zhao N, Lu C, Lu A, He X. Lipid metabolism and rheumatoid arthritis. Front Immunol 2023; 14:1190607. [PMID: 37325667 PMCID: PMC10264672 DOI: 10.3389/fimmu.2023.1190607] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
As a chronic progressive autoimmune disease, rheumatoid arthritis (RA) is characterized by mainly damaging the synovium of peripheral joints and causing joint destruction and early disability. RA is also associated with a high incidence rate and mortality of cardiovascular disease. Recently, the relationship between lipid metabolism and RA has gradually attracted attention. Plasma lipid changes in RA patients are often detected in clinical tests, the systemic inflammatory status and drug treatment of RA patients can interact with the metabolic level of the body. With the development of lipid metabolomics, the changes of lipid small molecules and potential metabolic pathways have been gradually discovered, which makes the lipid metabolism of RA patients or the systemic changes of lipid metabolism after treatment more and more comprehensive. This article reviews the lipid level of RA patients, as well as the relationship between inflammation, joint destruction, cardiovascular disease, and lipid level. In addition, this review describes the effect of anti-rheumatic drugs or dietary intervention on the lipid profile of RA patients to better understand RA.
Collapse
Affiliation(s)
- Qian Lei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Jie Yang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Shanghai GuangHua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Messina OD, Vidal M, Adami G, Vidal LF, Clark P, Torres JAM, Lems W, Zerbini C, Arguissain C, Reginster JY, Lane NE. Chronic arthritides and bone structure: focus on rheumatoid arthritis-an update. Aging Clin Exp Res 2023:10.1007/s40520-023-02432-9. [PMID: 37222927 DOI: 10.1007/s40520-023-02432-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023]
Abstract
Normal bone remodeling depends of a balance between bone forming cells, osteoblasts and bone resorbing cells, the osteoclasts. In chronic arthritides and some inflammatory and autoimmune diseases such as rheumatoid arthritis, there is a great constellation of cytokines produced by pannus that impair bone formation and stimulate bone resorption by inducing osteoclast differentiation and inhibiting osteoblast maturation. Patients with chronic inflammation have multiple causes that lead to low bone mineral density, osteoporosis and a high risk of fracture including circulating cytokines, impaired mobility, chronic administration of glucocorticoids, low vitamin D levels and post-menopausal status in women, among others. Biologic agents and other therapeutic measures to reach prompt remission might ameliorate these deleterious effects. In many cases, bone acting agents need to be added to conventional treatment to reduce the risk of fractures and to preserve articular integrity and independency for daily living activities. A limited number of studies related to fractures in chronic arthritides were published, and future investigation is needed to determine the risk of fractures and the protective effects of different treatments to reduce this risk.
Collapse
Affiliation(s)
- Osvaldo Daniel Messina
- Collaborating Centre WHO, Investigaciones Reumatológicas y Osteológicas (IRO), Buenos Aires, Argentina
- International Osteoporosis Foundation (IOF), Buenos Aires, Argentina
| | - Maritza Vidal
- Centro de Diagnóstico de Osteoporosis y Enfermedades Reumáticas (CEDOR), Lima, Peru.
| | - Giovanni Adami
- Rheumatology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Luis Fernando Vidal
- Centro de Diagnóstico de Osteoporosis y Enfermedades Reumáticas (CEDOR), Lima, Peru
- Regional Advisory Council for Latin America - International Osteoporosis Foundation (IOF), Lima, Peru
| | - Patricia Clark
- International Osteoporosis Foundation (IOF), Buenos Aires, Argentina
- Chief of Clinical Epidemiology Unit-Hospital Federico Gomez School of Medicine UNAM, Mexico City, Mexico
| | | | - William Lems
- Department of Rheumatology, Amsterdam UMC, Location VU University Medical Centre Amsterdam, Amsterdam, North-Holland, The Netherlands
| | | | - Constanza Arguissain
- Collaborating Centre WHO, Investigaciones Reumatológicas y Osteológicas (IRO), Buenos Aires, Argentina
| | - Jean-Yves Reginster
- Division of Public Health, Epidemiology and Health Economics, WHO Collaborating Centre for Public Health, Aspects of Musculoskeletal Health and Ageing, University of Liege, Liege, Belgium
| | - Nancy E Lane
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, Sacramento, CA, 95817, USA
| |
Collapse
|
28
|
Hu N, Wang J, Ju B, Li Y, Fan P, Jin X, Kang X, Wu S. Recent advances of osteoimmunology research in rheumatoid arthritis: From single-cell omics approach. Chin Med J (Engl) 2023:00029330-990000000-00608. [PMID: 37166215 DOI: 10.1097/cm9.0000000000002678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 05/12/2023] Open
Abstract
ABSTRACT Cellular immune responses as well as generalized and periarticular bone loss are the key pathogenic features of rheumatoid arthritis (RA). Under the pathological conditions of RA, dysregulated inflammation and immune processes tightly interact with skeletal system, resulting in pathological bone damage via inhibition of bone formation or induction of bone resorption. Single-cell omics technologies are revolutionary tools in the field of modern biological research.They enable the display of the state and function of cells in various environments from a single-cell resolution, thus making it conducive to identify the dysregulated molecular mechanisms of bone destruction in RA as well as the discovery of potential therapeutic targets and biomarkers. Here, we summarize the latest findings of single-cell omics technologies in osteoimmunology research in RA. These results suggest that single-cell omics have made significant contributions to transcriptomics and dynamics of specific cells involved in bone remodeling, providing a new direction for our understanding of cellular heterogeneity in the study of osteoimmunology in RA.
Collapse
Affiliation(s)
- Nan Hu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jing Wang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Bomiao Ju
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuanyuan Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ping Fan
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xinxin Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xiaomin Kang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
29
|
Du H, Wang L, Hua L, Hong X, Chen F. Association of serum anti-carbamylated protein antibodies with disease activity and bone loss in rheumatoid arthritis. Clin Chim Acta 2023; 546:117371. [PMID: 37127229 DOI: 10.1016/j.cca.2023.117371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/20/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND We investigated the association of serum anti-carbamylated protein (anti-CarP) antibodies with disease activity and bone loss in rheumatoid arthritis (RA). METHODS The serum anti-CarP antibody concentrations of RA and non-RA patients and healthy controls were determined by enzyme-linked immunosorbent assay (ELISA) and then compared. The diagnostic value of anti-CarP antibodies in RA was determined by the receiver operating characteristic curve. Patients with RA and bone erosions were evaluated using ultrasound examinations. Ultrasonography was performed using a semiquantitative scale. The serum receptor activator of nuclear factor Κ-Β ligand (RANKL) concentrations were measured by ELISA to focus on bone loss. RESULTS Peripheral serum anti-CarP antibody concentrations in patients with RA were significantly higher than those in patients without RA and in healthy controls and were positively correlated with disease activity. Anti-CarP antibody concentrations were significantly increased in patients with anti-CCP-positive RA. Positive correlation were found between anti-CarP and RANKL. Increased serum anti-CarP antibodies in women with postmenopausal osteoporosis(OP). CONCLUSIONS Anti-CarP antibodies are associated with RA disease activity and may play an important role in bone loss associated with RA. The concentration of anti-CarP antibodies may be beneficial in the early diagnosis of RA, thus supporting its potential as a novel disease biomarker.
Collapse
Affiliation(s)
| | | | - Li Hua
- Jinhua Municipal Central Hospital
| | | | - Fan Chen
- Jinhua Municipal Central Hospital
| |
Collapse
|
30
|
Matsuda K, Shiba N, Hiraoka K. New Insights into the Role of Synovial Fibroblasts Leading to Joint Destruction in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:ijms24065173. [PMID: 36982247 PMCID: PMC10049180 DOI: 10.3390/ijms24065173] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Rheumatoid arthritis (RA), one of the most common autoimmune diseases, is characterized by multiple-joint synovitis with subsequent destruction of bone and cartilage. The excessive autoimmune responses cause an imbalance in bone metabolism, promoting bone resorption and inhibiting bone formation. Preliminary studies have revealed that receptor activator of NF-κB ligand (RANKL)-mediated osteoclast induction is an important component of bone destruction in RA. Synovial fibroblasts are the crucial producers of RANKL in the RA synovium; novel analytical techniques, primarily, single-cell RNA sequencing, have confirmed that synovial fibroblasts include heterogeneous subsets of both pro-inflammatory and tissue-destructive cell types. The heterogeneity of immune cells in the RA synovium and the interaction of synovial fibroblasts with immune cells have recently received considerable attention. The current review focused on the latest findings regarding the crosstalk between synovial fibroblasts and immune cells, and the pivotal role played by synovial fibroblasts in joint destruction in RA.
Collapse
Affiliation(s)
- Kotaro Matsuda
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Fukuoka, Japan
| | - Naoto Shiba
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Fukuoka, Japan
| | - Koji Hiraoka
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Fukuoka, Japan
| |
Collapse
|
31
|
Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal Transduct Target Ther 2023; 8:68. [PMID: 36797236 PMCID: PMC9935929 DOI: 10.1038/s41392-023-01331-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is an incurable systemic autoimmune disease. Disease progression leads to joint deformity and associated loss of function, which significantly impacts the quality of life for sufferers and adds to losses in the labor force. In the past few decades, RA has attracted increased attention from researchers, the abnormal signaling pathways in RA are a very important research field in the diagnosis and treatment of RA, which provides important evidence for understanding this complex disease and developing novel RA-linked intervention targets. The current review intends to provide a comprehensive overview of RA, including a general introduction to the disease, historical events, epidemiology, risk factors, and pathological process, highlight the primary research progress of the disease and various signaling pathways and molecular mechanisms, including genetic factors, epigenetic factors, summarize the most recent developments in identifying novel signaling pathways in RA and new inhibitors for treating RA. therapeutic interventions including approved drugs, clinical drugs, pre-clinical drugs, and cutting-edge therapeutic technologies. These developments will hopefully drive progress in new strategically targeted therapies and hope to provide novel ideas for RA treatment options in the future.
Collapse
|
32
|
Uesato N, Kitagawa Y, Matsuo Y, Miyagawa N, Inagaki K, Kakefuda R, Yamaguchi T, Hata T, Ikegashira K, Matsushita M. Therapeutic Effect of Colony Stimulating Factor 1 Receptor Kinase Inhibitor, JTE-952, on Methotrexate-Refractory Pathology in a Rat Model of Rheumatoid Arthritis. Biol Pharm Bull 2023; 46:1223-1230. [PMID: 37661402 DOI: 10.1248/bpb.b23-00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by inflammation and the destruction of bone and cartilage in affected joints. One of the unmet medical needs in the treatment of RA is to effectively prevent the structural destruction of joints, especially bone, which progresses because of resistance to conventional drugs that mainly have anti-inflammatory effects, and directly leads to a decline in the QOL of patients. We previously developed a novel and orally available type II kinase inhibitor of colony-stimulating factor-1 receptor (CSF1R), JTE-952. CSF1R is specifically expressed by monocytic-lineage cells, including bone-resorbing osteoclasts, and is important for promoting the differentiation and proliferation of osteoclasts. In the present study, we investigated the therapeutic effect of JTE-952 on methotrexate (MTX)-refractory joint destruction in a clinically established adjuvant-induced arthritis rat model. JTE-952 did not suppress paw swelling under inflammatory conditions, but it inhibited the destruction of joint structural components including bone and cartilage in the inflamed joints. In addition, decreased range of joint motion and mechanical hyperalgesia after disease onset were suppressed by JTE-952. These results suggest that JTE-952 is expected to prevent the progression of the structural destruction of joints and its associated effects on joint motion and pain by inhibiting CSF1/CSF1R signaling in RA pathology, which is resistant to conventional disease-modifying anti-rheumatic drugs such as MTX.
Collapse
Affiliation(s)
- Naofumi Uesato
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | | | - Yushi Matsuo
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Naoki Miyagawa
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Koji Inagaki
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Reina Kakefuda
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | | | - Takahiro Hata
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | | | | |
Collapse
|
33
|
Hypoxia Inhibits Osteogenesis and Promotes Adipogenesis of Fibroblast-like Synoviocytes via Upregulation of Leptin in Patients with Rheumatoid Arthritis. J Immunol Res 2022; 2022:1431399. [PMID: 36530571 DOI: 10.1155/2022/1431399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is associated with the pathogenesis of rheumatoid arthritis (RA). RA fibroblast-like synoviocytes (FLSs) are able to differentiate into osteoblasts and adipocytes. In this study, we aimed to investigate the role of hypoxia in the osteogenesis or adipogenesis of RA-FLSs. Bioinformatics analysis was performed to profile gene expression in the datasets of GSE21959, GSE32006, and GSE55875, and flow cytometry was performed for FLS characterization, while Alizarin Redand Oil Red O staining for osteogenic or adipogenic differentiation of FLSs, respectively. RNA interference leptin knockdown was used to determine the role of leptin in the osteogenesis and adipogenesis of RA-FLSs, and the expression of osteogenic and adipogenic markers was quantified by RT-qPCR and Western blotting. FLSs exhibited a mesenchymal stem cell (MSC)-like phenotype and we observed a limited self-renewal capacity in RA-FLSs compared to that in MSCs, but it was still greater than osteoarthritis (OA)-FLSs. Hypoxia did not change the RA-FLS MSC-like phenotype but inhibited the osteogenic differentiation and promoted the adipogenic differentiation of RA-FLSs. From the bioinformatics analysis ofGSE21959, GSE32006, and GSE55875 datasets, we found leptin, the only perturbed hypoxia-mediated upregulated gene across the three profiled datasets. Leptin knockdown in RA-FLSs reversed the hypoxia-mediated reduction of osteogenesis and hypoxia-mediated enhancement of adipogenesis by elevated expression of osteogenic markers and reduced expression of adipogenic markers, respectively. Therefore, hypoxia-leptin regulation of the osteogenic and adipogenic differentiation of RA-FLSs advances our understanding of RA pathogenesis, meanwhile also provides opportunities for future therapeutic intervention of RA.
Collapse
|
34
|
Zhao YP, Han JF, Zhang FY, Liao TT, Na R, Yuan XF, He GB, Ye W. Flexible nano-liposomes-based transdermal hydrogel for targeted delivery of dexamethasone for rheumatoid arthritis therapy. Drug Deliv 2022; 29:2269-2282. [PMID: 35815790 PMCID: PMC9275483 DOI: 10.1080/10717544.2022.2096718] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory immune-mediated disease that can lead to synovitis, cartilage destruction, and even joint damage. Dexamethasone (DEX) is a commonly used agent for RA therapy on inflammation manage. However, the traditional administering DEX is hampered by low efficiency and obvious adverse effects. Therefore, in order to efficiently deliver DEX to RA inflamed joints and overcome existing deficiencies, we developed transdermal formation dextran sulfate (DS) modified DEX-loaded flexible liposome hydrogel (DS-FLs/DEX hydrogel), validated their transdermal efficiency, evaluated its ability to target activated macrophages, and its anti-inflammatory effect. The DS-FLs/DEX exhibited excellent biocompatibility, sustainable drug release, and high uptake by lipopolysaccharide (LPS)-activated macrophages. Furthermore, the DS-FLs/DEX hydrogel showed desired skin permeation as compared with regular liposome hydrogel (DS-RLs/DEX hydrogel) due to its good deformability. In vivo, when used the AIA rats as RA model, the DS-FLs/DEX hydrogel can effectively penetrate and accumulate in inflamed joints, significantly improve joint swelling in RA rats, and reduce the destructive effect of RA on bone. Importantly, the expression of inflammatory cytokines in joints was inhibited and the system toxicity did not activate under DS-FLs/DEX hydrogel treatment. Overall, these data revealed that the dextran sulfate (DS) modified DEX-loaded flexible liposome hydrogel (DS-FLs/DEX hydrogel) can prove to be an excellent drug delivery vehicle against RA.
Collapse
Affiliation(s)
- Yi-Pu Zhao
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China.,Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Jiang-Fan Han
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China.,Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Fei-Yue Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Tian-Tian Liao
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Ren Na
- Department of Epidemiology and Health Statistics, Faculty of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiao-Feng Yuan
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Guang-Bin He
- Department of Ultrasound Diagnosis, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weiliang Ye
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
35
|
Hauser B, Raterman H, Ralston SH, Lems WF. The Effect of Anti-rheumatic Drugs on the Skeleton. Calcif Tissue Int 2022; 111:445-456. [PMID: 35771255 PMCID: PMC9560949 DOI: 10.1007/s00223-022-01001-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/11/2022] [Indexed: 12/27/2022]
Abstract
The therapeutic armamentarium for rheumatoid arthritis has increased substantially over the last 20 years. Historically antirheumatic treatment was started late in the disease course and frequently included prolonged high-dose glucocorticoid treatment which was associated with accelerated generalised bone loss and increased vertebral and non-vertebral fracture risk. Newer biologic and targeted synthetic treatments and a combination of conventional synthetic DMARDs prevent accelerated systemic bone loss and may even allow repair of cortical bone erosions. Emerging data also gives new insight on the impact of long-term conventional synthetic DMARDs on bone health and fracture risk and highlights the need for ongoing studies for better understanding of "established therapeutics". An interesting new antirheumatic treatment effect is the potential of erosion repair with the use of biologic DMARDs and janus kinase inhibitors. Although several newer anti-rheumatic drugs seem to have favorable effects on bone mineral density in RA patients, these effects are modest and do not seem to influence the fracture risk thus far. We summarize recent developments and findings of the impact of anti-rheumatic treatments on localized and systemic bone integrity and health.
Collapse
Affiliation(s)
- B Hauser
- Rheumatic Disease Unit, Western General Hospital, Edinburgh, UK.
- Rheumatology and Bone Disease Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| | - H Raterman
- Department of Rheumatology, Northwest Clinics, Alkmaar, The Netherlands
| | - S H Ralston
- Rheumatic Disease Unit, Western General Hospital, Edinburgh, UK
- Rheumatology and Bone Disease Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - W F Lems
- Amsterdam Rheumatology and Immunology Centre, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Yang G, Kang HC, Cho YY, Lee HS, Lee JY. Inflammasomes and their roles in arthritic disease pathogenesis. Front Mol Biosci 2022; 9:1027917. [PMID: 36387275 PMCID: PMC9650081 DOI: 10.3389/fmolb.2022.1027917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/17/2022] [Indexed: 11/14/2023] Open
Abstract
The inflammasome is a molecular platform that is created in the cytosolic compartment to mediate the host immunological response to cellular injury and infection. Caspase-1 may be activated by the inflammasome, which leads to the generation of the inflammatory cytokines interleukin-1β (IL-1β) and IL-18 and the beginning of pyroptosis, which is a type of proinflammatory cell death. Scientists have identified a number of different inflammasomes in the last 2 decades. The NLRP3 inflammasome has been studied the most, and its activity may be triggered by a broad range of different inducers. However, activation of the NLRP3 inflammasome in a manner that is not properly controlled is also a factor in the etiology of many human illnesses. Accumulating evidence indicates that the NLRP3 inflammasome plays a significant role in the innate and adaptive immune systems and the development of various arthritic illnesses, such as rheumatoid arthritis, ankylosing spondylitis, and gout. The present review provides a concise summary of the biological properties of the NLRP3 inflammasome and presents the fundamental processes behind its activation and control. We discuss the role of the inflammasome in the pathogenesis of arthritic diseases, such as rheumatoid arthritis, ankylosing spondylitis, and gout, and the potential of newly developed therapies that specifically target the inflammasome or its products for the treatment of inflammatory diseases, with a particular emphasis on treatment and clinical application.
Collapse
Affiliation(s)
- Gabsik Yang
- Department of Pharmacology, College of Korean Medicine, Woosuk University, Jeonju, South Korea
| | - Han Chang Kang
- College of Pharmacy, The Catholic University of Korea, Seoul, South Korea
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Seoul, South Korea
| | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea, Seoul, South Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
37
|
Gao Y, Cai W, Zhou Y, Li Y, Cheng J, Wei F. Immunosenescence of T cells: a key player in rheumatoid arthritis. Inflamm Res 2022; 71:1449-1462. [DOI: 10.1007/s00011-022-01649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022] Open
|
38
|
Brogren E, Abramo A, Tägil M. Bone Remodeling after Ulna Head Replacement in Distal Radioulnar Joint Arthroplasty: A Radiographic Comparison between a Partial and a Total Ulna Head Concept. J Wrist Surg 2022; 11:425-432. [PMID: 36339080 PMCID: PMC9633151 DOI: 10.1055/s-0041-1742098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/17/2021] [Indexed: 11/08/2022]
Abstract
Background Ulna head arthroplasty has become an eligible solution for injury or disease in the distal radioulnar joint. Bone resorption beneath the prosthetic head is often reported, but mechanism poorly understood. Purpose The aims were to evaluate bone remodeling and radiological instability in two conceptually different distal radioulnar joint arthroplasties: the total and the partial ulna head replacement. Patients and Methods We conducted a retrospective radiographic assessment of 51 ulna head arthroplasties; 26 Herbert ulna (total ulna head replacement) and 25 First Choice (partial ulna head replacement), to analyze periprosthetic bone resorption and radiologic instability. Intraoperative/immediate postoperative and 1-year radiographs were reviewed by two independent assessors. The radiographic follow-up averaged 13 (10-17) months. The size of the stem in relation to the diameter of the ulna (filling ratio) was measured on the intraoperative/immediate postoperative radiographs. Bone resorption beneath the collar of the prothesis was measured on the 1-year radiographs and expressed as a bone resorption index (BRI) between the length of the resorption and the length of the implant stem. Radiological stability was measured on both the preoperative and the 1-year lateral radiographs. Results The total ulna head prothesis presented with more extensive bone resorption beneath the prosthetic head than the partial ulna head prothesis at 1-year post surgery ( p <0.001). The filling ratio did not influence the 1-year bone resorption and there was no difference regarding radiological instability between the two prosthetic designs. Conclusion The pattern of bone adaptions after an ulna head prothesis may differ due to design and concept of the prosthesis.
Collapse
Affiliation(s)
- Elisabeth Brogren
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
- Department of Translational Medicine, Lund University, Lund, Sweden
| | - Antonio Abramo
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
- Department of Translational Medicine, Lund University, Lund, Sweden
| | - Magnus Tägil
- Department of Orthopedics, Skåne University Hospital, Malmö, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
39
|
Ford CA, Hurford IM, Fulbright LE, Curry JM, Peek CT, Spoonmore TJ, Cruz Victorio V, Johnson JR, Peck SH, Cassat JE. Loss of Vhl alters trabecular bone loss during S. aureus osteomyelitis in a cell-specific manner. Front Cell Infect Microbiol 2022; 12:985467. [PMID: 36204648 PMCID: PMC9530664 DOI: 10.3389/fcimb.2022.985467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/29/2022] [Indexed: 01/07/2023] Open
Abstract
Osteomyelitis, or bone infection, is a major complication of accidental trauma or surgical procedures involving the musculoskeletal system. Staphylococcus aureus is the most frequently isolated pathogen in osteomyelitis and triggers significant bone loss. Hypoxia-inducible factor (HIF) signaling has been implicated in antibacterial immune responses as well as bone development and repair. In this study, the impact of bone cell HIF signaling on antibacterial responses and pathologic changes in bone architecture was explored using genetic models with knockout of either Hif1a or a negative regulator of HIF-1α, Vhl. Deletion of Hif1a in osteoblast-lineage cells via Osx-Cre (Hif1aΔOB ) had no impact on bacterial clearance or pathologic changes in bone architecture in a model of post-traumatic osteomyelitis. Knockout of Vhl in osteoblast-lineage cells via Osx-Cre (VhlΔOB ) caused expected increases in trabecular bone volume per total volume (BV/TV) at baseline and, intriguingly, did not exhibit an infection-mediated decline in trabecular BV/TV, unlike control mice. Despite this phenotype, bacterial burdens were not affected by loss of Vhl. In vitro studies demonstrated that transcriptional regulation of the osteoclastogenic cytokine receptor activator of NF-κB ligand (RANKL) and its inhibitor osteoprotegerin (OPG) is altered in osteoblast-lineage cells with knockout of Vhl. After observing no impact on bacterial clearance with osteoblast-lineage conditional knockouts, a LysM-Cre model was used to generate Hif1aΔMyeloid and VhlΔMyeloid mouse models to explore the impact of myeloid cell HIF signaling. In both Hif1aΔMyeloid and VhlΔMyeloid models, bacterial clearance was not impacted. Moreover, minimal impacts on bone architecture were observed. Thus, skeletal HIF signaling was not found to impact bacterial clearance in our mouse model of post-traumatic osteomyelitis, but Vhl deletion in the osteoblast lineage was found to limit infection-mediated trabecular bone loss, possibly via altered regulation of RANKL-OPG gene transcription.
Collapse
Affiliation(s)
- Caleb A. Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Ian M. Hurford
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Laura E. Fulbright
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jacob M. Curry
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christopher T. Peek
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Thomas J. Spoonmore
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Virginia Cruz Victorio
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joshua R. Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sun H. Peck
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James E. Cassat
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
40
|
Deng L, Yao F, Tian F, Luo X, Yu S, Wen Z. Influence of Iguratimod on Bone Metabolism in Patients with Rheumatoid Arthritis: A Meta-analysis. Int J Clin Pract 2022; 2022:5684293. [PMID: 35936067 PMCID: PMC9334038 DOI: 10.1155/2022/5684293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Background Influence of iguratimod on bone mineral density (BMD) and biomarkers of bone metabolism in patients with rheumatoid arthritis (RA) remains not determined. Accordingly, a meta-analysis was performed for systematical evaluation. Methods Relevant randomized controlled trials (RCTs) were retrieved by searching of PubMed, Embase, Cochrane's Library, China National Knowledge Infrastructure (CNKI), and Wanfang databases. A random-effect model was used to pool the results. Results In total, 24 RCTs including 2439 patients with RA contributed to the meta-analysis. Pooled results showed that compared to methotrexate alone, additional use of iguratimod 25 mg Bid for 12∼24 weeks significantly improved lumbar-spine BMD (mean difference [MD]: 0.12, 95% confidence interval [CI]: 0.04 to 0.20, p=0.002, I 2 = 39%) in patients with RA. Moreover, treatment with iguratimod was associated with increased serum osteoprotegerin (MD: 180.36 pg/ml, 95% CI: 122.52 to 238.20, p < 0.001, I 2 = 48%), and decreased serum receptor activator for nuclear factor kappa-B ligand (MD: -10.65 pmol/l, 95% CI: -15.59 to -5.72, p < 0.001, I 2 = 53%). In addition, iguratimod was associated with increased bone formation markers such as the serum N-terminal middle molecular fragment of osteocalcin (MD: 4.23 ng/ml, 95% CI: 3.74 to 4.71, p < 0.001, I 2 = 35%) and total procollagen type I amino-terminal propeptide (MD: 9.10 ng/ml, 95% CI: 7.39 to 10.80, p < 0.001, I 2 = 86%), but decreased the bone resorption marker such as serum β-C terminal cross-linking telopeptide of type 1 collagen (MD: -0.18 pg/ml, 95% CI: -0.21 to -0.14, p < 0.001, I 2 = 70%). Conclusions Iguratimod could prevent the bone loss and improve the bone metabolism in patients with RA.
Collapse
Affiliation(s)
- Li Deng
- Department of Rheumatology and Immunology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou 412000, China
| | - Fangling Yao
- Department of Rheumatology and Immunology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou 412000, China
| | - Feng Tian
- Department of Rheumatology and Immunology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou 412000, China
| | - Xiaowen Luo
- Department of Rheumatology and Immunology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou 412000, China
| | - Shenyi Yu
- Department of Rheumatology and Immunology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou 412000, China
| | - Zhenhua Wen
- Department of Rheumatology and Immunology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou 412000, China
| |
Collapse
|
41
|
Komatsu N, Takayanagi H. Mechanisms of joint destruction in rheumatoid arthritis - immune cell-fibroblast-bone interactions. Nat Rev Rheumatol 2022; 18:415-429. [PMID: 35705856 DOI: 10.1038/s41584-022-00793-5] [Citation(s) in RCA: 240] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by inflammation and destruction of bone and cartilage in affected joints. Autoimmune responses lead to increased osteoclastic bone resorption and impaired osteoblastic bone formation, the imbalance of which underlies bone loss in RA, which includes bone erosion, periarticular bone loss and systemic osteoporosis. The crucial role of osteoclasts in bone erosion has been demonstrated in basic studies as well as by the clinical efficacy of antibodies targeting RANKL, an important mediator of osteoclastogenesis. Synovial fibroblasts contribute to joint damage by stimulating both pro-inflammatory and tissue-destructive pathways. New technologies, such as single-cell RNA sequencing, have revealed the heterogeneity of synovial fibroblasts and of immune cells including T cells and macrophages. To understand the mechanisms of bone damage in RA, it is important to clarify how the immune system promotes the tissue-destructive properties of synovial fibroblasts and influences bone cells. The interaction between immune cells and fibroblasts underlies the imbalance between regulatory T cells and T helper 17 cells, which in turn exacerbates not only inflammation but also bone destruction, mainly by promoting RANKL expression on synovial fibroblasts. An improved understanding of the immune mechanisms underlying joint damage and the interplay between the immune system, synovial fibroblasts and bone will contribute to the identification of novel therapeutic targets in RA.
Collapse
Affiliation(s)
- Noriko Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
42
|
Su N, Villicana C, Yang F. Immunomodulatory strategies for bone regeneration: A review from the perspective of disease types. Biomaterials 2022; 286:121604. [PMID: 35667249 PMCID: PMC9881498 DOI: 10.1016/j.biomaterials.2022.121604] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023]
Abstract
Tissue engineering strategies for treating bone loss to date have largely focused on targeting stem cells or vascularization. Immune cells, including macrophages and T cells, can also indirectly enhance bone healing via cytokine secretion to interact with other bone niche cells. Bone niche cues and local immune environment vary depending on anatomical location, size of defects and disease types. As such, it is critical to evaluate the role of the immune system in the context of specific bone niche and different disease types. This review focuses on immunomodulation research for bone applications using biomaterials and cell-based strategies, with a unique perspective from different disease types. We first reviewed applications for prolonging orthopaedic implant lifetime and enhancing fracture healing, two clinical challenges where immunomodulatory strategies were initially developed for orthopedic applications. We then reviewed recent research progress in harnessing immunomodulatory strategies for regenerating critical-sized, long bone or cranial bone defects, and treating osteolytic bone diseases. Remaining gaps in knowledge, future directions and opportunities were also discussed.
Collapse
Affiliation(s)
- Ni Su
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Cassandra Villicana
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA.,: Corresponding Author Fan Yang, Ph D, Department of Orthopaedic Surgery and Bioengineering, Stanford University School of Medicine, 240 Pasteur Dr, Palo Alto, CA 94304, Biomedical Innovation Building, 1st floor, Room 1200, , Phone: (650) 646-8558
| |
Collapse
|
43
|
Mechanism of Huangqi Sanxian Decoction Inhibiting Osteoclast Differentiation Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8769531. [PMID: 35754697 PMCID: PMC9225917 DOI: 10.1155/2022/8769531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/13/2022] [Accepted: 05/21/2022] [Indexed: 11/17/2022]
Abstract
Osteoclasts (OCs) have been the unique cell type exhibiting the bone-resorption activity in body. It is important to identify drugs to resist osteoclastogenesis to manage the bone-loss disorders. Huangqi Sanxian decoction (HQSXD) is utilized for the treatment of postmenopausal osteoporosis (PMOP) for a long history in East Asia. This work aimed to examine HQSXD’s activity in OC differentiation. Based on staining with tartrate-resistant acid phosphatase (TRAP), it was found that HQSXD suppressed OC generation under the induction of RANKL produced in the bone marrow-derived monocytes/macrophages (BMMs), with no cytotoxic effect. Later analysis like molecular exploration and network pharmacology (NP) suggested the role of HQSXD in suppressing genes associated with osteoclastogenesis via PI3K/Akt-mediated mechanism dose-dependently. This work might illustrate the molecular pharmacological mechanism involved in HQSXD’s effect on treating OC-associated disorders. Moreover, NP was found to modernize traditional Chinese medicine (TCM) research.
Collapse
|
44
|
Abstract
Since the receptor activator of nuclear factor-kappa B ligand (RANKL), its cognate receptor activator of nuclear factor-kappa B (RANK), and the decoy receptor osteoprotegerin (OPG) were discovered, a number of studies have uncovered the crucial role of the RANKL-RANK-OPG pathway in controlling the key aspect of bone homeostasis, the immune system, inflammation, cancer, and other systems under pathophysiological condition. These findings have expanded the understanding of the multifunctional biology of the RANKL-RANK-OPG pathway and led to the development of therapeutic potential targeting this pathway. The successful development and application of anti-RANKL antibody in treating diseases causing bone loss validates the utility of therapeutic approaches based on the modulation of this pathway. Moreover, recent studies have demonstrated the involvement of the RANKL-RANK pathway in osteoblast differentiation and bone formation, shedding light on the RANKL-RANK dual signaling in coupling bone resorption and bone formation. In this review, we will summarize the current understanding of the RANKL-RANK-OPG system in the context of the bone and the immune system as well as the impact of this pathway in disease conditions, including cancer development and metastasis.
Collapse
Affiliation(s)
- Noriko Takegahara
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Hyunsoo Kim
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Yongwon Choi
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Cheng F, Li H, Liu J, Yan F, Chen Y, Hu H. EZH2 regulates the balance between osteoclast and osteoblast differentiation to inhibit arthritis-induced bone destruction. Genes Immun 2022; 23:141-148. [PMID: 35581496 DOI: 10.1038/s41435-022-00174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/09/2022]
Abstract
Enhancer of zeste homolog 2 (EZH2) has been noted to contribute to the pathogenesis of autoimmune diseases. This study sought to investigate the mechanism of EZH2 in osteoclast (OCL) and osteoblast (OBL) differentiation (OCLD/OBLD) and bone destruction in RA. The animal model of collagen-induced arthritis (CIA) was established, followed by arthritis index (AI) scoring and histological staining, and measurements of inflammatory cytokines levels. The number of OCLs was detected via Tartrate-resistant acid phosphatase (TRAP) staining, and levels of OBL markers were determined by Western blot analysis. Trimethylated histone H3 at lysine 27 (H3K27me3) expression and its enrichment in the Ndrg2 promoter were detected. Collaborative experiments were performed with GSK-J1 or sh-Ndrg2 in CIA mice with EZH2 knockdown. EZH2 was upregulated while Ndrg2 was downregulated in knee joint tissues of CIA mice. Silencing EZH2 reduced AI scores, pathological injury of the knee joint, levels of inflammatory cytokines, and TRAP-positive cells, and increased protein levels of RUNX2 and BMP2. EZH2 promoted H3K27me3 level in the Ndrg2 promoter to inhibit Ndrg2 transcription. H3K27me3 upregulation or Ndrg2 downregulation reversed the role of silencing EZH2 in bone destruction. Overall, EZH2 repressed OBLD and promoted OCLD to aggravate bone destruction in CIA mice through H3K27me3/Ndrg2.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Anesthesiology and Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222042, Jiangsu, China
| | - Huimin Li
- Department of Traditional Chinese and Western Medicine, Lianyungang Oriental Hospital, Lianyungang, 222042, Jiangsu, China
| | - Jing Liu
- Department of Anesthesiology and Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222042, Jiangsu, China
| | - Fengfeng Yan
- Department of Anesthesiology and Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222042, Jiangsu, China
| | - Yu Chen
- Department of Anesthesiology and Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222042, Jiangsu, China
| | - Haiyan Hu
- Department of Traditional Chinese and Western Medicine, Lianyungang Oriental Hospital, Lianyungang, 222042, Jiangsu, China.
| |
Collapse
|
46
|
Ortiz ADC, Fideles SOM, Reis CHB, Bellini MZ, Pereira EDSBM, Pilon JPG, de Marchi MÂ, Detregiachi CRP, Flato UAP, Trazzi BFDM, Pagani BT, Ponce JB, Gardizani TP, Veronez FDS, Buchaim DV, Buchaim RL. Therapeutic Effects of Citrus Flavonoids Neohesperidin, Hesperidin and Its Aglycone, Hesperetin on Bone Health. Biomolecules 2022; 12:626. [PMID: 35625554 PMCID: PMC9138288 DOI: 10.3390/biom12050626] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
Flavonoids are natural phytochemicals that have therapeutic effects and act in the prevention of several pathologies. These phytochemicals can be found in seeds, grains, tea, coffee, wine, chocolate, cocoa, vegetables and, mainly, in citrus fruits. Neohesperidin, hesperidin and hesperetin are citrus flavonoids from the flavanones subclass that have anti-inflammatory and antioxidant potential. Neohesperidin, in the form of neohesperidin dihydrochalcone (NHDC), also has dietary properties as a sweetener. In general, these flavanones have been investigated as a strategy to control bone diseases, such as osteoporosis and osteoarthritis. In this literature review, we compiled studies that investigated the effects of neohesperidin, hesperidin and its aglycone, hesperetin, on bone health. In vitro studies showed that these flavanones exerted an antiosteoclastic and anti- inflammatory effects, inhibiting the expression of osteoclastic markers and reducing the levels of reactive oxygen species, proinflammatory cytokines and matrix metalloproteinase levels. Similarly, such studies favored the osteogenic potential of preosteoblastic cells and induced the overexpression of osteogenic markers. In vivo, these flavanones favored the regeneration of bone defects and minimized inflammation in arthritis- and periodontitis-induced models. Additionally, they exerted a significant anticatabolic effect in ovariectomy models, reducing trabecular bone loss and increasing bone mineral density. Although research should advance to the clinical field, these flavanones may have therapeutic potential for controlling the progression of metabolic, autoimmune or inflammatory bone diseases.
Collapse
Affiliation(s)
- Adriana de Cássia Ortiz
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.); (C.H.B.R.)
| | - Simone Ortiz Moura Fideles
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.); (C.H.B.R.)
| | - Carlos Henrique Bertoni Reis
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.); (C.H.B.R.)
- UNIMAR Beneficent Hospital (HBU), Faculty of Medicine, University of Marilia (UNIMAR), Marília 17525-160, Brazil; (J.P.G.P.); (U.A.P.F.)
| | - Márcia Zilioli Bellini
- Pro-Rectory of Research and Graduate Studies, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil;
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (C.R.P.D.); (D.V.B.)
| | - João Paulo Galletti Pilon
- UNIMAR Beneficent Hospital (HBU), Faculty of Medicine, University of Marilia (UNIMAR), Marília 17525-160, Brazil; (J.P.G.P.); (U.A.P.F.)
- Postgraduate Program in Speech Therapy, Sao Paulo State University (UNESP—Univ Estadual Paulista), Marília 17525-900, Brazil
| | - Miguel Ângelo de Marchi
- Coordination of the Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil;
| | - Cláudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (C.R.P.D.); (D.V.B.)
| | - Uri Adrian Prync Flato
- UNIMAR Beneficent Hospital (HBU), Faculty of Medicine, University of Marilia (UNIMAR), Marília 17525-160, Brazil; (J.P.G.P.); (U.A.P.F.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (C.R.P.D.); (D.V.B.)
| | | | - Bruna Trazzi Pagani
- Dentistry School, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
| | - José Burgos Ponce
- Medicine Department, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil; (J.B.P.); (T.P.G.)
- Medicine Department, Faculties of Dracena (FUNDEC Unifadra), Dracena 17900-000, Brazil
| | - Taiane Priscila Gardizani
- Medicine Department, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil; (J.B.P.); (T.P.G.)
- Faculty of Medicine São Leopoldo Mandic (SLMANDIC), Araras 13606-134, Brazil
| | - Fulvia de Souza Veronez
- Pro-Rectory of Teaching, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil;
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (C.R.P.D.); (D.V.B.)
- Teaching and Research Coordination of the Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil; (A.d.C.O.); (S.O.M.F.); (C.H.B.R.)
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| |
Collapse
|
47
|
Sghiri R, Benhassine H, Baccouche K, Ghozzi M, Jriri S, Shakoor Z, Almogren A, Slama F, Idriss N, Benlamine Z, Bouajina E, Zemni R. A CD40 variant is associated with systemic bone loss among patients with rheumatoid arthritis. Clin Rheumatol 2022; 41:1851-1858. [PMID: 35107652 DOI: 10.1007/s10067-021-05998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Little is known about genes predisposing to systemic bone loss (SBL) in rheumatoid arthritis (RA). Therefore, we examined the association between SBL and variants of genes playing a critical role in both immune response and bone homeostasis among patients with RA. METHODS IRAK-1 rs3027898, IRAK-2 rs3844283, IRAK-2 rs708035, IFIH1 rs1990760, CD40 rs48104850, TNFAIP3 rs2230926, and miR146-a rs2910164 were genotyped in 176 adult RA patients. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry (DXA). RESULTS Low BMD was observed in 116 (65.9%) patients. Among them, 60 (34.1%) had low femoral neck (FN) Z score, 72 (40.9%) had low total femur (TF) Z score, and 105 (59.6%) had low lumbar spine (LS) Z score. Among all the SNPs assessed, only CD40 rs4810485 was found to be associated with reduced TF Z score with the CD40 rs4810485 T allele protecting against reduced TF Z score (OR = 0.40, 95% CI = 0.23-0.68, p = 0.0005). This association was confirmed in the multivariate logistic regression analysis (OR = 0.31, 95% CI = 0.16-0.59, p = 3.84 × 10-4). Moreover, median FN BMD was reduced among RA patients with CD40 rs4810485 GG genotype compared to RA patients harbouring CD40 rs4810485 TT and GT genotypes (0.788 ± 0.136 versus 0.826 ± 0.146 g/cm2, p = 0.001). IRAK-1 rs3027898, IRAK-2 rs3844283, rs708035, IFIH rs1990760, TNFAIP3 rs2230926, and miR146-a rs2910164 were not found to be associated with SBL. CONCLUSION This study for the first time ever demonstrated an association between a CD40 genetic variant and SBL among patients with RA. KEY POINTS • CD40 rs4810485 GG genotype is associated with decreased BMD among patients with RA. • CD40 rs4810485 might serve as a genetic marker for SBL in RA. • CD40 genetic variations might be integrated in future development of more effective therapeutic interventions for prevention of SBL in RA.
Collapse
Affiliation(s)
- Rim Sghiri
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Hana Benhassine
- Immunogenetics Unit, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | | | - Meriem Ghozzi
- Immunogenetics Unit, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Sarra Jriri
- Department of Rheumatology, Farhat Hached Hospital, Sousse, Tunisia
| | - Zahid Shakoor
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Adel Almogren
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Foued Slama
- Immunogenetics Unit, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Nadia Idriss
- Immunogenetics Unit, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Zeineb Benlamine
- Immunogenetics Unit, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Elyes Bouajina
- Department of Rheumatology, Farhat Hached Hospital, Sousse, Tunisia
| | - Ramzi Zemni
- Immunogenetics Unit, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| |
Collapse
|
48
|
Taheri E, Mahdavi-Gorabi A, Moludi J, Asayesh H, Qorbani M. A meta-analysis of dietary inflammatory index and bone health status. J Diabetes Metab Disord 2022; 21:109-121. [PMID: 35673467 PMCID: PMC9167420 DOI: 10.1007/s40200-021-00945-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/24/2021] [Indexed: 01/13/2023]
Abstract
Background The inflammatory potential of diets is associated with several diseases and can affect bone health. We aimed to systematically review and pool the current evidence on the association of DII with bone health in observational studies. Methods We searched PubMed and NLM Gateway (for Medline), Web of Science, Scopus and EMBASE up to December 16, 2020 for studies that examined the relationship between DII score and bone mineral density (BMD) or fracture. All observational studies were included in this meta-analysis. Heterogeneity between studies was evaluated using Cochran Q-statistic and I2 statistics. Random effect meta-analysis method was used to pool the effect size. Stratified meta-analysis according to the type of study (cohort/ non-cohort) was performed to assess the relationship of DII with BMD and fracture. Results In total, 13 articles were included in the present systematic review, including five cohorts, five cross-sectional, and three case-control studies. The total sample size of these studies was 211,938 individuals aged 5 to 85 years. According to random-effect meta-analysis, DII was associated with increased odds of fracture in non-cohort studies (pooled OR=1.42, 95%CI: 1.17, 1.67), but this association was not statistically significant in cohort studies (pooled OR=1.03, 95%CI: 0.97, 1.09). Moreover, only in non-cohort studies, the mean of BMD in subjects in the highest DII category was significantly lower than those in the lowest DII category (SMD: -9.59, 95%CI: -10.84,-8.33). Conclusions Our findings showed that high score of DII can have devastating effects on bone health. Further longitudinal studies are necessary to confirm these findings among more diverse populations.
Collapse
Affiliation(s)
- Ehsaneh Taheri
- grid.411600.2Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armita Mahdavi-Gorabi
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Moludi
- grid.412112.50000 0001 2012 5829School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid Asayesh
- grid.444830.f0000 0004 0384 871XDepartment of Medical Emergencies, Qom University of Medical Sciences, Qom, Iran
| | - Mostafa Qorbani
- grid.411705.60000 0001 0166 0922Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran ,grid.411705.60000 0001 0166 0922Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Box CD, Cronin O, Hauser B. The Impact of High Dose Glucocorticoids on Bone Health and Fracture Risk in Systemic Vasculitides. Front Endocrinol (Lausanne) 2022; 13:806361. [PMID: 35250864 PMCID: PMC8889574 DOI: 10.3389/fendo.2022.806361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/07/2022] [Indexed: 12/29/2022] Open
Abstract
Systemic vasculitides are a range of conditions characterized by inflammation of blood vessels which may manifest as single organ or life-threatening multisystem disease. The treatment of systemic vasculitis varies depending on the specific disease but historically has involved initial treatment with high dose glucocorticoids alone or in conjunction with other immunosuppressive agents. Prolonged glucocorticoid treatment is frequently required as maintenance treatment. Patients with small and large vessel vasculitis are at increased risk of fracture. Osteoporosis may occur due to intrinsic factors such as chronic inflammation, impaired renal function and to a large extent due to pharmacological therapy with high dose glucocorticoid or combination treatments. This review will outline the known mechanism of bone loss in vasculitis and will summarize factors attributing to fracture risk in different types of vasculitis. Osteoporosis treatment with specific consideration for patients with vasculitis will be discussed. The use of glucocorticoid sparing immunosuppressive agents in the treatment of systemic vasculitis is a significant area of ongoing research. Adjunctive treatments are used to reduce cumulative doses of glucocorticoids and therefore may significantly decrease the associated fracture risk in patients with vasculitis. Lastly, we will highlight the many unknowns in the relation between systemic vasculitis, its treatment and bone health and will outline key research priorities for this field.
Collapse
Affiliation(s)
| | - Owen Cronin
- Department of Rheumatology, Bon Secours Hospital Cork, Cork, Ireland
- School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Barbara Hauser
- Rheumatic Disease Unit, Western General Hospital, Edinburgh, United Kingdom
- Rheumatology and Bone Disease Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Barbara Hauser,
| |
Collapse
|
50
|
Majoon Chobchini attenuates arthritis disease severity and RANKL-mediated osteoclastogenesis in rheumatoid arthritis. 3 Biotech 2021; 11:436. [PMID: 34549015 PMCID: PMC8446481 DOI: 10.1007/s13205-021-02985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/04/2021] [Indexed: 11/03/2022] Open
Abstract
Majoon Chobchini, a polyherbal Unani compound, has been used holistically in India to treat rheumatoid arthritis. However, the potential mechanism underlying the antiarthritic efficacy of Majoon Chobchini has not been elucidated so far. This study was aimed to explore the underlying molecular mechanism and scientifically validate the therapeutic basis of Majoon Chobchini in rheumatoid arthritis (RA). The anti-arthritic efficacy of Majoon Chobchini was demonstrated in vivo using complete Freund's adjuvant-induced arthritic rat model and adjuvant-induced arthritic fibroblast-like synoviocytes (AA-FLS). The expression of pro-inflammatory mediators and enzymes was evaluated in the serum and synovial tissues of adjuvant-induced arthritis (AIA) rats. In-vitro, AA-FLS, and bone marrow macrophages (BMMs) were co-cultured to evaluate the formation and activity of osteoclasts using TRAP staining analysis and pit formation assay, respectively. RANKL and OPG levels were detected using western blotting and qRT-PCR analysis. Furthermore, the involvement of JAK-STAT-3 signaling in the therapeutic efficacy of Majoon Chobchini was evaluated both in vivo and in vitro. Majoon Chobchini significantly reversed the physical symptoms in AIA rats with reduced expression of pro-inflammatory cytokines and enzymes. Notably, Majoon Chobchini alleviated cartilage degradation and bone erosion in AIA rats via inhibiting the activation of the JAK-STAT-3 signaling pathway in the AIA rats. Consistent with its effect in vivo, Majoon Chobchini decreased osteoclast inducing potential of AA-FLS and thus attenuated osteoclast formation and bone resorption in vitro. Taken together, our findings suggest that the JAK/STAT-3 signaling inhibition may underlie the mechanism through which Majoon Chobchini provides relief against RA symptoms. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02985-4.
Collapse
|