1
|
Xu H, Liu H, Liu M, Li Y, Pan J, Wang S, Wang G, Liu X, Liu Y, Hou X, Zhao H. Impact of different 3D regions of interest on quantifying dynamic lumbar vertebral microstructure in ovariectomized rats-a micro-CT study. Front Med (Lausanne) 2025; 11:1503761. [PMID: 40034239 PMCID: PMC11873078 DOI: 10.3389/fmed.2024.1503761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/24/2024] [Indexed: 03/05/2025] Open
Abstract
Introduction The selection of regions of interest (ROIs) is crucial for accurate microcomputed tomography (micro-CT) analysis. Distinct ROI selection methods exist for lumbar vertebras in osteoporotic animal model research. However, whether different ROIs directly affect the results of quantitative micro-CT-based microarchitectural data is still unknown. This study aimed to compare the diagnostic accuracy of two commonly used ROIs of lumbar vertebras in ovariectomized (OVX) rats at different time points. Methods Rats were randomly divided into the baseline group, the sham/OVX-operated groups, with 12- or 24-weeks sham (Sham 12w or Sham 24w)/12- or 24-weeks (OVX 12w or OVX 24w)-operated group (n = 6 in every group). The fifth lumbar vertebras were collected and scanned using micro-CT. Quantitative analyses of bone microarchitecture parameters were conducted separately for the central ROI (ROI 1) and overall ROI (ROI 2). Results The results indicated that the Tb.N of baseline group rats for ROI 1 was significantly lower than that for ROI 2. The Tb.Th of rats of the Sham 12w and Sham 24w groups was significantly increased compared to that of the baseline group rats using the ROI 2 analysis. The bone mineral density (BMD) and bone volume fraction (BV/TV) were significantly lower by the ROI 1 than by the ROI 2 in all groups. The BMD and BV/TV also showed a significant reduction at 24 weeks postoperatively compared with those at 12 weeks postoperatively. Bland-Altman analysis showed good consistency between the two different ROI selection methods. Conclusion This study found that capturing peripheral trabeculas (overall ROI) does not explain the increased Tb.Th in healthy mice and decreased Tb.N in OVX mice; both findings indicate that this is evident in both ROI. Moreover, this study suggested the potential value of the central ROI (effective and quicker) for evaluating osteoporosis of the lumbar vertebras in OVX rats and provides a basis for analyzing the morphological changes of lumbar trabecular.
Collapse
Affiliation(s)
- Huihui Xu
- Department of Joints and Soft Tissue Injury, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Hong Liu
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Meijie Liu
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Yan Li
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Jinghua Pan
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Shaojun Wang
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Guowei Wang
- Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Xin Liu
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Ying Liu
- Fangta Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoqin Hou
- Department of Clinic No. 1 Office, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hongyan Zhao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
2
|
Raja Somu D, Fuentes M, Lou L, Agarwal A, Porter M, Merk V. Revealing chemistry-structure-function relationships in shark vertebrae across length scales. Acta Biomater 2024; 189:377-387. [PMID: 39349113 DOI: 10.1016/j.actbio.2024.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Shark cartilage presents a complex material composed of collagen, proteoglycans, and bioapatite. In the present study, we explored the link between microstructure, chemical composition, and biomechanical function of shark vertebral cartilage using Polarized Light Microscopy (PLM), Atomic Force Microscopy (AFM), Confocal Raman Microspectroscopy, and Nanoindentation. Our investigation focused on vertebrae from Blacktip and Shortfin Mako sharks. As typical representatives of the orders Carcharhiniformes and Lamniformes, these species differ in preferred habitat, ecological role, and swimming style. We observed structural variations in mineral organization and collagen fiber arrangement using PLM and AFM. In both sharks, the highly calcified corpus calcarea shows a ridged morphology, while a chain-like network is present in the less mineralized intermedialia. Raman spectromicroscopy demonstrates a relative increase of glucosaminocycans (GAGs) with respect to collagen and a decrease in mineral-rich zones, underlining the role of GAGs in modulating bioapatite mineralization. Region-specific testing confirmed that intravertebral variations in mineral content and arrangement result in distinct nanomechanical properties. Local Young's moduli from mineralized regions exceeded bulk values by a factor of 10. Overall, this work provides profound insights into a flexible yet strong biocomposite, which is crucial for the extraordinary speed of cartilaginous fish in the worlds' oceans. STATEMENT OF SIGNIFICANCE: Shark cartilage is a morphologically complex material composed of collagen, sulfated proteoglycans, and calcium phosphate minerals. This study explores the link between microstructure, chemical composition, and biological mechanical function of shark vertebral cartilage at the micro- and nanometer scale in typical Carcharhiniform and Lamniform shark species, which represent different vertebral mineralization morphologies, swimming styles and speeds. By studying the intricacies of shark vertebrae, we hope to lay the foundation for biomimetic composite materials that harness lamellar reinforcement and tailored stiffness gradients, capable of dynamic and localized adjustments during movement.
Collapse
Affiliation(s)
- Dawn Raja Somu
- Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Malena Fuentes
- Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Lihua Lou
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
| | - Arvind Agarwal
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
| | - Marianne Porter
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Vivian Merk
- Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
3
|
Vergara-Hernandez FB, Nielsen BD, Popovich JM, Panek CL, Logan AA, Robison CI, Ehrhardt RA, Johnson TN, Chargo NJ, Welsh TH, Bradbery AN, Leatherwood JL, Colbath AC. Clodronate disodium does not produce measurable effects on bone metabolism in an exercising, juvenile, large animal model. PLoS One 2024; 19:e0300360. [PMID: 38626145 PMCID: PMC11020481 DOI: 10.1371/journal.pone.0300360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/23/2024] [Indexed: 04/18/2024] Open
Abstract
Bisphosphonates are commonly used to treat and prevent bone loss, but their effects in active, juvenile populations are unknown. This study examined the effects of intramuscular clodronate disodium (CLO) on bone turnover, serum bone biomarkers (SBB), bone mineral density (BMD), bone microstructure, biomechanical testing (BT), and cartilage glycosaminoglycan content (GAG) over 165 days. Forty juvenile sheep (253 ± 6 days of age) were divided into four groups: Control (saline), T0 (0.6 mg/kg CLO on day 0), T84 (0.6 mg/kg CLO on day 84), and T0+84 (0.6 mg/kg CLO on days 0 and 84). Sheep were exercised 4 days/week and underwent physical and lameness examinations every 14 days. Blood samples were collected for SBB every 28 days. Microstructure and BMD were calculated from tuber coxae (TC) biopsies (days 84 and 165) and bone healing was assessed by examining the prior biopsy site. BT and GAG were evaluated postmortem. Data, except lameness data, were analyzed using a mixed-effects model; lameness data were analyzed as ordinal data using a cumulative logistic model. CLO did not have any measurable effects on the skeleton of sheep. SBB showed changes over time (p ≤ 0.03), with increases in bone formation and decreases in some bone resorption markers. TC biopsies showed increasing bone volume fraction, trabecular spacing and thickness, and reduced trabecular number on day 165 versus day 84 (p ≤ 0.04). These changes may be attributed to exercise or growth. The absence of a treatment effect may be explained by the lower CLO dose used in large animals compared to humans. Further research is needed to examine whether low doses of bisphosphonates may be used in active juvenile populations for analgesia without evidence of bone changes.
Collapse
Affiliation(s)
- Fernando B. Vergara-Hernandez
- Department of Animal Science, College of Agricultural and Natural Resources, Michigan State University, East Lansing, Michigan, United States of America
- School of Veterinary Medicine, College of Natural Resources and Veterinary Medicine, Universidad Santo Tomas, Viña del Mar, Chile
| | - Brian D. Nielsen
- Department of Animal Science, College of Agricultural and Natural Resources, Michigan State University, East Lansing, Michigan, United States of America
| | - John M. Popovich
- Center for Neuromusculoskeletal Clinical Research, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Char L. Panek
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alyssa A. Logan
- School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Cara I. Robison
- Department of Animal Science, College of Agricultural and Natural Resources, Michigan State University, East Lansing, Michigan, United States of America
| | - Richard A. Ehrhardt
- Department of Animal Science, College of Agricultural and Natural Resources, Michigan State University, East Lansing, Michigan, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Tyler N. Johnson
- Department of Chemical Engineering and Materials Science, College of Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Nicholas J. Chargo
- Department of Physiology, College of Natural Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Thomas H. Welsh
- Department of Animal Science, College of Agriculture & Life Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Amanda N. Bradbery
- Department of Animal and Range Sciences, College of Agriculture, Montana State University, Bozeman, Montana, United States of America
| | - Jessica L. Leatherwood
- Department of Animal Science, College of Agriculture and Natural Resources, Tarleton State University, Stephenville, Texas, United States of America
| | - Aimee C. Colbath
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
4
|
Watanabe R, Matsugaki A, Gokcekaya O, Ozasa R, Matsumoto T, Takahashi H, Yasui H, Nakano T. Host bone microstructure for enhanced resistance to bacterial infections. BIOMATERIALS ADVANCES 2023; 154:213633. [PMID: 37775399 DOI: 10.1016/j.bioadv.2023.213633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Postoperative bacterial infection is a serious complication of orthopedic surgery. Not only infections that develop in the first few weeks after surgery but also late infections that develop years after surgery are serious problems. However, the relationship between host bone and infection activation has not yet been explored. Here, we report a novel association between host bone collagen/apatite microstructure and bacterial infection. The bone-mimetic-oriented micro-organized matrix structure was obtained by prolonged controlled cell alignment using a grooved-structured biomedical titanium alloy. Surprisingly, we have discovered that highly aligned osteoblasts have a potent inhibitory effect on Escherichia coli adhesion. Additionally, the oriented collagen/apatite micro-organization of the bone matrix showed excellent antibacterial resistance against Escherichia coli. The proposed mechanism for realizing the antimicrobial activity of the micro-organized bone matrix is by the controlled secretion of the antimicrobial peptides, including β-defensin 2 and β-defensin 3, from the highly aligned osteoblasts. Our findings contribute to the development of anti-infective strategies for orthopedic surgeries. The recovery of the intrinsically ordered bone matrix organization provides superior antibacterial resistance after surgery.
Collapse
Affiliation(s)
- Ryota Watanabe
- Teijin Nakashima Medical Co. Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama 709-0625, Japan; Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | - Ozkan Gokcekaya
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Hiroyuki Takahashi
- Teijin Nakashima Medical Co. Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama 709-0625, Japan.
| | - Hidekazu Yasui
- Teijin Nakashima Medical Co. Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama 709-0625, Japan.
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Mihara Y, Ishimoto T, Ozasa R, Omura T, Yamato Y, Yamada T, Okamoto A, Matsuyama Y, Nakano T. Deterioration of apatite orientation in the cholecystokinin B receptor gene (Cckbr)-deficient mouse femurs. J Bone Miner Metab 2023; 41:752-759. [PMID: 37676507 DOI: 10.1007/s00774-023-01460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/20/2023] [Indexed: 09/08/2023]
Abstract
INTRODUCTION The discrepancy between bone mineral density (BMD), the gold standard for bone assessment, and bone strength is a constraint in diagnosing bone function and determining treatment strategies for several bone diseases. Gastric hypochlorhydria induced by clinically used proton pump inhibitor (PPI) therapy indicates a discordance between changes in BMD and bone strength. Here, we used Cckbr-deficient mice with gastric hypochlorhydria to examine the effect of gastric hypochlorhydria on bone mass, BMD, and preferential orientation of the apatite crystallites, which is a strong indicator of bone strength. MATERIALS AND METHODS Cckbr-deficient mice were created, and their femurs were analyzed for BMD and preferential orientation of the apatite c-axis along the femoral long axis. RESULTS Cckbr-deficient mouse femurs displayed a slight osteoporotic bone loss at 18 weeks of age; however, BMD was comparable to that of wild-type mice. In contrast, apatite orientation in the femur mid-shaft significantly decreased from 9 to 18 weeks. To the best of our knowledge, this is the first report demonstrating the deterioration of apatite orientation in the bones of Cckbr-deficient mice. CONCLUSION Lesions in Cckbr-deficient mice occurred earlier in apatite orientation than in bone mass. Hence, bone apatite orientation may be a promising method for detecting hypochlorhydria-induced osteoporosis caused by PPI treatment and warrants urgent clinical applications.
Collapse
Affiliation(s)
- Yuki Mihara
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Takao Omura
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yu Yamato
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Tomohiro Yamada
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Ayako Okamoto
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yukihiro Matsuyama
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
6
|
Chen J. Current advances in anisotropic structures for enhanced osteogenesis. Colloids Surf B Biointerfaces 2023; 231:113566. [PMID: 37797464 DOI: 10.1016/j.colsurfb.2023.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Bone defects are a challenge to healthcare systems, as the aging population experiences an increase in bone defects. Despite the development of biomaterials for bone fillers and scaffolds, there is still an unmet need for a bone-mimetic material. Cortical bone is highly anisotropic and displays a biological liquid crystalline (LC) arrangement, giving it exceptional mechanical properties and a distinctive microenvironment. However, the biofunctions, cell-tissue interactions, and molecular mechanisms of cortical bone anisotropic structure are not well understood. Incorporating anisotropic structures in bone-facilitated scaffolds has been recognised as essential for better outcomes. Various approaches have been used to create anisotropic micro/nanostructures, but biomimetic bone anisotropic structures are still in the early stages of development. Most scaffolds lack features at the nanoscale, and there is no comprehensive evaluation of molecular mechanisms or characterisation of calcium secretion. This manuscript provides a review of the latest development of anisotropic designs for osteogenesis and discusses current findings on cell-anisotropic structure interactions. It also emphasises the need for further research. Filling knowledge gaps will enable the fabrication of scaffolds for improved and more controllable bone regeneration.
Collapse
Affiliation(s)
- Jishizhan Chen
- UCL Mechanical Engineering, University College London, WC1E 7JE, UK.
| |
Collapse
|
7
|
Gassner C, Vongsvivut J, Ng SH, Ryu M, Tobin MJ, Juodkazis S, Morikawa J, Wood BR. Linearly Polarized Infrared Spectroscopy for the Analysis of Biological Materials. APPLIED SPECTROSCOPY 2023; 77:977-1008. [PMID: 37464791 DOI: 10.1177/00037028231180233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The analysis of biological samples with polarized infrared spectroscopy (p-IR) has long been a widely practiced method for the determination of sample orientation and structural properties. In contrast to earlier works, which employed this method to investigate the fundamental chemistry of biological systems, recent interests are moving toward "real-world" applications for the evaluation and diagnosis of pathological states. This focal point review provides an up-to-date synopsis of the knowledge of biological materials garnered through linearly p-IR on biomolecules, cells, and tissues. An overview of the theory with special consideration to biological samples is provided. Different modalities which can be employed along with their capabilities and limitations are outlined. Furthermore, an in-depth discussion of factors regarding sample preparation, sample properties, and instrumentation, which can affect p-IR analysis is provided. Additionally, attention is drawn to the potential impacts of analysis of biological samples with inherently polarized light sources, such as synchrotron light and quantum cascade lasers. The vast applications of p-IR for the determination of the structure and orientation of biological samples are given. In conclusion, with considerations to emerging instrumentation, findings by other techniques, and the shift of focus toward clinical applications, we speculate on the future directions of this methodology.
Collapse
Affiliation(s)
- Callum Gassner
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO-Australian Synchrotron, Clayton, Australia
| | - Soon Hock Ng
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, Australia
| | - Meguya Ryu
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Mark J Tobin
- Infrared Microspectroscopy (IRM) Beamline, ANSTO-Australian Synchrotron, Clayton, Australia
| | - Saulius Juodkazis
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, Australia
| | - Junko Morikawa
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Bayden R Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Australia
| |
Collapse
|
8
|
Tanaka K, Ohara S, Matsuzaka T, Matsugaki A, Ishimoto T, Ozasa R, Kuroda Y, Matsuo K, Nakano T. Quantitative Threshold Determination of Auditory Brainstem Responses in Mouse Models. Int J Mol Sci 2023; 24:11393. [PMID: 37511152 PMCID: PMC10380451 DOI: 10.3390/ijms241411393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The auditory brainstem response (ABR) is a scalp recording of potentials produced by sound stimulation, and is commonly used as an indicator of auditory function. However, the ABR threshold, which is the lowest audible sound pressure, cannot be objectively determined since it is determined visually using a measurer, and this has been a problem for several decades. Although various algorithms have been developed to objectively determine ABR thresholds, they remain lacking in terms of accuracy, efficiency, and convenience. Accordingly, we proposed an improved algorithm based on the mutual covariance at adjacent sound pressure levels. An ideal ABR waveform with clearly defined waves I-V was created; moreover, using this waveform as a standard template, the experimentally obtained ABR waveform was inspected for disturbances based on mutual covariance. The ABR testing was repeated if the value was below the established cross-covariance reference value. Our proposed method allowed more efficient objective determination of ABR thresholds and a smaller burden on experimental animals.
Collapse
Affiliation(s)
- Kenji Tanaka
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Shuma Ohara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Tadaaki Matsuzaka
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Yukiko Kuroda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
9
|
Al-Qudsy L, Hu YW, Xu H, Yang PF. Mineralized Collagen Fibrils: An Essential Component in Determining the Mechanical Behavior of Cortical Bone. ACS Biomater Sci Eng 2023; 9:2203-2219. [PMID: 37075172 DOI: 10.1021/acsbiomaterials.2c01377] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Bone comprises mechanically different materials in a specific hierarchical structure. Mineralized collagen fibrils (MCFs), represented by tropocollagen molecules and hydroxyapatite nanocrystals, are the fundamental unit of bone. The mechanical characterization of MCFs provides the unique adaptive mechanical competence to bone to withstand mechanical load. The structural and mechanical role of MCFs is critical in the deformation mechanisms of bone and the marvelous strength and toughness possessed by bone. However, the role of MCFs in the mechanical behavior of bone across multiple length scales is not fully understood. In the present study, we shed light upon the latest progress regarding bone deformation at multiple hierarchical levels and emphasize the role of MCFs during bone deformation. We propose the concept of hierarchical deformation of bone to describe the interconnected deformation process across multiple length scales of bone under mechanical loading. Furthermore, how the deterioration of bone caused by aging and diseases impairs the hierarchical deformation process of the cortical bone is discussed. The present work expects to provide insights on the characterization of MCFs in the mechanical properties of bone and lays the framework for the understanding of the multiscale deformation mechanics of bone.
Collapse
Affiliation(s)
- Luban Al-Qudsy
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Medical Instrumentation Engineering Techniques, Electrical Engineering Technical College, Middle Technical University, 8998+QHJ Baghdad, Iraq
| | - Yi-Wei Hu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Peng-Fei Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
10
|
Matsugaki A, Ito M, Kobayashi Y, Matsuzaka T, Ozasa R, Ishimoto T, Takahashi H, Watanabe R, Inoue T, Yokota K, Nakashima Y, Kaito T, Okada S, Hanawa T, Matsuyama Y, Matsumoto M, Taneichi H, Nakano T. Innovative design of bone quality-targeted intervertebral spacer: accelerated functional fusion guiding oriented collagen and apatite microstructure without autologous bone graft. Spine J 2023; 23:609-620. [PMID: 36539040 DOI: 10.1016/j.spinee.2022.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND CONTEXT Although autologous bone grafting is widely considered as an ideal source for interbody fusion, it still carries a risk of nonunion. The influence of the intervertebral device should not be overlooked. Requirements for artificial spinal devices are to join the vertebrae together and recover the original function of the spine rapidly. Ordered mineralization of apatite crystals on collagen accelerates bone functionalization during the healing process. Particularly, the stable spinal function requires the ingrowth of an ordered collagen and apatite matrix which mimics the intact intervertebral microstructure. This collagen and apatite ordering is imperative for functional bone regeneration, which has not been achieved using classical autologous grafting. PURPOSE We developed an intervertebral body device to achieve high stability between the host bone and synthesized bone by controlling the ordered collagen and apatite microstructure. STUDY DESIGN This was an in vivo animal study. METHODS Intervertebral spacers with a through-pore grooved surface structure, referred to as a honeycomb tree structure, were produced using metal 3D printing. These spacers were implanted into normal sheep at the L2-L3 or L4-L5 disc levels. As a control group, grafting autologous bone was embedded. The mechanical integrity of the spacer/bone interface was evaluated through push-out tests. RESULTS The spacer with honeycomb tree structure induced anisotropic trabecular bone growth with textured collagen and apatite orientation in the through-pore and groove directions. The push-out load of the spacer was significantly higher than that of the conventional autologous graft spacer. Moreover, the load was significantly correlated with the anisotropic texture of the newly formed bone matrix. CONCLUSIONS The developed intervertebral spacer guided the regenerated bone matrix orientation of collagen and apatite, resulting in greater strength at the spacer/host bone interface than that obtained using a conventional gold-standard autologous bone graft. CLINICAL SIGNIFICANCE Our results provide a foundation for designing future spacers for interbody fusion in human.
Collapse
Affiliation(s)
- Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Anisotropic Design and Additive Manufacturing Research Center, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Manabu Ito
- Department of Spine and Spinal Cord Disorders, National Hospital Organization, Hokkaido Medical Center,5-7-1-1, Yamanote, Nishi-ku, Sapporo, Hokkaido, 063-0005, Japan
| | - Yoshiya Kobayashi
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Tadaaki Matsuzaka
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Anisotropic Design and Additive Manufacturing Research Center, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Anisotropic Design and Additive Manufacturing Research Center, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Takahashi
- Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama, 709-0625, Japan
| | - Ryota Watanabe
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama, 709-0625, Japan
| | - Takayuki Inoue
- Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama, 709-0625, Japan
| | - Katsuhiko Yokota
- Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama, 709-0625, Japan
| | - Yoshio Nakashima
- Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama, 709-0625, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Takao Hanawa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yukihiro Matsuyama
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Taneichi
- Department of Orthopaedic Surgery, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Anisotropic Design and Additive Manufacturing Research Center, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
11
|
Moura SR, Freitas J, Ribeiro-Machado C, Lopes J, Neves N, Canhão H, Rodrigues AM, Barbosa MA, Almeida MI. Long non-coding RNA H19 regulates matrisome signature and impacts cell behavior on MSC-engineered extracellular matrices. Stem Cell Res Ther 2023; 14:37. [PMID: 36882843 PMCID: PMC9993741 DOI: 10.1186/s13287-023-03250-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/25/2022] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND The vast and promising class of long non-coding RNAs (lncRNAs) has been under investigation for distinct therapeutic applications. Nevertheless, their role as molecular drivers of bone regeneration remains poorly studied. The lncRNA H19 mediates osteogenic differentiation of Mesenchymal Stem/Stromal Cells (MSCs) through the control of intracellular pathways. However, the effect of H19 on the extracellular matrix (ECM) components is still largely unknown. This research study was designed to decode the H19-mediated ECM regulatory network, and to reveal how the decellularized siH19-engineered matrices influence MSC proliferation and fate. This is particularly relevant for diseases in which the ECM regulation and remodeling processes are disrupted, such as osteoporosis. METHODS Mass spectrometry-based quantitative proteomics analysis was used to identify ECM components, after oligonucleotides delivery to osteoporosis-derived hMSCs. Moreover, qRT-PCR, immunofluorescence and proliferation, differentiation and apoptosis assays were performed. Engineered matrices were decellularized, characterized by atomic force microscopy and repopulated with hMSC and pre-adipocytes. Clinical bone samples were characterized by histomorphometry analysis. RESULTS Our study provides an in-depth proteome-wide and matrisome-specific analysis of the ECM proteins controlled by the lncRNA H19. Using bone marrow-isolated MSC from patients with osteoporosis, we identified fibrillin-1 (FBN1), vitronectin (VTN) and collagen triple helix repeat containing 1 (CTHRC1), among others, as having different pattern levels following H19 silencing. Decellularized siH19-engineered matrices are less dense and have a decreased collagen content compared with control matrices. Repopulation with naïve MSCs promotes a shift towards the adipogenic lineage in detriment of the osteogenic lineage and inhibits proliferation. In pre-adipocytes, these siH19-matrices enhance lipid droplets formation. Mechanistically, H19 is targeted by miR-29c, whose expression is decreased in osteoporotic bone clinical samples. Accordingly, miR-29c impacts MSC proliferation and collagen production, but does not influence ALP staining or mineralization, revealing that H19 silencing and miR-29c mimics have complementary but not overlapping functions. CONCLUSION Our data suggest H19 as a therapeutic target to engineer the bone ECM and to control cell behavior.
Collapse
Affiliation(s)
- Sara Reis Moura
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade Do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade Do Porto, Porto, Portugal
| | - Jaime Freitas
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade Do Porto, Porto, Portugal
| | - Cláudia Ribeiro-Machado
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade Do Porto, Porto, Portugal
| | - Jorge Lopes
- Departamento de Ortopedia, Centro Hospitalar Universitário São João (CHUSJ), Porto, Portugal
| | - Nuno Neves
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade Do Porto, Porto, Portugal.,Departamento de Ortopedia, Centro Hospitalar Universitário São João (CHUSJ), Porto, Portugal.,Hospital CUF, Porto, Portugal.,Faculdade de Medicina (FMUP), Universidade Do Porto, Porto, Portugal
| | - Helena Canhão
- NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana Maria Rodrigues
- NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, Lisbon, Portugal
| | - Mário Adolfo Barbosa
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade Do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade Do Porto, Porto, Portugal
| | - Maria Inês Almeida
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,Instituto de Engenharia Biomédica (INEB), Universidade Do Porto, Porto, Portugal. .,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade Do Porto, Porto, Portugal.
| |
Collapse
|
12
|
Omer M, Ngo C, Ali H, Orlovskaya N, Cheong VS, Ballesteros A, Garner MT, Wynn A, Martyniak K, Wei F, Collins BE, Yarmolenko SN, Asiatico J, Kinzel M, Ghosh R, Meckmongkol T, Calder A, Dahir N, Gilbertson TA, Sankar J, Coathup M. The Effect of Omega-9 on Bone Viscoelasticity and Strength in an Ovariectomized Diet-Fed Murine Model. Nutrients 2023; 15:1209. [PMID: 36904208 PMCID: PMC10005705 DOI: 10.3390/nu15051209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Few studies have investigated the effect of a monosaturated diet high in ω-9 on osteoporosis. We hypothesized that omega-9 (ω-9) protects ovariectomized (OVX) mice from a decline in bone microarchitecture, tissue loss, and mechanical strength, thereby serving as a modifiable dietary intervention against osteoporotic deterioration. Female C57BL/6J mice were assigned to sham-ovariectomy, ovariectomy, or ovariectomy + estradiol treatment prior to switching their feed to a diet high in ω-9 for 12 weeks. Tibiae were evaluated using DMA, 3-point-bending, histomorphometry, and microCT. A significant decrease in lean mass (p = 0.05), tibial area (p = 0.009), and cross-sectional moment of inertia (p = 0.028) was measured in OVX mice compared to the control. A trend was seen where OVX bone displayed increased elastic modulus, ductility, storage modulus, and loss modulus, suggesting the ω-9 diet paradoxically increased both stiffness and viscosity. This implies beneficial alterations on the macro-structural, and micro-tissue level in OVX bone, potentially decreasing the fracture risk. Supporting this, no significant differences in ultimate, fracture, and yield stresses were measured. A diet high in ω-9 did not prevent microarchitectural deterioration, nevertheless, healthy tibial strength and resistance to fracture was maintained via mechanisms independent of bone structure/shape. Further investigation of ω-9 as a therapeutic in osteoporosis is warranted.
Collapse
Affiliation(s)
- Mahmoud Omer
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Christopher Ngo
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
| | - Hessein Ali
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Nina Orlovskaya
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Vee San Cheong
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK
| | | | | | - Austin Wynn
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Kari Martyniak
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
| | - Boyce E. Collins
- Engineering Research Center for Revolutionizing Biomaterials, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Sergey N. Yarmolenko
- Engineering Research Center for Revolutionizing Biomaterials, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Jackson Asiatico
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Michael Kinzel
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Teerin Meckmongkol
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
- Department of General Surgery, Nemours Children’s Hospital, Orlando, FL 32827, USA
| | - Ashley Calder
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Naima Dahir
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | | | - Jagannathan Sankar
- Engineering Research Center for Revolutionizing Biomaterials, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Melanie Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
13
|
Talone B, Bresci A, Manetti F, Vernuccio F, De la Cadena A, Ceconello C, Schiavone ML, Mantero S, Menale C, Vanna R, Cerullo G, Sobacchi C, Polli D. Label-free multimodal nonlinear optical microscopy reveals features of bone composition in pathophysiological conditions. Front Bioeng Biotechnol 2022; 10:1042680. [PMID: 36483771 PMCID: PMC9723390 DOI: 10.3389/fbioe.2022.1042680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/08/2022] [Indexed: 09/10/2024] Open
Abstract
Bone tissue features a complex microarchitecture and biomolecular composition, which determine biomechanical properties. In addition to state-of-the-art technologies, innovative optical approaches allowing the characterization of the bone in native, label-free conditions can provide new, multi-level insight into this inherently challenging tissue. Here, we exploited multimodal nonlinear optical (NLO) microscopy, including co-registered stimulated Raman scattering, two-photon excited fluorescence, and second-harmonic generation, to image entire vertebrae of murine spine sections. The quantitative nature of these nonlinear interactions allowed us to extract accurate biochemical, morphological, and topological information on the bone tissue and to highlight differences between normal and pathologic samples. Indeed, in a murine model showing bone loss, we observed increased collagen and lipid content as compared to the wild type, along with a decreased craniocaudal alignment of bone collagen fibres. We propose that NLO microscopy can be implemented in standard histopathological analysis of bone in preclinical studies, with the ambitious future perspective to introduce this technique in the clinical practice for the analysis of larger tissue sections.
Collapse
Affiliation(s)
| | - Arianna Bresci
- Department of Physics, Politecnico di Milano, Milan, Italy
| | | | | | | | | | | | - Stefano Mantero
- IRCCS Humanitas Research Hospital, Milano, Italy
- CNR-Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy
| | - Ciro Menale
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Renzo Vanna
- CNR-Institute for Photonics and Nanotechnologies (CNR-IFN), Milan, Italy
| | - Giulio Cerullo
- Department of Physics, Politecnico di Milano, Milan, Italy
- CNR-Institute for Photonics and Nanotechnologies (CNR-IFN), Milan, Italy
| | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, Milano, Italy
- CNR-Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy
| | - Dario Polli
- Department of Physics, Politecnico di Milano, Milan, Italy
- CNR-Institute for Photonics and Nanotechnologies (CNR-IFN), Milan, Italy
| |
Collapse
|
14
|
Ishimoto T, Kobayashi Y, Takahata M, Ito M, Matsugaki A, Takahashi H, Watanabe R, Inoue T, Matsuzaka T, Ozasa R, Hanawa T, Yokota K, Nakashima Y, Nakano T. Outstanding in vivo mechanical integrity of additively manufactured spinal cages with a novel "honeycomb tree structure" design via guiding bone matrix orientation. Spine J 2022; 22:1742-1757. [PMID: 35675865 DOI: 10.1016/j.spinee.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Therapeutic devices for spinal disorders, such as spinal fusion cages, must be able to facilitate the maintenance and rapid recovery of spinal function. Therefore, it would be advantageous that future spinal fusion cages facilitate rapid recovery of spinal function without secondary surgery to harvest autologous bone. PURPOSE This study investigated a novel spinal cage configuration that achieves in vivo mechanical integrity as a devise/bone complex by inducing bone that mimicked the sound trabecular bone, hierarchically and anisotropically structured trabeculae strengthened with a preferentially oriented extracellular matrix. STUDY DESIGN/SETTINGS In vivo animal study. METHODS A cage possessing an anisotropic through-pore with a grooved substrate, that we termed "honeycomb tree structure," was designed for guiding bone matrix orientation; it was manufactured using a laser beam powder bed fusion method through an additive manufacturing processes. The newly designed cages were implanted into sheep vertebral bodies for 8 and 16 weeks. An autologous bone was not installed in the newly designed cage. A pull-out test was performed to evaluate the mechanical integrity of the cage/bone interface. Additionally, the preferential orientation of bone matrix consisting of collagen and apatite was determined. RESULTS The cage/host bone interface strength assessed by the maximum pull-out load for the novel cage without an autologous bone graft (3360±411 N) was significantly higher than that for the conventional cage using autologous bone (903±188 N) after only 8 weeks post-implantation. CONCLUSIONS These results highlight the potential of this novel cage to achieve functional fusion between the cage and host bone. Our study provides insight into the design of highly functional spinal devices based on the anisotropic nature of bone. CLINICAL SIGNIFICANCE The sheep spine is similar to the human spine in its stress condition and trabecular bone architecture and is widely recognized as a useful model for the human spine. The present design may be useful as a new spinal device for humans.
Collapse
Affiliation(s)
- Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Anisotropic Design and Additive Manufacturing Research Center, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yoshiya Kobayashi
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Masahiko Takahata
- Department of Orthopedic Surgery, Graduate School of Medicine, Hokkaido University, North-15, West-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Manabu Ito
- Department of Spine and Spinal Cord Disorders, National Hospital Organization, Hokkaido Medical Center, 5-7-1-1, Yamanote, Nishi-ku, Sapporo, Hokkaido, 063-0005, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Anisotropic Design and Additive Manufacturing Research Center, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Takahashi
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama, 709-0625, Japan
| | - Ryota Watanabe
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama, 709-0625, Japan
| | - Takayuki Inoue
- Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama, 709-0625, Japan
| | - Tadaaki Matsuzaka
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Anisotropic Design and Additive Manufacturing Research Center, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Takao Hanawa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Katsuhiko Yokota
- Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama, 709-0625, Japan
| | - Yoshio Nakashima
- Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama, 709-0625, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan; Anisotropic Design and Additive Manufacturing Research Center, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
15
|
Watanabe R, Matsugaki A, Ishimoto T, Ozasa R, Matsumoto T, Nakano T. A Novel Ex Vivo Bone Culture Model for Regulation of Collagen/Apatite Preferential Orientation by Mechanical Loading. Int J Mol Sci 2022; 23:ijms23137423. [PMID: 35806427 PMCID: PMC9267238 DOI: 10.3390/ijms23137423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
The anisotropic microstructure of bone, composed of collagen fibers and biological apatite crystallites, is an important determinant of its mechanical properties. Recent studies have revealed that the preferential orientation of collagen/apatite composites is closely related to the direction and magnitude of in vivo principal stress. However, the mechanism of alteration in the collagen/apatite microstructure to adapt to the mechanical environment remains unclear. In this study, we established a novel ex vivo bone culture system using embryonic mouse femurs, which enabled artificial control of the mechanical environment. The mineralized femur length significantly increased following cultivation; uniaxial mechanical loading promoted chondrocyte hypertrophy in the growth plates of embryonic mouse femurs. Compressive mechanical loading using the ex vivo bone culture system induced a higher anisotropic microstructure than that observed in the unloaded femur. Osteocytes in the anisotropic bone microstructure were elongated and aligned along the long axis of the femur, which corresponded to the principal loading direction. The ex vivo uniaxial mechanical loading successfully induced the formation of an oriented collagen/apatite microstructure via osteocyte mechano-sensation in a manner quite similar to the in vivo environment.
Collapse
Affiliation(s)
- Ryota Watanabe
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan; (R.W.); (A.M.); (T.I.); (R.O.)
- Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama 709-0625, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan; (R.W.); (A.M.); (T.I.); (R.O.)
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan; (R.W.); (A.M.); (T.I.); (R.O.)
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan; (R.W.); (A.M.); (T.I.); (R.O.)
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan;
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan; (R.W.); (A.M.); (T.I.); (R.O.)
- Correspondence: ; Tel.: +81-6-6879-7505
| |
Collapse
|
16
|
Ishimoto T, Saito M, Ozasa R, Matsumoto Y, Nakano T. Ibandronate Suppresses Changes in Apatite Orientation and Young's Modulus Caused by Estrogen Deficiency in Rat Vertebrae. Calcif Tissue Int 2022; 110:736-745. [PMID: 34989822 PMCID: PMC9108105 DOI: 10.1007/s00223-021-00940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/24/2021] [Indexed: 11/30/2022]
Abstract
Bone material quality is important for evaluating the mechanical integrity of diseased and/or medically treated bones. However, compared to the knowledge accumulated regarding changes in bone mass, our understanding of the quality of bone material is lacking. In this study, we clarified the changes in bone material quality mainly characterized by the preferential orientation of the apatite c-axis associated with estrogen deficiency-induced osteoporosis, and their prevention using ibandronate (IBN), a nitrogen-containing bisphosphonate. IBN effectively prevented bone loss and degradation of whole bone strength in a dose-dependent manner. The estrogen-deficient condition abnormally increased the degree of apatite orientation along the craniocaudal axis in which principal stress is applied; IBN at higher doses played a role in maintaining the normal orientation of apatite but not at lower doses. The bone size-independent Young's modulus along the craniocaudal axis of the anterior cortical shell of the vertebra showed a significant and positive correlation with apatite orientation; therefore, the craniocaudal Young's modulus abnormally increased under estrogen-deficient conditions, despite a significant decrease in volumetric bone mineral density. However, the abnormal increase in craniocaudal Young's modulus did not compensate for the degradation of whole bone mechanical properties due to the bone loss. In conclusion, it was clarified that changes in the material quality, which are hidden in bone mass evaluation, occur with estrogen deficiency-induced osteoporosis and IBN treatment. Here, IBN was shown to be a beneficial drug that suppresses abnormal changes in bone mechanical integrity caused by estrogen deficiency at both the whole bone and material levels.
Collapse
Affiliation(s)
- Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461 Japan
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Yoshihiro Matsumoto
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530 Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
17
|
Ozasa R, Saito M, Ishimoto T, Matsugaki A, Matsumoto Y, Nakano T. Combination treatment with ibandronate and eldecalcitol prevents osteoporotic bone loss and deterioration of bone quality characterized by nano-arrangement of the collagen/apatite in an ovariectomized aged rat model. Bone 2022; 157:116309. [PMID: 34998980 DOI: 10.1016/j.bone.2021.116309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Combination therapy with bisphosphonates and vitamin D3 analogs has been frequently used for the treatment of osteoporosis. However, its effects on bone anisotropies, such as orientations of collagen and apatite at the nanometer-scale, which is a promising bone quality index, and its trabecular architecture at the micrometer scale, are not well understood despite its important mechanical properties and its role in fracture risk. In the present study, we analyzed the effects of ibandronate (IBN), eldecalcitol (ELD), and their combination on the collagen/apatite orientation and trabecular architectural anisotropy using an estrogen-deficiency-induced osteoporotic rat model. Estrogen deficiency caused by ovariectomy (OVX) excessively increased the degree of collagen/apatite orientation or trabecular architectural anisotropy along the craniocaudal axis in the lumbar vertebra compared to that of the sham-operated group. The craniocaudal axis corresponds to the direction of principal stress in the spine. The excessive material anisotropy in the craniocaudal axis contributed to the enhanced Young's modulus, which may compensate for the reduced mechanical resistance by bone loss to some extent. The solo administration of IBN and ELD prevented the reduction of bone fraction (BV/TV) determined by μ-CT, and combination therapy showed the highest efficacy in BV/TV gain. Furthermore, the solo administration and combination treatment significantly decreased the degree of collagen/apatite orientation to the sham level. Based on the results of bone mass and collagen/apatite orientation, combination treatment is an effective strategy. This is the first report to demonstrate the efficacy of IBN, ELD, and combination treatment with IBN and ELD relative to the bone micro-architectural anisotropy characterized by collagen/apatite orientation.
Collapse
Affiliation(s)
- Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yoshihiro Matsumoto
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan.
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
18
|
Ozasa R, Matsugaki A, Ishimoto T, Kamura S, Yoshida H, Magi M, Matsumoto Y, Sakuraba K, Fujimura K, Miyahara H, Nakano T. Bone fragility via degradation of bone quality featured by collagen/apatite micro-arrangement in human rheumatic arthritis. Bone 2022; 155:116261. [PMID: 34826630 DOI: 10.1016/j.bone.2021.116261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022]
Abstract
Although increased bone fragility is a well-recognized consequence in patients with rheumatoid arthritis (RA), the essential cause of degenerate bone strength remains unknown. This study aimed to determine factors contributing to bone dysfunction in RA by focusing on the bone matrix micro-arrangement, based on the preferential orientation of collagen and the related apatite c-axis as a bone quality index. The classical understanding of RA is limited to its severe pathological conditions associated with inflammation-induced bone loss. This study examined periarticular proximal tibiae from RA patients as compared with osteoarthritis (OA) patients as controls. Bone tissue material strength was disrupted in the RA group compared with the control. Collagen/apatite micro-arrangement and vBMD were significantly lower in the RA group, and the rate of decrease in apatite c-axis orientation (-45%) was larger than that in vBMD (-22%). Multiple regression analysis showed that the degree of apatite c-axis orientation (β = 0.52, p = 1.9 × 10-2) significantly contributed to RA-induced bone material impairment as well as vBMD (β = 0.46, p = 3.8 × 10-2). To the best of our knowledge, this is the first report to demonstrate that RA reduces bone material strength by deteriorating the micro-arrangement of collagen/apatite bone matrix, leading to decreased fracture resistance. Our findings represent the significance of bone quality-based analysis for precise evaluation and subsequent therapy of the integrity and soundness of the bone in patients with RA.
Collapse
Affiliation(s)
- Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Kamura
- Department of Orthopaedic Surgery, National Hospital Organization, Kyushu Medical Center, 1-8-1 Jigyouhama chuo-ku, Fukuoka, Fukuoka 811-1395, Japan
| | - Hiroto Yoshida
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Mayu Magi
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Yoshihiro Matsumoto
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Koji Sakuraba
- Department of Orthopaedic Surgery, National Hospital Organization, Kyushu Medical Center, 1-8-1 Jigyouhama chuo-ku, Fukuoka, Fukuoka 811-1395, Japan
| | - Kenjiro Fujimura
- Department of Orthopaedic Surgery, National Hospital Organization, Kyushu Medical Center, 1-8-1 Jigyouhama chuo-ku, Fukuoka, Fukuoka 811-1395, Japan
| | - Hisaaki Miyahara
- Department of Orthopaedic Surgery, National Hospital Organization, Kyushu Medical Center, 1-8-1 Jigyouhama chuo-ku, Fukuoka, Fukuoka 811-1395, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
19
|
Kawai MY, Ozasa R, Ishimoto T, Nakano T, Yamamoto H, Kashiwagi M, Yamanaka S, Nakao K, Maruyama H, Bessho K, Ohura K. Periodontal Tissue as a Biomaterial for Hard-Tissue Regeneration following bmp-2 Gene Transfer. MATERIALS 2022; 15:ma15030993. [PMID: 35160948 PMCID: PMC8840059 DOI: 10.3390/ma15030993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 01/25/2023]
Abstract
The application of periodontal tissue in regenerative medicine has gained increasing interest since it has a high potential to induce hard-tissue regeneration, and is easy to handle and graft to other areas of the oral cavity or tissues. Additionally, bone morphogenetic protein-2 (BMP-2) has a high potential to induce the differentiation of mesenchymal stem cells into osteogenic cells. We previously developed a system for a gene transfer to the periodontal tissues in animal models. In this study, we aimed to reveal the potential and efficiency of periodontal tissue as a biomaterial for hard-tissue regeneration following a bmp-2 gene transfer. A non-viral expression vector carrying bmp-2 was injected into the palate of the periodontal tissues of Wistar rats, followed by electroporation. The periodontal tissues were analyzed through bone morphometric analyses, including mineral apposition rate (MAR) determination and collagen micro-arrangement, which is a bone quality parameter, before and after a gene transfer. The MAR was significantly higher 3-6 d after the gene transfer than that before the gene transfer. Collagen orientation was normally maintained even after the bmp-2 gene transfer, suggesting that the bmp-2 gene transfer has no adverse effects on bone quality. Our results suggest that periodontal tissue electroporated with bmp-2 could be a novel biomaterial candidate for hard-tissue regeneration therapy.
Collapse
Affiliation(s)
- Mariko Yamamoto Kawai
- Department of Welfare, Kansai Women’s College, Osaka 582-0026, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
- Correspondence: ; Tel.: +81-72-977-6561; Fax: +81-72-977-9564
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (R.O.); (T.I.); (T.N.)
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (R.O.); (T.I.); (T.N.)
- Center for Aluminum and Advanced Materials Research and International Collaboration, School of Sustainable Design, University of Toyama, Toyama 930-8555, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (R.O.); (T.I.); (T.N.)
| | - Hiromitsu Yamamoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Marina Kashiwagi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Shigeki Yamanaka
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Kazumasa Nakao
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Hiroki Maruyama
- Department of Clinical Nephroscience, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata 951-8501, Japan;
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Kiyoshi Ohura
- Department of Nursing, Taisei Gakuin University, Osaka 587-8555, Japan;
| |
Collapse
|
20
|
Matsuzaka T, Matsugaki A, Nakano T. Control of osteoblast arrangement by osteocyte mechanoresponse through prostaglandin E2 signaling under oscillatory fluid flow stimuli. Biomaterials 2021; 279:121203. [PMID: 34717197 DOI: 10.1016/j.biomaterials.2021.121203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 10/07/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023]
Abstract
Anisotropic collagen/apatite microstructure is a prominent determinant of bone tissue functionalization; in particular, bone matrix modulates its anisotropic microstructure depending on the surrounding mechanical condition. Although mechanotransduction in bones is governed by osteocyte function, the precise mechanisms linking mechanical stimuli and anisotropic formation of collagen/apatite microstructure are poorly understood. Here we developed a novel anisotropic mechano-coculture system which enables the understanding of the biological mechanisms regulating the oriented bone matrix formation, which is constructed by aligned osteoblasts. The developed model provides bone-mimetic coculture platform that enables simultaneous control of mechanical condition and osteoblast-osteocyte communication with an anisotropic culture scaffold. The engineered coculture device helps in understanding the relationship between osteocyte mechanoresponses and osteoblast arrangement, which is a significant contributor to anisotropic organization of bone tissue. Our study showed that osteocyte responses to oscillatory flow stimuli regulated osteoblast arrangement through soluble molecular interactions. Importantly, we found that prostaglandin E2 is a novel determinant for oriented collagen/apatite organization of bone matrix, through controlling osteoblast arrangement.
Collapse
Affiliation(s)
- Tadaaki Matsuzaka
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
21
|
Ishimoto T, Kawahara K, Matsugaki A, Kamioka H, Nakano T. Quantitative Evaluation of Osteocyte Morphology and Bone Anisotropic Extracellular Matrix in Rat Femur. Calcif Tissue Int 2021; 109:434-444. [PMID: 34009396 PMCID: PMC8429393 DOI: 10.1007/s00223-021-00852-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/16/2021] [Indexed: 12/22/2022]
Abstract
Osteocytes are believed to play a crucial role in mechanosensation and mechanotransduction which are important for maintenance of mechanical integrity of bone. Recent investigations have revealed that the preferential orientation of bone extracellular matrix (ECM) mainly composed of collagen fibers and apatite crystallites is one of the important determinants of bone mechanical integrity. However, the relationship between osteocytes and ECM orientation remains unclear. In this study, the association between ECM orientation and anisotropy in the osteocyte lacuno-canalicular system, which is thought to be optimized along with the mechanical stimuli, was investigated using male rat femur. The degree of ECM orientation along the femur longitudinal axis was significantly and positively correlated with the anisotropic features of the osteocyte lacunae and canaliculi. At the femur middiaphysis, there are the osteocytes with lacunae that highly aligned along the bone long axis (principal stress direction) and canaliculi that preferentially extended perpendicular to the bone long axis, and the highest degree of apatite c-axis orientation along the bone long axis was shown. Based on these data, we propose a model in which osteocytes can change their lacuno-canalicular architecture depending on the mechanical environment so that they can become more susceptible to mechanical stimuli via fluid flow in the canalicular channel.
Collapse
Affiliation(s)
- Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Keita Kawahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
22
|
Zhou Y, Hu Z, Ge M, Jin W, Tang R, Li Q, Xu W, Shi J, Xie Z. Intraosseous Injection of Calcium Phosphate Polymer-Induced Liquid Precursor Increases Bone Density and Improves Early Implant Osseointegration in Ovariectomized Rats. Int J Nanomedicine 2021; 16:6217-6229. [PMID: 34531654 PMCID: PMC8439716 DOI: 10.2147/ijn.s321882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Osteoporosis, due to bone loss and structural deterioration, is a risk factor for dental implant failure, as it impedes initial stability and osseointegration. We aim to assess the effects of calcium phosphate polymer-induced liquid precursor (CaP-PILP) treatment, which significantly increases bone density and improves early implant osseointegration in ovariectomized rats. METHODS In this study, CaP-PILP was synthesized and characterized through TEM, FTIR and XRD. A rat model of osteoporosis was generated by ovariectomy. CaP-PILP or hydroxyapatite (HAP, negative control) was injected into the tibia, and the resulting changes in bone quality were determined. Further, implants were installed in the treated tibias, and implantation characteristics were assessed after 4 weeks. RESULTS The CaP-PILP group had superior bone repair. Importantly, CaP-PILP had excellent properties, similar to those of normal bone, in terms of implant osseointegration. In vivo experiment displayed that CaP-PILP group had better bone contact rate (65.97±3.176) than HAP and OVX groups. Meanwhile, a mound of mature and continuous new bone formed. Moreover, the values of BIC and BA showed no significant difference between the CaP-PILP group and the sham group. CONCLUSION In summary, CaP-PILP is a promising material for application in poor-quality bones to improve implant success rates in patients with osteoporosis. This research provides new perspectives on the application of nano-apatite materials in bone repair.
Collapse
Affiliation(s)
- Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Mingjie Ge
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Wenjing Jin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, 310027, People’s Republic of China
| | - Qi Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Weijian Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| |
Collapse
|
23
|
Superior Alignment of Human iPSC-Osteoblasts Associated with Focal Adhesion Formation Stimulated by Oriented Collagen Scaffold. Int J Mol Sci 2021; 22:ijms22126232. [PMID: 34207766 PMCID: PMC8228163 DOI: 10.3390/ijms22126232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) can be applied in patient-specific cell therapy to regenerate lost tissue or organ function. Anisotropic control of the structural organization in the newly generated bone matrix is pivotal for functional reconstruction during bone tissue regeneration. Recently, we revealed that hiPSC-derived osteoblasts (hiPSC-Obs) exhibit preferential alignment and organize in highly ordered bone matrices along a bone-mimetic collagen scaffold, indicating their critical role in regulating the unidirectional cellular arrangement, as well as the structural organization of regenerated bone tissue. However, it remains unclear how hiPSCs exhibit the cell properties required for oriented tissue construction. The present study aimed to characterize the properties of hiPSCs-Obs and those of their focal adhesions (FAs), which mediate the structural relationship between cells and the matrix. Our in vitro anisotropic cell culture system revealed the superior adhesion behavior of hiPSC-Obs, which exhibited accelerated cell proliferation and better cell alignment along the collagen axis compared to normal human osteoblasts. Notably, the oriented collagen scaffold stimulated FA formation along the scaffold collagen orientation. This is the first report of the superior cell adhesion behavior of hiPSC-Obs associated with the promotion of FA assembly along an anisotropic scaffold. These findings suggest a promising role for hiPSCs in enabling anisotropic bone microstructural regeneration.
Collapse
|
24
|
Simon P, Pompe W, Bobeth M, Worch H, Kniep R, Formanek P, Hild A, Wenisch S, Sturm E. Podosome-Driven Defect Development in Lamellar Bone under the Conditions of Senile Osteoporosis Observed at the Nanometer Scale. ACS Biomater Sci Eng 2021; 7:2255-2267. [PMID: 33938726 PMCID: PMC8290401 DOI: 10.1021/acsbiomaterials.0c01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The degradation mechanism of human trabecular bone harvested from the central part of the femoral head of a patient with a fragility fracture of the femoral neck under conditions of senile osteoporosis was investigated by high-resolution electron microscopy. As evidenced by light microscopy, there is a disturbance of bone metabolism leading to severe and irreparable damages to the bone structure. These defects are evoked by osteoclasts and thus podosome activity. Podosomes create typical pit marks and holes of about 300-400 nm in diameter on the bone surface. Detailed analysis of the stress field caused by the podosomes in the extracellular bone matrix was performed. The calculations yielded maximum stress in the range of few megapascals resulting in formation of microcracks around the podosomes. Disintegration of hydroxyapatite and free lying collagen fibrils were observed at the edges of the plywood structure of the bone lamella. At the ultimate state, the disintegration of the mineralized collagen fibrils to a gelatinous matrix comes along with a delamination of the apatite nanoplatelets resulting in a brittle, porous bone structure. The nanoplatelets aggregate to big hydroxyapatite plates with a size of up to 10 x 20 μm2. The enhanced plate growth can be explained by the interaction of two mechanisms in the ruffled border zone: the accumulation of delaminated hydroxyapatite nanoplatelets near clusters of podosomes and the accelerated nucleation and random growth of HAP nanoplatelets due to a nonsufficient concentration of process-directing carboxylated osteocalcin cOC.
Collapse
Affiliation(s)
- Paul Simon
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Wolfgang Pompe
- Technical University of Dresden, Institute of Materials Science, 01069 Dresden, Germany
| | - Manfred Bobeth
- Technical University of Dresden, Institute of Materials Science, 01069 Dresden, Germany
| | - Hartmut Worch
- Technical University of Dresden, Institute of Materials Science, 01069 Dresden, Germany
| | - Rüdiger Kniep
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Petr Formanek
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Anne Hild
- Clinical Anatomy, Clinic of Small Animals, Justus-Liebig-University, 35385 Giessen, Germany
| | - Sabine Wenisch
- Clinical Anatomy, Clinic of Small Animals, Justus-Liebig-University, 35385 Giessen, Germany
| | - Elena Sturm
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany.,University of Konstanz, Physical Chemistry, POB 714, D-78457 Konstanz, Germany
| |
Collapse
|
25
|
Matsugaki A, Kimura Y, Watanabe R, Nakamura F, Takehana R, Nakano T. Impaired Alignment of Bone Matrix Microstructure Associated with Disorganized Osteoblast Arrangement in Malignant Melanoma Metastasis. Biomolecules 2021; 11:131. [PMID: 33498283 PMCID: PMC7909255 DOI: 10.3390/biom11020131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 01/04/2023] Open
Abstract
Malignant melanoma favors spreading to bone, resulting in a weakened bone with a high fracture risk. Here, we revealed the disorganized alignment of apatite crystals in the bone matrix associated with the homing of cancer cells by developing an artificially controlled ex vivo melanoma bone metastasis model. The ex vivo metastasis model reflects the progressive melanoma cell activation in vivo, resulting in decreased bone mineral density and expression of MMP1-positive cells. Moreover, less organized intercellular connections were observed in the neighboring osteoblasts in metastasized bone, indicating the abnormal and randomized organization of bone matrix secreted by disconnected osteoblasts. Our study revealed that the deteriorated microstructure associated with disorganized osteoblast arrangement was a determinant of malignant melanoma-related bone dysfunction.
Collapse
Affiliation(s)
- Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan; (Y.K.); (R.W.); (F.N.); (R.T.)
| | - Yumi Kimura
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan; (Y.K.); (R.W.); (F.N.); (R.T.)
| | - Ryota Watanabe
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan; (Y.K.); (R.W.); (F.N.); (R.T.)
- Teijin Nakashima Medical Co. Ltd., 688-1, Joto-Kitagata, Higashi-ku, Okayama 709-0625, Japan
| | - Fumihito Nakamura
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan; (Y.K.); (R.W.); (F.N.); (R.T.)
| | - Ryo Takehana
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan; (Y.K.); (R.W.); (F.N.); (R.T.)
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan; (Y.K.); (R.W.); (F.N.); (R.T.)
| |
Collapse
|
26
|
Matsugaki A, Matsumoto S, Nakano T. A Novel Role of Interleukin-6 as a Regulatory Factor of Inflammation-Associated Deterioration in Osteoblast Arrangement. Int J Mol Sci 2020; 21:E6659. [PMID: 32932973 PMCID: PMC7555301 DOI: 10.3390/ijms21186659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory disorders are associated with bone destruction; that is, deterioration in bone cell activities are under the control of the innate immune system. Macrophages play a central role in innate immunity by switching their polarized phenotype. A disturbed immune system causes aberrance in the ordered bone matrix microarrangement, which is a dominant determinant of bone tissue functionalization. However, the precise relationship between the immune system and bone tissue organization is unknown. In this study, the controlled in vitro co-culture assay results showed that M1-polarized macrophages disrupted the osteoblast alignment, which directly modulate the oriented bone matrix organization, by secreting pro-inflammatory cytokines. Notably, interleukin-6 was found to be a key regulator of unidirectional osteoblast alignment. Our results demonstrated that inflammatory diseases triggered bone dysfunction by regulating the molecular interaction between the immune system and bone tissue organization. These findings may contribute to the development of therapeutic targets for inflammatory disorders, including rheumatoid arthritis.
Collapse
Affiliation(s)
| | | | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; (A.M.); (S.M.)
| |
Collapse
|
27
|
Mie K, Ishimoto T, Okamoto M, Iimori Y, Ashida K, Yoshizaki K, Nishida H, Nakano T, Akiyoshi H. Impaired bone quality characterized by apatite orientation under stress shielding following fixing of a fracture of the radius with a 3D printed Ti-6Al-4V custom-made bone plate in dogs. PLoS One 2020; 15:e0237678. [PMID: 32877422 PMCID: PMC7467283 DOI: 10.1371/journal.pone.0237678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022] Open
Abstract
Custom-made implants have recently gained attention in veterinary medicine because of their ability to properly fit animal bones having a wide variety of shapes and sizes. The effect of custom-made implants on bone soundness and the regeneration process is not yet clear. We fabricated a 3D printed Ti-6Al-4V custom-made bone plate that fits the shape of the dog radius, and placed it into the radius where an osteotomy had been made. The preferential orientation of the apatite c-axis contributes to the mechanical integrity of the bone and is a reliable measure of bone quality. We determined this parameter as well as the bone shape and bone mineral density (BMD). The bone portion which lies parallel to the bone plate exhibited bone resorption, decreased BMD, and significant degradation of apatite orientation, relative to the portion outside the plate, at 7 months after the operation. This demonstrates the presence of stress shielding in which applied stress is not transmitted to bone due to the insertion of a stiff bone plate. This reduced stress condition clearly influences the bone regeneration process. The apatite orientation in the regenerated site remained different even after 7 months of regeneration, indicating insufficient mechanical function in the regenerated portion. This is the first study in which the apatite orientation and BMD of the radius were evaluated under conditions of stress shielding in dogs. Our results suggest that assessment of bone repair by radiography can indicate the degree of restoration of BMD, but not the apatite orientation.
Collapse
Affiliation(s)
- Keiichiro Mie
- Laboratory of Veterinary Surgery, Division of Veterinary Science, Course of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Mari Okamoto
- Laboratory of Veterinary Surgery, Division of Veterinary Science, Course of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Yasumasa Iimori
- Laboratory of Veterinary Surgery, Division of Veterinary Science, Course of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Kazuna Ashida
- Laboratory of Veterinary Surgery, Division of Veterinary Science, Course of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Karin Yoshizaki
- Laboratory of Veterinary Surgery, Division of Veterinary Science, Course of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Hidetaka Nishida
- Laboratory of Veterinary Surgery, Division of Veterinary Science, Course of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Hideo Akiyoshi
- Laboratory of Veterinary Surgery, Division of Veterinary Science, Course of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
- * E-mail:
| |
Collapse
|
28
|
Hirose K, Ishimoto T, Usami Y, Sato S, Oya K, Nakano T, Komori T, Toyosawa S. Overexpression of Fam20C in osteoblast in vivo leads to increased cortical bone formation and osteoclastic bone resorption. Bone 2020; 138:115414. [PMID: 32416287 DOI: 10.1016/j.bone.2020.115414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/03/2023]
Abstract
Fam20C, which phosphorylates many secretory proteins with S-x-E/pS motifs, is highly expressed in bone and tooth tissues, implying that Fam20C-mediated phosphorylation is critical for regulation of these mineralized tissues. Previous studies of Fam20C-deficient mice revealed that Fam20C plays important roles in bone formation and mineralization. However, Fam20C-deficient mice develop hypophosphatemia, a systemic factor that masks the local effect of Fam20C in the bone tissue; consequently, the local role of Fam20C remains unknown. To elucidate the local function of Fam20C in bone tissue, we studied osteoblast-specific Fam20C transgenic (Fam20C-Tg) mice, which have no alteration in serum calcium and phosphate levels. Fam20C-Tg mice had more highly phosphorylated proteins in bone tissue than wild-type mice. In cortical bone of Fam20C-Tg mice, bone volume, mineralization surface (MS/BS), and mineral apposition rate (MAR) were elevated; in addition, the transgenic mice had an elevated number of vascular canals, resulting in an increased cortical porosity. Osteocyte number was elevated in the transgenics, but osteoblast number was unchanged. The microstructure of bone matrix characterized by the preferential orientation of collagen and apatite, was degraded and thus the mechanical function of bone material was deteriorated. In trabecular bone of Fam20C-Tg mice, bone volume was reduced, whereas MS/BS and MAR were unchanged. Osteoclast number was elevated and eroded surface area was non-significantly elevated with an increased serum CTX-I level, whereas osteoblast number was unchanged. These findings indicated that Fam20C overexpression in osteoblasts promotes cortical bone formation by increasing MS/BS and MAR and promoting osteocyte differentiation, but does not affect trabecular bone formation. Furthermore, Fam20C overexpression indirectly promotes osteoclastic bone resorption in cortical and trabecular bones. Our findings show that osteoblastic Fam20C-mediated phosphorylation in bone tissue regulates bone formation and resorption, and bone material quality.
Collapse
Affiliation(s)
- Katsutoshi Hirose
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yu Usami
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Sunao Sato
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kaori Oya
- Clinical Laboratory, Osaka University Dental Hospital, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Toshihisa Komori
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
| | - Satoru Toyosawa
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
29
|
Matsugaki A, Matsuzaka T, Murakami A, Wang P, Nakano T. 3D Printing of Anisotropic Bone-Mimetic Structure with Controlled Fluid Flow Stimuli for Osteocytes: Flow Orientation Determines the Elongation of Dendrites. Int J Bioprint 2020; 6:293. [PMID: 33088998 PMCID: PMC7557340 DOI: 10.18063/ijb.v6i4.293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Although three-dimensional (3D) bioprinting techniques enable the construction of various living tissues and organs, the generation of bone-like oriented microstructures with anisotropic texture remains a challenge. Inside the mineralized bone matrix, osteocytes play mechanosensing roles in an ordered manner with a well-developed lacunar-canaliculi system. Therefore, control of cellular arrangement and dendritic processes is indispensable for construction of artificially controlled 3D bone-mimetic architecture. Herein, we propose an innovative methodology to induce controlled arrangement of osteocyte dendritic processes using the laminated layer method of oriented collagen sheets, combined with a custom-made fluid flow stimuli system. Osteocyte dendritic processes showed elongation depending on the competitive directional relationship between flow and substrate. To the best of our knowledge, this study is the first to report the successful construction of the anisotropic bone-mimetic microstructure and further demonstrate that the dendritic process formation in osteocytes can be controlled with selective fluid flow stimuli, specifically by regulating focal adhesion. Our results demonstrate how osteocytes adapt to mechanical stimuli by optimizing the anisotropic maturation of dendritic cell processes.
Collapse
Affiliation(s)
- Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tadaaki Matsuzaka
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ami Murakami
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Pan Wang
- Singapore Institute of Manufacturing Technology, 73 Nanyang Drive, 637662, Singapore
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
30
|
Kasahara M, Matsunaga S, Someya T, Kitamura K, Odaka K, Ishimoto T, Nakano T, Abe S, Hattori M. Micro- and nano-bone analyses of the human mandible coronoid process and tendon-bone entheses. J Biomed Mater Res B Appl Biomater 2020; 108:2799-2806. [PMID: 32190994 DOI: 10.1002/jbm.b.34609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/03/2020] [Accepted: 03/08/2020] [Indexed: 11/07/2022]
Abstract
The coronoid process provides attachment to temporalis and masseter muscles, and thus plays an important role in mastication. Tendons connect muscles and bones, mediating the transmission of functional loads to bones. Thus, tendon-bone entheses govern mechanical stress in bones. The preferential orientation of biological apatite (BAp) crystallites, the main mineral component in bones, is an important index for bone quality and function, and is largely influenced by locally applied stress. In this study, we analyzed BAp orientation, Young's modulus, and bone mineral density (BMD) at different sites in the human coronoid process. No differences in BMD were found among the analyzed sites, but BAp crystal orientation was observed to differ. BAp crystallites showed a uni-directional orientation in the mesiodistal direction at the coronoid process apex, but were oriented in the direction vertical to the occlusal plane at other sites. Young's modulus tended to vary according to the BAp orientation. At the apex, a tendon form with characteristics different from those at other sites, including the presence of a fibrocartilaginous layer that may act as a stretching brake to control stress concentration, was observed. These findings suggest that the functional pressure of the temporalis muscle affects bone quality and strength.
Collapse
Affiliation(s)
- Masaaki Kasahara
- Department of Dental Materials Science, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Satoru Matsunaga
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan.,Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Tomoko Someya
- Department of Dental Materials Science, Tokyo Dental College, Tokyo, Japan
| | - Kei Kitamura
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan.,Department of Histology and Developmental Biology, Tokyo, Japan
| | - Kento Odaka
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan.,Department of Oral and Maxillofacial Radiology, Tokyo Dental College, Tokyo, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Masayuki Hattori
- Department of Dental Materials Science, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
31
|
Ishimoto T, Suetoshi R, Cretin D, Hagihara K, Hashimoto J, Kobayashi A, Nakano T. Quantitative ultrasound (QUS) axial transmission method reflects anisotropy in micro-arrangement of apatite crystallites in human long bones: A study with 3-MHz-frequency ultrasound. Bone 2019; 127:82-90. [PMID: 31170537 DOI: 10.1016/j.bone.2019.05.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/26/2019] [Indexed: 10/26/2022]
Abstract
Anisotropic arrangement of apatite crystallites, i.e., preferential orientation of the apatite c-axis, is known to be an important bone quality parameter that governs the mechanical properties. However, noninvasive evaluation of apatite orientation has not been achieved to date. The present paper reports the potential of quantitative ultrasound (QUS) for noninvasive evaluation of the degree of apatite orientation in human bone for the first time. A novel QUS instrument for implementation of the axial transmission (AT) method is developed, so as to achieve precise measurement of the speed of sound (SOS) in the cortex (cSOS) of human long bone. The advantages of our QUS instrument are the following: (i) it is equipped with a cortical bone surface-morphology detection system to correct the ultrasound transmission distance, which should be necessary for AT measurement of long bone covered by soft tissue of non-uniform thickness; and (ii) ultrasound with a relatively high frequency of 3 MHz is employed, enabling thickness-independent cSOS measurement even for the thin cortex by preventing guide wave generation. The reliability of the proposed AT measurement system is confirmed through comparison with the well-established direct transmission (DT) method. The cSOS in human long bone is found to exhibit considerable direction-dependent anisotropy; the axial cSOS (3870 ± 66 m/s) is the highest, followed by the tangential (3411 ± 94 m/s) and radial (3320 ± 85 m/s) cSOSs. The degree of apatite orientation exhibits the same order, despite the unchanged bone mineral density. Multiple regression analysis reveals that the cSOS of human long bone strongly reflects the apatite orientation. The cSOS determined by the AT method is positively correlated with that determined by the DT method and sensitively reflects the apatite orientation variation, indicating the validity of the AT instrument developed in this study. Our instrument will be beneficial for noninvasive evaluation of the material integrity of the human long-bone cortex, as determined by apatite c-axis orientation along the axial direction.
Collapse
Affiliation(s)
- Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Ryoichi Suetoshi
- Research and Innovation Center, Furuno Electric Co., Ltd., 9-52, Ashihara-cho, Nishinomiya, Hyogo 662-8580, Japan
| | - Dorian Cretin
- Research and Innovation Center, Furuno Electric Co., Ltd., 9-52, Ashihara-cho, Nishinomiya, Hyogo 662-8580, Japan
| | - Koji Hagihara
- Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Jun Hashimoto
- Department of Rheumatology, National Hospital Organization, Osaka-Minami Medical Center, 2-1 Kidohigashi, Kawachinagano, Osaka 586-8521, Japan
| | - Akio Kobayashi
- Department of Orthopaedic Surgery, Shiraniwa Hospital Joint Arthroplasty Center, 6-10-1 Shiraniwadai Ikoma, Nara 630-0136, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|