1
|
Bouche G, Gilbert D, Quartagno M, Dehbi HM, Merrick S, Barjesteh van Waalwijk van Doorn-Khosrovani S, Stephens R, Parmar M, Langley RE. Determining the optimal use of approved drugs in oncology. Lancet Oncol 2025; 26:e282-e294. [PMID: 40318659 DOI: 10.1016/s1470-2045(25)00037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 05/07/2025]
Abstract
Optimising the use of approved drugs requires evidence from post-approval trials that investigate variations of their use. Determining optimal drug use goes beyond the dominant, academic effort to conduct trials to identify effective lower doses of new drugs. Other important therapeutic approaches that use either less, similar, or more drug than the standard dose need testing in clinical trials, to get the most out of these drugs. Trial objectives on survival outcomes vary greatly; some aim for superiority, others for equivalent exposure or non-inferiority. This Personal View aims to inform academic trialists in how to conceive and prioritise questions aimed at determining the optimal use of drugs, taking into account the perspectives of patients, clinicians, and trial funders, to maximise the chances of successful delivery and impact for patients globally.
Collapse
Affiliation(s)
- Gauthier Bouche
- MRC Clinical Trials Unit, University College London, London, UK; The Anticancer Fund, Meise, Belgium.
| | - Duncan Gilbert
- MRC Clinical Trials Unit, University College London, London, UK
| | | | - Hakim-Moulay Dehbi
- Comprehensive Clinical Trials Unit, University College London, London, UK
| | - Sophie Merrick
- MRC Clinical Trials Unit, University College London, London, UK
| | | | - Richard Stephens
- Patient and Public Involvement Group, University College London, London, UK
| | - Mahesh Parmar
- MRC Clinical Trials Unit, University College London, London, UK
| | - Ruth E Langley
- MRC Clinical Trials Unit, University College London, London, UK
| |
Collapse
|
2
|
Kim YR, Park JH, Bae K, Yoon KA, Kim JH. Exposure-Response Relationships for Toceranib in Dogs with Solid Tumors: A Pilot Study. Animals (Basel) 2025; 15:1025. [PMID: 40218418 PMCID: PMC11988034 DOI: 10.3390/ani15071025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
The existence of considerable interpatient variability in pharmacokinetic exposure necessitates dose adjustment to avoid potential adverse events and suboptimal efficacy in targeted therapy. Exposure-response relationships for toceranib phosphate (TOC), the most commonly used tyrosine kinase inhibitor in veterinary oncology, remain unclear. Correlations between TOC exposure and efficacy and safety were evaluated in dogs with solid tumors in our study. Plasma TOC was analyzed at 6 and 48 h post-administration. For the 10 dogs in the exposure-response analysis, the mean interpatient variabilities in dose-normalized peak (Cmax) and trough (Cmin) concentrations were 29% and 61%, respectively. Dose-normalized Cmax did not differ among weeks 1, 4, and 12 (p = 0.414), suggesting that steady-state plasma levels can be achieved within 1 week. Pharmacokinetic exposure at steady state was not significantly associated with efficacy (week 1 Cmax, p = 0.941; average Cmax, p = 0.548). Cmax was positively but nonsignificantly associated with the risk of adverse events (week 1 Cmax, p = 0.190; average Cmax, p = 0.109). These findings suggest the value of pharmacokinetic monitoring in optimizing TOC dosage and reducing its adverse effects in dogs with solid tumors. Clinicians should consider plasma TOC when managing TOC treatment in small-animal practice.
Collapse
Affiliation(s)
- Young-Rok Kim
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, Seoul 05029, Republic of Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji-Hwan Park
- Bundang Leaders Animal Medical Center, Seongnam 13496, Republic of Korea
| | - Kieun Bae
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, Seoul 05029, Republic of Korea
- Department of Veterinary Biochemistry, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyong-Ah Yoon
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, Seoul 05029, Republic of Korea
- Department of Veterinary Biochemistry, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jung-Hyun Kim
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, Seoul 05029, Republic of Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Kruse M, Stankeviciute S, Perry S. Clinical pharmacology-how it shapes the drug development journey. Eur J Clin Pharmacol 2025; 81:597-604. [PMID: 40000475 PMCID: PMC11922982 DOI: 10.1007/s00228-025-03811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Every drug development is a complex and long journey. Clinical pharmacology is an essential discipline in modern drug development. With its applications, computational modelling, and simulation techniques, it can significantly contribute to the efficiency in drug development today. In this perspective, we highlight why pharmacokinetics and pharmacodynamics are important, what developers need to consider in their clinical development programme, how modelling influences the development process, and discuss recent trends such as artificial intelligence and machine learning that have the potential to reshape future drug development.
Collapse
|
4
|
Buijs SM, Mohmaed Ali MI, Oomen-de Hoop E, Braal CL, Wortelboer N, van Ommen-Nijhof A, Sonke GS, Konings IR, Jager A, Steeghs N, Siebinga H, Mathijssen RHJ, Huitema ADR, Koolen SLW. Palbociclib exposure in relation to efficacy and toxicity in patients with advanced breast cancer. ESMO Open 2025; 10:104290. [PMID: 39954390 PMCID: PMC11872518 DOI: 10.1016/j.esmoop.2025.104290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Data on exposure-response or exposure-toxicity relationships of cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) are limited and inconclusive. We aimed to investigate whether there is an association between palbociclib exposure and progression-free survival (PFS), adverse events (AEs) and dose reductions. MATERIALS AND METHODS Data were retrieved from the prospective, multicentre SONIA trial in which patients with advanced estrogen receptor-positive, human epidermal growth factor receptor 2-negative breast cancer were randomised to receive CDK4/6i treatment in first versus second line. Blood for pharmacokinetics (PK) was taken at day 15 of cycles 1 and 2 during CDK4/6i treatment. Individual trough concentrations and plasma area under the curves of palbociclib were constructed using a population PK model. Associations with palbociclib exposure were tested using Cox regression for PFS and chi-square tests for AEs or dose reductions. RESULTS PK data were available for 344 patients. No association between palbociclib exposure and PFS was found. Although patients with higher palbociclib exposure had more dose reductions during their entire CDK4/6i treatment course, this was not reflected by a higher incidence of grade 3-4 AEs in the first 3 months. CONCLUSION The absence of an association between palbociclib exposure and PFS and the presence of the association between palbociclib exposure and dose reductions suggest that dose reductions may safely be carried out in case of palbociclib-related toxicity.
Collapse
Affiliation(s)
- S M Buijs
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - M I Mohmaed Ali
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - E Oomen-de Hoop
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - C L Braal
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - N Wortelboer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - A van Ommen-Nijhof
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - G S Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - I R Konings
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - A Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - N Steeghs
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Siebinga
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - R H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - A D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - S L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands; Department of Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Pagnot L, Granger I, Guitton J, Favier B, Ceraulo A, Faure-Conter C, Leblond P, Philippe M. Real-world pharmacokinetics of trametinib in pediatric low-grade glioma. Cancer Chemother Pharmacol 2025; 95:35. [PMID: 39998657 DOI: 10.1007/s00280-025-04761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE Trametinib, a MEK1/2 inhibitor, has emerged as a promising treatment for pediatric patients with low-grade gliomas (LGG). However, trametinib exhibits significant inter-individual pharmacokinetic (PK) variability, and studies in adults demonstrated an exposure-efficacy relationship. This study aimed to evaluate the PK profile of trametinib in pediatric routine care and explore potential exposure-outcome relationships. METHODS We analyzed PK data from 65 blood samples from 19 children receiving trametinib, either as single agent or in combination with dabrafenib. A trough concentration (Cmin) range of 8-15 ng/mL was considered, based on average exposure reported in the largest pediatric study. RESULTS The mean Cmin was 8.82 ng/ml, with 64.6% of samples falling within the predefined target range, while 35.4% were below it. Regarding tolerance, 84.2% of patients experienced treatment-related toxicities, predominantly skin and subcutaneous tissue disorders. Efficacy data were limited. CONCLUSION These findings underscore the necessity of therapeutic drug monitoring in pediatric patients to optimize treatment efficacy and minimize toxicity, highlighting trametinib's potential for personalized dosing strategies in this population.
Collapse
Affiliation(s)
- Laurie Pagnot
- Department of Clinical Pharmacy and Oncology, Centre Leon Bérard, Lyon, France
| | - Isaline Granger
- Department of Clinical Pharmacy and Oncology, Centre Leon Bérard, Lyon, France
| | - Jérôme Guitton
- Biochemistry and Pharmacology-Toxicology Laboratory, Lyon Sud Hospital, Pierre Bénite, France
| | - Bertrand Favier
- Department of Clinical Pharmacy and Oncology, Centre Leon Bérard, Lyon, France
| | - Antony Ceraulo
- Institute of Pediatric Hematology and Oncology (IHOPe), Centre Léon Bérard, Lyon, France
| | - Cécile Faure-Conter
- Institute of Pediatric Hematology and Oncology (IHOPe), Centre Léon Bérard, Lyon, France
| | - Pierre Leblond
- Institute of Pediatric Hematology and Oncology (IHOPe), Centre Léon Bérard, Lyon, France
| | - Michael Philippe
- Department of Clinical Pharmacy and Oncology, Centre Leon Bérard, Lyon, France.
- Institute of Pediatric Hematology and Oncology (IHOPe), Centre Léon Bérard, Lyon, France.
| |
Collapse
|
6
|
Meertens M, Kerssemakers N, de Vries N, Rosing H, Steeghs N, Beijnen JH, Huitema ADR. Clinical Application of Volumetric Absorptive Microsampling for Therapeutic Drug Monitoring of Oral Targeted Anticancer Drugs. Ther Drug Monit 2025:00007691-990000000-00325. [PMID: 39996568 DOI: 10.1097/ftd.0000000000001315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/11/2024] [Indexed: 02/26/2025]
Abstract
BACKGROUND Therapeutic Drug Monitoring optimizes oral anticancer drug treatment by measuring plasma levels. Volumetric absorptive microsampling (VAMS) allows home sampling with a minimal blood sample. However, methods for converting whole blood into plasma are required to interpret these results. This study aimed to establish conversion methods for abiraterone, alectinib, cabozantinib, imatinib, olaparib, sunitinib, and their metabolites, while assessing the differences between venous and capillary blood. The feasibility of home sampling was also evaluated. METHODS Plasma and VAMS samples, both from venipuncture-collected whole blood tubes and from a finger prick, were collected from each patient. The VAMS samples were deemed comparable if their concentrations were within ±20% of each other for ≥2/3rd of the patients. The Passing-Bablok regression and conversion factor methods were tested for the plasma and VAMS finger prick samples. The estimated plasma concentrations using both methods were required to be within ±20% of the measured plasma concentrations for ≥2/3rd of the pairs. RESULTS Overall, 153 patients were enrolled in this study. Conversion methods were applied to the VAMS samples, and the acceptance criteria were met for alectinib-M4, cabozantinib, imatinib, N-desmethyl imatinib, olaparib, sunitinib, and N-desethyl sunitinib but not for abiraterone, D4A, or alectinib. The capillary and venous VAMS concentrations were similar, except for that of D4A. Patients were positive toward home sampling. CONCLUSIONS The established VAMS conversion methods for 7 out of 10 oral targeted anticancer drugs or metabolites met the acceptance criteria. Future studies need to validate the conversion methods with an independent cohort and integrate home sampling via VAMS to provide patients with an alternative to venipuncture at the outpatient clinic.
Collapse
Affiliation(s)
- Marinda Meertens
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Nikki Kerssemakers
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Niels de Vries
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Hilde Rosing
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
- Department of Medical Oncology, Utrecht University Medical Centre, Utrecht, the Netherlands
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; and
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
7
|
Korsholm C, Bülow C, Christensen M, Dalhoff K, Feinberg JB, Lund TM, Niemann CU, Petersen TS, Andersen MA. Drug exposure and measurable residual disease in chronic lymphocytic leukemia: a systematic review. Leuk Lymphoma 2025; 66:229-239. [PMID: 39509142 DOI: 10.1080/10428194.2024.2412289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 11/15/2024]
Abstract
For fixed-duration therapies against chronic lymphocytic leukemia (CLL), undetectable measurable residual disease (MRD) predicts overall and progression-free survival more accurately than complete remission. For indefinite therapies, MRD status can direct discontinuation of treatment. We systematically reviewed the relationship between antineoplastic drug exposures and undetectable MRD in CLL. Seventeen trials from MEDLINE and EMBASE met the inclusion criteria; four of which evaluated drug exposures in relation to MRD status. Undetectable MRD was associated with higher trough concentrations of ofatumumab and alemtuzumab, as well as increased maximum concentration and area under the plasma concentration curve (AUC) of ibrutinib. One study found an association between high rituximab AUC and undetectable MRD until adjusting for tumor burden. The limited studies, lack of exposure measurements of concomitant drugs, and high heterogeneity in designs limit the results' generalizability. Further research is needed to explore the exposure-MRD relationship and the possibility for therapeutic drug monitoring in CLL.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Neoplasm, Residual/diagnosis
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacokinetics
- Drug Monitoring
Collapse
Affiliation(s)
- Cathrine Korsholm
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Cille Bülow
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Mikkel Christensen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim Dalhoff
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joshua Buron Feinberg
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Trine Meldgaard Lund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Utoft Niemann
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Hematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tonny Studsgaard Petersen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Asger Andersen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
8
|
Bu C, Jiang L, Cui L, Tang M, Song X, Zhao Y, Liang Z, Ye L, Nian J, Gao S, Tao X, Wang Z, Chen W. LC-MS/MS method for quantification of 23 TKIs in Plasma: Assessing the relationship between anlotinib trough concentration and toxicities. Clin Chim Acta 2025; 566:120028. [PMID: 39547553 DOI: 10.1016/j.cca.2024.120028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVES To develop a simple, rapid, and sensitive LC-MS/MS method for quantifying 23 tyrosine kinase inhibitors (TKIs) in plasma samples, and evaluate the relationship between the trough concentration of anlotinib(ANL) and its toxicities. METHODS The method was developed in Agilent 1290-6460 UHPLC-MS/MS system. This study prospectively enrolled 55 cancer patients undergoing ANL treatment. Plasma samples were collected at steady-state trough concentration and subsequently analyzed using the method. Patients were recorded for the occurrence of toxicities. Statistical analysis was performed to assess the association of the toxicities with ANL exposure level and patients' characteristics. RESULTS The LC-MS/MS method was developed and validated for all items required by pharmacopoeia. The results revealed a positive association between the trough concentration of ANL and the incidence of toxicities. The exposure level 17.655 ng/mL (AUC 0.82, p = 0.010) was identified as a predictive threshold value for grade ≥ 3 overall toxicities. In addition, lower platelet count (PLT count < 179 × 109 g/L) was significantly associated with higher occurrence of grade ≥ 3 toxicities (AUC 0.75, p = 0.049). A logistic model incorporating these two factors demonstrated improved diagnostic capacity for predicting ≥ 3 overall toxicities (AUC = 0.90, p = 0.001). CONCLUSIONS This study successfully developed and validated a simple, rapid, and sensitive LC-MS/MS method for quantifying 23 TKIs in plasma samples. Besides, this study found that both Ctrough of ANL and PLT count as independent predictors for ANL-induced ≥ 3 overall toxicities. Moreover, a logistic model including these two factors presents better prediction capacity for ≥ 3 overall toxicities.
Collapse
Affiliation(s)
- Chen Bu
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Liansheng Jiang
- Department of Laboratory Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Lili Cui
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Mao Tang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Xinhua Song
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Yingkui Zhao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Zhengyan Liang
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Liya Ye
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Jiayao Nian
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Shouhong Gao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Xia Tao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Zhipeng Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Wansheng Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
9
|
Lan Z, Chen R, Zou D, Zhao C. Microfluidic Nanoparticle Separation for Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411278. [PMID: 39632600 PMCID: PMC11775552 DOI: 10.1002/advs.202411278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/11/2024] [Indexed: 12/07/2024]
Abstract
A deeper understanding of disease heterogeneity highlights the urgent need for precision medicine. Microfluidics, with its unique advantages, such as high adjustability, diverse material selection, low cost, high processing efficiency, and minimal sample requirements, presents an ideal platform for precision medicine applications. As nanoparticles, both of biological origin and for therapeutic purposes, become increasingly important in precision medicine, microfluidic nanoparticle separation proves particularly advantageous for handling valuable samples in personalized medicine. This technology not only enhances detection, diagnosis, monitoring, and treatment accuracy, but also reduces invasiveness in medical procedures. This review summarizes the fundamentals of microfluidic nanoparticle separation techniques for precision medicine, starting with an examination of nanoparticle properties essential for separation and the core principles that guide various microfluidic methods. It then explores passive, active, and hybrid separation techniques, detailing their principles, structures, and applications. Furthermore, the review highlights their contributions to advancements in liquid biopsy and nanomedicine. Finally, it addresses existing challenges and envisions future development spurred by emerging technologies such as advanced materials science, 3D printing, and artificial intelligence. These interdisciplinary collaborations are anticipated to propel the platformization of microfluidic separation techniques, significantly expanding their potential in precision medicine.
Collapse
Affiliation(s)
- Zhenwei Lan
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| | - Rui Chen
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| | - Da Zou
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| | - Chun‐Xia Zhao
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| |
Collapse
|
10
|
Li Y, Wan Q, Wan J, Xiao X, Hu J, Yang X, Kong F, Wang J, Song B, Li Z, Li F, Ren S, Peng H. Plasma concentrations of venetoclax and Pharmacogenetics correlated with drug efficacy in treatment naive leukemia patients: a retrospective study. THE PHARMACOGENOMICS JOURNAL 2024; 24:37. [PMID: 39578425 PMCID: PMC11584383 DOI: 10.1038/s41397-024-00359-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
Venetoclax (VEN) was the only Bcl-2 inhibitor approved yet and showed large differences in clinical efficacy. The aim of the study was to explore the relationships between the plasma concentration and efficacy of VEN, and identify potential influencing factors. A retrospective cohort study was conducted and a total of 76 trough (C0h) and 91 6 h post-dose plasma concentration (C6h) blood concentrations of VEN were collected in 54 patients. C6h/D concentration of VEN was found to be significantly correlated with treatment efficacy (p = 0.006) in leukemia patients with good or intermediate prognosis stratification. A ROC curve was then established and the cut-off value was calculated as 0.2868 μg/ml (AUC = 0.7097, p = 0.1081). Besides, patients co-administered with triazoles or carrying CYP3A5 rs776746 AA/AG genotypes were prone to induce higher VEN plasma concentration regardless of whether VEN dosage was reduced or not. Through LASSO-logistic regression and nomogram analysis, chemotherapy regimens and neutrophil percentages were identified as the critical elements that may predict drug response. Above all, in addition to identify prognostic stratification, AML patients taken with VEN were suggested to test plasma concentration routinely so as to achieve desired efficacy, especially when co-administered with triazoles or carried with CYP3A5 rs776746 AA/AG.
Collapse
Affiliation(s)
- Yue Li
- Department of Pharmacy, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qing Wan
- Department of Pharmacy, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiaqi Wan
- Department of Pharmacy, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiong Xiao
- Department of Pharmacy, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jinfang Hu
- Department of Pharmacy, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xintong Yang
- Department of Pharmacy, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fancong Kong
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jieyu Wang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Baoquan Song
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhentao Li
- Department of Pharmacy, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fei Li
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Simei Ren
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hongwei Peng
- Department of Pharmacy, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
11
|
Shafi H, Lora AJ, Donow HM, Dickinson SE, Wondrak GT, Chow HHS, Curiel-Lewandrowski C, Mansour HM. Comprehensive Advanced Physicochemical Characterization and In Vitro Human Cell Culture Assessment of BMS-202: A Novel Inhibitor of Programmed Cell Death Ligand. Pharmaceutics 2024; 16:1409. [PMID: 39598533 PMCID: PMC11597381 DOI: 10.3390/pharmaceutics16111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: BMS-202, is a potent small molecule with demonstrated antitumor activity. The study aimed to comprehensively characterize the physical and chemical properties of BMS-202 and evaluate its suitability for topical formulation, focusing on uniformity, stability and safety profiles. Methods: A range of analytical techniques were employed to characterize BMS-202. Scanning Electron Microscopy (SEM) was used to assess morphology, Differential Scanning Calorimetry (DSC) provided insights of thermal behavior, and Hot-Stage Microscopy (HSM) corroborated these thermal behaviors. Molecular fingerprinting was conducted using Raman spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy, with chemical uniformity of the batch further validated by mapping through FTIR and Raman microscopies. The residual water content was measured using Karl Fisher Coulometric titration, and vapor sorption isotherms examined moisture uptake across varying relative humidity levels. In vitro safety assessments involved testing with skin epithelial cell lines, such as HaCaT and NHEK, and Transepithelial Electrical Resistance (TEER) to evaluate barrier integrity. Results: SEM revealed a distinctive needle-like morphology, while DSC indicated a sharp melting point at 110.90 ± 0.54 ℃ with a high enthalpy of 84.41 ± 0.38 J/g. HSM confirmed the crystalline-to-amorphous transition at the melting point. Raman and FTIR spectroscopy, alongside chemical imaging, confirmed chemical uniformity as well as validated the batch consistency. A residual water content of 2.76 ± 1.37 % (w/w) and minimal moisture uptake across relative humidity levels demonstrated its low hygroscopicity and suitability for topical formulations. Cytotoxicity testing showed dose-dependent reduction in skin epithelial cell viability at high concentrations (100 µM and 500 µM), with lower doses (0.1 µM to 10 µM) demonstrating acceptable safety. TEER studies indicated that BMS-202 does not disrupt the HaCaT cell barrier function. Conclusions: The findings from this study establish that BMS-202 has promising physicochemical and in vitro characteristics at therapeutic concentrations for topical applications, providing a foundation for future formulation development focused on skin-related cancers or localized immune modulation.
Collapse
Affiliation(s)
- Hasham Shafi
- Florida International University Center for Translational Science, Port St. Lucie, FL 34987, USA
| | - Andrea J. Lora
- Florida International University Center for Translational Science, Port St. Lucie, FL 34987, USA
| | - Haley M. Donow
- Florida International University Center for Translational Science, Port St. Lucie, FL 34987, USA
| | - Sally E. Dickinson
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA (G.T.W.)
- Department of Pharmacology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Georg T. Wondrak
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA (G.T.W.)
- Department of Pharmacology and Toxicology, The University of Arizona College of Pharmacy, Tucson, AZ 85721, USA
| | - H.-H. Sherry Chow
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA (G.T.W.)
- Division of Hematology and Oncology, Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Clara Curiel-Lewandrowski
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA (G.T.W.)
- Division of Dermatology, Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85724, USA
| | - Heidi M. Mansour
- Florida International University Center for Translational Science, Port St. Lucie, FL 34987, USA
- Department of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33174, USA
- Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, Miami, FL 33174, USA
| |
Collapse
|
12
|
Cecchin E, Orleni M, Gagno S, Montico M, Peruzzi E, Roncato R, Gerratana L, Corsetti S, Puglisi F, Toffoli G, Cecchin E, Posocco B. Quantification of Letrozole, Palbociclib, Ribociclib, Abemaciclib, and Metabolites in Volumetric Dried Blood Spots: Development and Validation of an LC-MS/MS Method for Therapeutic Drug Monitoring. Int J Mol Sci 2024; 25:10453. [PMID: 39408783 PMCID: PMC11476960 DOI: 10.3390/ijms251910453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Therapeutic drug monitoring (TDM) may be beneficial for cyclin-dependent kinase 4/6 inhibitors (CDK4/6is), such as palbociclib, ribociclib, and abemaciclib, due to established exposure-toxicity relationships and the potential for monitoring treatment adherence. Developing a method for quantifying CDK4/6is, abemaciclib metabolites (M2, M20), and letrozole in dried blood spots (DBS) could be useful to enhance the feasibility of TDM. Thus, an optimized LC-MS/MS method was developed using the HemaXis DB10 device for volumetric (10 µL) DBS collection. Chromatographic separation was achieved using a reversed-phase XBridge BEH C18 column. Detection was performed with a triple quadrupole mass spectrometer, utilizing ESI source switching between negative and positive ionization modes and multiple reaction monitoring acquisition. Analytical validation followed FDA, EMA, and IATDMCT guidelines, demonstrating high selectivity, adequate sensitivity (LLOQ S/N ≥ 30), and linearity (r ≥ 0.997). Accuracy and precision met acceptance criteria (between-run: accuracy 95-106%, CV ≤ 10.6%). Haematocrit independence was confirmed (22-55%),with high recovery rates (81-93%) and minimal matrix effects (ME 0.9-1.1%). The stability of analytes under home-sampling conditions was also verified. Clinical validation supports DBS-based TDM as feasible, with conversion models developed for estimating plasma concentrations (the reference for TDM target values) of letrozole, abemaciclib, and its metabolites. Preliminary data for palbociclib and ribociclib are also presented.
Collapse
Affiliation(s)
- Eleonora Cecchin
- Experimental and Clinical Pharmacology Unit- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.C.); (M.O.); (S.G.); (E.P.); (R.R.); (G.T.); (B.P.)
| | - Marco Orleni
- Experimental and Clinical Pharmacology Unit- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.C.); (M.O.); (S.G.); (E.P.); (R.R.); (G.T.); (B.P.)
- Doctoral School in Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Sara Gagno
- Experimental and Clinical Pharmacology Unit- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.C.); (M.O.); (S.G.); (E.P.); (R.R.); (G.T.); (B.P.)
| | - Marcella Montico
- Clinical Trial Office, Scientific Direction- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy;
| | - Elena Peruzzi
- Experimental and Clinical Pharmacology Unit- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.C.); (M.O.); (S.G.); (E.P.); (R.R.); (G.T.); (B.P.)
| | - Rossana Roncato
- Experimental and Clinical Pharmacology Unit- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.C.); (M.O.); (S.G.); (E.P.); (R.R.); (G.T.); (B.P.)
| | - Lorenzo Gerratana
- Department of Medical Oncology- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (L.G.); (S.C.); (F.P.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Serena Corsetti
- Department of Medical Oncology- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (L.G.); (S.C.); (F.P.)
| | - Fabio Puglisi
- Department of Medical Oncology- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (L.G.); (S.C.); (F.P.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.C.); (M.O.); (S.G.); (E.P.); (R.R.); (G.T.); (B.P.)
| | - Erika Cecchin
- Experimental and Clinical Pharmacology Unit- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.C.); (M.O.); (S.G.); (E.P.); (R.R.); (G.T.); (B.P.)
| | - Bianca Posocco
- Experimental and Clinical Pharmacology Unit- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.C.); (M.O.); (S.G.); (E.P.); (R.R.); (G.T.); (B.P.)
| |
Collapse
|
13
|
Flynn A, Galettis P, Gurney H, Michael M, Desar I, Westerdijk K, Schneider J, Martin J. Therapeutic drug monitoring in anticancer agents: perspectives of Australian medical oncologists. Intern Med J 2024; 54:1458-1464. [PMID: 38767393 DOI: 10.1111/imj.16415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/20/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND In the development of anticancer agents for solid tumours, body surface area continues to be used to personalise dosing despite minimal evidence for its use over other dosing strategies. With the development of tyrosine kinase inhibitors and other oral targeted anticancer agents, dosing using therapeutic drug monitoring (TDM) is now utilised in many health systems but has had limited uptake in Australia. AIM To determine attitudes and barriers to the implementation of TDM among Australian oncologists. METHODS A comprehensive questionnaire was developed by the Dutch Pharmacology Oncology Group from semistructured interviews of stakeholders. Seventy-nine questions across seven domains were developed with three free-text responses. This was rationalised to 17 questions with three free-text responses for Australian medical oncologists who identified limited experience with TDM. RESULTS Fifty-seven responses were received, with 49 clinicians (86%) identifying limited experience of performing TDM in daily practice. Clinicians were positive (62-91% agree/strongly agree across seven questions) about the advantages of TDM. There was a mixed response for cost-effectiveness and scientific evidence being a barrier to implementation, but strong agreement that prospective studies were needed (75% agreed or strongly agreed); that national treatment guidelines would enable practice (80%) and that a 'pharmacology of oncolytics' education programme would be useful (96%) to provide knowledge for dose individualisation. CONCLUSION Despite the limited experience of TDM in oncology in Australia, medical oncologists appear positive about the potential benefit to their patients. We have identified three barriers to implementation that could be targeted for increased adoption of TDM in oncology in Australia.
Collapse
Affiliation(s)
- Alexandra Flynn
- University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter Galettis
- University of Newcastle, Newcastle, New South Wales, Australia
| | - Howard Gurney
- Macquarie University Hospital, Sydney, New South Wales, Australia
| | - Michael Michael
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ingrid Desar
- Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Kim Westerdijk
- Radboud University Medical Centre, Nijmegen, the Netherlands
| | | | - Jennifer Martin
- University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
14
|
van der Kleij MBA, Guchelaar NAD, Meertens M, Westerdijk K, Giraud EL, Bleckman RF, Groenland SL, van Eerden RAG, Imholz ALT, Vulink AJE, Otten HM, Fiebrich-Westra HB, Lubberman FJE, Desar IME, Moes DJAR, Touw DJ, Koolen SLW, Gelderblom H, Reyners AKL, van Erp NP, Mathijssen RHJ, Huitema ADR, Steeghs N. Reasons for non-feasibility of therapeutic drug monitoring of oral targeted therapies in oncology - an analysis of the closed cohorts of a multicentre prospective study. Br J Cancer 2024; 131:843-851. [PMID: 38971952 PMCID: PMC11369282 DOI: 10.1038/s41416-024-02789-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) - performing dose adjustments based on measured drug levels and established pharmacokinetic (PK) targets - could optimise treatment with drugs that show large interpatient variability in exposure. We evaluated the feasibility of TDM for multiple oral targeted therapies. Here we report on drugs for which routine TDM is not feasible. METHODS We evaluated drug cohorts from the Dutch Pharmacology Oncology Group - TDM study. Based on PK levels taken at pre-specified time points, PK-guided interventions were performed. Feasibility of TDM was evaluated, and based on the success and practicability of TDM, cohorts could be closed. RESULTS For 10 out of 24 cohorts TDM was not feasible and inclusion was closed. A high incidence of adverse events resulted in closing the cabozantinib, dabrafenib/trametinib, everolimus, regorafenib and vismodegib cohort. The enzalutamide and erlotinib cohorts were closed because almost all PK levels were above target. Other, non-pharmacological reasons led to closing the palbociclib, olaparib and tamoxifen cohort. CONCLUSIONS Although TDM could help personalising treatment for many drugs, the above-mentioned reasons can influence its feasibility, usefulness and clinical applicability. Therefore, routine TDM is not advised for cabozantinib, dabrafenib/trametinib, enzalutamide, erlotinib, everolimus, regorafenib and vismodegib. Nonetheless, TDM remains valuable for individual clinical decisions.
Collapse
Affiliation(s)
- Maud B A van der Kleij
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands.
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Niels A D Guchelaar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Marinda Meertens
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Kim Westerdijk
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Eline L Giraud
- Department of Pharmacy and Clinical Pharmacology, Research Institute for Medical Innovation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Roos F Bleckman
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefanie L Groenland
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Ruben A G van Eerden
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Alex L T Imholz
- Department of Medical Oncology, Deventer Hospital, Deventer, The Netherlands
| | - Annelie J E Vulink
- Department of Medical Oncology, Reinier de Graaf Hospital, Delft, The Netherlands
| | - Hans-Martin Otten
- Department of Medical Oncology, Meander Medical Centre, Amersfoort, The Netherlands
| | | | | | - Ingrid M E Desar
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dirk-Jan A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Pharmacy, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| | - An K L Reyners
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Nielka P van Erp
- Department of Pharmacy and Clinical Pharmacology, Research Institute for Medical Innovation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, Utrecht University Medical Centre, Utrecht, The Netherlands
- Department of Pharmacology, Princess Máxima Centre for Paediatric Oncology, Utrecht, The Netherlands
| | - Neeltje Steeghs
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Medical Oncology, Utrecht University Medical Centre, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
15
|
Géraud A, Combarel D, Funck-Brentano C, Beaulieu Q, Zahr N, Broutin S, Spano JP, Massard C, Besse B, Gougis P. A Score to Predict the Clinical Usefulness of Therapeutic Drug Monitoring: Application to Oral Molecular Targeted Therapies in Cancer. Clin Pharmacol Ther 2024; 116:678-689. [PMID: 38389482 DOI: 10.1002/cpt.3193] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Therapeutic drug monitoring (TDM) involves measuring and interpreting drug concentrations in biological fluids to adjust drug dosages. In onco-hematology, TDM guidelines for oral molecular targeted therapies (oMTTs) are varied. This study evaluates a quantitative approach with a score to predict the clinical usefulness of TDM for oMTTs. We identified key parameters for an oMTT's suitability for TDM from standard TDM recommendations. We gathered oMTT pharmacological data, which covered exposure variability (considering pharmacokinetic (PK) impact of food and proton pump inhibitors), technical intricacy (PK linearity and active metabolites), efficacy (exposure-response relationship), and safety (maximum tolerated dose, and exposure-safety relationship). To assess the validity and the relevance of the score and define relevant thresholds, we evaluated molecules with prospective validation or strong recommendations for TDM, both in oncology and in other fields. By September 1, 2021, the US Food and Drug Administration (FDA) approved 67 oMTTs for onco-hematological indications. Scores ranged from 15 (acalabrutinib) to 80 (sunitinib) with an average of 48.3 and a standard deviation of 15.6. Top scorers included sunitinib, sorafenib, cabozantinib, nilotinib, and abemaciclib. Based on scores, drugs were categorized into low (< 40), intermediate (≥ 40 and < 60), and high (≥ 60) relevance for TDM. Notably, negative controls generally scored around or under 40, whereas positive controls had a high score across different indications. In this work, we propose a quantitative and reproducible score to compare the potential usefulness of TDM for oMTTs. Future guidelines should prioritize the TDM for molecules with the highest score.
Collapse
Affiliation(s)
- Arthur Géraud
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
- Early Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
- Paris-Saclay University, Orsay, France
| | - David Combarel
- Pharmacology Department, Gustave Roussy, Villejuif, France
- Faculty of Pharmacy, Paris-Saclay University, Chatenay-Malabry, France
| | - Christian Funck-Brentano
- Department of Pharmacology and Clinical Investigation Center (CIC-1901), AP-HP.Sorbonne Université, Pitié-Salpêtrière Hospital, INSERM, CIC-1901 and UMR-S 1166, Sorbonne Université Médecine, Paris, France
| | - Quentin Beaulieu
- Department of Pharmacology and Clinical Investigation Center (CIC-1901), AP-HP.Sorbonne Université, Pitié-Salpêtrière Hospital, INSERM, CIC-1901 and UMR-S 1166, Sorbonne Université Médecine, Paris, France
| | - Noël Zahr
- Department of Pharmacology and Clinical Investigation Center (CIC-1901), AP-HP.Sorbonne Université, Pitié-Salpêtrière Hospital, INSERM, CIC-1901 and UMR-S 1166, Sorbonne Université Médecine, Paris, France
| | - Sophie Broutin
- Pharmacology Department, Gustave Roussy, Villejuif, France
| | - Jean-Philippe Spano
- Oncology Department, APHP-Sorbonne Université, Cancer Institute (IUC), Paris, France
- INSERM, UMRS 1136, Paris, France
| | - Christophe Massard
- Early Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
- Centre Eugène Marquis, Rennes, France
| | - Benjamin Besse
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
- Paris-Saclay University, Orsay, France
| | - Paul Gougis
- Department of Pharmacology and Clinical Investigation Center (CIC-1901), AP-HP.Sorbonne Université, Pitié-Salpêtrière Hospital, INSERM, CIC-1901 and UMR-S 1166, Sorbonne Université Médecine, Paris, France
- Oncology Department, APHP-Sorbonne Université, Cancer Institute (IUC), Paris, France
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, INSERM, U932 Immunity and Cancer, Curie Institute, Université Paris, Paris, France
| |
Collapse
|
16
|
Hulin A, Gelé T, Fenioux C, Kempf E, Sahali D, Tournigand C, Ollero M. Pharmacology of Tyrosine Kinase Inhibitors: Implications for Patients with Kidney Diseases. Clin J Am Soc Nephrol 2024; 19:927-938. [PMID: 38079278 PMCID: PMC11254026 DOI: 10.2215/cjn.0000000000000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Tyrosine kinase inhibitors (TKI) have introduced a significant advancement in cancer management. These compounds are administered orally, and their absorption holds a pivotal role in determining their variable efficacy. They exhibit extensive distribution within the body, binding strongly to both plasma and tissue proteins. Often reliant on efflux and influx transporters, TKI undergo primary metabolism by intestinal and hepatic cytochrome P450 enzymes, with nonkidney clearance being predominant. Owing to their limited therapeutic window, many TKI display considerable intraindividual and interindividual variability. This review offers a comprehensive analysis of the clinical pharmacokinetics of TKI, detailing their interactions with drug transporters and metabolic enzymes, while discussing potential clinical implications. The prevalence of kidney conditions, such as AKI and CKD, among patients with cancer is explored in their effect on TKI pharmacokinetics. Finally, the potential nephrotoxicity associated with TKI is also examined.
Collapse
Affiliation(s)
- Anne Hulin
- Pharmacology Laboratory, University Medicine Department of Biology-Pathology, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Thibaut Gelé
- Pharmacology Laboratory, University Medicine Department of Biology-Pathology, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Charlotte Fenioux
- Oncology Unit, University Medicine Department of Cancer, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
| | - Emmanuelle Kempf
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- Oncology Unit, University Medicine Department of Cancer, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
| | - Dil Sahali
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- Nephrology Unit, University Medicine Department of Medicine, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
| | - Christophe Tournigand
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- Oncology Unit, University Medicine Department of Cancer, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
| | - Mario Ollero
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| |
Collapse
|
17
|
Turjap M, Pelcová M, Gregorová J, Šmak P, Martin H, Štingl J, Peš O, Juřica J. Therapeutic Drug Monitoring of Pazopanib in Renal Cell Carcinoma and Soft Tissue Sarcoma: A Systematic Review. Ther Drug Monit 2024; 46:321-331. [PMID: 38723115 DOI: 10.1097/ftd.0000000000001206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/28/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Pazopanib, an anti-angiogenic multitarget tyrosine kinase inhibitor, has been approved for the treatment of metastatic renal cell carcinoma and soft tissue sarcoma. However, its recommended dose does not always produce consistent outcomes, with some patients experiencing adverse effects or toxicity. This variability is due to differences in the systemic exposure to pazopanib. This review aimed to establish whether sufficient evidence exists for the routine or selective therapeutic drug monitoring of pazopanib in adult patients with approved indications. METHODS A systematic search of the PubMed and Web of Science databases using search terms related to pazopanib and therapeutic drug monitoring yielded 186 and 275 articles, respectively. Ten articles associated with treatment outcomes or toxicity due to drug exposure were selected for review. RESULTS The included studies were evaluated to determine the significance of the relationship between drug exposure/Ctrough and treatment outcomes and between drug exposure and toxicity. A relationship between exposure and treatment outcomes was observed in 5 studies, whereas the trend was nonsignificant in 4 studies. A relationship between exposure and toxicity was observed in 6 studies, whereas 2 studies did not find a significant relationship; significance was not reported in 3 studies. CONCLUSIONS Sufficient evidence supports the therapeutic drug monitoring of pazopanib in adult patients to improve its efficacy and/or safety in the approved indications.
Collapse
Affiliation(s)
- Miroslav Turjap
- Department of Clinical Pharmacy, University Hospital Ostrava, Ostrava, Czech Republic
| | - Marta Pelcová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jana Gregorová
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavel Šmak
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hiroko Martin
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Štingl
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondřej Peš
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Juřica
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Masaryk Memorial Cancer Institute, Brno, Czech Republic; and
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| |
Collapse
|
18
|
Dieudonné A, Bailly C, Cachin F, Edet-Sanson A, Kraeber-Bodéré F, Hapdey S, Merlin C, Robin P, Salaun PY, Schwartz P, Tonnelet D, Vera P, Courbon F, Carlier T. Dosimetry for targeted radionuclide therapy in routine clinical practice: experts advice vs. clinical evidence. Eur J Nucl Med Mol Imaging 2024; 51:947-950. [PMID: 38110711 PMCID: PMC10881593 DOI: 10.1007/s00259-023-06568-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Affiliation(s)
- Arnaud Dieudonné
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France.
- Service de Médecine Nucléaire, Centre Henri Becquerel, 76000, Rouen, France.
| | - Clément Bailly
- Department of Nuclear Medicine, University Hospital, Nantes, France
| | - Florent Cachin
- Department of Nuclear Medicine, Jean Perrin Cancer Center, Clermont-Ferrand, France
| | - Agathe Edet-Sanson
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
| | | | - Sébastien Hapdey
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
| | - Charles Merlin
- Department of Nuclear Medicine, Jean Perrin Cancer Center, Clermont-Ferrand, France
| | - Philippe Robin
- Department of Nuclear Medicine, University Hospital, Brest, France
| | | | - Paul Schwartz
- Department of Nuclear Medicine, University Hospital, Bordeaux, France
| | - David Tonnelet
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
| | - Pierre Vera
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
| | - Frédéric Courbon
- Department of Medical Imaging, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Thomas Carlier
- Department of Nuclear Medicine, University Hospital, Nantes, France
| |
Collapse
|
19
|
Philippe M, Guitton J, Goutelle S, Thoma Y, Favier B, Chtiba N, Michallet M, Belhabri A. Pharmacokinetic Consideration of Venetoclax in Acute Myeloid Leukemia Patients: A Potential Candidate for TDM? A Short Communication. Ther Drug Monit 2024; 46:127-131. [PMID: 37941111 DOI: 10.1097/ftd.0000000000001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/05/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Venetoclax (VNX)-based regimens have demonstrated significantly favorable outcomes in patients with acute myeloid leukemia (AML) and are now becoming the standard treatment. Tyrosine kinase inhibitors are administered at a fixed dose, irrespective of body surface area or weight. For such orally targeted therapies, real-world data have highlighted a larger pharmacokinetic (PK) interindividual variability (IIV) than expected. Even if VNX PKs have been well characterized and described in the literature, only 1 clinical trial-based PK study has been conducted in patients with AML. This study aimed to evaluate the PK of VNX in AML patients. MATERIAL AND METHODS We retrospectively analyzed all patients treated with a combination of VNX-azacitidine between January and July 2022 at our center, using at least 1 available VNX blood sample. Based on a previously published population PK model, individual PK parameters were estimated to evaluate the exposure and IIV. RESULTS and Discussion. Twenty patients received VNX in combination with azacitidine, according to the PK data. A total of 93 plasma concentrations were collected. The dose of VNX was 400 mg, except in 7 patients who received concomitant posaconazole (VNX 70 mg). The patients' weight ranged from 49 kg to 108 kg (mean = 78 kg). Mean individual clearance was 13.5 ± 9.4 L/h with mean individual daily area under the concentration-time curves of 35.8 mg.h/L with significant IIV (coefficient of variation = 41.1%). Ten patients were still alive (8 in complete response), but all experienced at least 1 hematological toxicity of grade ≥ 3. CONCLUSIONS Based on the observed large PK variability in the data from our real-world AML patients, the risk of drug interactions and the recommended fixed-dosage regimen of VNX therapeutic drug monitoring may be useful.
Collapse
Affiliation(s)
| | - Jérôme Guitton
- Biochemistry and Pharmacology-Toxicology Laboratory, Lyon Sud Hospital, Pierre Benite, France
- ISPB, Faculté de Pharmacie de Lyon, Université Lyon 1, Lyon, France
| | - Sylvain Goutelle
- ISPB, Faculté de Pharmacie de Lyon, Université Lyon 1, Lyon, France
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Service de Pharmacie, Lyon, France
- UMR CNRS 5558, Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, Villeurbanne, France
| | - Yann Thoma
- School of Engineering and Management Vaud (HEIG-VD), HES-SO University of Applied Sciences and Arts Western Switzerland, Yverdon-les-Bains, Switzerland
| | | | - Nour Chtiba
- Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia; and
| | | | | |
Collapse
|
20
|
Nakashima M, Li K, Chen Q, de Silva S, Li H, Kawakami K, Wei Q, Luo S, Zhao H. Appropriate dose of regorafenib based on body weight of colorectal cancer patients: a retrospective cohort study. BMC Cancer 2023; 23:1268. [PMID: 38129822 PMCID: PMC10740272 DOI: 10.1186/s12885-023-11720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
PURPOSE Previous randomized studies have shown a survival benefit of using regorafenib but a high rate of adverse events in unresectable colorectal cancer patients. To reduce these adverse events and improve the tolerability, we examined the appropriate dose of regorafenib based on body weight. METHODS We used a nationwide claims database in Japan and examined the efficacy and safety of regorafenib for patients with metastatic colorectal cancer between groups divided by body weight (60 kg) and median average dose (120 mg) between 2013 and 2018. We also assessed overall survival (OS) and adverse events between these groups. RESULTS We identified 2530 Japanese patients (heavy weight/high dose: 513, light weight/low dose: 921, heavy weight/low dose: 452, and light weight/high dose: 644). There was no significant difference in the adverse events and OS after inverse probability treatment weighting (IPTW) adjustment between heavy weight/high dose group and light weight/low dose group (hazard ratio, HR=0.97). Among the light-weight patients, higher average dose was associated with shorter OS (IPTW adjusted HR=1.21, 95% CI 1.05 - 1.39, Table 3) while among the heavy-weight patients, there was no significant difference in OS between high and low dose groups (IPTW adjusted HR=1.14, 95% CI 0.95 - 1.37). CONCLUSION The findings suggest that a low dose of regorafenib for light-weight patients may be as safe and effective as high doses for heavy-weight patients. Further studies should be conducted to identify an appropriate dose based on each patient's physique and condition.
Collapse
Affiliation(s)
- Masayuki Nakashima
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan
| | - Kan Li
- MRL, Merck & Co., Inc, North Wales, PA, USA
| | - Qichen Chen
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Hal Li
- MRL, Merck & Co., Inc, North Wales, PA, USA
| | - Koji Kawakami
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Department of Population Health Sciences, Duke University, Durham, NC, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
21
|
van der Kleij MBA, Guchelaar NAD, Mathijssen RHJ, Versluis J, Huitema ADR, Koolen SLW, Steeghs N. Therapeutic Drug Monitoring of Kinase Inhibitors in Oncology. Clin Pharmacokinet 2023; 62:1333-1364. [PMID: 37584840 PMCID: PMC10519871 DOI: 10.1007/s40262-023-01293-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
Although kinase inhibitors (KI) frequently portray large interpatient variability, a 'one size fits all' regimen is still often used. In the meantime, relationships between exposure-response and exposure-toxicity have been established for several KIs, so this regimen could lead to unnecessary toxicity and suboptimal efficacy. Dose adjustments based on measured systemic pharmacokinetic levels-i.e., therapeutic drug monitoring (TDM)-could therefore improve treatment efficacy and reduce the incidence of toxicities. Therefore, the aim of this comprehensive review is to give an overview of the available evidence for TDM for the 77 FDA/EMA kinase inhibitors currently approved (as of July 1st, 2023) used in hematology and oncology. We elaborate on exposure-response and exposure-toxicity relationships for these kinase inhibitors and provide practical recommendations for TDM and discuss corresponding pharmacokinetic targets when possible.
Collapse
Affiliation(s)
- Maud B A van der Kleij
- Division of Medical Oncology, Department of Clinical Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands.
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Niels A D Guchelaar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jurjen Versluis
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Pharmacy, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Neeltje Steeghs
- Division of Medical Oncology, Department of Clinical Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Allegra S, Dondi E, Chiara F, De Francia S. Pharmacokinetics of Four Tyrosine Kinase Inhibitors in Adult and Paediatric Chronic Myeloid Leukaemia Patients. Biomedicines 2023; 11:2478. [PMID: 37760918 PMCID: PMC10525795 DOI: 10.3390/biomedicines11092478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Tyrosine kinase inhibitors work by blocking the tyrosine kinases responsible for the dysregulation of intracellular signalling pathways in tumour cells. This study looked at the impact of age and sex on the levels of imatinib, dasatinib, nilotinib, and ponatinib in plasma and cerebrospinal fluid samples of patients with chronic myeloid leukaemia. Imatinib and dasatinib were used to treat the majority of the enrolled patients, and most of them were paediatrics. A total of 82.4% of the patients were men; however, sex-related differences in the drugs' pharmacokinetics were not found. Age and imatinib plasma concentration were found to be inversely correlated. The dasatinib concentrations in plasma were found to be substantially lower than those found in cerebrospinal fluid, particularly in paediatrics. Analysing the obtained data, we can state that therapeutic drug monitoring is a useful method for adjusting a patient's treatment schedule that depends on drug concentrations in biological fluids. The use of therapeutic drug monitoring in conjunction with tyrosine kinase inhibitors for the treatment of chronic myeloid leukaemia is supported by a number of sources of evidence. As a result, as the research develops, the tyrosine kinase inhibitor therapeutic drug monitoring classification needs to be refined in terms of factors like sex and age.
Collapse
|
23
|
McFarland J, Alečković M, Coricor G, Srinivasan S, Tso M, Lee J, Nguyen TH, Mejía Oneto JM. Click Chemistry Selectively Activates an Auristatin Protodrug with either Intratumoral or Systemic Tumor-Targeting Agents. ACS CENTRAL SCIENCE 2023; 9:1400-1408. [PMID: 37521794 PMCID: PMC10375897 DOI: 10.1021/acscentsci.3c00365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 08/01/2023]
Abstract
The Click Activated Protodrugs Against Cancer (CAPAC) platform enables the activation of powerful cancer drugs at tumors. CAPAC utilizes a click chemistry reaction between tetrazine and trans-cyclooctene. The reaction between activator, linked to a tumor-targeting agent, and protodrug leads to the targeted activation of the drug. Here, tumor targeting is achieved by intratumoral injection of a tetrazine-modified hyaluronate (SQL70) or by infusion of a tetrazine-modified HER2-targeting antigen-binding fragment (SQT01). Monomethyl auristatin E (a cytotoxin hindered in its clinical use by severe toxicity) was modified with a trans-cyclooctene to form the protodrug SQP22, which reduced its cytotoxicity in vitro and in vivo. Treatment of SQP22 paired with SQL70 demonstrated antitumor effects in Karpas 299 and RENCA murine tumor models, establishing the requirement of click chemistry for protodrug activation. SQP22 paired with SQT01 induced antitumor effects in the HER2-positive NCI-N87 xenograft model, showing that tumor-targeted activation could be accomplished via systemic dosing. Observed toxicities were limited, with transient myelosuppression and moderate body weight loss detected. This study highlights the capabilities of the CAPAC platform by demonstrating the activity of SQP22 with two differentiated targeting approaches and underscores the power of click chemistry to precisely control the activation of drugs at tumors.
Collapse
|
24
|
Fort-Casamartina E, Muñoz-Sanchez C, Rigo-Bonnin RF, Del Valle-Celiz PM, Gonzalo-Diego N, Otero-Torres S, Bleda-Perez C, Prats-Jimenez J, Fontanals-Martínez S. First reported double drug-drug interaction in a cancer renal patient under everolimus treatment: therapeutic drug monitoring and review of literature. Eur J Med Res 2023; 28:202. [PMID: 37381038 DOI: 10.1186/s40001-023-01172-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Everolimus is an inhibitor of mammalian target of rapamycin (mTOR) used in both transplantation and cancer treatment (breast, renal and neuroendocrine). In transplantation, therapeutic drug monitoring (TDM) is recommended due to the potential drug-drug interactions with chronic medications, which can affect everolimus pharmacokinetics. In cancer treatment, everolimus is used at higher doses than in transplantation and without a systematic drug monitoring.We present a case report of a 72-year-old woman with epilepsy history to whom everolimus 10 mg QD was prescribed as third line of treatment for renal cell carcinoma (RCC). The potential drug interactions between everolimus and the patient's chronic medications, carbamazepine and phenytoin, are significant as both are known as strong inducers CYP3A4 metabolism, potentially leading to underexposure to everolimus.TDM of everolimus was recommended by the pharmacist. The literature suggests that a minimum plasma concentration (Cminss) of everolimus over 10 ng/ml is associated with better response to treatment and progression-free survival (PFS). The patient's everolimus dose had to be increased until 10 mg BID, and regular monitoring of everolimus levels showed an increase in Cminss from 3.7 ng/ml to 10.8 ng/ml.This case highlights the importance of checking for potential drug interactions and monitoring everolimus levels in patients on chronic medication, especially those with several inducers or inhibitors of CYP3A4 metabolism. TDM can help to ensure that patients are treated with their optimal dose, which can improve the effectiveness of the treatment or minimize the risk of toxicities.
Collapse
Affiliation(s)
- Eduard Fort-Casamartina
- Pharmacy Service, Hospital Duran and Reynals (Catalan Institute of Oncology), Gran Via de l'Hospitalet 199-203, Hospitalet de Llobregat, 08908, Barcelona, Spain.
| | - Carme Muñoz-Sanchez
- Pharmacy Service, Hospital Duran and Reynals (Catalan Institute of Oncology), Gran Via de l'Hospitalet 199-203, Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Raul Francisco Rigo-Bonnin
- Clinical Laboratory, University Bellvitge Hospital, Carrer de La Feixa Llarga S/N, Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Pamela Maria Del Valle-Celiz
- Medical Oncology, Hospital Duran and Reynals (Catalan Institute of Oncology), Gran Via de l'Hospitalet 199-203, Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Núria Gonzalo-Diego
- Pharmacy Service, Hospital Duran and Reynals (Catalan Institute of Oncology), Gran Via de l'Hospitalet 199-203, Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Sara Otero-Torres
- Pharmacy Service, Hospital Duran and Reynals (Catalan Institute of Oncology), Gran Via de l'Hospitalet 199-203, Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Carmen Bleda-Perez
- Pharmacy Service, Hospital Duran and Reynals (Catalan Institute of Oncology), Gran Via de l'Hospitalet 199-203, Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Judith Prats-Jimenez
- Pharmacy Service, Hospital Duran and Reynals (Catalan Institute of Oncology), Gran Via de l'Hospitalet 199-203, Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Sandra Fontanals-Martínez
- Pharmacy Service, Hospital Duran and Reynals (Catalan Institute of Oncology), Gran Via de l'Hospitalet 199-203, Hospitalet de Llobregat, 08908, Barcelona, Spain
| |
Collapse
|
25
|
van Leuven J, Evans S, Kichenadasse G, Steeghs N, Bonevski B, Mikus G, van Dyk M. Framework for Implementing Individualised Dosing of Anti-Cancer Drugs in Routine Care: Overcoming the Logistical Challenges. Cancers (Basel) 2023; 15:3293. [PMID: 37444404 DOI: 10.3390/cancers15133293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 07/15/2023] Open
Abstract
Precision medicine in oncology involves identifying the 'right drug', at the 'right dose', for the right person. Currently, many orally administered anti-cancer drugs, particularly kinase inhibitors (KIs), are prescribed at a standard fixed dose. Identifying the right dose remains one of the biggest challenges to optimal patient care. Recently the Precision Dosing Group established the Accurate Dosing of Anti-cancer Patient-centred Therapies (ADAPT) Program to address individualised dosing; thus, use existing anti-cancer drugs more safely and efficiently. In this paper, we outline our framework, based on the Medical Research Council (MRC) framework, with a simple 6-step process and strategies which have led to the successful implementation of the ADAPT program in South Australia. Implementation strategies in our 6-step process involve: (1) Evaluate the evidence and identify the cancer drugs: Literature review, shadowing other experts, establishing academic partnerships, adaptability/flexibility; (2) Establishment of analytical equipment for drug assays for clinical purposes: assessment for readiness, accreditation, feasibility, obtaining formal commitments, quality assurance to all stakeholders; (3) Clinical preparation and education: educational material, conducted educational meetings, involve opinion leaders, use of mass media, promote network weaving, conduct ongoing training; (4) Blood collection, sample preparation and analyses: goods received procedures, critical control points (transport time); (5) Interpret and release results with recommendations: facilitate the relay of clinical data to providers; (6) Clinical application: providing ongoing consultation, identify early adopters, identify, and prepare champions. These strategies were selected from the 73 implementation strategies outlined in the Expert Recommendations for Implementing Change (ERIC) study. The ADAPT program currently provides routine plasma concentrations for patients on several orally administered drugs in South Australia and is currently in its evaluation phase soon to be published. Our newly established framework could provide great potential and opportunities to advance individualised dosing of oral anti-cancer drugs in routine clinical care.
Collapse
Affiliation(s)
- Jason van Leuven
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Medical Oncology, Flinders Medical Centre, Adelaide 5042, Australia
| | - Simon Evans
- Implementation Science Unit, Department for Health and Wellbeing, Adelaide 5042, Australia
| | - Ganessan Kichenadasse
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Medical Oncology, Flinders Medical Centre, Adelaide 5042, Australia
| | - Neeltje Steeghs
- Antoni van Leeuwenhoek Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Billie Bonevski
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Gerd Mikus
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Madelé van Dyk
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Medical Oncology, Flinders Medical Centre, Adelaide 5042, Australia
| |
Collapse
|
26
|
Papachristos A, Patel J, Vasileiou M, Patrinos GP. Dose Optimization in Oncology Drug Development: The Emerging Role of Pharmacogenomics, Pharmacokinetics, and Pharmacodynamics. Cancers (Basel) 2023; 15:3233. [PMID: 37370844 DOI: 10.3390/cancers15123233] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Drugs' safety and effectiveness are evaluated in randomized, dose-ranging trials in most therapeutic areas. However, this is only sometimes feasible in oncology, and dose-ranging studies are mainly limited to Phase 1 clinical trials. Moreover, although new treatment modalities (e.g., small molecule targeted therapies, biologics, and antibody-drug conjugates) present different characteristics compared to cytotoxic agents (e.g., target saturation limits, wider therapeutic index, fewer off-target side effects), in most cases, the design of Phase 1 studies and the dose selection is still based on the Maximum Tolerated Dose (MTD) approach used for the development of cytotoxic agents. Therefore, the dose was not optimized in some cases and was modified post-marketing (e.g., ceritinib, dasatinib, niraparib, ponatinib, cabazitaxel, and gemtuzumab-ozogamicin). The FDA recognized the drawbacks of this approach and, in 2021, launched Project Optimus, which provides the framework and guidance for dose optimization during the clinical development stages of anticancer agents. Since dose optimization is crucial in clinical development, especially of targeted therapies, it is necessary to identify the role of pharmacological tools such as pharmacogenomics, therapeutic drug monitoring, and pharmacodynamics, which could be integrated into all phases of drug development and support dose optimization, as well as the chances of positive clinical outcomes.
Collapse
Affiliation(s)
| | - Jai Patel
- Department of Cancer Pharmacology and Pharmacogenomics, Levine Cancer Institute, Atrium Health, Charlotte, NC 28204, USA
| | - Maria Vasileiou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
27
|
Hirasawa T, Kikuchi M, Takasaki S, Kumondai M, Sato Y, Sato T, Imoto E, Hayakawa Y, Maekawa M, Mano N. High throughput LC/ESI-MS/MS method for simultaneous analysis of 20 oral molecular-targeted anticancer drugs and the active metabolite of sunitinib in human plasma. Heliyon 2023; 9:e16926. [PMID: 37484337 PMCID: PMC10360929 DOI: 10.1016/j.heliyon.2023.e16926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
Many types of oral molecular-targeted anticancer drugs are clinically used in cancer genomic medicine. Combinations of multiple molecular-targeted anticancer drugs are also being investigated, expecting to prolong the survival of patients with cancer. Therapeutic drug monitoring of oral molecular-targeted drugs is important to ensure efficacy and safety. A liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) has been used for simultaneous determination of these drugs in human plasma. However, the sensitivity of mass spectrometers and differences in the therapeutic range of drugs have rendered the development of simultaneous LC/ESI-MS/MS methods difficult. In this study, a simultaneous quantitative method for 20 oral molecular-targeted anticancer drugs and the active metabolite of sunitinib was developed based on the results of linear range shifts of the calibration curves using four ion abundance adjustment techniques (collision energy defects, in-source collision-induced dissociation, secondary product ion selected reaction monitoring, and isotopologue selected reaction monitoring). The saturation of the detector for the seven analytes was resolved by incorporating optimal ion abundance adjustment techniques. Furthermore, the reproducibility of this method was confirmed in validation tests, and plasma from patients was measured by this method to demonstrate its usefulness in actual clinical practice. This analytical method is expected to make a substantial contribution to the promotion of personalized medicine in the future.
Collapse
Affiliation(s)
- Tensei Hirasawa
- Faculty of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Masafumi Kikuchi
- Faculty of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Shinya Takasaki
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Eishi Imoto
- Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Yoshihiro Hayakawa
- Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Masamitsu Maekawa
- Faculty of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Nariyasu Mano
- Faculty of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
28
|
Canil G, Orleni M, Posocco B, Gagno S, Bignucolo A, Montico M, Roncato R, Corsetti S, Bartoletti M, Toffoli G. LC-MS/MS Method for the Quantification of PARP Inhibitors Olaparib, Rucaparib and Niraparib in Human Plasma and Dried Blood Spot: Development, Validation and Clinical Validation for Therapeutic Drug Monitoring. Pharmaceutics 2023; 15:pharmaceutics15051524. [PMID: 37242766 DOI: 10.3390/pharmaceutics15051524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPis) are becoming increasingly meaningful in oncology, and their therapeutic drug monitoring (TDM) might be beneficial for patients. Several bioanalytical methods have been reported for PARPis quantification in human plasma, but advantages might be obtained using dried blood spot (DBS) as a sampling technique. Our aim was to develop and validate a liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for olaparib, rucaparib, and niraparib quantification in both human plasma and DBS matrices. Additionally, we aimed to assess the correlation between the drug concentrations measured in these two matrices. DBS from patients was obtained using Hemaxis DB10 for volumetric sampling. Analytes were separated on a Cortecs-T3 column and detected with electrospray ionization (ESI)-MS in positive ionization mode. Validation was performed according to the latest regulatory guidelines, in the range (ng/mL) 140-7000 for olaparib, 100-5000 for rucaparib, and 60-3000 for niraparib, within the hematocrit (Hct) range 29-45%. The Passing-Bablok and Bland-Altman statistical analyses revealed a strong correlation between plasma and DBS for olaparib and niraparib. However, due to the limited amount of data, it was challenging to establish a robust regression analysis for rucaparib. To ensure a more reliable assessment, additional samples are required. The DBS-to-plasma ratio was used as a conversion factor (CF) without considering any patient-related hematological parameters. These results provide a solid basis for the feasibility of PARPis TDM using both plasma and DBS matrices.
Collapse
Affiliation(s)
- Giovanni Canil
- Experimental and Clinical Pharmacology Unit, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Marco Orleni
- Experimental and Clinical Pharmacology Unit, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
- Doctoral School in Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Bianca Posocco
- Experimental and Clinical Pharmacology Unit, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Sara Gagno
- Experimental and Clinical Pharmacology Unit, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Alessia Bignucolo
- Experimental and Clinical Pharmacology Unit, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Marcella Montico
- Clinical Trial Office, CRO Aviano, National Cancer Institute, IRCSS, 33081 Aviano, Italy
| | - Rossana Roncato
- Experimental and Clinical Pharmacology Unit, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Serena Corsetti
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Michele Bartoletti
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| |
Collapse
|
29
|
Xu T, Wang R, Gu C, Jiang T. Recyclable detection of gefitinib in clinical sample mediated by multifunctional Ag-anchored g-C 3N 4/MoS 2 composite substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122801. [PMID: 37187146 DOI: 10.1016/j.saa.2023.122801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/08/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) technology enables to satisfy the increasing demand of clinical drug monitoring due to the superiority of fingerprint recognition, real-time response, and nondestructive collection. Here, a novel graphitic carbon nitride (g-C3N4)/ molybdenum disulfide (MoS2)/Ag composite substrate with a 3D surface structure was successfully developed for the recyclable detection of gefitinib in serum. Attributed to the uniform and dense "hotspots" on the shrubby active surfaces in conjunction with the potential synergistic chemical enhancement of g-C3N4/MoS2 heterosystem, a remarkable SERS sensitivity with an attractive enhancement factor value of 3.3 × 107 was demonstrated. Meanwhile, a type-II heterojunction between g-C3N4 and MoS2 enabled more efficient diffusion of photogenerated e--h+ pairs assisted by the localized surface plasmon resonance of Ag NPs, which contributed to the reliable recyclable detection of gefitinib. The ultra-low limit of detection at 10-5 mg/mL and high recycling rates of gefitinib beyond 90% in serum were successfully realized. The results demonstrated the as-prepared SERS substrate has tremendous potential to be untilized for in-situ drug diagnostics.
Collapse
Affiliation(s)
- Tao Xu
- Department of Pharmacy, Ningbo City First Hospital, Ningbo 315010, Zhejiang, PR China
| | - Rongyan Wang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Chenjie Gu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| | - Tao Jiang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| |
Collapse
|
30
|
Saiki T, Ogata G, Sawamura S, Asai K, Razvina O, Watanabe K, Kato R, Zhang Q, Akiyama K, Madhurantakam S, Ahmad NB, Ino D, Nashimoto H, Matsumoto Y, Moriyama M, Horii A, Kondo C, Ochiai R, Kusuhara H, Saijo Y, Einaga Y, Hibino H. A strategy for low-cost portable monitoring of plasma drug concentrations using a sustainable boron-doped-diamond chip. Heliyon 2023; 9:e15963. [PMID: 37234605 PMCID: PMC10205593 DOI: 10.1016/j.heliyon.2023.e15963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
On-site monitoring of plasma drug concentrations is required for effective therapies. Recently developed handy biosensors are not yet popular owing to insufficient evaluation of accuracy on clinical samples and the necessity of complicated costly fabrication processes. Here, we approached these bottlenecks via a strategy involving engineeringly unmodified boron-doped diamond (BDD), a sustainable electrochemical material. A sensing system based on a ∼1 cm2 BDD chip, when analysing rat plasma spiked with a molecular-targeting anticancer drug, pazopanib, detected clinically relevant concentrations. The response was stable in 60 sequential measurements on the same chip. In a clinical study, data obtained with a BDD chip were consistent with liquid chromatography-mass spectrometry results. Finally, the portable system with a palm-sized sensor containing the chip analysed ∼40 μL of whole blood from dosed rats within ∼10 min. This approach with the 'reusable' sensor may improve point-of-monitoring systems and personalised medicine while reducing medical costs.
Collapse
Affiliation(s)
- Takuro Saiki
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Genki Ogata
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| | - Seishiro Sawamura
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kai Asai
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| | - Olga Razvina
- G-MedEx Project, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Kota Watanabe
- Niigata University School of Medicine, 1-757 Asahimachi-dori Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Rito Kato
- Niigata University School of Medicine, 1-757 Asahimachi-dori Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Qi Zhang
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Otolaryngology Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Koei Akiyama
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Molecular Physiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Sasya Madhurantakam
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norzahirah Binti Ahmad
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Ino
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruma Nashimoto
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Yoshifumi Matsumoto
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Masato Moriyama
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Arata Horii
- Department of Otolaryngology Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Chie Kondo
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., 1, Nishinokyo-shimoai-cho, Nakagyo-ku, Kyoto, Kyoto 604-8436, Japan
| | - Ryosuke Ochiai
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., 1, Nishinokyo-shimoai-cho, Nakagyo-ku, Kyoto, Kyoto 604-8436, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Yasuo Saijo
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| | - Hiroshi Hibino
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- AMED-CREST, AMED, Osaka 565-0871, Japan
| |
Collapse
|
31
|
Barbosa IAB, Silva TCD, Souza MVPD, Pedreira LA, Godoy ALPC. Pharmacokinetic approach in therapeutic monitoring of antineoplastic drugs and the impact on pharmacoeconomics: A systematic review. J Oncol Pharm Pract 2023:10781552231171827. [PMID: 37116883 DOI: 10.1177/10781552231171827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
OBJECTIVES Therapeutic drug monitoring aims to quantify the concentration of a drug in a biological matrix. In oncology, the therapeutic arsenal is vast and therapeutic drug monitoring optimizes treatment and reduces costs. This review will analyze the financial impact of therapeutic monitoring of anticancer drugs in healthcare institutions. METHODS Keywords were selected using Decs (MeSH). Through the Pubmed, Scopus, and Virtual Health Library (VHL) databases, 74 articles were found, of which 4 meet the inclusion criteria. Methodological quality and risk of bias were assessed according to the Research Triangle Institute Item Bank (RTI-Item Bank) scale. KEY FINDINGS Therapeutic drug monitoring is an important tool for dose reduction or dose increase due to toxicity and lack of response, respectively. The main barriers are associated costs and lack of cost-benefit data. An alternative is to use population pharmacokinetic models, measured plasma concentration(s) and relevant patient characteristics, estimated individual pharmacokinetic parameters, and predicted drug concentrations at any point in the dosing range. CONCLUSIONS Therapeutic drug monitoring is understood as a technology that adds costs to payers. Future studies should generate clinical evidence of population pharmacokinetics from therapeutic drug monitoring studies.
Collapse
Affiliation(s)
- Islania Almeida Brandão Barbosa
- Pharmacy Graduate Program, Federal University of Bahia, Salvador, BA, Brazil
- School of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | - Taiane Candeias da Silva
- Pharmacy Graduate Program, Federal University of Bahia, Salvador, BA, Brazil
- School of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | | | | | - Ana Leonor Pardo Campos Godoy
- Pharmacy Graduate Program, Federal University of Bahia, Salvador, BA, Brazil
- School of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| |
Collapse
|
32
|
Guo ZX, Wu YE, Shi HY, van den Anker J, Liang P, Zheng Y, Zhao XW, Feng R, Zhao W. A liquid chromatography-tandem mass spectrometry method for simultaneous quantification of thirty-nine tyrosine kinase inhibitors in human plasma. J Pharm Biomed Anal 2023; 224:115159. [PMID: 36442459 DOI: 10.1016/j.jpba.2022.115159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
Currently, the use of targeted drugs such as tyrosine kinase inhibitors (TKIs) plays an important role in clinical therapy. As the number of approved TKIs continues to increase, existing analysis methods will not be able to meet the growing needs, and will hamper the development of therapeutic drug monitoring (TDM) of TKIs. Based on LC-MS/MS technology, this study tends to develop and validate a multi-component analysis method for simultaneous determination of the concentrations of 39 TKIs in plasma. Spiked plasma was blended with isotope labelled internal standards, and injected into the LC-MS/MS system after protein precipitation by acetonitrile. Chromatographic separation was achieved using an ODS-4 column with gradient elution of formic acid/water (1:1000; v/v) and acetonitrile. Analytes detection was conducted in positive ionisation mode using MRM. The total run time was 8 min. The method validation was conducted by assessing the following parameters: selectivity, linearity and the lower limit of qualification, accuracy and precision, stability, matrix effect and recovery. The concentrations of 39 TKIs showed good linearity within the range of their respective standard curves in plasma, the accuracy of all quality control samples ranged from 85.9% to 114.1%, and the precision was lower than 13.3%. The extraction recovery ranged from 92.6% to 114.7%, and the matrix effect of plasma was lower than 11.3%. This new method was successfully developed, can be used for the determination of drug concentrations in multiple patients with different kinds of TKIs, and will therefore be suitable for TDM of 39 TKIs.
Collapse
Affiliation(s)
- Zi-Xuan Guo
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Yue-E Wu
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hai-Yan Shi
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, Washington DC, USA; Departments of Pediatrics, Pharmacology & Physiology, Genomics & Precision Medicine, the George Washington University School of Medicine and Health Sciences, Washington DC, USA; Department of Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Ping Liang
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ying Zheng
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue-Wei Zhao
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Feng
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Shandong University, Jinan, China.
| |
Collapse
|
33
|
Bioanalytical Methods for Poly(ADP-Ribose) Polymerase Inhibitor Quantification: A Review for Therapeutic Drug Monitoring. Ther Drug Monit 2023; 45:306-317. [PMID: 36728223 PMCID: PMC10168115 DOI: 10.1097/ftd.0000000000001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/29/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) of poly(ADP-ribose) polymerase inhibitors (PARPis) is an exploratory practice aimed at improving the quality of treatment through personalized therapy. Currently, there are 4 European Medicines Agency-approved and US Food and Drug Administration-approved PARPis available clinically whose quantification requires validated analytical methods: olaparib, niraparib, rucaparib, and talazoparib. The purpose of this literature review was to highlight the pharmacological features of PARPis that could support their TDM practice and provide a detailed discussion of the available liquid chromatography coupled with tandem mass spectrometry methods for their quantification. METHODS Using several Medical Subject Heading terms, the literature was searched using several research engines, including SciFinder, Web of Science, Google Scholar, and PubMed, to find articles published before August 2022. RESULTS Exposure-efficacy and exposure-safety profiles, drug-drug interactions, and hepatic/renal impairment of PARPis provide the potential rationale to monitor their concentrations through TDM. Several bioanalytical methods for their quantification have been reported and compared, and a great deal of heterogeneity has been found among methods, regarding both their analytical and regulatory aspects. CONCLUSIONS In addition to reducing toxicity and increasing the efficacy of PARPis therapy, TDM could be beneficial to thoroughly investigate the exposure-response relationships of PARPis and to establish pharmacokinetic thresholds for clinical decisions. Based on the comparison of published bioanalytical methods, their transferability and validation both play a key role in method selection. For future use in clinical TDM, we anticipate that bioanalytical methods should address every analytical need more thoroughly and should be validated with standardized guidelines.
Collapse
|
34
|
Staša J, Gregorová J, Slanař O, Šíma M. Therapeutic Drug Monitoring of Protein Kinase Inhibitors in the Treatment of Non-small Cell Lung Cancer. Prague Med Rep 2023; 124:199-215. [PMID: 37736945 DOI: 10.14712/23362936.2023.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
Targeted therapy with protein kinase inhibitors (PKIs) represents one of the important treatment options for non-small cell lung cancer (NSCLC). It has contributed to improve patients' survival and quality of life significantly. These anticancer drugs are administrated orally in flat-fixed doses despite the well-known large interpatient pharmacokinetic variability and the possible need for dose individualization. To optimize and individualize dosing of PKIs, and thereby increasing the effectiveness and safety of the treatment, therapeutic drug monitoring (TDM) is the most frequently mentioned method. Unlike other areas of medicine, TDM has been rather exceptional in oncological practise since there is a little evidence or no data for concentration-effect relationships of PKIs. Therefore, the aim of this review is to summarize the pharmacokinetic characteristics of PKIs and provide the evidence supporting the use of TDM for personalised treatment of patients with NSCLC.
Collapse
Affiliation(s)
- Judita Staša
- Department of Clinical Pharmacy, Bulovka University Hospital, Prague, Czech Republic.
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Jana Gregorová
- Department of Clinical Pharmacy, Bulovka University Hospital, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Šíma
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
35
|
Smita P, Narayan PA, J K, Gaurav P. Therapeutic drug monitoring for cytotoxic anticancer drugs: Principles and evidence-based practices. Front Oncol 2022; 12:1015200. [PMID: 36568145 PMCID: PMC9773989 DOI: 10.3389/fonc.2022.1015200] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 12/13/2022] Open
Abstract
Cytotoxic drugs are highly efficacious and also have low therapeutic index. A great degree of caution needs to be exercised in their usage. To optimize the efficacy these drugs need to be given at maximum tolerated dose which leads to significant amount of toxicity to the patient. The fine balance between efficacy and safety is the key to the success of cytotoxic chemotherapeutics. However, it is possibly more rewarding to obtain that balance for this class drugs as the frequency of drug related toxicities are higher compared to the other therapeutic class and are potentially life threatening and may cause prolonged morbidity. Significant efforts have been invested in last three to four decades in therapeutic drug monitoring (TDM) research to understand the relationship between the drug concentration and the response achieved for therapeutic efficacy as well as drug toxicity for cytotoxic drugs. TDM evolved over this period and the evidence gathered favored its routine use for certain drugs. Since, TDM is an expensive endeavor both from economic and logistic point of view, to justify its use it is necessary to demonstrate that the implementation leads to perceivable improvement in the patient outcomes. It is indeed challenging to prove the utility of TDM in randomized controlled trials and at times may be nearly impossible to generate such data in view of the obvious findings and concern of compromising patient safety. Therefore, good quality data from well-designed observational study do add immense value to the scientific knowledge base, when they are examined in totality, despite the heterogeneity amongst them. This article compiles the summary of the evidence and the best practices for TDM for the three cytotoxic drug, busulfan, 5-FU and methotrexate. Traditional use of TDM or drug concentration data for dose modification has been witnessing a sea change and model informed precision dosing is the future of cytotoxic drug therapeutic management.
Collapse
Affiliation(s)
- Pattanaik Smita
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Patil Amol Narayan
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kumaravel J
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Prakash Gaurav
- Department of Clinical Hematology and Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
36
|
Groenland SL, van Eerden RAG, Westerdijk K, Meertens M, Koolen SLW, Moes DJAR, de Vries N, Rosing H, Otten H, Vulink AJE, Desar IME, Imholz ALT, Gelderblom H, van Erp NP, Beijnen JH, Mathijssen RHJ, Huitema ADR, Steeghs N. Therapeutic drug monitoring-based precision dosing of oral targeted therapies in oncology: a prospective multicenter study. Ann Oncol 2022; 33:1071-1082. [PMID: 35777707 DOI: 10.1016/j.annonc.2022.06.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/08/2022] [Accepted: 06/20/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Oral targeted therapies show a high pharmacokinetic (PK) interpatient variability. Even though exposure has been positively correlated with efficacy for many of these drugs, these are still dosed using a one-size-fits-all approach. Consequently, individuals have a high probability to be either underexposed or overexposed, potentially leading to suboptimal outcomes. Therapeutic drug monitoring, which is personalized dosing based on measured systemic drug concentrations, could address these problems. PATIENTS AND METHODS Patients were enrolled in this prospective multicenter study (www.trialregister.nl; NL6695) if they started treatment with one of the 24 participating oral targeted therapies. Primary outcome was to halve the proportion of underexposed patients, compared with historical data. PK sampling was carried out after 4, 8 and 12 weeks, and every 12 weeks thereafter. In case of Cmin below the predefined target and manageable toxicity, a pharmacokinetically guided intervention was proposed (i.e. checking compliance and drug-drug interactions, concomitant intake with food, splitting intake moments or dose increments). RESULTS In total, 600 patients were included of whom 426 patients are assessable for the primary outcome and 552 patients had ≥1 PK sample(s) available and were therefore assessable for the overall analyses. Pharmacokinetically guided dosing reduced the proportion of underexposed patients at the third PK measurement by 39.0% (95% confidence interval 28.0% to 49.0%) compared with historical data. At the third PK measurement, 110 out of 426 patients (25.8%) had a low exposure. In total, 294 patients (53.3%) had ≥1 PK sample(s) below the preset target at a certain time point during treatment. In 166 of these patients (56.5%), pharmacokinetically guided interventions were carried out, which were successful in 113 out of 152 assessable patients (74.3%). CONCLUSIONS Pharmacokinetically guided dose optimization of oral targeted therapies was feasible in clinical practice and reduced the proportion of underexposed patients considerably.
Collapse
Affiliation(s)
- S L Groenland
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - R A G van Eerden
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - K Westerdijk
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Meertens
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - S L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands; Department of Pharmacy, Erasmus Medical Center, Rotterdam, The Netherlands
| | - D J A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - N de Vries
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - H Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - H Otten
- Department of Medical Oncology, Meander Medical Center, Amersfoort, The Netherlands
| | - A J E Vulink
- Department of Medical Oncology, Reinier de Graaf Hospital, Delft, The Netherlands
| | - I M E Desar
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A L T Imholz
- Department of Medical Oncology, Deventer Hospital, Deventer, The Netherlands
| | - H Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - N P van Erp
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - R H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - A D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - N Steeghs
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Zhang M, Tajima S, Suetsugu K, Hirota T, Tsuchiya Y, Yamauchi T, Yoshimoto G, Miyamoto T, Egashira N, Akashi K, Ieiri I. Development and Validation of an LC-MS/MS Method to Quantify Gilteritinib and Its Clinical Application in Patients With FLT3 Mutation-Positive Acute Myelogenous Leukemia. Ther Drug Monit 2022; 44:592-596. [PMID: 35149666 DOI: 10.1097/ftd.0000000000000971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/21/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Gilteritinib, a novel oral tyrosine kinase inhibitor, is used to treat acute myeloid leukemia (AML) with FMS-like tyrosine kinase-3 (FLT3) mutations. Therapeutic drug monitoring (TDM) of gilteritinib is important for improving clinical outcomes and ensuring safety. Therefore, this study aimed to develop a simplified method for quantifying gilteritinib in human plasma using liquid chromatography-tandem mass spectrometry. METHODS Liquid chromatography was performed by using an Acquity BEH C18 column (50 mm × 2.1 mm, 1.7 μm) and a gradient elution with 0.1% formic acid in water (A) and acetonitrile (B). Detection was performed by using a Shimadzu tandem mass spectrometer through multiple reaction monitoring in the positive-ion mode. RESULTS The developed method enabled quantification of gilteritinib in 4 minutes and was validated by evaluating selectivity, calibration curve (10-1000 ng/mL, r 2 > 0.99), a lower limit of quantification (LLOQ), accuracy (overall bias -4.2% to 1.9%), precision (intraday CV ≤ 7.9%; interday CV ≤ 13.6%), carryover, recovery, matrix effect, dilution integrity, and stability according to the US Food and Drug Administration (FDA) guidelines. This method was successfully applied to the TDM of gilteritinib trough concentrations in 3 patients with AML. CONCLUSIONS The developed method fulfilled the FDA guideline criteria and can easily be implemented to facilitate TDM in patients receiving gilteritinib in a clinical setting.
Collapse
Affiliation(s)
- Mengyu Zhang
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Soichiro Tajima
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
| | | | - Takeshi Hirota
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
| | - Yuichi Tsuchiya
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
| | - Takuji Yamauchi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Goichi Yoshimoto
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Hematology, Saga-Ken Medical Centre Koseikan, Saga, Japan ; and
| | - Toshihiro Miyamoto
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Hematology, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Nobuaki Egashira
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ichiro Ieiri
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
38
|
Guchelaar NAD, van Eerden RAG, Groenland SL, Doorn LV, Desar IME, Eskens FALM, Steeghs N, van Erp NP, Huitema ADR, Mathijssen RHJ, Koolen SLW. Feasibility of therapeutic drug monitoring of sorafenib in patients with liver or thyroid cancer. Biomed Pharmacother 2022; 153:113393. [PMID: 35834987 DOI: 10.1016/j.biopha.2022.113393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022] Open
Abstract
INTRODUCTION Sorafenib is a tyrosine-kinase inhibitor approved for the treatment of renal cell carcinoma, hepatocellular carcinoma, thyroid carcinoma, and desmoid fibromatosis. As high inter-individual variability exists in exposure, there is a scientific rationale to pursue therapeutic drug monitoring (TDM). We investigated the feasibility of TDM in patients on sorafenib and tried to identify sub-groups in whom pharmacokinetically (PK) guided-dosing might be of added value. METHODS We included patients who started on sorafenib (between October 2017 and June 2020) at the recommended dose of 400 mg BID or with a step-up dosing schedule. Plasma trough levels (Ctrough) were measured at pre-specified time-points. Increasing the dose was advised if Ctrough was below the target of 3750 ng/mL and toxicity was manageable. RESULTS A total of 150 samples from 36 patients were collected. Thirty patients (83 %) had a Ctrough below the prespecified target concentration at a certain time point during treatment. Toxicity from sorafenib hampered dosing according to target Ctrough in almost half of the patients. In 11 patients, dosing was adjusted based on Ctrough. In three patients, this resulted in an adequate Ctrough without additional toxicity four weeks after the dose increase. In the remaining eight patients, dose adjustment based on Ctrough did not result in a Ctrough above the target or caused excessive toxicity. CONCLUSIONS TDM for sorafenib is not of added value in daily clinical practice. In most cases, toxicity restricts the possibility of dose escalations.
Collapse
Affiliation(s)
- Niels A D Guchelaar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | - Ruben A G van Eerden
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Stefanie L Groenland
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Leni van Doorn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Ingrid M E Desar
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ferry A L M Eskens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Neeltje Steeghs
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Nielka P van Erp
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands; Department of Pharmacy, Prinses Máxima Center for Pediatric Oncology, University Medical Center Utrecht, the Netherlands; Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Department of Pharmacy, Erasmus Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
39
|
Kweon S, Jeong YS, Chung SW, Lee H, Lee HK, Park SJ, Choi JU, Park J, Chung SJ, Byun Y. Metronomic dose-finding approach in oral chemotherapy by experimentally-driven integrative mathematical modeling. Biomaterials 2022; 286:121584. [DOI: 10.1016/j.biomaterials.2022.121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 11/02/2022]
|
40
|
Verougstraete N, Stove V, Verstraete AG, Stove CP. Therapeutic Drug Monitoring of Tyrosine Kinase Inhibitors Using Dried Blood Microsamples. Front Oncol 2022; 12:821807. [PMID: 35392223 PMCID: PMC8980857 DOI: 10.3389/fonc.2022.821807] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
Therapeutic drug monitoring (TDM) of tyrosine kinase inhibitors (TKIs) is not yet performed routinely in the standard care of oncology patients, although it offers a high potential to improve treatment outcome and minimize toxicity. TKIs are perfect candidates for TDM as they show a relatively small therapeutic window, a wide inter-patient variability in pharmacokinetics and a correlation between drug concentration and effect. Moreover, most of the available TKIs are susceptible to various drug-drug interactions and medication adherence can be checked by performing TDM. Plasma, obtained via traditional venous blood sampling, is the standard matrix for TDM of TKIs. However, the use of plasma poses some challenges related to sampling and stability. The use of dried blood microsamples can overcome these limitations. Collection of samples via finger-prick is minimally invasive and considered convenient and simple, enabling sampling by the patients themselves in their home-setting. The collection of small sample volumes is especially relevant for use in pediatric populations or in pharmacokinetic studies. Additionally, working with dried matrices improves compound stability, resulting in convenient and cost-effective transport and storage of the samples. In this review we focus on the different dried blood microsample-based methods that were used for the quantification of TKIs. Despite the many advantages associated with dried blood microsampling, quantitative analyses are also associated with some specific difficulties. Different methodological aspects of microsampling-based methods are discussed and applied to TDM of TKIs. We focus on sample preparation, analytics, internal standards, dilution of samples, external quality controls, dried blood spot specific validation parameters, stability and blood-to-plasma conversion methods. The various impacts of deviating hematocrit values on quantitative results are discussed in a separate section as this is a key issue and undoubtedly the most widely discussed issue in the analysis of dried blood microsamples. Lastly, the applicability and feasibility of performing TDM using microsamples in a real-life home-sampling context is discussed.
Collapse
Affiliation(s)
- Nick Verougstraete
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Veronique Stove
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Alain G Verstraete
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
41
|
Babu M, Pavithran K. Therapeutic Drug Monitoring as a Tool for Therapy Optimization. Drug Metab Lett 2022; 15:DML-EPUB-122284. [PMID: 35382721 DOI: 10.2174/1872312815666220405122021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
The use of pharmacotherapy for improving healthcare in society is increasing. A vast majority of patients have either received subtherapeutic treatment (which could result from low pharmacokinetic) or experienced adverse effects due to the toxic levels of the drug. The medicines used to treat chronic conditions, such as epilepsy; cardiovascular diseases; and oncological, neurological, and psychiatric disorders, require routine monitoring. New targeted therapies suggest an individualized treatment that can slowly move practitioners away from the concept of a one-size-fits-all-fixed-dosing approach. Therapeutic drug use can be monitored based on pharmacokinetic, pharmacodynamic, and pharmacometric methods. Based on the experiences of therapeutic drug monitoring of various agents across the globe, we can look ahead to the possible developments of therapeutic drug monitoring in India.
Collapse
Affiliation(s)
- Merin Babu
- Department of Medical Oncology, Amrita Institute of Medical Sciences and Research Centre Amrita Vishwa Vidyapeetham, Ponekkara P.O, Kochi, Kerala, India
| | - Keechilat Pavithran
- Department of Medical Oncology, Amrita Institute of Medical Sciences and Research Centre Amrita Vishwa Vidyapeetham, Ponekkara P.O, Kochi, Kerala, India
| |
Collapse
|
42
|
Ritonavir-Boosted Exposure of Kinase Inhibitors: an Open Label, Cross-over Pharmacokinetic Proof-of-Concept Trial with Erlotinib. Pharm Res 2022; 39:669-676. [PMID: 35352280 PMCID: PMC8964029 DOI: 10.1007/s11095-022-03244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022]
Abstract
Background Although kinase inhibitors (KIs) are generally effective, their use has a large impact on the current health care budget. Dosing strategies to reduce treatment costs are warranted. Boosting pharmacokinetic exposure of KIs metabolized by cytochrome P450 (CYP)3A4 with ritonavir might result in lower doses needed and subsequently reduces treatment costs. This study is a proof-of-concept study to evaluate if the dose of erlotinib can be reduced by co-administration with ritonavir. Methods In this open-label, cross-over study, we compared the pharmacokinetics of monotherapy erlotinib 150 mg once daily (QD) (control arm) with erlotinib 75 mg QD plus ritonavir 200 mg QD (intervention arm). Complete pharmacokinetic profiles at steady-state were taken up to 24 h after erlotinib intake for both dosing strategies. Results Nine patients were evaluable in this study. For the control arm, the systemic exposure over 24 h, maximum plasma concentration and minimal plasma concentration of erlotinib were 29.3 μg*h/mL (coefficient of variation (CV):58%), 1.84 μg/mL (CV:60%) and 1.00 μg/mL (CV:62%), respectively, compared with 28.9 μg*h/mL (CV:116%, p = 0.545), 1.68 μg/mL (CV:68%, p = 0.500) and 1.06 μg/mL (CV:165%, p = 0.150) for the intervention arm. Exposure to the metabolites of erlotinib (OSI-413 and OSI-420) was statistically significant lower following erlotinib plus ritonavir dosing. Similar results regarding safety in both dosing strategies were observed, no grade 3 or higher adverse event was reported. Conclusions Pharmacokinetic exposure at a dose of 75 mg erlotinib when combined with the strong CYP3A4 inhibitor ritonavir is similar to 150 mg erlotinib. Ritonavir-boosting is a promising strategy to reduce erlotinib treatment costs and provides a rationale for other expensive therapies metabolized by CYP3A4.
Collapse
|
43
|
Synowiec Z, Sobańska K, Synowiec T, Teżyk A, Tomczak P, Jabłecka A. Axitinib trough concentration and its influence on the efficacy and toxicity of second-line renal cell carcinoma treatment. Clin Genitourin Cancer 2022; 20:390.e1-390.e8. [DOI: 10.1016/j.clgc.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 02/18/2022] [Accepted: 03/06/2022] [Indexed: 11/27/2022]
|
44
|
Ferrer F, Chauvin J, Deville JL, Ciccolini J. Adaptive dosing of sunitinib in a metastatic renal cell carcinoma patient: when in silico modeling helps to go quicker to the point. Cancer Chemother Pharmacol 2022; 89:565-569. [PMID: 35147741 DOI: 10.1007/s00280-021-04383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Adaptive dosing strategy with oral targeted therapies in oncology is mostly based upon clinical signs. Using pharmacokinetics (PK) models to customize dosing could help saving time, i.e., by predicting clinical outcome through early monitoring of drug levels. CASE REPORT We present the case of a metastatic renal cell carcinoma patient treated with standard Sunitinib dosing (i.e., 50 mg QD). Clinical signs suggested lack of efficacy. Therapeutic Drug Monitoring (TDM) confirmed that exposure was below the expected target exposure. PK modeling suggested that dosing could be increased safely to 75 mg QD. Sunitinib dosing was instead changed empirically to 62.5 mg only, increasing drug exposure to the lower part of the therapeutic window. Resolution of bone pains plus Stable Disease were observed. Even though further modeling suggested to increase Sunitinib dosing to 75 mg again, the intermediate dosing was maintained for the subsequent cycles to preserve the safety. Unfortunately, severe pains plus degradation of the general state were reported and imaging showed Progressive Disease. The patient was finally switched to alternative therapy, without being treated at the 75 mg level of Suntitinib. CONCLUSIONS AND DISCUSSION This case suggests that model-based adaptive dosing could have allowed to reach quicker the best dosing with Sunitinib, thus possibly ensuring a better management of this patient. Model-informed dosing should be used instead of empirical search for the most appropriate dosing to ensure a good benefit/risk ratio with Sunitinib, especially in the context of such aggressive disease.
Collapse
Affiliation(s)
- Florent Ferrer
- COMPO Unit, Centre de Recherche en Cancérologie de Marseille, Inserm U1068 Inria Centre de Recherches Sophia Méditerranée, Aix Marseille Université, 13385, Marseille, France.,SMARTc, Centre de Recherche en Cancérologie de Marseille, Inserm U1068 Aix Marseille Université, 13385, Marseille, France.,Laboratoire de Pharmacocinétique Clinique Et de Toxicologie, La Timone University Hospital of Marseille, 13385, Marseille, France
| | | | - Jean-Laurent Deville
- Medical Oncology, La Timone University Hospital of Marseille, 13385, Marseille, France
| | - Joseph Ciccolini
- COMPO Unit, Centre de Recherche en Cancérologie de Marseille, Inserm U1068 Inria Centre de Recherches Sophia Méditerranée, Aix Marseille Université, 13385, Marseille, France. .,SMARTc, Centre de Recherche en Cancérologie de Marseille, Inserm U1068 Aix Marseille Université, 13385, Marseille, France. .,Laboratoire de Pharmacocinétique Clinique Et de Toxicologie, La Timone University Hospital of Marseille, 13385, Marseille, France.
| |
Collapse
|
45
|
Studentova H, Volakova J, Spisarova M, Zemankova A, Aiglova K, Szotkowski T, Melichar B. Severe tyrosine-kinase inhibitor induced liver injury in metastatic renal cell carcinoma patients: two case reports assessed for causality using the updated RUCAM and review of the literature. BMC Gastroenterol 2022; 22:49. [PMID: 35123392 PMCID: PMC8818210 DOI: 10.1186/s12876-022-02121-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background Sunitinib and pazopanib are both oral small molecule multityrosine kinase inhibitors (MTKI) used in the treatment of renal cell carcinoma (RCC). Hepatotoxicity or “liver injury” is the most important adverse effect of pazopanib administration, but little is known about the underlying mechanism. Liver injury may also occur in patients treated with sunitinib, but severe toxicity is extremely rare. Herein we report two new cases of severe liver injury induced by MTKI. Both cases are unique and exceptional. We assessed both cases for drug-induced liver injury (DILI) using the updated score Roussel Uclaf causality assessment method (RUCAM). The literature on potential pathogenic mechanisms and precautionary measures is reviewed.
Case presentation A case of a metastatic RCC (mRCC) patient treated with pazopanib who had manifestation of severe liver injury is presented. These manifestations consisted of grade 4 alanine aminotransferase (ALT) increase and grade 4 hyperbilirubinemia. Alternate causes of acute or chronic liver disease were excluded. The patient gradually recovered from the liver injury and refused any further therapy for mRCC. The patient was diagnosed with acute myeloid leukemia (AML) two years later and eventually succumbed to the disease. The second case describes a mRCC patient treated with sunitinib for 3,5 years and fatal liver failure after 2 weeks of clarithromycin co-medication for acute bronchitis. Conclusions Liver injury has been commonly observed in TKI-treated patients with unpredictable course. Management requires regular routine liver enzyme-monitoring and the collaboration of medical oncologist and hepatologist. There is an unmet medical need for a risk stratification and definition of predictive biomarkers to identify potential genetic polymorphisms or other factors associated with TKI-induced liver injury. Any potential unrecommended concomitant therapy has to be avoided.
Collapse
|
46
|
Roušarová J, Šíma M, Slanař O. Therapeutic Drug Monitoring of Protein Kinase Inhibitors in Breast Cancer Patients. Prague Med Rep 2021; 122:243-256. [PMID: 34924102 DOI: 10.14712/23362936.2021.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Protein kinase inhibitors (PKIs) represent up-to-date therapeutic approach in breast cancer treatment. Although cancer is a rapidly progressive disease, many substances, including PKIs, are usually used at fixed doses without regard to each patient's individuality. Therapeutic drug monitoring (TDM) is a tool that allows individualization of therapy based on drug plasma levels. For TDM conduct, exposure-response relationships of drug substances are required. The pharmacokinetic data and exposure-response evidence supporting the use of TDM for 6 PKIs used in breast cancer treatment, one of the most common female tumour diseases, are discussed in this review.
Collapse
Affiliation(s)
- Jaroslava Roušarová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Martin Šíma
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
47
|
Groenland SL, Verheijen RB, Joerger M, Mathijssen RHJ, Sparreboom A, Beijnen JH, Beumer JH, Steeghs N, Huitema ADR. Precision Dosing of Targeted Therapies Is Ready for Prime Time. Clin Cancer Res 2021; 27:6644-6652. [PMID: 34548319 PMCID: PMC8934568 DOI: 10.1158/1078-0432.ccr-20-4555] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/19/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
Fixed dosing of oral targeted therapies is inadequate in the era of precision medicine. Personalized dosing, based on pharmacokinetic (PK) exposure, known as therapeutic drug monitoring (TDM), is rational and supported by increasing evidence. The purpose of this perspective is to discuss whether randomized studies are needed to confirm the clinical value of precision dosing in oncology. PK-based dose adjustments are routinely made for many drugs and are recommended by health authorities, for example, for patients with renal impairment or for drug-drug interaction management strategies. Personalized dosing simply extrapolates this paradigm from selected patient populations to each individual patient with suboptimal exposure, irrespective of the underlying cause. If it has been demonstrated that exposure is related to a relevant clinical outcome, such as efficacy or toxicity, and that exposure can be optimized by PK-guided dosing, it could be logically assumed that PK-guided dosing would result in better treatment outcomes without the need for randomized confirmatory trials. We propose a path forward to demonstrate the clinical relevance of individualized dosing of molecularly-targeted anticancer drugs.
Collapse
Affiliation(s)
- Stefanie L Groenland
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Remy B Verheijen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Markus Joerger
- Department of Medical Oncology and Hematology, Cantonal Hospital, St. Gallen, Switzerland
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jan H Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Neeltje Steeghs
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Department of Clinical Pharmacy, Utrecht University Medical Center, Utrecht, the Netherlands
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
48
|
Developing a Nationwide Infrastructure for Therapeutic Drug Monitoring of Targeted Oral Anticancer Drugs: The ON-TARGET Study Protocol. Cancers (Basel) 2021; 13:cancers13246281. [PMID: 34944899 PMCID: PMC8699239 DOI: 10.3390/cancers13246281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Relationships between drug concentrations in blood and efficacy and/or toxicity have been reported for up to 80% of oral anticancer drugs (OADs). Most OADs exhibit highly variable drug concentrations at the approved dose. This may result in a significant proportion of patients with suboptimal drug concentrations. Therapeutic Drug Monitoring (TDM), which is dose optimization based on measured drug concentrations, can be used to personalize drug dosing with the overall goal to improve the benefit-risk ratio of anticancer drug treatment. The ON-TARGET study aims to investigate the feasibility of TDM in patients receiving either axitinib or cabozantinib for the treatment of renal-cell carcinoma with the main objective to improve severe tyrosine kinase inhibitor associated toxicity. Additionally, the feasibility of volumetric absorptive microsampling (VAMS), a novel minimally invasive and easy to handle blood sampling technique, for TDM sample collection is investigated. Abstract Exposure-efficacy and/or exposure-toxicity relationships have been identified for up to 80% of oral anticancer drugs (OADs). Usually, OADs are administered at fixed doses despite their high interindividual pharmacokinetic variability resulting in large differences in drug exposure. Consequently, a substantial proportion of patients receive a suboptimal dose. Therapeutic Drug Monitoring (TDM), i.e., dosing based on measured drug concentrations, may be used to improve treatment outcomes. The prospective, multicenter, non-interventional ON-TARGET study (DRKS00025325) aims to investigate the potential of routine TDM to reduce adverse drug reactions in renal cell carcinoma patients receiving axitinib or cabozantinib. Furthermore, the feasibility of using volumetric absorptive microsampling (VAMS), a minimally invasive and easy to handle blood sampling technique, for sample collection is examined. During routine visits, blood samples are collected and sent to bioanalytical laboratories. Venous and VAMS blood samples are collected in the first study phase to facilitate home-based capillary blood sampling in the second study phase. Within one week, the drug plasma concentrations are measured, interpreted, and reported back to the physician. Patients report their drug intake and toxicity using PRO-CTCAE-based questionnaires in dedicated diaries. Ultimately, the ON-TARGET study aims to develop a nationwide infrastructure for TDM for oral anticancer drugs.
Collapse
|
49
|
Optimized Dosing: The Next Step in Precision Medicine in Non-Small-Cell Lung Cancer. Drugs 2021; 82:15-32. [PMID: 34894338 DOI: 10.1007/s40265-021-01654-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/20/2022]
Abstract
In oncology, and especially in the treatment of non-small-cell lung cancer (NSCLC), dose optimization is often a neglected part of precision medicine. Many drugs are still being administered in "one dose fits all" regimens or based on parameters that are often only minor determinants for systemic exposure. These dosing approaches often introduce additional pharmacokinetic variability and do not add to treatment outcomes. Fortunately, pharmacological knowledge is increasing, providing valuable information regarding the potential of, for example, therapeutic drug monitoring. This article focuses on the evidence for the most promising and easily implemented optimized dosing approaches for the small-molecule inhibitors, chemotherapeutic agents, and monoclonal antibodies as treatment options currently approved for NSCLC. Despite limitations such as investigations having been conducted in oncological diseases other than NSCLC or the retrospective origin of many analyses, an alternative dosing regimen could be beneficial for treatment outcomes, prescriber convenience, or financial burden on healthcare systems. This review of the literature provides recommendations on the implementation of dose optimization and advice regarding promising strategies that deserve further research in NSCLC.
Collapse
|
50
|
Clarke WA, Chatelut E, Fotoohi AK, Larson RA, Martin JH, Mathijssen RHJ, Salamone SJ. Therapeutic drug monitoring in oncology: International Association of Therapeutic Drug Monitoring and Clinical Toxicology consensus guidelines for imatinib therapy. Eur J Cancer 2021; 157:428-440. [PMID: 34597977 DOI: 10.1016/j.ejca.2021.08.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022]
Abstract
Although therapeutic drug monitoring (TDM) is an important tool in guiding drug dosing for other areas of medicine including infectious diseases, cardiology, psychiatry and transplant medicine, it has not gained wide acceptance in oncology. For imatinib and other tyrosine kinase inhibitors, a flat dosing approach is utilised for management of oral chemotherapy. There are many published studies examining the correlation of blood concentrations with clinical effects of imatinib. The International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT) determined that there was a need to examine the published literature regarding utility of TDM in imatinib therapy and to develop consensus guidelines for TDM based on the available data. This article summarises the scientific evidence regarding TDM of imatinib, as well as the consensus guidelines developed by the IATDMCT.
Collapse
Affiliation(s)
- William A Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Etienne Chatelut
- Université de Toulouse, Inserm, Institut Claudius-Regaud, Toulouse, France
| | - Alan K Fotoohi
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Huddinge, Stockholm, 141 86, Sweden
| | - Richard A Larson
- Department of Medicine and Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA
| | - Jennifer H Martin
- Centre for Drug Repurposing and Medicines Research, University of Newcastle. Level 3, Hunter Medical Research Institute, New Lambton Heights, 2305, New South Wales, Australia. https://twitter.com/jenhelenmar
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|