1
|
Farkas E, Rose CR. A dangerous liaison: Spreading depolarization and tissue acidification in cerebral ischemia. J Cereb Blood Flow Metab 2025; 45:201-218. [PMID: 39535276 PMCID: PMC12000947 DOI: 10.1177/0271678x241289756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 11/16/2024]
Abstract
Brain pH is precisely regulated, and pH transients associated with activity are rapidly restored under physiological conditions. During ischemia, the brain's ability to buffer pH changes is rapidly depleted. Tissue oxygen deprivation causes a shift from aerobic to anaerobic metabolism and the accumulation of lactic acid and protons. Although the degree of tissue acidosis resulting from ischemia depends on the severity of the ischemia, spreading depolarization (SD) events emerge as central elements to determining ischemic tissue acidosis. A marked decrease in tissue pH during cerebral ischemia may exacerbate neuronal injury, which has become known as acidotoxicity, in analogy to excitotoxicity. The cellular pathways underlying acidotoxicity have recently been described in increasing detail. The molecular structure of acid or base carriers and acidosis-activated ion channels, the precise (dys)homeostatic conditions under which they are activated, and their possible role in severe ischemia have been addressed. The expanded understanding of acidotoxic mechanisms now provides an opportunity to reevaluate the contexts that lead to acidotoxic injury. Here, we review the specific cellular pathways of acidotoxicity and demonstrate that SD plays a central role in activating the molecular machinery leading to acid-induced damage. We propose that SD is a key contributor to acidotoxic injury in cerebral ischemia.
Collapse
Affiliation(s)
- Eszter Farkas
- Hungarian Centre of Excellence for Molecular Medicine – University of Szeged, Cerebral Blood Flow and Metabolism Research Group, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Amaral-Silva L, Santin J. Neural Processing without O 2 and Glucose Delivery: Lessons from the Pond to the Clinic. Physiology (Bethesda) 2024; 39:0. [PMID: 38624246 PMCID: PMC11573265 DOI: 10.1152/physiol.00030.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024] Open
Abstract
Neuronal activity requires a large amount of ATP, leading to a rapid collapse of brain function when aerobic respiration fails. Here, we summarize how rhythmic motor circuits in the brain stem of adult frogs, which normally have high metabolic demands, transform to produce proper output during severe hypoxia associated with emergence from hibernation. We suggest that general principles underlying plasticity in brain bioenergetics may be uncovered by studying nonmammalian models that face extreme environments, yielding new insights to combat neurological disorders involving dysfunctional energy metabolism.
Collapse
Affiliation(s)
- Lara Amaral-Silva
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States
- Division of Biology, University of Missouri, Columbia, Missouri, United States
| | - Joseph Santin
- Division of Biology, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
3
|
Cepparulo P, Brancaccio P, Sirabella R, Anzilotti S, Guida N, Laudati G, Valsecchi V, Vinciguerra A, Viscardi V, D'Esposito L, Formisano L, Annunziato L, Pignataro G, Cuomo O. miR135a administration ameliorates brain ischemic damage by preventing TRPM7 activation during brain ischemia. CNS Neurosci Ther 2024; 30:e14448. [PMID: 37718696 PMCID: PMC10916440 DOI: 10.1111/cns.14448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/13/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND miRNA-based strategies have recently emerged as a promising therapeutic approach in several neurodegenerative diseases. Unregulated cation influx is implicated in several cellular mechanisms underlying neural cell death during ischemia. The brain constitutively active isoform of transient receptor potential melastatin 7 (TRPM7) represents a glutamate excitotoxicity-independent pathway that significantly contributes to the pathological Ca2+ overload during ischemia. AIMS In the light of these premises, inhibition of TRPM7 may be a reasonable strategy to reduce ischemic injury. Since TRPM7 is a putative target of miRNA135a, the aim of the present paper was to evaluate the role played by miRNA135a in cerebral ischemia. Therefore, the specific objectives of the present paper were: (1) to evaluate miR135a expression in temporoparietal cortex of ischemic rats; (2) to investigate the effect of the intracerebroventricular (icv) infusion of miR135a on ischemic damage and neurological functions; and (3) to verify whether miR135a effects may be mediated by an alteration of TRPM7 expression. METHODS miR135a expression was evaluated by RT- PCR and FISH assay in temporoparietal cortex of ischemic rats. Ischemic volume and neurological functions were determined in rats subjected to transient middle cerebral artery occlusion (tMCAo) after miR135a intracerebroventricular perfusion. Target analysis was performed by Western blot. RESULTS Our results demonstrated that, in brain cortex, 72 h after ischemia, miR135a expression increased, while TRPM7 expression was parallelly downregulated. Interestingly, miR135a icv perfusion strongly ameliorated the ischemic damage and improved neurological functions, and downregulated TRPM7 protein levels. CONCLUSIONS The early prevention of TRPM7 activation is protective during brain ischemia.
Collapse
Affiliation(s)
- P. Cepparulo
- Division of Pharmacology, Department of Neuroscience, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - P. Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - R. Sirabella
- Division of Pharmacology, Department of Neuroscience, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - S. Anzilotti
- Department of Science and TechnologyUniversity of SannioBeneventoItaly
| | - N. Guida
- Division of Pharmacology, Department of Neuroscience, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - G. Laudati
- Division of Pharmacology, Department of Neuroscience, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - V. Valsecchi
- Division of Pharmacology, Department of Neuroscience, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - A. Vinciguerra
- Department of Biomedical Sciences and Public HealthUniversity “Politecnica delle Marche”AnconaItaly
| | - V. Viscardi
- Division of Pharmacology, Department of Neuroscience, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - L. D'Esposito
- Veterinary Service CenterUniversity of Naples Federico IINaplesItaly
| | - L. Formisano
- Division of Pharmacology, Department of Neuroscience, School of MedicineUniversity of Naples Federico IINaplesItaly
| | | | - G. Pignataro
- Division of Pharmacology, Department of Neuroscience, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - O. Cuomo
- Division of Pharmacology, Department of Neuroscience, School of MedicineUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
4
|
Cherninskyi A, Storozhuk M, Maximyuk O, Kulyk V, Krishtal O. Triggering of Major Brain Disorders by Protons and ATP: The Role of ASICs and P2X Receptors. Neurosci Bull 2023; 39:845-862. [PMID: 36445556 PMCID: PMC9707125 DOI: 10.1007/s12264-022-00986-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022] Open
Abstract
Adenosine triphosphate (ATP) is well-known as a universal source of energy in living cells. Less known is that this molecule has a variety of important signaling functions: it activates a variety of specific metabotropic (P2Y) and ionotropic (P2X) receptors in neuronal and non-neuronal cell membranes. So, a wide variety of signaling functions well fits the ubiquitous presence of ATP in the tissues. Even more ubiquitous are protons. Apart from the unspecific interaction of protons with any protein, many physiological processes are affected by protons acting on specific ionotropic receptors-acid-sensing ion channels (ASICs). Both protons (acidification) and ATP are locally elevated in various pathological states. Using these fundamentally important molecules as agonists, ASICs and P2X receptors signal a variety of major brain pathologies. Here we briefly outline the physiological roles of ASICs and P2X receptors, focusing on the brain pathologies involving these receptors.
Collapse
Affiliation(s)
- Andrii Cherninskyi
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine.
| | - Maksim Storozhuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleksandr Maximyuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Vyacheslav Kulyk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleg Krishtal
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| |
Collapse
|
5
|
Animal toxins: As an alternative therapeutic target following ischemic stroke condition. Life Sci 2023; 317:121365. [PMID: 36640901 DOI: 10.1016/j.lfs.2022.121365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/29/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Globally, Ischemic stroke (IS) has become the second leading cause of mortality and chronic disability. The process of IS has triggered by the blockages of blood vessels to form clots in the brain which initiates multiple interactions with the key signaling pathways, counting excitotoxicity, acidosis, ionic imbalance, inflammation, oxidative stress, and neuronal dysfunction of cells, and ultimately cells going under apoptosis. Currently, FDA has approved only tissue plasminogen activator therapy, which is effective against IS with few limitations. However, the mechanism of excitotoxicity and acidosis has spurred the investigation of a potential candidate for IS therapy. Acid-sensing ion channels (ASICs) and Voltage-gated Ca2+ channels (VDCCs) get activated and disturb the brain's normal physiology. Animal toxins are novel inhibitors of ASICs and VDCCs channels and have provided neuroprotective insights into the pathophysiology of IS. This review will discuss the potential directions of translational ASICs and VDCCs inhibitors research for clinical therapies.
Collapse
|
6
|
Talukdar A, Maddhesiya P, Namsa ND, Doley R. Snake venom toxins targeting the central nervous system. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2084418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Amit Talukdar
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Priya Maddhesiya
- Cell Biology and Anatomy, Ludwig Maximilian University (LMU), Munich, Germany
| | - Nima Dondu Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| |
Collapse
|
7
|
Zhang MW, Wang XH, Shi J, Yu JG. Sinomenine in Cardio-Cerebrovascular Diseases: Potential Therapeutic Effects and Pharmacological Evidences. Front Cardiovasc Med 2021; 8:749113. [PMID: 34660748 PMCID: PMC8517137 DOI: 10.3389/fcvm.2021.749113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Cardio-cerebrovascular diseases, as a major cause of health loss all over the world, contribute to an important part of the global burden of disease. A large number of traditional Chinese medicines have been proved effective both clinically and in pharmacological investigations, with the acceleration of the modernization of Chinese medicine. Sinomenine is the main active constituent of sinomenium acutum and has been generally used in therapies of rheumatoid arthritis and neuralgia. Varieties of pharmacological effects of sinomenine in cardio-cerebrovascular system have been discovered recently, suggesting an inspiring application prospect of sinomenine in cardio-cerebrovascular diseases. Sinomenine may retard the progression of atherosclerosis by attenuating endothelial inflammation, regulating immune cells function, and inhibiting the proliferation of vascular smooth muscle cells. Sinomenine also alleviates chronic cardiac allograft rejection relying on its anti-inflammatory and anti-hyperplastic activities and suppresses autoimmune myocarditis by immunosuppression. Prevention of myocardial or cerebral ischemia-reperfusion injury by sinomenine is associated with its modulation of cardiomyocyte death, inflammation, calcium overload, and oxidative stress. The regulatory effects on vasodilation and electrophysiology make sinomenine a promising drug to treat hypertension and arrhythmia. Here, in this review, we will illustrate the pharmacological activities of sinomenine in cardio-cerebrovascular system and elaborate the underlying mechanisms, as well as give an overview of the potential therapeutic roles of sinomenine in cardio-cerebrovascular diseases, trying to provide clues and bases for its clinical usage.
Collapse
Affiliation(s)
- Meng-Wan Zhang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Hui Wang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Shi
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Guang Yu
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Praveen Kumar P, D. M, Siva Sankar Reddy L, Dastagiri Reddy Y, Somasekhar G, Sirisha N, Nagaraju K, Shouib M, Rizwaan A. A new cerebral ischemic injury model in rats, preventive effect of gallic acid and in silico approaches. Saudi J Biol Sci 2021; 28:5204-5213. [PMID: 34466098 PMCID: PMC8381014 DOI: 10.1016/j.sjbs.2021.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Current study was designed multiple occlusions and reperfusion of bilateral carotid arteries induced cerebral injury model and evaluated the protective effect of gallic acid on it. In silico study was involved to study gallic acid binding affinity on cerebrotonic proteins compared with standard drugs using Autodoc vina tool. Cerebral ischemia was induced by occlusion of bilateral common carotid arteries for 10 mins followed by 10 reperfusions (1 cycle), cycle was continued to 3 cycles (MO/RCA), then pathological changes were observed by estimation of brain antioxidants as superoxide dismutase, glutathione, catalase, oxidants like malonaldehyde, cerebral infarction area, histopathology, and study gallic acid treatment against cerebral injury. Gallic acid exhibited a strong binding affinity on targeted cerebrotoxic proteins. MO/RCA rat brain antioxidant levels were significantly decreased and increased MDA levels (p < 0.0001), Infarction size compared to sham rats. Gallic acid treatment rat brain MDA levels significantly decreased (p < 0.4476) and increased SOD (p < 0.0001), CAT (p < 0.0001), GSH (p < 0.0001), cerebral infarction area when compared to MO/RCA group. Developed model showed significant cerebral ischemic injury in rats, injury was ameliorated by Gallic acid treatment and in silico approaches also inhibit the cerebrotoxic protein function by targeting on active sites.
Collapse
Affiliation(s)
- P. Praveen Kumar
- Santhiram College of Pharmacy, Nandyal, Kurnool, Andhra Pradesh, India
| | - Madhuri D.
- Creative Educational Societys College of Pharmacy, Kurnool, Andhra Pradesh, India
| | | | | | - G. Somasekhar
- SKU College of Pharmaceutical Sciences, Anantapur, Andhra Pradesh, India
| | - N.V.L. Sirisha
- Nitte College of Pharmaceutical Sciences, Banglaore, Karnataka, India
| | - K. Nagaraju
- C.R Reddy College of Pharmacy, Eluru, West Godavari, Andhra Pradesh, India
| | - M.S. Shouib
- Creative Educational Societys College of Pharmacy, Kurnool, Andhra Pradesh, India
| | - A.S. Rizwaan
- Creative Educational Societys College of Pharmacy, Kurnool, Andhra Pradesh, India
| |
Collapse
|
9
|
Cheng S, Mao X, Lin X, Wehn A, Hu S, Mamrak U, Khalin I, Wostrack M, Ringel F, Plesnila N, Terpolilli NA. Acid-Ion Sensing Channel 1a Deletion Reduces Chronic Brain Damage and Neurological Deficits after Experimental Traumatic Brain Injury. J Neurotrauma 2021; 38:1572-1584. [PMID: 33779289 DOI: 10.1089/neu.2020.7568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) causes long-lasting neurodegeneration and cognitive impairments; however, the underlying mechanisms of these processes are not fully understood. Acid-sensing ion channels 1a (ASIC1a) are voltage-gated Na+- and Ca2+-channels shown to be involved in neuronal cell death; however, their role for chronic post-traumatic brain damage is largely unknown. To address this issue, we used ASIC1a-deficient mice and investigated their outcome up to 6 months after TBI. ASIC1a-deficient mice and their wild-type (WT) littermates were subjected to controlled cortical impact (CCI) or sham surgery. Brain water content was analyzed 24 h and behavioral outcome up to 6 months after CCI. Lesion volume was assessed longitudinally by magnetic resonance imaging and 6 months after injury by histology. Brain water content was significantly reduced in ASIC1a-/- animals compared to WT controls. Over time, ASIC1a-/- mice showed significantly reduced lesion volume and reduced hippocampal damage. This translated into improved cognitive function and reduced depression-like behavior. Microglial activation was significantly reduced in ASIC1a-/- mice. In conclusion, ASIC1a deficiency resulted in reduced edema formation acutely after TBI and less brain damage, functional impairments, and neuroinflammation up to 6 months after injury. Hence, ASIC1a seems to be involved in chronic neurodegeneration after TBI.
Collapse
Affiliation(s)
- Shiqi Cheng
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xiang Mao
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xiangjiang Lin
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Antonia Wehn
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Senbin Hu
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Uta Mamrak
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Igor Khalin
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Maria Wostrack
- Department of Neurosurgery, Technical University Munich, Munich, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicole A Terpolilli
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurosurgery, Munich University Hospital, Munich, Germany
| |
Collapse
|
10
|
Failed Neuroprotection of Combined Inhibition of L-Type and ASIC1a Calcium Channels with Nimodipine and Amiloride. Int J Mol Sci 2020; 21:ijms21238921. [PMID: 33255506 PMCID: PMC7727815 DOI: 10.3390/ijms21238921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 01/15/2023] Open
Abstract
Effective pharmacological neuroprotection is one of the most desired aims in modern medicine. We postulated that a combination of two clinically used drugs-nimodipine (L-Type voltage-gated calcium channel blocker) and amiloride (acid-sensing ion channel inhibitor)-might act synergistically in an experimental model of ischaemia, targeting the intracellular rise in calcium as a pathway in neuronal cell death. We used organotypic hippocampal slices of mice pups and a well-established regimen of oxygen-glucose deprivation (OGD) to assess a possible neuroprotective effect. Neither nimodipine (at 10 or 20 µM) alone or in combination with amiloride (at 100 µM) showed any amelioration. Dissolved at 2.0 Vol.% dimethyl-sulfoxide (DMSO), the combination of both components even increased cell damage (p = 0.0001), an effect not observed with amiloride alone. We conclude that neither amiloride nor nimodipine do offer neuroprotection in an in vitro ischaemia model. On a technical note, the use of DMSO should be carefully evaluated in neuroprotective experiments, since it possibly alters cell damage.
Collapse
|
11
|
Zhang Y, Zhang P, Yu P, Shang X, Lu Y, Li Y. Transcriptome analysis reveals the mechanism of fluorine exposure on memory loss of common carp. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114927. [PMID: 32544660 DOI: 10.1016/j.envpol.2020.114927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/17/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Fluorine, an environmental toxicant in our daily life, has been reported to have adverse effects on nervous system. Previous studies demonstrated that fluorine exposure could induce brain injury in fish and human. However, the possible mechanism remains unclear. In the present study, we aimed to reveal the mechanism of fluorine exposure on brain injury of common carp through transcriptome analysis. In the fluorine-exposed carp, 444 brain genes were up-regulated, whereas 742 genes were down-regulated. DNA-templated (regulation of transcription) and multicellular organism development in the GO function annotation accounted for the most biological processes. Nucleus and membrane accounted for the most cellular components and DNA binding and metal ion binding accounted for the most molecular function. Meanwhile, 196 metabolic pathways were identified in Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway significant enrichment analysis, including long-term depression, Cushing syndrome, nuclear receptors, vascular smooth muscle contraction, Ion channels, and other pathways. Furthermore, we found that the up-regulated and down-regulated trends were similar between the quantitative real-time-PCR and RNA-Seq results, which indicate the transcriptome sequencing data is reliable. In conclusion, our data may provide insights into the mechanisms underlying brain injury induced by fluorine exposure.
Collapse
Affiliation(s)
- Yue Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Peijun Zhang
- Health Monitoring and Inspection Center of Jilin Province, Changchun, 130062, China
| | - Peng Yu
- College of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xinchi Shang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Yuting Lu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Yuehong Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
12
|
Ahad MA, Kumaran KR, Ning T, Mansor NI, Effendy MA, Damodaran T, Lingam K, Wahab HA, Nordin N, Liao P, Müller CP, Hassan Z. Insights into the neuropathology of cerebral ischemia and its mechanisms. Rev Neurosci 2020; 31:521-538. [DOI: 10.1515/revneuro-2019-0099] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/09/2020] [Indexed: 11/15/2022]
Abstract
AbstractCerebral ischemia is a result of insufficient blood flow to the brain. It leads to limited supply of oxygen and other nutrients to meet metabolic demands. These phenomena lead to brain damage. There are two types of cerebral ischemia: focal and global ischemia. This condition has significant impact on patient’s health and health care system requirements. Animal models such as transient occlusion of the middle cerebral artery and permanent occlusion of extracranial vessels have been established to mimic the conditions of the respective type of cerebral ischemia and to further understand pathophysiological mechanisms of these ischemic conditions. It is important to understand the pathophysiology of cerebral ischemia in order to identify therapeutic strategies for prevention and treatment. Here, we review the neuropathologies that are caused by cerebral ischemia and discuss the mechanisms that occur in cerebral ischemia such as reduction of cerebral blood flow, hippocampal damage, white matter lesions, neuronal cell death, cholinergic dysfunction, excitotoxicity, calcium overload, cytotoxic oedema, a decline in adenosine triphosphate (ATP), malfunctioning of Na+/K+-ATPase, and the blood-brain barrier breakdown. Altogether, the information provided can be used to guide therapeutic strategies for cerebral ischemia.
Collapse
Affiliation(s)
- Mohamad Anuar Ahad
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kesevan Rajah Kumaran
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Tiang Ning
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Nur Izzati Mansor
- Medical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | - Thenmoly Damodaran
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kamilla Lingam
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Habibah Abdul Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
- USM-RIKEN Centre for Aging Science (URICAS), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Norshariza Nordin
- Medical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ping Liao
- Calcium Signaling Laboratory, National Neuroscience Institute, Singapore 308433, Singapore
| | - Christian P. Müller
- Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich Alexander University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
- USM-RIKEN Centre for Aging Science (URICAS), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| |
Collapse
|
13
|
Liu X, Liu C, Ye J, Zhang S, Wang K, Su R. Distribution of Acid Sensing Ion Channels in Axonal Growth Cones and Presynaptic Membrane of Cultured Hippocampal Neurons. Front Cell Neurosci 2020; 14:205. [PMID: 32733209 PMCID: PMC7358772 DOI: 10.3389/fncel.2020.00205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Although acid-sensing ion channels (ASICs) are widely expressed in the central nervous system, their distribution and roles in axonal growth cones remain unclear. In this study, we examined ASIC localization and function in the axonal growth cones of cultured immature hippocampal neurons. Our immunocytochemical data showed that native and overexpressed ASIC1a and ASIC2a are both localized in growth cones of cultured young hippocampal neurons. Calcium imaging and electrophysiological assay results were utilized to validate their function. The calcium imaging test results indicated that the ASICs (primarily ASIC1a) present in growth cones mediate calcium influx despite the addition of voltage-gated Ca2+ channels antagonists and the depletion of intracellular calcium stores. The electrophysiological tests results suggested that a rapid decrease in extracellular pH at the growth cones of voltage-clamped neurons elicits inward currents that were blocked by bath application of the ASIC antagonist amiloride, showing that the ASICs expressed at growth cones are functional. The subsequent immuno-colocalization test results demonstrated that ASIC1a and ASIC2a are both colocalized with Neurofilament-H and Bassoon in mature hippocampal neurons. This finding demonstrated that after reaching maturity, ASIC1a and ASIC2a are both distributed in axons and the presynaptic membrane. Our data reveal the distribution of functional ASICs in growth cones of immature hippocampal neurons and the presence of ASICs in the axons and presynaptic membrane of mature hippocampal neurons, indicating a possible role for ASICs in axonal guidance, synapse formation and neurotransmitter release.
Collapse
Affiliation(s)
- Xiaoyan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Can Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiamin Ye
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Shuzhuo Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Kai Wang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
14
|
Yoder N, Gouaux E. The His-Gly motif of acid-sensing ion channels resides in a reentrant 'loop' implicated in gating and ion selectivity. eLife 2020; 9:e56527. [PMID: 32496192 PMCID: PMC7308080 DOI: 10.7554/elife.56527] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated members of the epithelial sodium channel/degenerin (ENaC/DEG) superfamily of ion channels and are expressed throughout the central and peripheral nervous systems. The homotrimeric splice variant ASIC1a has been implicated in nociception, fear memory, mood disorders and ischemia. Here, we extract full-length chicken ASIC1 (cASIC1) from cell membranes using styrene maleic acid (SMA) copolymer, elucidating structures of ASIC1 channels in both high pH resting and low pH desensitized conformations by single-particle cryo-electron microscopy (cryo-EM). The structures of resting and desensitized channels reveal a reentrant loop at the amino terminus of ASIC1 that includes the highly conserved 'His-Gly' (HG) motif. The reentrant loop lines the lower ion permeation pathway and buttresses the 'Gly-Ala-Ser' (GAS) constriction, thus providing a structural explanation for the role of the His-Gly dipeptide in the structure and function of ASICs.
Collapse
Affiliation(s)
- Nate Yoder
- Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
- Howard Hughes Medical Institute, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
15
|
Li J, Kong L, Huang H, Luan S, Jin R, Wu F. ASIC1a inhibits cell pyroptosis induced by acid-induced activation of rat hepatic stellate cells. FEBS Open Bio 2020; 10:1044-1055. [PMID: 32237041 PMCID: PMC7262943 DOI: 10.1002/2211-5463.12850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/11/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
The activation of hepatic stellate cells (HSCs) is associated with liver fibrosis, the pathological feature of most forms of chronic hepatic damage, and is accompanied by abnormal deposition of the extracellular matrix (ECM). During the pathological process, acid-sensing ion channel 1a (ASIC1a), which is responsible for Ca2+ transportation, is involved in the activation of HSCs. It has previously been identified that ASIC1a is related to pyroptosis in articular chondrocytes. However, it remains unclear whether ASIC1a restrains pyroptosis during liver fibrosis. Here, we determined that the levels of pyroptosis-associated speck-like protein, gasdermin D, caspase-1, nucleotide-binding oligomerization domain (NOD)-like receptor 3, and apoptosis-associated speck-like protein (ASC) decreased, while the level of α-smooth muscle actin and collagen-I increased upon introduction of ASIC1a into an acid-induced model. Inhibition or silencing of ASIC1a and the use of Ca2+ -free medium were able to promote the pyroptosis of activated HSCs, which reduced their deposition. In summary, our study indicates that ASIC1a inhibits pyroptosis of HSCs and that inhibition of ASIC1a may be able to promote pyroptosis to relieve liver fibrosis.
Collapse
Affiliation(s)
- Jun Li
- School of PharmacyAnhui Medical UniversityHefeiChina
| | - Lingjin Kong
- School of PharmacyAnhui Medical UniversityHefeiChina
| | - Huiping Huang
- School of PharmacyAnhui Medical UniversityHefeiChina
| | - Shaohua Luan
- School of PharmacyAnhui Medical UniversityHefeiChina
| | - Rui Jin
- School of PharmacyAnhui Medical UniversityHefeiChina
| | - Fanrong Wu
- School of PharmacyAnhui Medical UniversityHefeiChina
| |
Collapse
|
16
|
Uchitel OD, González Inchauspe C, Weissmann C. Synaptic signals mediated by protons and acid-sensing ion channels. Synapse 2019; 73:e22120. [PMID: 31180161 DOI: 10.1002/syn.22120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 01/04/2023]
Abstract
Extracellular pH changes may constitute significant signals for neuronal communication. During synaptic transmission, changes in pH in the synaptic cleft take place. Its role in the regulation of presynaptic Ca2+ currents through multivesicular release in ribbon-type synapses is a proven phenomenon. In recent years, protons have been recognized as neurotransmitters that participate in neuronal communication in synapses of several regions of the CNS such as amygdala, nucleus accumbens, and brainstem. Protons are released by nerve stimulation and activate postsynaptic acid-sensing ion channels (ASICs). Several types of ASIC channels are expressed in the peripheral and central nervous system. The influx of Ca2+ through some subtypes of ASICs, as a result of synaptic transmission, agrees with the participation of ASICs in synaptic plasticity. Pharmacological and genetical inhibition of ASIC1a results in alterations in learning, memory, and phenomena like fear and cocaine-seeking behavior. The recognition of endogenous molecules, such as arachidonic acid, cytokines, histamine, spermine, lactate, and neuropeptides, capable of inhibiting or potentiating ASICs suggests the existence of mechanisms of synaptic modulation that have not yet been fully identified and that could be tuned by new emerging pharmacological compounds with potential therapeutic benefits.
Collapse
Affiliation(s)
- Osvaldo D Uchitel
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlota González Inchauspe
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carina Weissmann
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
17
|
Gao WF, Xu YY, Ge JF, Chen FH. Inhibition of acid‑sensing ion channel 1a attenuates acid‑induced activation of autophagy via a calcium signaling pathway in articular chondrocytes. Int J Mol Med 2019; 43:1778-1788. [PMID: 30720055 PMCID: PMC6414154 DOI: 10.3892/ijmm.2019.4085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 01/30/2019] [Indexed: 12/16/2022] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a), member of the degenerin/epithelial sodium channel protein superfamily, serves a critical role in various physiological and pathological processes. The aim of the present study was to examine the role of ASIC1a in the autophagy of rat articular chondrocytes. Autophagy was induced by acidic stimulation in rat articular chondrocytes and the extent of autophagy was evaluated via the expression levels of microtubule-associated protein 1 light chain 3II, Beclin1 and uncoordinated-51 like kinase1. Suppression of ASIC1a was achieved using small interfering RNA technology and/or inhibitor psalmotoxin-1. The expression levels of autophagy markers were measured by western blot analysis and reverse transcription-quantitative polymerase chain reaction methods. Intracellular calcium ([Ca2+]i) was analyzed using a Ca2+-imaging method. Additionally, protein expression levels of the Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ)/5′-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway were measured by western blot analysis. The results showed that autophagy was increased in a pH-and time-dependent manner with exposure to an acidic environment. In addition, silencing ASIC1a significantly decreased the expression levels of autophagy makers, accompanied by abrogation of the acid-induced [Ca2+]i increase. Furthermore, silencing of ASIC1a downregulated the levels of CaMKKβ/β-actin and phosphorylated (p-) AMPK/AMPK, and upregulated the levels of p-mTOR/mTOR. These results indicated that ASIC1a is a potent regulator of autophagy in chondrocytes, which may be associated with decreased Ca2+ influx and the CaMKKβ/AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Wen-Fan Gao
- Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui 230000, P.R. China
| | - Ya-Yun Xu
- Department of Pharmacy, Anhui Mental Health Center, Hefei, Anhui 230000, P.R. China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Fei-Hu Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
18
|
Dibas A, Millar C, Al-Farra A, Yorio T. Neuroprotective Effects of Psalmotoxin-1, an Acid-Sensing Ion Channel (ASIC) Inhibitor, in Ischemia Reperfusion in Mouse Eyes. Curr Eye Res 2018; 43:921-933. [PMID: 29595330 DOI: 10.1080/02713683.2018.1454478] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE The purpose of the current study is to assess changes in the expression of Acid-Sensing Ion Channel (ASIC)1a and ASIC2 in retinal ganglion cells (RGCs) after retinal ischemia and reperfusion (I/R) injury and to test if inhibition of ASIC1a provides RGC neuroprotection. METHODS Transient ischemia was induced in one eye of C57BL/6 mice by raising intraocular pressure to 120 mmHg for 60 min followed by retinal reperfusion by restoring normal pressure. RGC function was measured by Pattern electroretinography (PERG). In addition, retinal ASIC1a and ASIC2 were observed by immunohistochemistry and western blot. Changes in calpain, fodrin, heat shock protein 70 (HSP70), Brn3a, super oxide dismutase-1 (SOD1), catalase, and glutathione perioxidase-4 (GPX4) protein levels were assessed by western blot. RGC numbers were measured by immunohistochemistry on whole retinal flat mounts using anti-RNA binding protein with multiple splicing (RBPMS) antibodies. Intravitreal injection of psalmotoxin-1, a selective ASIC1a blocker, was used to assess the neuroprotective effect of ASIC1a inhibition. RESULTS Levels of ASIC1a and ASIC2 after I/R increased in RGCs. Upregulation of ASIC1a but not ASIC2 was attenuated by intravitreal injection of psalmotoxin-1. I/R induced activation of calpain and degradation of fodrin, HSP70, and reduction in Brn3a. In contrast, while psalmotoxin-1 attenuated calpain activation and increased Brn3a levels, it failed to block HSP70 degradation. Unlike SOD1 protein which was reduced, catalase protein levels increased after I/R. Psalmotoxin-1, although not affecting SOD1 and GPX4, increased catalase levels significantly. Psalmotoxin-1 also increased RBPMS-labeled RGCs following I/R as judged by immunohistochemistry of retinal flat mounts. Finally, psalmotoxin-1 enhanced the amplitude of PERG following I/R, suggesting partial rescue of RGC function. CONCLUSION Psalmotoxin-1 appears to exert a neuroprotective effect under ischemic insults and targeting inhibition of ASICs may represent a new therapeutic approach in ischemic retinal diseases.
Collapse
Affiliation(s)
- Adnan Dibas
- a North Texas Eye Research Institute, Dept. of Pharmacology & Neuroscience , University of North Texas Health Science Center at Fort Worth, Fort Worth , TX , USA
| | - Cameron Millar
- a North Texas Eye Research Institute, Dept. of Pharmacology & Neuroscience , University of North Texas Health Science Center at Fort Worth, Fort Worth , TX , USA
| | | | - Thomas Yorio
- a North Texas Eye Research Institute, Dept. of Pharmacology & Neuroscience , University of North Texas Health Science Center at Fort Worth, Fort Worth , TX , USA
| |
Collapse
|
19
|
Liu M, Inoue K, Leng T, Zhou A, Guo S, Xiong ZG. ASIC1 promotes differentiation of neuroblastoma by negatively regulating Notch signaling pathway. Oncotarget 2018; 8:8283-8293. [PMID: 28030818 PMCID: PMC5352400 DOI: 10.18632/oncotarget.14164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/23/2016] [Indexed: 12/25/2022] Open
Abstract
In neurons, up-regulation of Notch activity either inhibits neurite extension or causes retraction of neurites. Conversely, inhibition of Notch1 facilitates neurite extension. Acid-sensing ion channels (ASICs) are a family of proton-gated cation channels, which play critical roles in synaptic plasticity, learning and memory and spine morphogenesis. Our pilot proteomics data from ASIC1a knock out mice implicated that ASIC1a may play a role in regulating Notch signaling, therefore, we explored whether or not ASIC1a regulates neurite growth during neuronal development through Notch signaling. In this study, we determined the effects of ASIC1a on neurite growth in a mouse neuroblastoma cell line, NS20Y cells, by modulating ASIC1a expression. We also determined the relationship between ASIC1a and Notch signaling on neuronal differentiation. Our results showed that down-regulation of ASIC1a in NS20Y cells inhibits CPT-cAMP induced neurite growth, while over expression of ASIC1a promotes its growth. In addition, down-regulation of ASIC1a increased the expression of Notch1 and its target gene Survivin while inhibitor of Notch significantly prevented the neurite extension induced by ASIC1a in NS20Y cells. These data indicate that Notch1 signaling may be required for ASIC1a-mediated neurite growth and neuronal differentiation.
Collapse
Affiliation(s)
- Mingli Liu
- Department of Microbiology, Biochemistry & Immunology, Atlanta, GA 30310, USA
| | - Koichi Inoue
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Tiandong Leng
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - An Zhou
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shanchun Guo
- Department of Chemistry, RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Zhi-Gang Xiong
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
20
|
More sensitivity of cortical GABAergic neurons than glutamatergic neurons in response to acidosis. Neuroreport 2018; 27:610-6. [PMID: 27116702 DOI: 10.1097/wnr.0000000000000585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Acidosis impairs brain functions. Neuron-specific mechanisms underlying acidosis-induced brain dysfunction remain elusive. We studied the sensitivity of cortical GABAergic neurons and glutamatergic neurons to acidosis by whole-cell recording in brain slices. The acidification to the neurons was induced by perfusing artificial cerebral spinal fluid with lower pH. This acidification impairs excitability and synaptic transmission in the glutamatergic and GABAergic neurons. Acidosis impairs spiking capacity in the GABAergic neurons more than in the glutamatergic neurons. Acidosis also strengthens glutamatergic synaptic transmission and attenuates GABAergic synaptic transmission on the GABAergic neurons more than the glutamatergic neurons, which results in the functional impairment of these GABAergic neurons. This acidosis-induced dysfunction predominantly in the cortical GABAergic neurons drives the homeostasis of neuronal networks toward overexcitation and exacerbates neuronal impairment.
Collapse
|
21
|
Stankowska DL, Mueller BH, Oku H, Ikeda T, Dibas A. Neuroprotective effects of inhibitors of Acid-Sensing ion channels (ASICs) in optic nerve crush model in rodents. Curr Eye Res 2017; 43:84-95. [PMID: 29111855 DOI: 10.1080/02713683.2017.1383442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE The purpose of the current study was to assess the potential involvement of acid-sensing ion channel 1 (ASIC1) in retinal ganglion cell (RGC) death and investigate the neuroprotective effects of inhibitors of ASICs in promoting RGC survival following optic nerve crush (ONC). RESULTS ASIC1 protein was significantly increased in optic nerve extracts at day 7 following ONC in rats. Activated calpain-1 increased at 2 and 7 days following ONC as evidenced by increased degradation of α-fodrin, known substrate of calpain. Glial fibrillary acidic protein levels increased significantly at 2 and 7 days post-injury. By contrast, glutamine synthetase increased at 2 days while decreased at 7 days. The inhibition of ASICs with amiloride and psalmotoxin-1 significantly increased RGC survival in rats following ONC (p < 0.05, one-way ANOVA). The mean number of surviving RGCs in rats (n = 6) treated with amiloride (100 µM) following ONC was 1477 ± 98 cells/mm2 compared with ONC (1126 ± 101 cells/mm2), where psalmotoxin-1 (1 μM) treated rats (n = 6) and subjected to ONC had 1441 ± 63 RGCs/mm2 compared with ONC (1065 ± 76 RGCs/mm2). Average number of RGCs in control rats (n = 12) was 2092 ± 46 cells/mm2. Blocking of ASICs also significantly increased RGC survival from ischemic-like insult from 473 ± 80 to 842 ± 49 RGCs/mm2 (for psalmotoxin-1) and from 628 ± 53 RGCs/mm2 to 890 ± 55 RGCs/mm2 (for amiloride) with p ≤ 0.05, using one-way ANOVA. Acidification (a known activator of ASIC1) increased intracellular Ca2+ ([Ca2+]i) in rat primary RGCs, which was statistically blocked by pretreatment with 100 nM psalmotoxin-1. CONCLUSIONS ASIC1 up-regulation-induced influx of extracellular calcium may be responsible for activation of calcium-sensitive calpain-1 in the retina. Calpain-1 induced degradation of α-fodrin and leads to morphological changes and eventually neuronal death. Therefore, blockers of ASIC1 can be used as potential therapeutics in the treatment of optic nerve degeneration. ABBREVIATIONS 4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF); acid-sensing ion channels (ASICs); analysis of variance (ANOVA); bicinchoninic acid (BCA); brain-derived neurotrophic factor (BDNF); central nervous system (CNS); ciliary neurotrophic factor (CNTF); dimethyl sulfoxide (DMSO); endoplasmic reticulum (ER); ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA); ethylenediaminetetraacetic acid (EDTA); Food and Drug Administration (FDA); glial fibrillary acidic protein (GFAP); glutamine synthetase (GS); intraocular pressure (IOP); kilodalton (kDa); Krebs-Ringer Buffer (KRB); optic nerve crush (ONC); phosphate-buffered saline (PBS); plasma membrane (PM); polymerase chain reaction (PCR); retinal ganglion cell (RGC); RNA Binding Protein With Multiple Splicing (RBPMS); room temperature (RT); standard error of the mean (SEM).
Collapse
Affiliation(s)
- Dorota L Stankowska
- a North Texas Eye Research Institute , University of North Texas Health Science Center , Fort Worth
| | - Brett H Mueller
- a North Texas Eye Research Institute , University of North Texas Health Science Center , Fort Worth
| | - Hidehiro Oku
- b Department of Ophthalmology , Osaka Medical College , Takatsuki Osaka , Japan
| | - Tsunehiko Ikeda
- b Department of Ophthalmology , Osaka Medical College , Takatsuki Osaka , Japan
| | - Adnan Dibas
- a North Texas Eye Research Institute , University of North Texas Health Science Center , Fort Worth
| |
Collapse
|
22
|
Li X, Ye JX, Xu MH, Zhao MD, Yuan FL. Evidence that activation of ASIC1a by acidosis increases osteoclast migration and adhesion by modulating integrin/Pyk2/Src signaling pathway. Osteoporos Int 2017; 28:2221-2231. [PMID: 28462470 DOI: 10.1007/s00198-017-4017-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/22/2017] [Indexed: 01/13/2023]
Abstract
UNLABELLED Activated acid-sensing ion channel 1a (ASIC1a) is involved in acid-induced osteoclastogenesis by regulating activation of the transcription factor NFATc1. These results indicated that ASIC1a activation by extracellular acid may cause osteoclast migration and adhesion through Ca2+-dependent integrin/Pyk2/Src signaling pathway. INTRODUCTION Osteoclast adhesion and migration are responsible for osteoporotic bone loss. Acidic conditions promote osteoclastogenesis. ASIC1a in osteoclasts is associated with acid-induced osteoclastogenesis through modulating transcription factor NFATc1 activation. However, the influence and the detailed mechanism of ASIC1a in regulating osteoclast adhesion and migration, in response to extracellular acid, are not well characterized. METHODS In this study, knockdown of ASIC1a was achieved in bone marrow macrophage cells using small interfering RNA (siRNA). The adhesion and migration abilities of osteoclast precursors and osteoclasts were determined by adhesion and migration assays, in vitro. Bone resorption was performed to measure osteoclast function. Cytoskeletal changes were assessed by F-actin ring formation. αvβ3 integrin expression in osteoclasts was measured by flow cytometry. Western blotting and co-immunoprecipitation were performed to measure alterations in integrin/Pyk2/Src signaling pathway. RESULTS Our results showed that blockade of ASIC1a using ASIC1a-siRNA inhibited acid-induced osteoclast precursor migration and adhesion, as well as osteoclast adhesion and bone resorption; we also demonstrated that inhibition of ASIC1a decreased the cell surface αvβ3 integrin and β3 protein expression. Moreover, blocking of ASIC1a inhibited acidosis-induced actin ring formation and reduced Pyk2 and Src phosphorylation in osteoclasts and also inhibited the acid-induced association of the αvβ3 integrin/Src/Pyk2. CONCLUSION Together, these results highlight a key functional role of ASIC1a/αvβ3 integrin/Pyk2/Src signaling pathway in migration and adhesion of osteoclasts.
Collapse
Affiliation(s)
- X Li
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu, 214041, China
| | - J-X Ye
- Department of Orthopaedics, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu, 214041, China
| | - M-H Xu
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu, 214041, China
| | - M-D Zhao
- Department of Orthopaedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| | - F-L Yuan
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu, 214041, China.
| |
Collapse
|
23
|
Randhawa PK, Jaggi AS. A Review on Potential Involvement of TRPV1 Channels in Ischemia–Reperfusion Injury. J Cardiovasc Pharmacol Ther 2017; 23:38-45. [DOI: 10.1177/1074248417707050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Besides functioning as thermosensors, transient receptor potential vanilloid 1 (TRPV1) channels play a pivotal role in ischemia–reperfusion injury. Transient receptor potential vanilloid 1 channel activation attenuates ischemia–reperfusion-induced injury in various organs including the heart, lungs, kidneys, and the brain. Transient receptor potential vanilloid 1 channels are expressed on the sensory neurons innervating the myocardium, ventricles of the heart, epicardial surface of the heart, endothelial cells, and the vascular smooth muscle cells. During ischemic conditions, activation of TRPV1 channels on the perivascular nerves stimulates the release of calcitonin gene-related peptide and substance P to produce cardioprotection. Furthermore, TRPV1 channel activation reduces the generation of free radicals and inflammatory cytokines, inhibits neutrophil infiltration, and enhances the production of anti-inflammatory cytokines to reduce ischemia–reperfusion-induced tissue injury. The present review describes the potential involvement of TRPV1 channels and the signaling cascade in attenuating ischemia–reperfusion injury in various organs.
Collapse
Affiliation(s)
- Puneet Kaur Randhawa
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, Punjab, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, Punjab, India
| |
Collapse
|
24
|
Multiple H + sensors mediate the extracellular acidification-induced [Ca 2+] i elevation in cultured rat ventricular cardiomyocytes. Sci Rep 2017; 7:44951. [PMID: 28332558 PMCID: PMC5362981 DOI: 10.1038/srep44951] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/16/2017] [Indexed: 02/04/2023] Open
Abstract
Acidosis has been known to cause “Ca2+ transients”, however, the mechanism is still uncertain. Here, we demonstrated that multiple H+ sensors, such as ASICs, TRPV1 and proton-sensing G protein coupled receptors (GPCRs) are involved in extracellular acidification-induced intracellular calcium ([Ca2+]i) elevation. By using calcium imaging measures, we observed that both ASIC and TRPV1 channels inhibitors suppressed the [Ca2+]i elevation induced by extracellular acidosis in cultured rat cardiac myocytes. Then, both channels mRNA and proteins were identified by RT-PCR, western blotting and immunofluorescence. ASIC-like and TRPV1-like currents were induced by extracellular acidification, suggesting that functional ASIC and TRPV1 channels jointly mediated extracellular calcium entry. Furthermore, either pre-exhaustion of sarcoplasmic reticulum (SR) Ca2+ with thapsigargin or IP3 receptor blocker 2-APB or PLC inhibitor U73122 significantly attenuated the elevation of [Ca2+]i, indicating that the intracellular Ca2+ stores and the PLC-IP3 signaling also contributed to the acidosis-induced elevation of [Ca2+]i. By using genetic and pharmacological approaches, we identified that ovarian cancer G protein-coupled receptor 1 (OGR1) might be another main component in acidosis-induced release of [Ca2+]i. These results suggest that multiple H+-sensitive receptors are involved in “Ca2+ transients” induced by acidosis in the heart.
Collapse
|
25
|
Acid-Sensing Ion Channels Activated by Evoked Released Protons Modulate Synaptic Transmission at the Mouse Calyx of Held Synapse. J Neurosci 2017; 37:2589-2599. [PMID: 28159907 DOI: 10.1523/jneurosci.2566-16.2017] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 12/30/2022] Open
Abstract
Acid-sensing ion channels (ASICs) regulate synaptic activities and play important roles in neurodegenerative diseases. We found that these channels can be activated in neurons of the medial nucleus of the trapezoid body (MNTB) of the auditory system in the CNS. A drop in extracellular pH induces transient inward ASIC currents (IASICs) in postsynaptic MNTB neurons from wild-type mice. The inhibition of IASICs by psalmotoxin-1 (PcTx1) and the absence of these currents in knock-out mice for ASIC-1a subunit (ASIC1a-/-) suggest that homomeric ASIC-1as are mediating these currents in MNTB neurons. Furthermore, we detect ASIC1a-dependent currents during synaptic transmission, suggesting an acidification of the synaptic cleft due to the corelease of neurotransmitter and H+ from synaptic vesicles. These currents are capable of eliciting action potentials in the absence of glutamatergic currents. A significant characteristic of these homomeric ASIC-1as is their permeability to Ca2+ Activation of ASIC-1a in MNTB neurons by exogenous H+ induces an increase in intracellular Ca2+ Furthermore, the activation of postsynaptic ASIC-1as during high-frequency stimulation (HFS) of the presynaptic nerve terminal leads to a PcTx1-sensitive increase in intracellular Ca2+ in MNTB neurons, which is independent of glutamate receptors and is absent in neurons from ASIC1a-/- mice. During HFS, the lack of functional ASICs in synaptic transmission results in an enhanced short-term depression of glutamatergic EPSCs. These results strongly support the hypothesis of protons as neurotransmitters and demonstrate that presynaptic released protons modulate synaptic transmission by activating ASIC-1as at the calyx of Held-MNTB synapse.SIGNIFICANCE STATEMENT The manuscript demonstrates that postsynaptic neurons of the medial nucleus of the trapezoid body at the mouse calyx of Held synapse express functional homomeric Acid-sensing ion channel-1a (ASIC-1as) that can be activated by protons (coreleased with neurotransmitter from acidified synaptic vesicles). These ASIC-1as contribute to the generation of postsynaptic currents and, more relevant, to calcium influx, which could be involved in the modulation of presynaptic transmitter release. Inhibition or deletion of ASIC-1a leads to enhanced short-term depression, demonstrating that they are concerned with short-term plasticity of the synapse. ASICs represent a widespread communication system with unique properties. We expect that our experiments will have an impact in the neurobiology field and will spread in areas related to neuronal plasticity.
Collapse
|
26
|
Koehn LM, Noor NM, Dong Q, Er SY, Rash LD, King GF, Dziegielewska KM, Saunders NR, Habgood MD. Selective inhibition of ASIC1a confers functional and morphological neuroprotection following traumatic spinal cord injury. F1000Res 2016; 5:1822. [PMID: 28105306 PMCID: PMC5200949 DOI: 10.12688/f1000research.9094.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2016] [Indexed: 12/31/2022] Open
Abstract
Tissue loss after spinal trauma is biphasic, with initial mechanical/haemorrhagic damage at the time of impact being followed by gradual secondary expansion into adjacent, previously unaffected tissue. Limiting the extent of this secondary expansion of tissue damage has the potential to preserve greater residual spinal cord function in patients. The acute tissue hypoxia resulting from spinal cord injury (SCI) activates acid-sensing ion channel 1a (ASIC1a). We surmised that antagonism of this channel should provide neuroprotection and functional preservation after SCI. We show that systemic administration of the spider-venom peptide PcTx1, a selective inhibitor of ASIC1a, improves locomotor function in adult Sprague Dawley rats after thoracic SCI. The degree of functional improvement correlated with the degree of tissue preservation in descending white matter tracts involved in hind limb locomotor function. Transcriptomic analysis suggests that PcTx1-induced preservation of spinal cord tissue does not result from a reduction in apoptosis, with no evidence of down-regulation of key genes involved in either the intrinsic or extrinsic apoptotic pathways. We also demonstrate that trauma-induced disruption of blood-spinal cord barrier function persists for at least 4 days post-injury for compounds up to 10 kDa in size, whereas barrier function is restored for larger molecules within a few hours. This temporary loss of barrier function provides a “
treatment window” through which systemically administered drugs have unrestricted access to spinal tissue in and around the sites of trauma. Taken together, our data provide evidence to support the use of ASIC1a inhibitors as a therapeutic treatment for SCI. This study also emphasizes the importance of objectively grading the functional severity of initial injuries (even when using standardized impacts) and we describe a simple scoring system based on hind limb function that could be adopted in future studies.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Natassya M Noor
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Qing Dong
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Sing-Yan Er
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Lachlan D Rash
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Glenn F King
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | | | - Norman R Saunders
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Mark D Habgood
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| |
Collapse
|
27
|
Koehn LM, Noor NM, Dong Q, Er SY, Rash LD, King GF, Dziegielewska KM, Saunders NR, Habgood MD. Selective inhibition of ASIC1a confers functional and morphological neuroprotection following traumatic spinal cord injury. F1000Res 2016; 5:1822. [PMID: 28105306 PMCID: PMC5200949 DOI: 10.12688/f1000research.9094.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2016] [Indexed: 11/10/2023] Open
Abstract
Tissue loss after spinal trauma is biphasic, with initial mechanical/haemorrhagic damage at the time of impact being followed by gradual secondary expansion into adjacent, previously unaffected tissue. Limiting the extent of this secondary expansion of tissue damage has the potential to preserve greater residual spinal cord function in patients. The acute tissue hypoxia resulting from spinal cord injury (SCI) activates acid-sensing ion channel 1a (ASIC1a). We surmised that antagonism of this channel should provide neuroprotection and functional preservation after SCI. We show that systemic administration of the spider-venom peptide PcTx1, a selective inhibitor of ASIC1a, improves locomotor function in adult Sprague Dawley rats after thoracic SCI. The degree of functional improvement correlated with the degree of tissue preservation in descending white matter tracts involved in hind limb locomotor function. Transcriptomic analysis suggests that PcTx1-induced preservation of spinal cord tissue does not result from a reduction in apoptosis, with no evidence of down-regulation of key genes involved in either the intrinsic or extrinsic apoptotic pathways. We also demonstrate that trauma-induced disruption of blood-spinal cord barrier function persists for at least 4 days post-injury for compounds up to 10 kDa in size, whereas barrier function is restored for larger molecules within a few hours. This temporary loss of barrier function provides a " treatment window" through which systemically administered drugs have unrestricted access to spinal tissue in and around the sites of trauma. Taken together, our data provide evidence to support the use of ASIC1a inhibitors as a therapeutic treatment for SCI. This study also emphasizes the importance of objectively grading the functional severity of initial injuries (even when using standardized impacts) and we describe a simple scoring system based on hind limb function that could be adopted in future studies.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Natassya M Noor
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Qing Dong
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Sing-Yan Er
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Lachlan D Rash
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Glenn F King
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | | | - Norman R Saunders
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Mark D Habgood
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| |
Collapse
|
28
|
Lan YL, Fang DY, Zhao J, Ma TH, Li S. A research update on the potential roles of aquaporin 4 in neuroinflammation. Acta Neurol Belg 2016; 116:127-34. [PMID: 26259614 DOI: 10.1007/s13760-015-0520-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 07/27/2015] [Indexed: 12/20/2022]
Abstract
The presence of aquaporins (AQPs) in the brain has led to intense research on the underlying roles of this family of proteins under both normal and pathological conditions. Aquaporin 4 (AQP4) is the major water-channel membrane protein expressed in the central nervous system (CNS), primarily in astrocytes. Emerging evidence suggests that AQP4 could play an important role in water and ion homeostasis in the brain, and it has been studied in various brain pathological conditions. However, far less is known about the potential for AQP4 to influence neuroinflammation and, furthermore, its potential role in neurodegenerative disorders such as Alzheimer's disease (AD). It has been suggested that the pathogenesis of many clinical diseases, such as neuromyelitis optica (NMO), multiple sclerosis (MS) and brain injuries, is related to the regulation of AQP4 expression. Investigating the effects of AQP4 on microglia and astrocytes could be important to understand its role in the pathogenesis of neuroinflammation. Although the exact roles of non-steroidal anti-inflammatory drugs (NSAIDs) in protection against the detrimental effects of neuroinflammation remain unclear, research into the possible neuroprotective effects of AQP4 against neuroinflammation regulation seems to be important for future investigations.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Deng-Yang Fang
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Jie Zhao
- Liaoning Engineering Technology Centre of Target-based Nature Products for Prevention and Treatment of Ageing-related Neurodegeneration, Dalian, 116044, China
| | - Tong-Hui Ma
- Department of Physiology, Dalian Medical University, Dalian, 116044, China.
- College of Basic Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Shao Li
- Department of Physiology, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
29
|
Therapeutic Effect Analysis of Sinomenine on Rat Cerebral Ischemia-Reperfusion Injury. J Stroke Cerebrovasc Dis 2016; 25:1263-1269. [PMID: 26971038 DOI: 10.1016/j.jstrokecerebrovasdis.2016.02.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE The objective of this study is to investigate the therapeutic effect of sinomenine (SIN) on rat cerebral ischemia-reperfusion (IR) injury and the molecular mechanism. METHODS One hundred thirty-five rats were equally randomized into sham-operated group, middle cerebral artery occlusion (MCAO) group, and SIN group, and reversible rat MCAO model was made according to the Longa method for the MCAO and SIN groups. Then, 15 rats from each group were decapitated at 6, 12, and 24 hours after reperfusion to obtain brain tissue samples. Rats in the SIN group were injected with sinomenine by tail vein (90 mg/kg) 1 hour before ischemia; rats in the MCAO and sham-operated groups were administrated with the same volume of saline. Neurological severity score (NSS), infarction volume, ischemic brain water content, and blood-brain barrier (BBB) permeability were determined at corresponding time points. Acid-sensing ion channel (ASIC) 1a mRNA level was determined by quantitative real-time polymerase chain reaction; ischemic brain contents of lactic acid (LD), lactic dehydrogenase (LDH), ATPase, and inflammatory factors were determined by spectrophotometric method. RESULTS At 12 hours after reperfusion and since then, NSS in the SIN group decreased obviously; infarction volume, brain water content, and BBB permeability in the SIN group were lower than those in the MCAO group (P < .05). IR injury resulted in the upregulation of the contents of ASIC1a mRNA, LD, LDH, and inflammatory factors and the downregulation of the contents of ATPase, while SIN could reverse the upregulation/downregulation effect induced by IR injury (P < .05). CONCLUSION Through its anti-inflammation effect, which alleviates acidosis, improves energy metabolism, and inhibits ASIC1a level, SIN protects ischemic rat brain against cerebral IR injury.
Collapse
|
30
|
Syntabulin regulates the trafficking of PICK1-containing vesicles in neurons. Sci Rep 2016; 6:20924. [PMID: 26868290 PMCID: PMC4751430 DOI: 10.1038/srep20924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/08/2016] [Indexed: 11/08/2022] Open
Abstract
PICK1 (protein interacting with C-kinase 1) is a peripheral membrane protein that interacts with diverse membrane proteins. PICK1 has been shown to regulate the clustering and membrane localization of synaptic receptors such as AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors, metabotropic glutamate receptor 7, and ASICs (acid-sensing ion channels). Moreover, recent evidence suggests that PICK1 can mediate the trafficking of various vesicles out from the Golgi complex in several cell systems, including neurons. However, how PICK1 affects vesicle-trafficking dynamics remains unexplored. Here, we show that PICK1 mediates vesicle trafficking by interacting with syntabulin, a kinesin-binding protein that mediates the trafficking of both synaptic vesicles and mitochondria in axons. Syntabulin recruits PICK1 onto microtubule structures and mediates the trafficking of PICK1-containing vesicles along microtubules. In neurons, syntabulin alters PICK1 expression by recruiting PICK1 into axons and regulates the trafficking dynamics of PICK1-containing vesicles. Furthermore, we show that syntabulin forms a complex with PICK1 and ASICs, regulates ASIC protein expression in neurons, and participates in ASIC-induced acidotoxicity.
Collapse
|
31
|
Ion Channels and Oxidative Stress as a Potential Link for the Diagnosis or Treatment of Liver Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3928714. [PMID: 26881024 PMCID: PMC4736365 DOI: 10.1155/2016/3928714] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023]
Abstract
Oxidative stress results from a disturbed balance between oxidation and antioxidant systems. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) may be either harmful or beneficial to the cells. Ion channels are transmembrane proteins that participate in a large variety of cellular functions and have been implicated in the development of a variety of diseases. A significant amount of the available drugs in the market targets ion channels. These proteins have sulfhydryl groups of cysteine and methionine residues in their structure that can be targeted by ROS and RNS altering channel function including gating and conducting properties, as well as the corresponding signaling pathways associated. The regulation of ion channels by ROS has been suggested to be associated with some pathological conditions including liver diseases. This review focuses on understanding the role and the potential association of ion channels and oxidative stress in liver diseases including fibrosis, alcoholic liver disease, and cancer. The potential association between ion channels and oxidative stress conditions could be used to develop new treatments for major liver diseases.
Collapse
|
32
|
Detrimental or beneficial: the role of TRPM2 in ischemia/reperfusion injury. Acta Pharmacol Sin 2016; 37:4-12. [PMID: 26725732 DOI: 10.1038/aps.2015.141] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/14/2015] [Indexed: 12/30/2022]
Abstract
Ischemia/reperfusion (I/R) injury is the main cause of tissue damage and dysfunction. I/R injury is characterized by Ca(2+) overload and production of reactive oxygen species (ROS), which play critical roles in the process of I/R injury to the brain, heart and kidney, but the underlying mechanisms are largely elusive. Recent evidence demonstrates that TRPM2, a Ca(2+)-permeable cationic channel and ROS sensor, is involved in I/R injury, but whether TRPM2 plays a protective or detrimental role in this process remains controversial. In this review, we discuss the recent progress in understanding the role of TRPM2 in reperfusion process after brain, heart and kidney ischemia and the potential of targeting TRPM2 for the development of therapeutic drugs to treat I/R injury.
Collapse
|
33
|
Wang Y, O’Bryant Z, Wang H, Huang Y. Regulating Factors in Acid-Sensing Ion Channel 1a Function. Neurochem Res 2015; 41:631-45. [DOI: 10.1007/s11064-015-1768-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 12/11/2022]
|
34
|
Huang L, Zhao S, Lu W, Guan S, Zhu Y, Wang JH. Acidosis-Induced Dysfunction of Cortical GABAergic Neurons through Astrocyte-Related Excitotoxicity. PLoS One 2015; 10:e0140324. [PMID: 26474076 PMCID: PMC4608795 DOI: 10.1371/journal.pone.0140324] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/24/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Acidosis impairs cognitions and behaviors presumably by acidification-induced changes in neuronal metabolism. Cortical GABAergic neurons are vulnerable to pathological factors and their injury leads to brain dysfunction. How acidosis induces GABAergic neuron injury remains elusive. As the glia cells and neurons interact each other, we intend to examine the role of the astrocytes in acidosis-induced GABAergic neuron injury. RESULTS Experiments were done at GABAergic cells and astrocytes in mouse cortical slices. To identify astrocytic involvement in acidosis-induced impairment, we induced the acidification in single GABAergic neuron by infusing proton intracellularly or in both neurons and astrocytes by using proton extracellularly. Compared the effects of intracellular acidification and extracellular acidification on GABAergic neurons, we found that their active intrinsic properties and synaptic outputs appeared more severely impaired in extracellular acidosis than intracellular acidosis. Meanwhile, extracellular acidosis deteriorated glutamate transporter currents on the astrocytes and upregulated excitatory synaptic transmission on the GABAergic neurons. Moreover, the antagonists of glutamate NMDA-/AMPA-receptors partially reverse extracellular acidosis-induced injury in the GABAergic neurons. CONCLUSION Our studies suggest that acidosis leads to the dysfunction of cortical GABAergic neurons by astrocyte-mediated excitotoxicity, in addition to their metabolic changes as indicated previously.
Collapse
Affiliation(s)
- Li Huang
- Department of Pathophysiology, Bengbu Medical College, Bengbu Anhui, China 233000
| | - Shidi Zhao
- Department of Pathophysiology, Bengbu Medical College, Bengbu Anhui, China 233000
| | - Wei Lu
- Collaborative Innovation Center for Neurodegenerative Disorders in Shandong, Qingdao University, Medical College, 38 Dengzhou, Shandong China 266021
| | - Sudong Guan
- Department of Pathophysiology, Bengbu Medical College, Bengbu Anhui, China 233000
| | - Yan Zhu
- Department of Pathophysiology, Bengbu Medical College, Bengbu Anhui, China 233000
| | - Jin-Hui Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing China 100101
| |
Collapse
|
35
|
α-Dendrotoxin inhibits the ASIC current in dorsal root ganglion neurons from rat. Neurosci Lett 2015; 606:42-7. [PMID: 26314509 DOI: 10.1016/j.neulet.2015.08.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/11/2015] [Accepted: 08/19/2015] [Indexed: 11/23/2022]
Abstract
Dendrotoxins are a group of peptide toxins purified from the venom of several mamba snakes. α-Dendrotoxin (α-DTx, from the Eastern green mamba Dendroaspis angusticeps) is a well-known blocker of voltage-gated K(+) channels and specifically of K(v)1.1, K(v)1.2 and K(v)1.6. In this work we show that α-DTx inhibited the ASIC currents in DRG neurons (IC50=0.8 μM) when continuously perfused during 25 s (including a 5 s pulse to pH 6.1), but not when co-applied with the pH drop. Additionally, we show that α-DTx abolished a transient component of the outward current that, in some experiments, appeared immediately after the end of the acid pulse. Our data indicate that α-DTx inhibits ASICs in the high nM range while some Kv are inhibited in the low nM range. The α-DTx selectivity and its potential interaction with ASICs should be taken in consideration when DTx is used in the high nM range.
Collapse
|
36
|
Vig PJS, Hearst SM, Shao Q, Lopez ME. Knockdown of acid-sensing ion channel 1a (ASIC1a) suppresses disease phenotype in SCA1 mouse model. THE CEREBELLUM 2015; 13:479-90. [PMID: 24788087 DOI: 10.1007/s12311-014-0563-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The mutated ataxin-1 protein in spinocerebellar ataxia 1 (SCA1) targets Purkinje cells (PCs) of the cerebellum and causes progressive ataxia due to loss of PCs and neurons of the brainstem. The exact mechanism of this cellular loss is still not clear. Currently, there are no treatments for SCA1; however, understanding of the mechanisms that regulate SCA1 pathology is essential for devising new therapies for SCA1 patients. We previously established a connection between the loss of intracellular calcium-buffering and calcium-signalling proteins with initiation of neurodegeneration in SCA1 transgenic (Tg) mice. Recently, acid-sensing ion channel 1a (ASIC1a) have been implicated in calcium-mediated toxicity in many brain disorders. Here, we report generating SCA1 Tg mice in the ASIC1a knockout (KO) background and demonstrate that the deletion of ASIC1a gene expression causes suppression of the SCA1 disease phenotype. Loss of the ASIC1a channel in SCA1/ASIC1a KO mice resulted in the improvement of motor deficit and decreased PC degeneration. Interestingly, the expression of the ASIC1 variant, ASIC1b, was upregulated in the cerebellum of both SCA1/ASIC1a KO and ASIC1a KO animals as compared to the wild-type (WT) and SCA1 Tg mice. Further, these SCA1/ASIC1a KO mice exhibited translocation of PC calcium-binding protein calbindin-D28k from the nucleus to the cytosol in young animals, which otherwise have both cytosolic and nuclear localization. Furthermore, in addition to higher expression of calcium-buffering protein parvalbumin, PCs of the older SCA1/ASIC1a KO mice showed a decrease in morphologic abnormalities as compared to the age-matched SCA1 animals. Our data suggest that ASIC1a may be a mediator of SCA1 pathogenesis and targeting ASIC1a could be a novel approach to treat SCA1.
Collapse
Affiliation(s)
- Parminder J S Vig
- Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA,
| | | | | | | |
Collapse
|
37
|
Jin C, Ye QH, Yuan FL, Gu YL, Li JP, Shi YH, Shen XM, Bo-Liu, Lin ZH. Involvement of acid-sensing ion channel 1α in hepatic carcinoma cell migration and invasion. Tumour Biol 2015; 36:4309-17. [DOI: 10.1007/s13277-015-3070-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/08/2015] [Indexed: 01/01/2023] Open
|
38
|
Zheng S, Bai YY, Changyi Y, Gao X, Zhang W, Wang Y, Zhou L, Ju S, Li C. Multimodal nanoprobes evaluating physiological pore size of brain vasculatures in ischemic stroke models. Adv Healthc Mater 2014; 3:1909-18. [PMID: 24898608 DOI: 10.1002/adhm.201400159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/29/2014] [Indexed: 12/25/2022]
Abstract
Ischemic stroke accounts for 80% strokes and originates from a reduction of cerebral blood flow (CBF) after vascular occlusion. For treatment, the first action is to restore CBF by thrombolytic agent recombinant tissue-type plasminogen activator (rt-PA). Although rt-PA benefits clinical outcome, its application is limited by short therapeutic time window and risk of brain hemorrhage. Different to thrombolytic agents, neuroprotectants reduce neurological injuries by blocking ischemic cascade events such as excitotoxicity and oxidative stress. Nano-neuroprotectants demonstrate higher therapeutic effect than small molecular analogues due to their prolonged circulation lifetime and disrupted blood-brain barrier (BBB) in ischemic region. Even enhanced BBB permeability in ischemic territories is verified, the pore size of ischemic vasculatures determining how large and how efficient the therapeutics can pass is barely studied. In this work, nanoprobes (NPs) with different diameters are developed. In vivo multimodal imaging indicates that NP uptakes in ischemic region depended on their diameters and the pore size upper limit of ischemic vasculatures is determined as 10-11 nm. Additionally, penumbra defined as salvageable ischemic tissues performed a higher BBB permeability than infarct core. This work provides a guideline for developing nano-neuroprotectants by taking advantage of the locally enhanced BBB permeability in ischemic brain tissues.
Collapse
Affiliation(s)
- Shuyan Zheng
- Key Laboratory of Smart Drug Delivery Ministry of Education; School of Pharmacy Fudan University; Shanghai 201203 China
| | - Ying-Ying Bai
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology; Zhongda Hospital Medical School of Southeast University; Nanjing 210009 China
| | - Yinzhi Changyi
- Key Laboratory of Smart Drug Delivery Ministry of Education; School of Pharmacy Fudan University; Shanghai 201203 China
| | - Xihui Gao
- Key Laboratory of Smart Drug Delivery Ministry of Education; School of Pharmacy Fudan University; Shanghai 201203 China
| | - Wenqing Zhang
- Key Laboratory of Smart Drug Delivery Ministry of Education; School of Pharmacy Fudan University; Shanghai 201203 China
| | - Yuancheng Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology; Zhongda Hospital Medical School of Southeast University; Nanjing 210009 China
| | - Lu Zhou
- Key Laboratory of Smart Drug Delivery Ministry of Education; School of Pharmacy Fudan University; Shanghai 201203 China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology; Zhongda Hospital Medical School of Southeast University; Nanjing 210009 China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery Ministry of Education; School of Pharmacy Fudan University; Shanghai 201203 China
| |
Collapse
|
39
|
Inhibition of acid-sensing ion channel 1a in hepatic stellate cells attenuates PDGF-induced activation of HSCs through MAPK pathway. Mol Cell Biochem 2014; 395:199-209. [PMID: 24939363 DOI: 10.1007/s11010-014-2125-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/02/2014] [Indexed: 12/11/2022]
Abstract
Acid-sensing ion channels (ASICs), a group of Na(+)-selective and Ca(2+)-permeant ligand-gated cation channels, can be transiently activated by extracellular acid. Among seven subunits of ASICs, acid-sensing ion channel 1a (ASIC1a), which is responsible for Ca(2+) transportation, is elevated in response to inflammation, tumor, and ischemic injury in central nervous system and non-neuronal tissues. In this study, we demonstrated for the first time the presence of ASIC1a in rat liver and hepatic stellate cells (HSCs). Furthermore, the expression of ASIC1a was increased in primary HSCs and liver tissues of CCl4-treated rats, suggesting that ASIC1a may play certain role in liver fibrosis. Interestingly, we identified that the level of ASIC1a was significantly elevated in response to platelet-derived growth factor (PDGF) induction in a time- and dose-dependent manner. It was also established that Ca(2+)-transporting ASIC1a was involved in acid-induced injury of different cell types. Moreover, inhibition or silencing of ASIC1a was able to inhibit PDGF-induced pro-fibrogenic effects of activated rat HSCs, including cell activation, de novo synthesis of extracellular matrix components through mitogen-activated protein kinase signaling pathway. Collectively, our studies identified that ASIC1a was expressed in rat liver and HSCs and provided a strong evidence for the involvement of the ASIC1a in the progression of hepatic fibrosis.
Collapse
|
40
|
Pan CX, Wu FR, Wang XY, Tang J, Gao WF, Ge JF, Chen FH. Inhibition of ASICs reduces rat hepatic stellate cells activity and liver fibrosis: an in vitro and in vivo study. Cell Biol Int 2014; 38:1003-12. [PMID: 24737704 DOI: 10.1002/cbin.10287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/20/2014] [Indexed: 01/01/2023]
Abstract
Hepatic fibrosis is a chronic inflammation-associated disease, which is involved in the infiltration of inflammatory cells and releasing of proinflammatory cytokines. In the pathological process, protons are released by damaged cells and acidosis is considered to play a critical role in cell injury. Although the underlying mechanism (s) remain ill-defined, ASICs (acid-sensing ion channels) are assumed to be involved in this process. The diuretic, amiloride, is neuroprotective in models of cerebral ischemia, a property attributable to the inhibition of central ASICs by the drug. However, the effect of inhibition of ASICs by amiloride in the liver fibrotic process remains unclear. We found that amiloride (25, 50, or 100 μM) could restrain acid-induced HSCs at pH6 in vitro. In vivo experiments showed that amiloride could significantly alleviate liver injury, decreasing levels of profibrogenic cytokines, collagen deposition, and reducing pathological tissue damage. In summary, amiloride inhibits hepatic fibrosis in vivo and in vitro, which is probably associated with the downregulation of ASICs.
Collapse
Affiliation(s)
- Chun-xiao Pan
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Translational strategies for neuroprotection in ischemic stroke--focusing on acid-sensing ion channel 1a. Transl Stroke Res 2014; 5:59-68. [PMID: 24390970 DOI: 10.1007/s12975-013-0319-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/06/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
Ischemic stroke contributes to the majority of brain injuries and remains to be a leading cause of death and long-term disability. Despite the devastating pathology and high incidence of disease, there remain only few treatment options (TPA and endovascular procedures), which may be hampered by time-dependent administration among a variety of other factors. Promising research of glutamate receptor antagonists has been unsuccessful in clinical trial. But, the mechanism by which glutamate receptors initiate injury by excessive calcium overload has spurred investigation of new and potentially successful candidates for stroke therapy. Acid-sensing ion channels (ASICs) may contribute to poor stroke prognosis due to localized drop in brain pH, resulting in excessive calcium overload, independent of glutamate activation. Accumulating studies targeting ASICs have underscored the importance of understanding inhibition, regulation, desensitization, and trafficking of this channel and its role in disease. This review will discuss potential directions in translational ASIC research for future stroke therapies.
Collapse
|
42
|
Chu XP, Grasing KA, Wang JQ. Acid-sensing ion channels contribute to neurotoxicity. Transl Stroke Res 2013; 5:69-78. [PMID: 24323724 DOI: 10.1007/s12975-013-0305-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/06/2013] [Accepted: 11/04/2013] [Indexed: 12/13/2022]
Abstract
Acidosis that occurs under pathological conditions not only affects intracellular signaling molecules, but also directly activates a unique family of ligand-gated ion channels: acid-sensing ion channels (ASICs). ASICs are widely expressed throughout the central and peripheral nervous systems and play roles in pain sensation, learning and memory, and fear conditioning. Overactivation of ASICs contributes to neurodegenerative diseases such as ischemic brain/spinal cord injury, multiple sclerosis, Parkinson's disease, and Huntington's disease. Thus, targeting ASICs might be a potential therapeutic strategy for these conditions. This mini-review focuses on the electrophysiology and pharmacology of ASICs and roles of ASICs in neuronal toxicity.
Collapse
Affiliation(s)
- Xiang-Ping Chu
- Departments of Basic Medical Science and Anesthesiology, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Room M3-417, Kansas City, MO, 64108-2792, USA,
| | | | | |
Collapse
|
43
|
Tang S, Cao Y, Goddard SC, He W. Synthesis of 3-(tert
-Butoxycarbonylmethyl)-N
-vinyl-2-caprolactam and Homologous Copolymerization Toward Biocompatible Carboxylated Poly(N
-vinyl-2-caprolactam) Responsive to pH and Temperature. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Shuangcheng Tang
- Department of Materials Science and Engineering; University of Tennessee; Knoxville Tennessee 37996
| | - Yu Cao
- Department of Materials Science and Engineering; University of Tennessee; Knoxville Tennessee 37996
| | - Samuel C. Goddard
- Department of Mechanical, Aerospace and Biomedical Engineering; University of Tennessee; Knoxville Tennessee 37996
| | - Wei He
- Department of Materials Science and Engineering; University of Tennessee; Knoxville Tennessee 37996
- Department of Mechanical, Aerospace and Biomedical Engineering; University of Tennessee; Knoxville Tennessee 37996
| |
Collapse
|
44
|
Abstract
The initial excitement and countless efforts to find a pharmacological agent that disrupts the excitotoxic pathway of ischemic neuronal death have only led to disappointing clinical trials. Currently, a thrombolytic agent called recombinant tissue plasminogen activator (rt-PA) is the only pharmacological treatment available for patients with acute ischemic stroke in most countries. Even though its efficacy has been confirmed repeatedly, rt-PA is considerably underused due to reasons including a short therapeutic window and repeated complications associated with its use. A search for alternative mechanisms that may operate dependently or independently with the well-established excitotoxic mechanism has led researchers to the discovery of newly described non-glutamate mechanisms. Among the latter, transient receptor potential melastatin 7 (TRPM7) is one of the important nonglutamate mechanisms in stroke, which has been evaluated in both in-vitro and in-vivo. In this review, we will discuss the current state of pharmacological treatments of ischemic stroke and provide evidence that TRPM7 is a promising therapeutic target of stroke.
Collapse
|
45
|
Weilinger NL, Maslieieva V, Bialecki J, Sridharan SS, Tang PL, Thompson RJ. Ionotropic receptors and ion channels in ischemic neuronal death and dysfunction. Acta Pharmacol Sin 2013; 34:39-48. [PMID: 22864302 DOI: 10.1038/aps.2012.95] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Loss of energy supply to neurons during stroke induces a rapid loss of membrane potential that is called the anoxic depolarization. Anoxic depolarizations result in tremendous physiological stress on the neurons because of the dysregulation of ionic fluxes and the loss of ATP to drive ion pumps that maintain electrochemical gradients. In this review, we present an overview of some of the ionotropic receptors and ion channels that are thought to contribute to the anoxic depolarization of neurons and subsequently, to cell death. The ionotropic receptors for glutamate and ATP that function as ligand-gated cation channels are critical in the death and dysfunction of neurons. Interestingly, two of these receptors (P2X7 and NMDAR) have been shown to couple to the pannexin-1 (Panx1) ion channel. We also discuss the important roles of transient receptor potential (TRP) channels and acid-sensing ion channels (ASICs) in responses to ischemia. The central challenge that emerges from our current understanding of the anoxic depolarization is the need to elucidate the mechanistic and temporal interrelations of these ion channels to fully appreciate their impact on neurons during stroke.
Collapse
|
46
|
Possible implications of acid-sensing ion channels in ischemia-induced retinal injury in rats. Jpn J Ophthalmol 2012; 57:120-5. [PMID: 23152156 DOI: 10.1007/s10384-012-0213-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 09/21/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Retinal ischemia in eyes with diabetic retinopathy and retinal vein occlusion leads to local tissue acidosis. Acid-sensing ion channels (ASICs) are expressed in photoreceptors and other neurons in the retina, and may play a role in acid-induced cell injury. The purpose of this study was to investigate the neuroprotective effects of amiloride, an ASIC blocker, on induced retinal ischemia in rats. METHODS Transient retinal ischemia was induced in male Long-Evans rats by the temporary ligation of the optic nerve. Just before the induction of ischemia, the experimental eyes underwent intravitreal injection of amiloride. On day 7, the retinal damage in eyes that underwent amiloride treatment (and in those that did not undergo the treatment) was evaluated by histology and electroretinogram (ERG). RESULTS Transient retinal ischemia caused retinal degeneration with thinning of the inner layer of the retina. The blockage of ASICs with amiloride significantly prevented retinal degeneration. ERG demonstrated that the reduction in a- and b-wave amplitudes induced by the transient retinal ischemia was significantly prevented by the application of amiloride. CONCLUSIONS The present study suggests that ASICs might, at least in part, play a pathophysiological role in ischemia-induced neurodegeneration. Blockage of ASICs may have a potential neuroprotective effect in ocular ischemic diseases.
Collapse
|
47
|
Sudarikova AV, Vassilieva IO, Morachevskaya EA, Negulyaev YA. Molecular and functional identification of sodium channels in K562 cells. ACTA ACUST UNITED AC 2012. [DOI: 10.1134/s1990519x12050124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Bhattacharya P, Pandey AK, Paul S, Patnaik R. Neuroprotective potential of Piroxicam in cerebral ischemia: An in silico evaluation of the hypothesis to explore its therapeutic efficacy by inhibition of aquaporin-4 and acid sensing ion channel1a. Med Hypotheses 2012; 79:352-7. [DOI: 10.1016/j.mehy.2012.05.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/02/2012] [Accepted: 05/21/2012] [Indexed: 11/17/2022]
|
49
|
Lu Y, Yi L, Liu D, Li J, Sun L, Zhang Z. Alkalosis leads to the over-activity of cortical principal neurons. Neurosci Lett 2012; 525:117-22. [DOI: 10.1016/j.neulet.2012.07.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/08/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
|
50
|
Sherwood TW, Frey EN, Askwith CC. Structure and activity of the acid-sensing ion channels. Am J Physiol Cell Physiol 2012; 303:C699-710. [PMID: 22843794 DOI: 10.1152/ajpcell.00188.2012] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The acid-sensing ion channels (ASICs) are a family of proton-sensing channels expressed throughout the nervous system. Their activity is linked to a variety of complex behaviors including fear, anxiety, pain, depression, learning, and memory. ASICs have also been implicated in neuronal degeneration accompanying ischemia and multiple sclerosis. As a whole, ASICs represent novel therapeutic targets for several clinically important disorders. An understanding of the correlation between ASIC structure and function will help to elucidate their mechanism of action and identify potential therapeutics that specifically target these ion channels. Despite the seemingly simple nature of proton binding, multiple studies have shown that proton-dependent gating of ASICs is quite complex, leading to activation and desensitization through distinct structural components. This review will focus on the structural aspects of ASIC gating in response to both protons and the newly discovered activators GMQ and MitTx. ASIC modulatory compounds and their action on proton-dependent gating will also be discussed. This review is dedicated to the memory of Dale Benos, who made a substantial contribution to our understanding of ASIC activity.
Collapse
Affiliation(s)
- Thomas W Sherwood
- Dept. of Neuroscience, The Ohio State Univ. Wexner Medical Center, Columbus, OH 43210, USA
| | | | | |
Collapse
|