1
|
Li B, Yang H, Zhu W, Gao S, Xing C, Zhu S, Li H, Zhong H, Xiong Y, Ren X, Ning G. Surgical treatment of osteogenesis imperfecta: a summary of the incidence of femoral implant-related complications in children with Sillence type I, III and IV. INTERNATIONAL ORTHOPAEDICS 2024; 48:1645-1655. [PMID: 38386087 DOI: 10.1007/s00264-024-06113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE This study explored the incidence of IRCs used in the procedures of the femur in children with osteogenesis imperfecta (OI) and investigated the independent risk factors of IRCs. METHODS Three hundred eight-eight cases of surgical data about children with OI were included, who were treated with plate, elastic nail, Kirschner wire and telescopic rod. The choice of different procedures depended on the age of children, the status of femur and the availability of devices. Patient demographics and major IRCs were recorded to compare the outcomes of the four procedures. Then, Cox proportional hazard regression was used to analyse the independent risk factors of IRC, and subgroup analysis was applied to further verify the above results. RESULTS The total incidence of IRC in the four groups was 90.1% (191/212) for plate, 96.8% (30/31) for Kirschner wire, 87.7% (57/65) for elastic nail and 30.0% (24/80) for telescopic rod. The incidence of IRC in the telescopic rod was lower than that in plate, elastic nail and Kirschner wire (P < 0.001). Cox proportional hazard regression analysis confirmed that procedure was the independent risk factor of IRC (HR, 0.191; 95% CI, 0.126-0.288; P < 0.001), fracture (HR, 0.193; 95% CI, 0.109-0.344; P < 0.001) and deformity (HR, 0.086; 95% CI, 0.027-0.272; P < 0.001). In addition, age of surgery was the independent risk factor of fracture (HR, 0.916; 95% CI, 0.882-0.952; P < 0.001) and deformity (HR, 1.052; 95% CI, 1.008-1.098; P = 0.019). Subgroup analysis confirmed that age of surgery, gender, classification, preoperative state and angle did not affect the effect of telescopic rod on reducing the risk of IRCs. CONCLUSIONS In our cohort, lower incidence of IRCs was observed in telescopic rod group compared with plate, Kirschner wire and elastic nail. Procedure and age of surgery were independent risk factors of fracture. Likewise, procedure and age of surgery were independent risk factors of deformity, and procedure was independent risk factors of IRC.
Collapse
Affiliation(s)
- Bo Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Hongjiang Yang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Wenbiao Zhu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Shijie Gao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Cong Xing
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Shibo Zhu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Hao Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Hao Zhong
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Yang Xiong
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Xiuzhi Ren
- Department of Pediatric Orthopedics, Wuqing People Hospital, Tianjin, 301700, China.
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.
| |
Collapse
|
2
|
Joshi KK, Siafarikas A, Prince R. The Natural History of Symptomatic Fractures in Children and Adolescents with Osteogenesis Imperfecta Type 1: A Cohort Study from Western Australia. JBMR Plus 2023; 7:e10782. [PMID: 37701152 PMCID: PMC10494498 DOI: 10.1002/jbm4.10782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 09/14/2023] Open
Abstract
The fracture experience of children and adolescents with osteogenesis imperfecta (OI) type 1 is not well described in the literature. We present data on symptomatic long bones and axial skeleton fractures of all patients aged 0 to 18 years with OI type 1 seen at a specialized bone clinic in Western Australia in the period 2008 to 2020 using a retrospective chart review method. The cohort consisted of 44 patients (21 males, 23 females). Median (interquartile range [IQR]) age was 11.3 (6.2 to 17) years, giving a total of 520 patient-years in the study during which 197 fractures were experienced. The mean fracture rate was 379 fractures per 1000 patient-years (95% confidence interval [CI]: 310 to 440); however, the experience for fractures varied from ≤1 fracture in 23% (n = 10) to two to 20 in 77% (n = 34) of the cohort. Twenty-one patients (48.5%) received bisphosphonates during the study period. In logistic regression, age, but not sex or family history of OI, was a significant predictor of fracture risk. The highest total fracture rate was observed in the age group 0 to <3 years at 469 fractures/1000 patient-years, which declined to 140 fractures/1000 patient-years in the age group 15 to 18 years. The lower limbs were the site of 49.7% of all fractures. The highest rate for lower limb fracture was in the age group 0 to <3 years at 331 fractures/1000 patient-years, decreasing to 0 fractures/1000 patient-years in the age group 15 to 18 years. Upper limb fracture rates increased from 100 fractures/1000 patient-years in the 0 to <3 years age group to 307 fractures/1000 patient-years in the 9 to <12 years age group and then declining to 70 fractures/1000 years in the 15 to 18 years age group. In pediatric patients with OI type 1, fracture risk is highest in early life, especially in the lower limbs. Multidisciplinary care of children with OI should have a particular focus on strategies to prevent these fractures. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Kiranjit K Joshi
- University of Western AustraliaPerthWAAustralia
- Perth Children's Hospital Department of Endocrinology and DiabetesPerthWAAustralia
- Western Australian Bone Research CollaborationPerthWAAustralia
| | - Aris Siafarikas
- University of Western AustraliaPerthWAAustralia
- Perth Children's Hospital Department of Endocrinology and DiabetesPerthWAAustralia
- Western Australian Bone Research CollaborationPerthWAAustralia
- Institute for Health ResearchUniversity of Notre Dame AustraliaFremantleWAAustralia
- Exercise Medicine Research InstituteEdith Cowan UniversityPerthWAAustralia
| | - Richard Prince
- University of Western AustraliaPerthWAAustralia
- Western Australian Bone Research CollaborationPerthWAAustralia
| |
Collapse
|
3
|
Alcorta-Sevillano N, Infante A, Macías I, Rodríguez CI. Murine Animal Models in Osteogenesis Imperfecta: The Quest for Improving the Quality of Life. Int J Mol Sci 2022; 24:ijms24010184. [PMID: 36613624 PMCID: PMC9820162 DOI: 10.3390/ijms24010184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Osteogenesis imperfecta is a rare genetic disorder characterized by bone fragility, due to alterations in the type I collagen molecule. It is a very heterogeneous disease, both genetically and phenotypically, with a high variability of clinical phenotypes, ranging from mild to severe forms, the most extreme cases being perinatal lethal. There is no curative treatment for OI, and so great efforts are being made in order to develop effective therapies. In these attempts, the in vivo preclinical studies are of paramount importance; therefore, serious analysis is required to choose the right murine OI model able to emulate as closely as possible the disease of the target OI population. In this review, we summarize the features of OI murine models that have been used for preclinical studies until today, together with recently developed new murine models. The bone parameters that are usually evaluated in order to determine the relevance of new developing therapies are exposed, and finally, current and innovative therapeutic strategies attempts considered in murine OI models, along with their mechanism of action, are reviewed. This review aims to summarize the in vivo studies developed in murine models available in the field of OI to date, in order to help the scientific community choose the most accurate OI murine model when developing new therapeutic strategies capable of improving the quality of life.
Collapse
Affiliation(s)
- Natividad Alcorta-Sevillano
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
| | - Iratxe Macías
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
- Correspondence:
| |
Collapse
|
4
|
Chen Y, Yang S, Lovisa S, Ambrose CG, McAndrews KM, Sugimoto H, Kalluri R. Type-I collagen produced by distinct fibroblast lineages reveals specific function during embryogenesis and Osteogenesis Imperfecta. Nat Commun 2021; 12:7199. [PMID: 34893625 PMCID: PMC8664945 DOI: 10.1038/s41467-021-27563-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 11/16/2021] [Indexed: 01/15/2023] Open
Abstract
Type I collagen (Col1) is the most abundant protein in mammals. Col1 contributes to 90% of the total organic component of bone matrix. However, the precise cellular origin and functional contribution of Col1 in embryogenesis and bone formation remain unknown. Single-cell RNA-sequencing analysis identifies Fap+ cells and Fsp1+ cells as the major contributors of Col1 in the bone. We generate transgenic mouse models to genetically delete Col1 in various cell lineages. Complete, whole-body Col1 deletion leads to failed gastrulation and early embryonic lethality. Specific Col1 deletion in Fap+ cells causes severe skeletal defects, with hemorrhage, edema, and prenatal lethality. Specific Col1 deletion in Fsp1+ cells results in Osteogenesis Imperfecta-like phenotypes in adult mice, with spontaneous fractures and compromised bone healing. This study demonstrates specific contributions of mesenchymal cell lineages to Col1 production in organogenesis, skeletal development, and bone formation/repair, with potential insights into cell-based therapy for patients with Osteogenesis Imperfecta.
Collapse
Affiliation(s)
- Yang Chen
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 USA
| | - Sujuan Yang
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 USA
| | - Sara Lovisa
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 USA
| | - Catherine G. Ambrose
- grid.267308.80000 0000 9206 2401Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Kathleen M. McAndrews
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 USA
| | - Hikaru Sugimoto
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA. .,Department of Bioengineering, Rice University, Houston, TX, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Kohler R, Tastad CA, Creecy A, Wallace JM. Morphological and mechanical characterization of bone phenotypes in the Amish G610C murine model of osteogenesis imperfecta. PLoS One 2021; 16:e0255315. [PMID: 34449800 PMCID: PMC8396767 DOI: 10.1371/journal.pone.0255315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a hereditary bone disease where gene mutations affect Type I collagen formation resulting in osteopenia and increased fracture risk. There are several established mouse models of OI, but some are severe and result in spontaneous fractures or early animal death. The Amish Col1a2G610C/+ (G610C) mouse model is a newer, moderate OI model that is currently being used in a variety of intervention studies, with differing background strains, sexes, ages, and bone endpoints. This study is a comprehensive mechanical and architectural characterization of bone in G610C mice bred on a C57BL/6 inbred strain and will provide a baseline for future treatment studies. Male and female wild-type (WT) and G610C mice were euthanized at 10 and 16 weeks (n = 13-16). Harvested tibiae, femora, and L4 vertebrae were scanned via micro-computed tomography and analyzed for cortical and trabecular architectural properties. Femora and tibiae were then mechanically tested to failure. G610C mice had less bone but more highly mineralized cortical and trabecular tissue than their sex- and age-matched WT counterparts, with cortical cross-sectional area, thickness, and mineral density, and trabecular bone volume, mineral density, spacing, and number all differing significantly as a function of genotype (2 Way ANOVA with main effects of sex and genotype at each age). In addition, mechanical yield force, ultimate force, displacement, strain, and toughness were all significantly lower in G610C vs. WT, highlighting a brittle phenotype. This characterization demonstrates that despite being a moderate OI model, the Amish G610C mouse model maintains a distinctly brittle phenotype and is well-suited for use in future intervention studies.
Collapse
Affiliation(s)
- Rachel Kohler
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States of America
| | - Carli A. Tastad
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States of America
| | - Amy Creecy
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States of America
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States of America
| |
Collapse
|
6
|
Marom R, Rabenhorst BM, Morello R. Osteogenesis imperfecta: an update on clinical features and therapies. Eur J Endocrinol 2020; 183:R95-R106. [PMID: 32621590 PMCID: PMC7694877 DOI: 10.1530/eje-20-0299] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Osteogenesis imperfecta (OI) is an inherited skeletal dysplasia characterized by bone fragility and skeletal deformities. While the majority of cases are associated with pathogenic variants in COL1A1 and COL1A2, the genes encoding type I collagen, up to 25% of cases are associated with other genes that function within the collagen biosynthesis pathway or are involved in osteoblast differentiation and bone mineralization. Clinically, OI is heterogeneous in features and variable in severity. In addition to the skeletal findings, it can affect multiple systems including dental and craniofacial abnormalities, muscle weakness, hearing loss, respiratory and cardiovascular complications. A multi-disciplinary approach to care is recommended to address not only the fractures, reduced mobility, growth and bone pain but also other extra-skeletal manifestations. While bisphosphonates remain the mainstay of treatment in OI, new strategies are being explored, such as sclerostin inhibitory antibodies and TGF beta inhibition, to address not only the low bone mineral density but also the inherent bone fragility. Studies in animal models have expanded the understanding of pathomechanisms of OI and, along with ongoing clinical trials, will allow to develop better therapeutic approaches for these patients.
Collapse
Affiliation(s)
- Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Houston, TX
| | - Brien M. Rabenhorst
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Roy Morello
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, AR
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
7
|
Etich J, Rehberg M, Eckes B, Sengle G, Semler O, Zaucke F. Signaling pathways affected by mutations causing osteogenesis imperfecta. Cell Signal 2020; 76:109789. [PMID: 32980496 DOI: 10.1016/j.cellsig.2020.109789] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous connective tissue disorder characterized by bone fragility and skeletal deformity. To maintain skeletal strength and integrity, bone undergoes constant remodeling of its extracellular matrix (ECM) tightly controlled by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. There are at least 20 recognized OI-forms caused by mutations in the two collagen type I-encoding genes or genes implicated in collagen folding, posttranslational modifications or secretion of collagen, osteoblast differentiation and function, or bone mineralization. The underlying disease mechanisms of non-classical forms of OI that are not caused by collagen type I mutations are not yet completely understood, but an altered ECM structure as well as disturbed intracellular homeostasis seem to be the main defects. The ECM orchestrates local cell behavior in part by regulating bioavailability of signaling molecules through sequestration, release and activation during the constant bone remodeling process. Here, we provide an overview of signaling pathways that are associated with known OI-causing genes and discuss the impact of these genes on signal transduction. These pathways include WNT-, RANK/RANKL-, TGFβ-, MAPK- and integrin-mediated signaling as well as the unfolded protein response.
Collapse
Affiliation(s)
- Julia Etich
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, 60528, Germany.
| | - Mirko Rehberg
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Beate Eckes
- Translational Matrix Biology, Faculty of Medicine, University of Cologne, Cologne 50931, Germany
| | - Gerhard Sengle
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany; Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Oliver Semler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Rare Diseases, University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, 60528, Germany
| |
Collapse
|
8
|
Zieba J, Munivez E, Castellon A, Jiang MM, Dawson B, Ambrose CG, Lee B. Fracture Healing in Collagen-Related Preclinical Models of Osteogenesis Imperfecta. J Bone Miner Res 2020; 35:1132-1148. [PMID: 32053224 DOI: 10.1002/jbmr.3979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/27/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Abstract
Osteogenesis imperfecta (OI) is a genetic bone dysplasia characterized by bone deformities and fractures caused by low bone mass and impaired bone quality. OI is a genetically heterogeneous disorder that most commonly arises from dominant mutations in genes encoding type I collagen (COL1A1 and COL1A2). In addition, OI is recessively inherited with the majority of cases resulting from mutations in prolyl-3-hydroxylation complex members, which includes cartilage-associated protein (CRTAP). OI patients are at an increased risk of fracture throughout their lifetimes. However, non-union or delayed healing has been reported in 24% of fractures and 52% of osteotomies. Additionally, refractures typically go unreported, making the frequency of refractures in OI patients unknown. Thus, there is an unmet need to better understand the mechanisms by which OI affects fracture healing. Using an open tibial fracture model, our study demonstrates delayed healing in both Col1a2 G610c/+ and Crtap -/- OI mouse models (dominant and recessive OI, respectively) that is associated with reduced callus size and predicted strength. Callus cartilage distribution and chondrocyte maturation were altered in OI, suggesting accelerated cartilage differentiation. Importantly, we determined that healed fractured tibia in female OI mice are biomechanically weaker when compared with the contralateral unfractured bone, suggesting that abnormal OI fracture healing OI may prime future refracture at the same location. We have previously shown upregulated TGF-β signaling in OI and we confirm this in the context of fracture healing. Interestingly, treatment of Crtap -/- mice with the anti-TGF-β antibody 1D11 resulted in further reduced callus size and predicted strength, highlighting the importance of investigating dose response in treatment strategies. These data provide valuable insight into the effect of the extracellular matrix (ECM) on fracture healing, a poorly understood mechanism, and support the need for prevention of primary fractures to decrease incidence of refracture and deformity in OI patients. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jennifer Zieba
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Elda Munivez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Alexis Castellon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Catherine G Ambrose
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Abstract
Osteogenesis imperfecta (OI) is characterized by brittle bones, premature hearing loss, blue sclera, dental abnormalities, and short stature. Maxillofacial pathology is marked in many OI patients and includes a high incidence of class III malocclusion secondary to a retrusive maxilla relative to both the mandible and cranial base.Review of literature shows that most of the orthognathic surgeries performed in the setting of OI are double jaw surgeries, in the form of maxillary advancement and mandibular setback. However, severe maxillary hypoplasia is usually not correctable with single-stage maxillary advancement. Distraction osteogenesis (DO) is a technique that relies on the normal healing process that occurs between controlled, surgically osteotomized bone segments and it is a relatively widely used technique in modern management of craniofacial conditions.Distraction osteogenesis has been reported in only several patients with OI. There is only 1 previously documented case of maxillary distraction in the craniofacial literature. The authors present here the successful management of a patient with OI and severe class III malocclusion using LeFort I osteotomy and DO with an external rigid distractor.At 12 months follow-up, the patient had no complications and maintained stable maxillary position with normal occlusion, improvement of facial appearance, obstructive airway symptoms, speech, and chewing.This case serves to reinforce the safety and efficacy of DO in patients with OI. The authors did not significantly change our distraction protocol and did not have any complications, therefore the authors believe that DO should be the preferable treatment technique for severe malocclusion in OI patient population.
Collapse
|