1
|
Wan Y, Rong L, Li Q, Liu S, Li W, Ye M, Luo W, Xie A, Shao J, Guo D, Zhang X, Zhang K, Liu Z. Integrative Approaches Identify Genetic Determinants of Levodopa Induced Dyskinesia. Mol Neurobiol 2025:10.1007/s12035-025-04930-5. [PMID: 40299300 DOI: 10.1007/s12035-025-04930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 04/05/2025] [Indexed: 04/30/2025]
Abstract
Levodopa induced dyskinesia (LID) is a serious side effect of levodopa treatment in Parkinson's disease (PD), with limited interventions. Understanding the genetic impact on LID would help inform future intervention studies. We performed integrative genomic analysis approaches to identify the genetic determinants of LID in a Chinese multi-center prospective, observational PD cohort. In this cohort, 46 of 315 PD patients developed LID during 2.5 years of follow-up. First, we performed a genome-wide association study (GWAS) in this cohort, followed by a meta-analysis integrating our GWAS summary data with additional data of European ancestry. Both GWAS analyses identified the Bromodomain Containing 3 (BRD3) as a LID susceptibility gene (P < 5 × 10-8); however, the genetic variants within the BRD3 gene differed between the analyses. Then, we conducted a multi-tissue transcriptome-wide association study (TWAS) through integrating our GWAS summary data with six gene expression quantitative trait loci (eQTLs) datasets from tissues involved in the levodopa transport-to-function pathway, including stomach, blood, caudate, putamen, nucleus accumbens, and frontal cortex. We found that the expression levels of the TRAPPC12 Antisense RNA 1 (TRAPPC12-AS1) and Williams Beuren Syndrome Chromosome Region 27 (WBSCR27) in all tissues were associated with LID occurrence. Finally, we executed the summary data-based mendelian randomization (SMR) and identified that LID was causally associated with the two genes' expression in all tissues. In conclusion, our findings support new candidate genes for LID susceptibility, providing novel potential targets for future intervention studies.
Collapse
Affiliation(s)
- Ying Wan
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Rong
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingyuan Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Shandong Province, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, Shandong Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Suzhi Liu
- Department of Neurology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Zhejiang Province, Linhai, China
| | - Wentao Li
- Department of Neurology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Ye
- Department of Neurology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Jiangsu Province, Nanjing, China
| | - Weifeng Luo
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Province, Suzhou, , China
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases, Soochow University, Jiangsu Province, Suzhou, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Shandong Province, Qingdao, , China
| | - Jingsong Shao
- Department of Neurology, Shaoxing Hospital of Traditional Chinese Medicine, Zhejiang Province, Shaoxing, China
| | - Dengjun Guo
- Department of Neurology, Tongde Hospital of Zhejiang Province, Zhejiang Province, Hangzhou, China
| | - Xiaoping Zhang
- Department of Neurology, The First People's Hospital of Lin'an District, Zhejiang Province, Hangzhou, China
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital With Nanjing Medical University, Jiangsu Province, Nanjing, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Qin C, Zhang W, Xiao C, Qu Y, Xiao J, Wu X, Zhang L, Wang Y, He L, Zhu J, Wang W, Li Y, Sun L, Jiang X. Shared genetic basis connects smoking behaviors and bone health: insights from a genome-wide cross-trait analysis. J Bone Miner Res 2024; 39:918-928. [PMID: 38843381 DOI: 10.1093/jbmr/zjae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/09/2024] [Accepted: 05/13/2024] [Indexed: 08/07/2024]
Abstract
Although the negative association of tobacco smoking with osteoporosis is well-documented, little is known regarding the shared genetic basis underlying these conditions. In this study, we aim to investigate a shared genetic architecture between smoking and heel estimated bone mineral density (eBMD), a reliable proxy for osteoporosis. We conducted a comprehensive genome-wide cross-trait analysis to identify genetic correlation, pleiotropic loci and causal relationship of smoking with eBMD, leveraging summary statistics of the hitherto largest genome-wide association studies conducted in European ancestry for smoking initiation (Nsmoker = 1 175 108, Nnonsmoker = 1 493 921), heaviness (cigarettes per day, N = 618 489), cessation (Ncurrent smoker = 304 244, Nformer smoker = 843 028), and eBMD (N = 426 824). A significant negative global genetic correlation was found for smoking cessation and eBMD (${r}_g$ = -0.051, P = 0.01), while we failed to identify a significant global genetic correlation of smoking initiation or heaviness with eBMD. Partitioning the whole genome into independent blocks, we observed 6 significant shared local signals for smoking and eBMD, with 22q13.1 showing the strongest regional genetic correlation. Such a genetic overlap was further supported by 71 pleiotropic loci identified in the cross-trait meta-analysis. Mendelian randomization identified no causal effect of smoking initiation (beta = -0.003 g/cm2, 95% CI = -0.033 to 0.027) or heaviness (beta = -0.017 g/cm2, 95% CI = -0.072 to 0.038) on eBMD, but a putative causal effect of genetic predisposition to being a current smoker was associated with a lower eBMD compared to former smokers (beta = -0.100 g/cm2, 95% CI = -0.181 to -0.018). Our study demonstrates a pronounced biological pleiotropy as well as a putative causal link between current smoking status and eBMD, providing novel insights into the primary prevention and modifiable intervention of osteoporosis by advocating individuals to avoid, reduce or quit smoking as early as possible.
Collapse
Affiliation(s)
- Chenjiarui Qin
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wenqiang Zhang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Changfeng Xiao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yang Qu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jinyu Xiao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xueyao Wu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- National Cancer Institute, Rockville, MD 610041, United States
| | - Li Zhang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yutong Wang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lin He
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jingwei Zhu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wenzhi Wang
- Department of Osteoporosis/Rheumatology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yun Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Sun
- Department of Osteoporosis/Rheumatology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xia Jiang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Solna, Stockholm, 17177, Sweden
| |
Collapse
|
3
|
Jing Z, Li Y, Zhang H, Chen T, Yu J, Xu X, Zou Y, Wang X, Xiang K, Gong X, He P, Fu Y, Ren M, Ji P, Yang S. Tobacco toxins induce osteoporosis through ferroptosis. Redox Biol 2023; 67:102922. [PMID: 37826866 PMCID: PMC10571034 DOI: 10.1016/j.redox.2023.102922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Clinical epidemiological studies have confirmed that tobacco smoking disrupts bone homeostasis and is an independent risk factor for the development of osteoporosis. The low viability and inferior osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) are important etiologies of osteoporosis. However, few basic studies have elucidated the specific mechanisms that tobacco toxins devastated BMSCs and consequently induced or exacerbated osteoporosis. Herein, our clinical data showed the bone mineral density (BMD) values of femoral neck in smokers were significantly lower than non-smokers, meanwhile cigarette smoke extract (CSE) exposure led to a significant decrease of BMD in rats and dysfunction of rat BMSCs (rBMSCs). Transcriptomic analysis and phenotype experiments suggested that the ferroptosis pathway was significantly activated in CSE-treated rBMSCs. Accumulated intracellular reactive oxygen species activated AMPK signaling, furtherly promoted NCOA4-mediated ferritin-selective autophagic processes, increased labial iron pool and lipid peroxidation deposition, and ultimately led to ferroptosis in rBMSCs. Importantly, in vivo utilization of ferroptosis and ferritinophagy inhibitors significantly alleviated BMD loss in CSE-exposed rats. Our study innovatively reveals the key mechanism of smoking-related osteoporosis, and provides a possible route targeting on the perspective of BMSC ferroptosis for future prevention and treatment of smoking-related bone homeostasis imbalance.
Collapse
Affiliation(s)
- Zheng Jing
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuzhou Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - He Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jinrui Yu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xinxin Xu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yulong Zou
- Department of Orthopedics, Second Affiliated Hospital of Chongqing Medical University, China
| | - Xu Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Xiang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xuerui Gong
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ping He
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yiru Fu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Mingxing Ren
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Sheng Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
4
|
Yu J, Jing Z, Shen D, Yang M, Liu K, Xiang K, Zhou C, Gong X, Deng Y, Li Y, Yang S. Quercetin promotes autophagy to alleviate cigarette smoke-related periodontitis. J Periodontal Res 2023; 58:1082-1095. [PMID: 37533377 DOI: 10.1111/jre.13170] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/27/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Cigarette smoking has been reported as an independent risk factor for periodontitis. Tobacco toxins affect periodontal tissue not only locally but also systemically, leading to the deterioration and recurrence of periodontitis. However, the mechanism of cigarette smoke-related periodontitis (CSRP) is unclear and thus lacks targeted treatment strategies. Quercetin, a plant-derived polyphenolic flavonoid, has been reported to have therapeutic effects on periodontitis due to its documented antioxidant activity. This study aimed to evaluate the effects of quercetin on CSRP and elucidated the underlying mechanism. METHODS The cigarette smoke-related ligature-induced periodontitis mouse model was established by intraperitoneal injection of cigarette smoke extract (CSE) and silk ligation of bilateral maxillary second molars. Quercetin was adopted by gavage as a therapeutic strategy. Micro-computed tomography was used to evaluate the alveolar bone resorption. Immunohistochemistry detected the oxidative stress and autophagy markers in vivo. Cell viability was determined by Cell Counting Kit-8, and oxidative stress levels were tested by 2,7-dichlorodihydrofluorescein diacetate probe and lipid peroxidation malondialdehyde assay kit. Alkaline phosphatase and alizarin red staining were used to determine osteogenic differentiation. Network pharmacology analysis, molecular docking, and western blot were utilized to elucidate the underlying molecular mechanism. RESULTS Alveolar bone resorption was exacerbated and oxidative stress products were accumulated during CSE exposure in vivo. Oxidative stress damage induced by CSE caused inhibition of osteogenic differentiation in vitro. Quercetin effectively protected the osteogenic differentiation of human periodontal ligament cells (hPDLCs) and periodontal tissue by upregulating the expression of Beclin-1 thus to promote autophagy and reduce oxidative stress damage. CONCLUSION Our results established a role of oxidative stress damage and autophagy dysfunction in the mechanism of CSE-induced destruction of periodontal tissue and hPDLCs, and provided a potential application value of quercetin to ameliorate CSRP.
Collapse
Affiliation(s)
- Jinrui Yu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Jing
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Danfeng Shen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Mingcong Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Kehao Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Xiang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Chongjing Zhou
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xuerui Gong
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yangjia Deng
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhou Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Sheng Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
5
|
Tan Q, Møller AMJ, Qiu C, Madsen JS, Shen H, Bechmann T, Delaisse JM, Kristensen BW, Deng HW, Karasik D, Søe K. A variability in response of osteoclasts to zoledronic acid is mediated by smoking-associated modification in the DNA methylome. Clin Epigenetics 2023; 15:42. [PMID: 36915112 PMCID: PMC10012449 DOI: 10.1186/s13148-023-01449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Clinical trials have shown zoledronic acid as a potent bisphosphonate in preventing bone loss, but with varying potency between patients. Human osteoclasts ex vivo reportedly displayed a variable sensitivity to zoledronic acid > 200-fold, determined by the half-maximal inhibitory concentration (IC50), with cigarette smoking as one of the reported contributors to this variation. To reveal the molecular basis of the smoking-mediated variation on treatment sensitivity, we performed a DNA methylome profiling on whole blood cells from 34 healthy female blood donors. Multiple regression models were fitted to associate DNA methylation with ex vivo determined IC50 values, smoking, and their interaction adjusting for age and cell compositions. RESULTS We identified 59 CpGs displaying genome-wide significance (p < 1e-08) with a false discovery rate (FDR) < 0.05 for the smoking-dependent association with IC50. Among them, 3 CpGs have p < 1e-08 and FDR < 2e-03. By comparing with genome-wide association studies, 15 significant CpGs were locally enriched (within < 50,000 bp) by SNPs associated with bone and body size measures. Furthermore, through a replication analysis using data from a published multi-omics association study on bone mineral density (BMD), we could validate that 29 out of the 59 CpGs were in close vicinity of genomic sites significantly associated with BMD. Gene Ontology (GO) analysis on genes linked to the 59 CpGs displaying smoking-dependent association with IC50, detected 18 significant GO terms including cation:cation antiporter activity, extracellular matrix conferring tensile strength, ligand-gated ion channel activity, etc. CONCLUSIONS: Our results suggest that smoking mediates individual sensitivity to zoledronic acid treatment through epigenetic regulation. Our novel findings could have important clinical implications since DNA methylation analysis may enable personalized zoledronic acid treatment.
Collapse
Affiliation(s)
- Qihua Tan
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, 5000 Odense C, Denmark
| | - Anaïs Marie Julie Møller
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, J. B. Winsløvs Vej 25, 1st Floor, 5000 Odense C, Denmark
- Clinical Cell Biology, Department of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
| | - Chuan Qiu
- Division of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane Center of Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112 USA
| | - Jonna Skov Madsen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Hui Shen
- Division of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane Center of Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112 USA
| | - Troels Bechmann
- Department of Oncology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
- Department of Oncology, Regional Hospital West Jutland, 7400 Herning, Denmark
| | - Jean-Marie Delaisse
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, J. B. Winsløvs Vej 25, 1st Floor, 5000 Odense C, Denmark
- Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark
- Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Hong-Wen Deng
- Division of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane Center of Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112 USA
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, 130010 Safed, Israel
| | - Kent Søe
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, J. B. Winsløvs Vej 25, 1st Floor, 5000 Odense C, Denmark
- Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| |
Collapse
|
6
|
Yang M, Xu J, Zhang F, Luo P, Xu K, Feng R, Xu P. Large-Scale Genetic Correlation Analysis between Spondyloarthritis and Human Blood Metabolites. J Clin Med 2023; 12:jcm12031201. [PMID: 36769847 PMCID: PMC9917834 DOI: 10.3390/jcm12031201] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023] Open
Abstract
The aim was to study the genetic correlation and causal relationship between spondyloarthritis (SpA) and blood metabolites based on the large-scale genome-wide association study (GWAS) summary data. The GWAS summary data (3966 SpA and 448,298 control cases) of SpA were from the UK Biobank, and the GWAS summary data (486 blood metabolites) of human blood metabolites were from a published study. First, the genetic correlation between SpA and blood metabolites was analyzed by linkage disequilibrium score (LDSC) regression. Next, we used Mendelian randomization (MR) analysis to perform access causal relationship between SpA and blood metabolites. Random effects inverse variance weighted (IVW) was the main analysis method, and the MR Egger, weighted median, simple mode, and weighted mode were supplementary methods. The MR analysis results were dominated by the random effects IVW. The Cochran's Q statistic (MR-IVW) and Rucker's Q statistic (MR Egger) were used to check heterogeneity. MR Egger and MR pleiotropy residual sum and outlier (MR-PRESSO) were used to check horizontal pleiotropy. The MR-PRESSO was also used to check outliers. The "leave-one-out" analysis was used to assess whether the MR analysis results were affected by a single SNP and thus test the robustness of the MR results. Finally, we identified seven blood metabolites that are genetically related to SpA: X-10395 (correlation coefficient = -0.546, p = 0.025), pantothenate (correlation coefficient = -0.565, p = 0.038), caprylate (correlation coefficient = -0.333, p = 0.037), pelargonate (correlation coefficient = -0.339, p = 0.047), X-11317 (correlation coefficient = -0.350, p = 0.038), X-12510 (correlation coefficient = -0.399, p = 0.034), and X-13859 (Correlation coefficient = -0.458, p = 0.015). Among them, X-10395 had a positive genetic causal relationship with SpA (p = 0.014, OR = 1.011). The blood metabolites that have genetic correlation and causal relationship with SpA found in this study provide a new idea for the study of the pathogenesis of SpA and the determination of diagnostic indicators.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jiawen Xu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Pan Luo
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Ruoyang Feng
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- Correspondence:
| |
Collapse
|
7
|
Lv X, Jiang Y, Yang D, Zhu C, Yuan H, Yuan Z, Suo C, Chen X, Xu K. The role of metabolites under the influence of genes and lifestyles in bone density changes. Front Nutr 2022; 9:934951. [PMID: 36118775 PMCID: PMC9481263 DOI: 10.3389/fnut.2022.934951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Osteoporosis is a complex bone disease influenced by numerous factors. Previous studies have found that some metabolites are related to bone mineral density (BMD). However, the associations between metabolites and BMD under the influence of genes and lifestyle have not been fully investigated. Methods We analyzed the effect of metabolites on BMD under the synergistic effect of genes and lifestyle, using the data of 797 participants aged 55–65 years from the Taizhou Imaging Study. The cumulative sum method was used to calculate the polygenic risk score of SNPs, and the healthful plant-based diet index was used to summarize food intake. The effect of metabolites on BMD changes under the influence of genes and lifestyle was analyzed through interaction analysis and mediation analysis. Results Nineteen metabolites were found significantly different in the osteoporosis, osteopenia, and normal BMD groups. We found two high-density lipoprotein (HDL) subfractions were positively associated with osteopenia, and six very-low-density lipoprotein subfractions were negatively associated with osteopenia or osteoporosis, after adjusting for lifestyles and genetic factors. Tea drinking habits, alcohol consumption, smoking, and polygenic risk score changed BMD by affecting metabolites. Conclusion With the increased level of HDL subfractions, the risk of bone loss in the population will increase; the risk of bone loss decreases with the increased level of very-low-density lipoprotein subfractions. Genetic factors and lifestyles can modify the effects of metabolites on BMD. Our results show evidence for the precise prevention of osteoporosis.
Collapse
Affiliation(s)
- Xuewei Lv
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Dantong Yang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Chengkai Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Huangbo Yuan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Ziyu Yuan
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- Ministry of Education Key Laboratory of Public Health Safety, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- *Correspondence: Xingdong Chen,
| | - Kelin Xu
- Ministry of Education Key Laboratory of Public Health Safety, Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
- Kelin Xu,
| |
Collapse
|
8
|
Weng W, Li H, Zhu S. An Overlooked Bone Metabolic Disorder: Cigarette Smoking-Induced Osteoporosis. Genes (Basel) 2022; 13:genes13050806. [PMID: 35627191 PMCID: PMC9141076 DOI: 10.3390/genes13050806] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoking (CS) leads to significant bone loss, which is recognized as an independent risk factor for osteoporosis. The number of smokers is continuously increasing due to the addictive nature of smoking. Therefore it is of great value to effectively prevent CS-induced osteoporosis. However, there are currently no effective interventions to specifically counteract CS-induced osteoporosis, owing to the fact that the specific mechanisms by which CS affects bone metabolism are still elusive. This review summarizes the latest research findings of important pathways between CS exposure and bone metabolism, with the aim of providing new targets and ideas for the prevention of CS-induced osteoporosis, as well as providing theoretical directions for further research in the future.
Collapse
Affiliation(s)
- Weidong Weng
- Department of Trauma and Reconstructive Surgery, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany;
| | - Hongming Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Sheng Zhu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China;
- Correspondence:
| |
Collapse
|
9
|
Liu A, Liu Y, Su KJ, Greenbaum J, Bai Y, Tian Q, Zhao LJ, Deng HW, Shen H. A transcriptome-wide association study to detect novel genes for volumetric bone mineral density. Bone 2021; 153:116106. [PMID: 34252604 PMCID: PMC8478845 DOI: 10.1016/j.bone.2021.116106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 01/02/2023]
Abstract
Transcriptome-wide association studies (TWAS) systematically investigate the association of genetically predicted gene expression with disease risk, providing an effective approach to identify novel susceptibility genes. Osteoporosis is the most common metabolic bone disease, associated with reduced bone mineral density (BMD) and increased risk of osteoporotic fractures, whereas genetic factors explain approximately 70% of the variance in phenotypes associated with bone. BMD is commonly assessed using dual-energy X-ray absorptiometry (DXA) to obtain measurements (g/cm2) of areal BMD. However, quantitative computed tomography (QCT) measured 3D volumetric BMD (vBMD) (g/cm3) has important advantages compared with DXA since it can evaluate cortical and trabecular microstructural features of bone quality, which can be used to directly predict fracture risk. Here, we performed the first TWAS for volumetric BMD (vBMD) by integrating genome-wide association studies (GWAS) data from two independent cohorts, namely the Framingham Heart Study (FHS, n = 3298) and the Osteoporotic Fractures in Men (MrOS, n = 4641), with tissue-specific gene expression data from the Genotype-Tissue Expression (GTEx) project. We first used stratified linkage disequilibrium (LD) score regression approach to identify 12 vBMD-relevant tissues, for which vBMD heritability is enriched in tissue-specific genes of the given tissue. Focusing on these tissues, we subsequently leveraged GTEx expression reference panels to predict tissue-specific gene expression levels based on the genotype data from FHS and MrOS. The associations between predicted gene expression levels and vBMD variation were then tested by MultiXcan, an innovative TWAS method that integrates information available across multiple tissues. We identified 70 significant genes associated with vBMD, including some previously identified osteoporosis-related genes such as LYRM2 and NME8, as well as some novel loci such as DNAAF2 and SPAG16. Our findings provide novel insights into the pathophysiological mechanisms of osteoporosis and highlight several novel vBMD-associated genes that warrant further investigation.
Collapse
Affiliation(s)
- Anqi Liu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yong Liu
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha, Hunan Province, PR China
| | - Kuan-Jui Su
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Jonathan Greenbaum
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yuntong Bai
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA; Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Qing Tian
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Lan-Juan Zhao
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA; Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha, Hunan Province, PR China
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
10
|
Hua R, Zou J, Ma Y, Wang X, Chen Y, Li Y, Du J. Psoralidin prevents caffeine-induced damage and abnormal differentiation of bone marrow mesenchymal stem cells via the classical estrogen receptor pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1245. [PMID: 34532382 PMCID: PMC8421924 DOI: 10.21037/atm-21-3153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
Background Caffeine is broadly present in tea, coffee, and cocoa, and is commonly consumed. The bone microenvironment might be damaged by excessive caffeine, which has been shown to exert negative effects on human health. In this study, we sought to determine whether excessive caffeine could damage the biological functions of bone marrow mesenchymal stem cells (BMSCs) and induce bone loss in mice, and further investigate effective therapeutic methods. Methods BMSCs were treated with different concentrations of caffeine (0.01, 0.05, 0.1, 0.5, and 1.0 mM) for 48 h. Cell counting kit-8 (CCK-8) assay, colony formation assay, wound healing assay, and quantitative real-time polymerase chain reaction (qRT-PCR) analysis were performed to detect the cell viability, proliferation, migration, and pluripotency of BMSCs, respectively. Alizarin red S (ARS) staining, alkaline phosphatase (ALP) staining, oil red O (ORO) staining, and qRT-PCR assay were applied to assess the osteogenic and adipogenic differentiation of BMSCs. BMSCs were treated with caffeine and further exposed to different concentrations of psoralidin (PL) (0.01, 0.1, 1, and 10 µM) for 48 h. Micro-computed tomography (µCT) scanning was used to evaluate the bone mass of mice. 7α-(7-((4,4,5,5,5-Pentafluoropentyl)-sulfiny)nonyl)estra-1,3,5(10)-triene-3,17β-diol (ICI 182,780, ICI) was applied to examine whether the classical estrogen receptor (ER) pathway was involved. Results The CCK-8 assay, colony formation assay, wound healing assay, and qRT-PCR analysis indicated that caffeine (0.01, 0.05, 0.1, 0.5, 1.0 mM) attenuated the cell viability, proliferation, migration and pluripotency of BMSCs, respectively, in a concentration-dependent manner. Caffeine treatment inhibited osteogenic differentiation but promoted adipogenic differentiation of BMSCs in a dose-dependent manner. Furthermore, ARS staining, ALP staining, ORO staining, and qRT-PCR assay showed that excessive caffeine induced bone loss and osteoporosis (OP) in mice by regulating the osteogenesis and adipogenesis of BMSCs. Also, PL treatment could reverse the caffeine-induced dysfunctions and aberrant differentiation of BMSCs via the ER pathway. Conclusions Our results revealed a novel molecular mechanism for the therapeutic effects of PL in treating excessive caffeine-induced OP, which might shed new light on the clinical application of PL for caffeine-related OP.
Collapse
Affiliation(s)
- Rong Hua
- Department of Clinical Pharmacy, Department of Pharmacy, Taizhou People's Hospital, the Hospital Affiliated 5 to Nantong University, Taizhou, China
| | - Jilong Zou
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Ma
- Department of Clinical Pharmacy, Department of Pharmacy, Taizhou People's Hospital, the Hospital Affiliated 5 to Nantong University, Taizhou, China
| | - Xiaomei Wang
- Department of Clinical Pharmacy, Department of Pharmacy, Taizhou People's Hospital, the Hospital Affiliated 5 to Nantong University, Taizhou, China
| | - Yao Chen
- Department of Clinical Pharmacy, Department of Pharmacy, Taizhou People's Hospital, the Hospital Affiliated 5 to Nantong University, Taizhou, China
| | - Yuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Suzhou Research Institute, Shandong University, Suzhou, China
| | - Jianyang Du
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
11
|
Fisher L, Fisher A, Smith PN. Helicobacter pylori Related Diseases and Osteoporotic Fractures (Narrative Review). J Clin Med 2020; 9:E3253. [PMID: 33053671 PMCID: PMC7600664 DOI: 10.3390/jcm9103253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis (OP) and osteoporotic fractures (OFs) are common multifactorial and heterogenic disorders of increasing incidence. Helicobacter pylori (H.p.) colonizes the stomach approximately in half of the world's population, causes gastroduodenal diseases and is prevalent in numerous extra-digestive diseases known to be associated with OP/OF. The studies regarding relationship between H.p. infection (HPI) and OP/OFs are inconsistent. The current review summarizes the relevant literature on the potential role of HPI in OP, falls and OFs and highlights the reasons for controversies in the publications. In the first section, after a brief overview of HPI biological features, we analyze the studies evaluating the association of HPI and bone status. The second part includes data on the prevalence of OP/OFs in HPI-induced gastroduodenal diseases (peptic ulcer, chronic/atrophic gastritis and cancer) and the effects of acid-suppressive drugs. In the next section, we discuss the possible contribution of HPI-associated extra-digestive diseases and medications to OP/OF, focusing on conditions affecting both bone homeostasis and predisposing to falls. In the last section, we describe clinical implications of accumulated data on HPI as a co-factor of OP/OF and present a feasible five-step algorithm for OP/OF risk assessment and management in regard to HPI, emphasizing the importance of an integrative (but differentiated) holistic approach. Increased awareness about the consequences of HPI linked to OP/OF can aid early detection and management. Further research on the HPI-OP/OF relationship is needed to close current knowledge gaps and improve clinical management of both OP/OF and HPI-related disorders.
Collapse
Affiliation(s)
- Leon Fisher
- Department of Gastroenterology, Frankston Hospital, Peninsula Health, Melbourne 3199, Australia
| | - Alexander Fisher
- Department of Geriatric Medicine, The Canberra Hospital, ACT Health, Canberra 2605, Australia;
- Department of Orthopedic Surgery, The Canberra Hospital, ACT Health, Canberra 2605, Australia;
- Australian National University Medical School, Canberra 2605, Australia
| | - Paul N Smith
- Department of Orthopedic Surgery, The Canberra Hospital, ACT Health, Canberra 2605, Australia;
- Australian National University Medical School, Canberra 2605, Australia
| |
Collapse
|