1
|
Ahmadzadeh AM, Broomand Lomer N, Ashoobi MA, Elyassirad D, Gheiji B, Vatanparast M, Rostami A, Abouei Mehrizi MA, Tabari A, Bathla G, Faghani S. MRI-derived deep learning models for predicting 1p/19q codeletion status in glioma patients: a systematic review and meta-analysis of diagnostic test accuracy studies. Neuroradiology 2025:10.1007/s00234-025-03631-z. [PMID: 40369298 DOI: 10.1007/s00234-025-03631-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/20/2025] [Indexed: 05/16/2025]
Abstract
PURPOSE We conducted a systematic review and meta-analysis to evaluate the performance of magnetic resonance imaging (MRI)-derived deep learning (DL) models in predicting 1p/19q codeletion status in glioma patients. METHODS The literature search was performed in four databases: PubMed, Web of Science, Embase, and Scopus. We included the studies that evaluated the performance of end-to-end DL models in predicting the status of glioma 1p/19q codeletion. The quality of the included studies was assessed by the Quality assessment of diagnostic accuracy studies-2 (QUADAS-2) METhodological RadiomICs Score (METRICS). We calculated diagnostic pooled estimates and heterogeneity was evaluated using I2. Subgroup analysis and sensitivity analysis were conducted to explore sources of heterogeneity. Publication bias was evaluated by Deeks' funnel plots. RESULTS Twenty studies were included in the systematic review. Only two studies had a low quality. A meta-analysis of the ten studies demonstrated a pooled sensitivity of 0.77 (95% CI: 0.63-0.87), a specificity of 0.85 (95% CI: 0.74-0.92), a positive diagnostic likelihood ratio (DLR) of 5.34 (95% CI: 2.88-9.89), a negative DLR of 0.26 (95% CI: 0.16-0.45), a diagnostic odds ratio of 20.24 (95% CI: 8.19-50.02), and an area under the curve of 0.89 (95% CI: 0.86-0.91). The subgroup analysis identified a significant difference between groups depending on the segmentation method used. CONCLUSION DL models can predict glioma 1p/19q codeletion status with high accuracy and may enhance non-invasive tumor characterization and aid in the selection of optimal therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Azadeh Tabari
- Massachusetts General Hospital, Boston, USA
- Harvard Medical School, Boston, USA
| | | | | |
Collapse
|
2
|
Goodkin O, Wu J, Pemberton H, Prados F, Vos SB, Thust S, Thornton J, Yousry T, Bisdas S, Barkhof F. Structured reporting of gliomas based on VASARI criteria to improve report content and consistency. BMC Med Imaging 2025; 25:99. [PMID: 40128670 PMCID: PMC11934815 DOI: 10.1186/s12880-025-01603-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/18/2025] [Indexed: 03/26/2025] Open
Abstract
PURPOSE Gliomas are the commonest malignant brain tumours. Baseline characteristics on structural MRI, such as size, enhancement proportion and eloquent brain involvement inform grading and treatment planning. Currently, free-text imaging reports depend on the individual style and experience of the radiologist. Standardisation may increase consistency of feature reporting. METHODS We compared 100 baseline free-text reports for glioma MRI scans with a structured feature list based on VASARI criteria and performed a full second read to document which VASARI features were in the baseline report. RESULTS We found that quantitative features including tumour size and proportion of necrosis and oedema/infiltration were commonly not included in free-text reports. Thirty-three percent of reports gave a description of size only, and 38% of reports did not refer to tumour size at all. Detailed information about tumour location including involvement of eloquent areas and infiltration of deep white matter was also missing from the majority of free-text reports. Overall, we graded 6% of reports as having omitted some key VASARI features that would alter patient management. CONCLUSIONS Tumour size and anatomical information is often omitted by neuroradiologists. Comparison with a structured report identified key features that would benefit from standardisation and/or quantification. Structured reporting may improve glioma reporting consistency, clinical communication, and treatment decisions.
Collapse
Affiliation(s)
- Olivia Goodkin
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| | - Jiaming Wu
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Hugh Pemberton
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
- GE Healthcare, Amersham, UK
| | - Ferran Prados
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- National Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
- E-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Sjoerd B Vos
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, Australia
| | - Stefanie Thust
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
- Nottingham NIHR Biomedical Research Centre, Nottingham, UK
- Radiological Sciences, School of Medicine, Mental Health and Neurosciences, University of Nottingham, Nottingham, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - John Thornton
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Tarek Yousry
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Sotirios Bisdas
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Frederik Barkhof
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK.
- National Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK.
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK.
- Department of Radiology and Nuclear Medicine, VU Medical Centre, Amsterdam, Netherlands.
| |
Collapse
|
3
|
Azizova A, Prysiazhniuk Y, Wamelink IJHG, Cakmak M, Kaya E, Wesseling P, de Witt Hamer PC, Verburg N, Petr J, Barkhof F, Keil VC. Preoperative prediction of diffuse glioma type and grade in adults: a gadolinium-free MRI-based decision tree. Eur Radiol 2025; 35:1242-1254. [PMID: 39425768 PMCID: PMC11836213 DOI: 10.1007/s00330-024-11140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 09/22/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES To develop a gadolinium-free MRI-based diagnosis prediction decision tree (DPDT) for adult-type diffuse gliomas and to assess the added value of gadolinium-based contrast agent (GBCA) enhanced images. MATERIALS AND METHODS This study included preoperative grade 2-4 adult-type diffuse gliomas (World Health Organization 2021) scanned between 2010 and 2021. The DPDT, incorporating eleven GBCA-free MRI features, was developed using 18% of the dataset based on consensus readings. Diagnosis predictions involved grade (grade 2 vs. grade 3/4) and molecular status (isocitrate dehydrogenase (IDH) and 1p/19q). GBCA-free diagnosis was predicted using DPDT, while GBCA-enhanced diagnosis included post-contrast images. The accuracy of these predictions was assessed by three raters with varying experience levels in neuroradiology using the test dataset. Agreement analyses were applied to evaluate the prediction performance/reproducibility. RESULTS The test dataset included 303 patients (age (SD): 56.7 (14.2) years, female/male: 114/189, low-grade/high-grade: 54/249, IDH-mutant/wildtype: 82/221, 1p/19q-codeleted/intact: 34/269). Per-rater GBCA-free predictions achieved ≥ 0.85 (95%-CI: 0.80-0.88) accuracy for grade and ≥ 0.75 (95%-CI: 0.70-0.80) for molecular status, while GBCA-enhanced predictions reached ≥ 0.87 (95%-CI: 0.82-0.90) and ≥ 0.77 (95%-CI: 0.71-0.81), respectively. No accuracy difference was observed between GBCA-free and GBCA-enhanced predictions. Group inter-rater agreement was moderate for GBCA-free (0.56 (95%-CI: 0.46-0.66)) and substantial for GBCA-enhanced grade prediction (0.68 (95%-CI: 0.58-0.78), p = 0.008), while substantial for both GBCA-free (0.75 (95%-CI: 0.69-0.80) and GBCA-enhanced (0.77 (95%-CI: 0.71-0.82), p = 0.51) molecular status predictions. CONCLUSION The proposed GBCA-free diagnosis prediction decision tree performed well, with GBCA-enhanced images adding little to the preoperative diagnostic accuracy of adult-type diffuse gliomas. KEY POINTS Question Given health and environmental concerns, is there a gadolinium-free imaging protocol to preoperatively evaluate gliomas comparable to the gadolinium-enhanced standard practice? Findings The proposed gadolinium-free diagnosis prediction decision tree for adult-type diffuse gliomas performed well, and gadolinium-enhanced MRI demonstrated only limited improvement in diagnostic accuracy. Clinical relevance Even inexperienced raters effectively classified adult-type diffuse gliomas using the gadolinium-free diagnosis prediction decision tree, which, until further validation, can be used alongside gadolinium-enhanced images to respect standard practice, despite this study showing that gadolinium-enhanced images hardly improved diagnostic accuracy.
Collapse
Affiliation(s)
- Aynur Azizova
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine Department, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Yeva Prysiazhniuk
- Charles University, The Second Faculty of Medicine, Department of Pathophysiology, Prague, Czech Republic
- Motol University Hospital, Prague, Czech Republic
| | - Ivar J H G Wamelink
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine Department, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Marcus Cakmak
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine Department, Amsterdam, The Netherlands
- Vrije Universiteit Amsterdam, University Medical Center, Amsterdam, The Netherlands
| | - Elif Kaya
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Ankara, Turkey
| | - Pieter Wesseling
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Laboratory for Childhood Cancer Pathology, Utrecht, The Netherlands
| | - Philip C de Witt Hamer
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Niels Verburg
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Jan Petr
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine Department, Amsterdam, The Netherlands
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Frederik Barkhof
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine Department, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Center for Medical Image Computing, University College London, London, UK
| | - Vera C Keil
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine Department, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Siddiqui UA, Nasir R, Bajwa MH, Khan SA, Siddiqui YS, Shahzad Z, Arif A, Iftikhar H, Aftab K. Quality assessment of critical and non-critical domains of systematic reviews on artificial intelligence in gliomas using AMSTAR II: A systematic review. J Clin Neurosci 2025; 131:110926. [PMID: 39612612 DOI: 10.1016/j.jocn.2024.110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024]
Abstract
INTRODUCTION Gliomas are the most common primary malignant intraparenchymal brain tumors with a dismal prognosis. With growing advances in artificial intelligence, machine learning and deep learning models are being utilized for preoperative, intraoperative and postoperative neurological decision-making. We aimed to compile published literature in one format and evaluate the quality of level 1a evidence currently available. METHODOLOGY Using PRISMA guidelines, a comprehensive literature search was conducted within databases including Medline, Scopus, and Cochrane Library, and records with the application of artificial intelligence in glioma management were included. The AMSTAR 2 tool was used to assess the quality of systematic reviews and meta-analyses by two independent researchers. RESULTS From 812 studies, 23 studies were included. AMSTAR II appraised most reviews as either low or critically low in quality. Most reviews failed to deliver in critical domains related to the exclusion of studies, appropriateness of meta-analytical methods, and assessment of publication bias. Similarly, compliance was lowest in non-critical areas related to study design selection and the disclosure of funding sources in individual records. Evidence is moderate to low in quality in reviews on multiple neuro-oncological applications, low quality in glioma diagnosis and individual molecular markers like MGMT promoter methylation status, IDH, and 1p19q identification, and critically low in tumor segmentation, glioma grading, and multiple molecular markers identification. CONCLUSION AMSTAR 2 is a robust tool to identify high-quality systematic reviews. There is a paucity of high-quality systematic reviews on the utility of artificial intelligence in glioma management, with some demonstrating critically low quality. Therefore, caution must be exercised when drawing inferences from these results.
Collapse
Affiliation(s)
| | - Roua Nasir
- Section of Neurosurgery, Department of Surgery, Aga Khan University, Karachi, Pakistan
| | - Mohammad Hamza Bajwa
- Section of Neurosurgery, Department of Surgery, Aga Khan University, Karachi, Pakistan.
| | - Saad Akhtar Khan
- Department of Neurosurgery, Liaquat National Hospital, Karachi, Pakistan.
| | | | - Zenab Shahzad
- Department of Neurosurgery, Liaquat National Hospital, Karachi, Pakistan
| | | | | | - Kiran Aftab
- Section of Neurosurgery, Department of Surgery, Aga Khan University, Karachi, Pakistan; University of Cambridge, UK.
| |
Collapse
|
5
|
Zhu M, Han F, Gao J, Yang J, Yin L, Du Z, Zhang J. Clinically Available and Reproducible Prediction Models for IDH and CDKN2A/B Gene Status in Adult-type Diffuse Gliomas. Acad Radiol 2024; 31:5164-5174. [PMID: 38944632 DOI: 10.1016/j.acra.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 07/01/2024]
Abstract
PURPOSE Isocitrate dehydrogenase (IDH) and cyclin-dependent kinase inhibitor (CDKN) 2A/B status holds important prognostic value in diffuse gliomas. We aimed to construct prediction models using clinically available and reproducible characteristics for predicting IDH-mutant and CDKN2A/B homozygous deletion in adult-type diffuse glioma patients. MATERIALS AND METHODS This retrospective, two-center study analysed 272 patients with adult-type diffuse glioma (230 for primary cohort and 42 for external validation cohort). Two radiologists independently assessed the patients' images according to the Visually AcceSAble Rembrandt Images (VASARI) feature set. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to optimise variable selection. Multivariable logistic regression analysis was used to develop the prediction models. Calibration plots, receiver operating characteristic (ROC) curves, and decision curve analysis (DCA) were used to validate the models. Nomograms were developed visually based on the prediction models. RESULTS The interobserver agreement between the two radiologists for VASARI features was excellent (κ range, 0.813-1). For the IDH-mutant prediction model, the area under the curves (AUCs) was 0.88-0.96 in the internal and external validation sets, For the CDKN2A/B homozygous deletion model, the AUCs were 0.80-0.86 in the internal and external validation sets. The decision curves show that both prediction models had good net benefits. CONCLUSION The prediction models which basing on VASARI and clinical features provided a reliable and clinically meaningful preoperative prediction for IDH and CDKN2A/B status in diffuse glioma patients. These findings provide a foundation for precise preoperative non-invasive diagnosis and personalised treatment approaches for adult-type diffuse glioma patients.
Collapse
Affiliation(s)
- MeiLin Zhu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China (M.Z., F.H., J.G., J.Y., J.Z.)
| | - Fang Han
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China (M.Z., F.H., J.G., J.Y., J.Z.)
| | - JiaHao Gao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China (M.Z., F.H., J.G., J.Y., J.Z.)
| | - Jing Yang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China (M.Z., F.H., J.G., J.Y., J.Z.)
| | - LongLin Yin
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China (L.Y.)
| | - ZunGuo Du
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China (Z.D.)
| | - JiaWen Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China (M.Z., F.H., J.G., J.Y., J.Z.).
| |
Collapse
|
6
|
Chekhonin IV, Cohen O, Otazo R, Young RJ, Holodny AI, Pronin IN. Magnetic resonance relaxometry in quantitative imaging of brain gliomas: A literature review. Neuroradiol J 2024; 37:267-275. [PMID: 37133228 PMCID: PMC11138331 DOI: 10.1177/19714009231173100] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Magnetic resonance (MR) relaxometry is a quantitative imaging method that measures tissue relaxation properties. This review discusses the state of the art of clinical proton MR relaxometry for glial brain tumors. Current MR relaxometry technology also includes MR fingerprinting and synthetic MRI, which solve the inefficiencies and challenges of earlier techniques. Despite mixed results regarding its capability for brain tumor differential diagnosis, there is growing evidence that MR relaxometry can differentiate between gliomas and metastases and between glioma grades. Studies of the peritumoral zones have demonstrated their heterogeneity and possible directions of tumor infiltration. In addition, relaxometry offers T2* mapping that can define areas of tissue hypoxia not discriminated by perfusion assessment. Studies of tumor therapy response have demonstrated an association between survival and progression terms and dynamics of native and contrast-enhanced tumor relaxometric profiles. In conclusion, MR relaxometry is a promising technique for glial tumor diagnosis, particularly in association with neuropathological studies and other imaging techniques.
Collapse
Affiliation(s)
- Ivan V Chekhonin
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
- Federal State Budgetary Institution V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Ouri Cohen
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ricardo Otazo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert J Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrei I Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA
- Department of Neuroscience, Weill Cornell Graduate School of the Medical Sciences, New York, NY, USA
| | - Igor N Pronin
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| |
Collapse
|
7
|
Kang KM, Song J, Choi Y, Park C, Park JE, Kim HS, Park SH, Park CK, Choi SH. MRI Scoring Systems for Predicting Isocitrate Dehydrogenase Mutation and Chromosome 1p/19q Codeletion in Adult-type Diffuse Glioma Lacking Contrast Enhancement. Radiology 2024; 311:e233120. [PMID: 38713025 DOI: 10.1148/radiol.233120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background According to 2021 World Health Organization criteria, adult-type diffuse gliomas include glioblastoma, isocitrate dehydrogenase (IDH)-wildtype; oligodendroglioma, IDH-mutant and 1p/19q-codeleted; and astrocytoma, IDH-mutant, even when contrast enhancement is lacking. Purpose To develop and validate simple scoring systems for predicting IDH and subsequent 1p/19q codeletion status in gliomas without contrast enhancement using standard clinical MRI sequences. Materials and Methods This retrospective study included adult-type diffuse gliomas lacking contrast at contrast-enhanced MRI from two tertiary referral hospitals between January 2012 and April 2022 with diagnoses confirmed at pathology. IDH status was predicted primarily by using T2-fluid-attenuated inversion recovery (FLAIR) mismatch sign, followed by 1p/19q codeletion prediction. A visual rating of MRI features, apparent diffusion coefficient (ADC) ratio, and relative cerebral blood volume was measured. Scoring systems were developed through univariable and multivariable logistic regressions and underwent calibration and discrimination, including internal and external validation. Results For the internal validation cohort, 237 patients were included (mean age, 44.4 years ± 14.4 [SD]; 136 male patients; 193 patients in IDH prediction and 163 patients in 1p/19q prediction). For the external validation cohort, 35 patients were included (46.1 years ± 15.3; 20 male patients; 28 patients in IDH prediction and 24 patients in 1p/19q prediction). The T2-FLAIR mismatch sign demonstrated 100% specificity and 100% positive predictive value for IDH mutation. IDH status prediction scoring system for tumors without mismatch sign included age, ADC ratio, and morphologic characteristics, whereas 1p/19q codeletion prediction for IDH-mutant gliomas included ADC ratio, cortical involvement, and mismatch sign. For IDH status and 1p/19q codeletion prediction, bootstrap-corrected areas under the receiver operating characteristic curve were 0.86 (95% CI: 0.81, 0.90) and 0.73 (95% CI: 0.65, 0.81), respectively, whereas at external validation they were 0.99 (95% CI: 0.98, 1.0) and 0.88 (95% CI: 0.63, 1.0). Conclusion The T2-FLAIR mismatch sign and scoring systems using standard clinical MRI predicted IDH and 1p/19q codeletion status in gliomas lacking contrast enhancement. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Badve and Hodges in this issue.
Collapse
Affiliation(s)
- Koung Mi Kang
- From the Department of Radiology (K.M.K., J.S., S.H.C.), Biomedical Research Institute (C.P., C.K.P.), Department of Pathology (S.H.P.), and Department of Neurosurgery (C.K.P.), Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (K.M.K., S.H.C.); Division of Medical Statistics, Medical Research Collaborating Center, Seoul, Republic of Korea (Y.C.); and Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea (J.E.P., H.S.K.)
| | - Jiyoung Song
- From the Department of Radiology (K.M.K., J.S., S.H.C.), Biomedical Research Institute (C.P., C.K.P.), Department of Pathology (S.H.P.), and Department of Neurosurgery (C.K.P.), Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (K.M.K., S.H.C.); Division of Medical Statistics, Medical Research Collaborating Center, Seoul, Republic of Korea (Y.C.); and Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea (J.E.P., H.S.K.)
| | - Yunhee Choi
- From the Department of Radiology (K.M.K., J.S., S.H.C.), Biomedical Research Institute (C.P., C.K.P.), Department of Pathology (S.H.P.), and Department of Neurosurgery (C.K.P.), Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (K.M.K., S.H.C.); Division of Medical Statistics, Medical Research Collaborating Center, Seoul, Republic of Korea (Y.C.); and Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea (J.E.P., H.S.K.)
| | - Chanrim Park
- From the Department of Radiology (K.M.K., J.S., S.H.C.), Biomedical Research Institute (C.P., C.K.P.), Department of Pathology (S.H.P.), and Department of Neurosurgery (C.K.P.), Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (K.M.K., S.H.C.); Division of Medical Statistics, Medical Research Collaborating Center, Seoul, Republic of Korea (Y.C.); and Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea (J.E.P., H.S.K.)
| | - Ji Eun Park
- From the Department of Radiology (K.M.K., J.S., S.H.C.), Biomedical Research Institute (C.P., C.K.P.), Department of Pathology (S.H.P.), and Department of Neurosurgery (C.K.P.), Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (K.M.K., S.H.C.); Division of Medical Statistics, Medical Research Collaborating Center, Seoul, Republic of Korea (Y.C.); and Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea (J.E.P., H.S.K.)
| | - Ho Sung Kim
- From the Department of Radiology (K.M.K., J.S., S.H.C.), Biomedical Research Institute (C.P., C.K.P.), Department of Pathology (S.H.P.), and Department of Neurosurgery (C.K.P.), Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (K.M.K., S.H.C.); Division of Medical Statistics, Medical Research Collaborating Center, Seoul, Republic of Korea (Y.C.); and Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea (J.E.P., H.S.K.)
| | - Sung-Hye Park
- From the Department of Radiology (K.M.K., J.S., S.H.C.), Biomedical Research Institute (C.P., C.K.P.), Department of Pathology (S.H.P.), and Department of Neurosurgery (C.K.P.), Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (K.M.K., S.H.C.); Division of Medical Statistics, Medical Research Collaborating Center, Seoul, Republic of Korea (Y.C.); and Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea (J.E.P., H.S.K.)
| | - Chul-Kee Park
- From the Department of Radiology (K.M.K., J.S., S.H.C.), Biomedical Research Institute (C.P., C.K.P.), Department of Pathology (S.H.P.), and Department of Neurosurgery (C.K.P.), Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (K.M.K., S.H.C.); Division of Medical Statistics, Medical Research Collaborating Center, Seoul, Republic of Korea (Y.C.); and Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea (J.E.P., H.S.K.)
| | - Seung Hong Choi
- From the Department of Radiology (K.M.K., J.S., S.H.C.), Biomedical Research Institute (C.P., C.K.P.), Department of Pathology (S.H.P.), and Department of Neurosurgery (C.K.P.), Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (K.M.K., S.H.C.); Division of Medical Statistics, Medical Research Collaborating Center, Seoul, Republic of Korea (Y.C.); and Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea (J.E.P., H.S.K.)
| |
Collapse
|
8
|
Sawlani V, Jen JP, Patel M, Jain M, Haq H, Ughratdar I, Wykes V, Nagaraju S, Watts C, Pohl U. Multiparametric MRI and T2/FLAIR mismatch complements the World Health Organization 2021 classification for the diagnosis of IDH-mutant 1p/19q non-co-deleted/ATRX-mutant astrocytoma. Clin Radiol 2024; 79:197-204. [PMID: 38101998 DOI: 10.1016/j.crad.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/14/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
AIM To investigate whether T2-weighted imaging-fluid-attenuated inversion recovery (T2/FLAIR) mismatch, T2∗ dynamic susceptibility contrast (DSC) perfusion, and magnetic resonance spectroscopy (MRS) correlated with the histological diagnosis and grading of IDH (isocitrate dehydrogenase)-mutant, 1p/19q non-co-deleted/ATRX (alpha-thalassemia mental retardation X-linked)-mutant astrocytoma. MATERIALS Imaging of 101 IDH-mutant diffuse glioma cases of histological grades 2-3 (2019-2021) were analysed retrospectively by two neuroradiologists blinded to the molecular diagnosis. T2/FLAIR mismatch sign is used for radio-phenotyping, and pre-biopsy multiparametric MRI images were assessed for grading purposes. Cut-off values pre-determined for radiologically high-grade lesions were relative cerebral blood volume (rCBV) ≥2, choline/creatine ratio (Cho/Cr) ≥1.5 (30 ms echo time [TE]), Cho/Cr ≥1.8 (135 ms TE). RESULTS Sixteen of the 101 cases showed T2/FLAIR mismatch, all of which were histogenetically confirmed IDH-mutant 1p/19q non-co-deleted/ATRX mutant astrocytomas; 50% were grade 3 (8/16) and 50% grade 2 (8/16). None showed contrast enhancement. Nine of the 16 had adequate multiparametric MRI for analysis. Any positive value by combining rCBV ≥2 with Cho/Cr ≥1.5 (30 ms TE) or Cho/Cr ≥1.8 (135 ms TE) predicted grade 3 histology with sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 100%. CONCLUSION The T2/FLAIR mismatch sign detected diffuse astrocytomas with 100% specificity. When combined with high Cho/Cr and raised rCBV, this predicted histological grading with high accuracy. The future direction for imaging should explore a similar integrated layered approach of 2021 classification of central nervous system (CNS) tumours combining radio-phenotyping and grading from structural and multiparametric imaging.
Collapse
Affiliation(s)
- V Sawlani
- Department of Neuroradiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS FT, Birmingham, UK; Department of Imaging, Neurosurgery and Neuropathology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS FT, Birmingham, UK.
| | - J P Jen
- Department of Neuroradiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS FT, Birmingham, UK
| | - M Patel
- Department of Neuroradiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS FT, Birmingham, UK; Department of Imaging, Neurosurgery and Neuropathology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS FT, Birmingham, UK
| | - M Jain
- Department of Neuroradiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS FT, Birmingham, UK
| | - H Haq
- Department of Neuroradiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS FT, Birmingham, UK
| | - I Ughratdar
- Department of Imaging, Neurosurgery and Neuropathology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS FT, Birmingham, UK; Department of Neurosurgery, Queen Elizabeth Hospital, University Hospitals Birmingham NHS FT, Birmingham, UK
| | - V Wykes
- Department of Imaging, Neurosurgery and Neuropathology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS FT, Birmingham, UK; Department of Neurosurgery, Queen Elizabeth Hospital, University Hospitals Birmingham NHS FT, Birmingham, UK
| | - S Nagaraju
- Department of Neuropathology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS FT, Birmingham, UK
| | - C Watts
- Department of Imaging, Neurosurgery and Neuropathology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS FT, Birmingham, UK; Department of Neurosurgery, Queen Elizabeth Hospital, University Hospitals Birmingham NHS FT, Birmingham, UK
| | - U Pohl
- Department of Neuropathology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS FT, Birmingham, UK
| |
Collapse
|
9
|
Park YW, Kim S, Han K, Ahn SS, Moon JH, Kim EH, Kim J, Kang SG, Kim SH, Lee SK, Chang JH. Rethinking extent of resection of contrast-enhancing and non-enhancing tumor: different survival impacts on adult-type diffuse gliomas in 2021 World Health Organization classification. Eur Radiol 2024; 34:1376-1387. [PMID: 37608093 DOI: 10.1007/s00330-023-10125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVES Extent of resection (EOR) of contrast-enhancing (CE) and non-enhancing (NE) tumors may have different impacts on survival according to types of adult-type diffuse gliomas in the molecular era. This study aimed to evaluate the impact of EOR of CE and NE tumors in glioma according to the 2021 World Health Organization classification. METHODS This retrospective study included 1193 adult-type diffuse glioma patients diagnosed between 2001 and 2021 (183 oligodendroglioma, 211 isocitrate dehydrogenase [IDH]-mutant astrocytoma, and 799 IDH-wildtype glioblastoma patients) from a single institution. Patients had complete information on IDH mutation, 1p/19q codeletion, and O6-methylguanine-methyltransferase (MGMT) status. Cox survival analyses were performed within each glioma type to assess predictors of overall survival, including clinical, imaging data, histological grade, MGMT status, adjuvant treatment, and EOR of CE and NE tumors. Subgroup analyses were performed in patients with CE tumor. RESULTS Among 1193 patients, 935 (78.4%) patients had CE tumors. In entire oligodendrogliomas, gross total resection (GTR) of NE tumor was not associated with survival (HR = 0.56, p = 0.223). In 86 (47.0%) oligodendroglioma patients with CE tumor, GTR of CE tumor was the only independent predictor of survival (HR = 0.16, p = 0.004) in multivariable analysis. GTR of CE and NE tumors was independently associated with better survival in IDH-mutant astrocytoma and IDH-wildtype glioblastoma (all ps < 0.05). CONCLUSIONS GTR of both CE and NE tumors may significantly improve survival within IDH-mutant astrocytomas and IDH-wildtype glioblastomas. In oligodendrogliomas, the EOR of CE tumor may be crucial in survival; aggressive GTR of NE tumor may be unnecessary, whereas GTR of the CE tumor is recommended. CLINICAL RELEVANCE STATEMENT Surgical strategies on contrast-enhancing (CE) and non-enhancing (NE) tumors should be reassessed considering the different survival outcomes after gross total resection depending on CE and NE tumors in the 2021 World Health Organization classification of adult-type diffuse gliomas. KEY POINTS The survival impact of extent of resection of contrast-enhancing (CE) and non-enhancing (NE) tumors was evaluated in adult-type diffuse gliomas. Gross total resection of both CE and NE tumors may improve survival in isocitrate dehydrogenase (IDH)-mutant astrocytomas and IDH-wildtype glioblastomas, while only gross total resection of the CE tumor improves survival in oligodendrogliomas. Surgical strategies should be reconsidered according to types in adult-type diffuse gliomas.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Sooyon Kim
- Department of Statistics and Data Science, Yonsei University, Seoul, Korea
| | - Kyunghwa Han
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea.
| | - Ju Hyung Moon
- Department of Neurosurgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Jinna Kim
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea.
| |
Collapse
|
10
|
Griessmair M, Delbridge C, Ziegenfeuter J, Jung K, Mueller T, Schramm S, Bernhardt D, Schmidt-Graf F, Kertels O, Thomas M, Zimmer C, Meyer B, Combs SE, Yakushev I, Wiestler B, Metz MC. Exploring molecular glioblastoma: Insights from advanced imaging for a nuanced understanding of the molecularly defined malignant biology. Neurooncol Adv 2024; 6:vdae106. [PMID: 39114182 PMCID: PMC11304596 DOI: 10.1093/noajnl/vdae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Background Molecular glioblastoma (molGB) does not exhibit the histologic hallmarks of a grade 4 glioma but is nevertheless diagnosed as glioblastoma when harboring specific molecular markers. MolGB can easily be mistaken for similar-appearing lower-grade astrocytomas. Here, we investigated how advanced imaging could reflect the underlying tumor biology. Methods Clinical and imaging data were collected for 7 molGB grade 4, 9 astrocytomas grade 2, and 12 astrocytomas grade 3. Four neuroradiologists performed VASARI-scoring of conventional imaging, and their inter-reader agreement was assessed using Fleiss κ coefficient. To evaluate the potential of advanced imaging, 2-sample t test, 1-way ANOVA, Mann-Whitney U, and Kruskal-Wallis test were performed to test for significant differences between apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) that were extracted fully automatically from the whole tumor volume. Results While conventional VASARI imaging features did not allow for reliable differentiation between glioma entities, rCBV was significantly higher in molGB compared to astrocytomas for the 5th and 95th percentile, mean, and median values (P < .05). ADC values were significantly lower in molGB than in astrocytomas for mean, median, and the 95th percentile (P < .05). Although no molGB showed contrast enhancement initially, we observed enhancement in the short-term follow-up of 1 patient. Discussion Quantitative analysis of diffusion and perfusion parameters shows potential in reflecting the malignant tumor biology of molGB. It may increase awareness of molGB in a nonenhancing, "benign" appearing tumor. Our results support the emerging hypothesis that molGB might present glioblastoma captured at an early stage of gliomagenesis.
Collapse
Affiliation(s)
- Michael Griessmair
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | | | - Julian Ziegenfeuter
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Kirsten Jung
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Tobias Mueller
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Severin Schramm
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Denise Bernhardt
- Department of Radiation Oncology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | | | - Olivia Kertels
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Marie Thomas
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Marie-Christin Metz
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| |
Collapse
|
11
|
Jen JP, Li X, Patel M, Haq H, Pohl U, Nagaraju S, Wykes V, Sanghera P, Watts C, Sawlani V. Beyond T2-FLAIR mismatch sign in isocitrate dehydrogenase mutant 1p19q non-codeleted astrocytoma: Analysis of tumor core and evolution with multiparametric magnetic resonance imaging. Neurooncol Adv 2024; 6:vdae065. [PMID: 39071736 PMCID: PMC11275453 DOI: 10.1093/noajnl/vdae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Background The T2-FLAIR mismatch sign is an imaging correlate for isocitrate dehydrogenase (IDH)-mutant 1p19q non-codeleted astrocytomas. However, it is only seen in a part of the cases at certain stages. Many of the tumors likely lose T2 homogeneity as they grow in size, and become heterogenous. The aim of this study was to investigate the timecourse of T2-FLAIR mismatch sign, and assess intratumoral heterogeneity using multiparametric magnetic resonance imaging techniques. Methods A total of 128 IDH-mutant gliomas were retrospectively analyzed. Observers blinded to molecular status used strict criteria to select T2-FLAIR mismatch astrocytomas. Pre-biopsy and follow-up standard structural sequences of T2, FLAIR and apparent diffusion coefficient, MR spectroscopy (both single- and multi-voxel techniques), and DSC perfusion were observed. Results Nine T2-FLAIR mismatch astrocytomas were identified. 7 had MR spectroscopy and perfusion data. The smallest astrocytomas began as rounded T2 homogeneous lesions without FLAIR suppression, and developed T2-FLAIR mismatch during follow-up with falls in NAA and raised Cho/Cr ratio. Larger tumors at baseline with T2-FLAIR mismatch signs developed intratumoral heterogeneity, and showed elevated Cho/Cr ratio and raised relative cerebral blood volume (rCBV). The highest levels of intratumoral Cho/Cr and rCBV changes were located within the tumor core, and this area signifies the progression of the tumors toward high grade. Conclusions T2-FLAIR mismatch sign is seen at a specific stage in the development of astrocytoma. By assessing the subsequent heterogeneity, MR spectroscopy and perfusion imaging are able to predict the progression of the tumor towards high grade, thereby can assist targeting for biopsy and selective debulking.
Collapse
Affiliation(s)
- Jian Ping Jen
- Department of Neuroradiology, University Hospitals Birmingham, Birmingham, UK
| | - Xuanxuan Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Markand Patel
- Department of Neuroradiology, University Hospitals Birmingham, Birmingham, UK
| | - Huzaifah Haq
- Department of Neuroradiology, University Hospitals Birmingham, Birmingham, UK
| | - Ute Pohl
- Department of Cellular Pathology, University Hospitals Birmingham, Birmingham, UK
| | - Santhosh Nagaraju
- Department of Cellular Pathology, University Hospitals Birmingham, Birmingham, UK
| | - Victoria Wykes
- Neuroimaging, University of Birmingham, Birmingham, UK
- Department of Neurosurgery, University Hospitals Birmingham, Birmingham, UK
| | - Paul Sanghera
- Neuroimaging, University of Birmingham, Birmingham, UK
| | - Colin Watts
- Neuroimaging, University of Birmingham, Birmingham, UK
- Department of Neurosurgery, University Hospitals Birmingham, Birmingham, UK
| | - Vijay Sawlani
- Department of Neuroradiology, University Hospitals Birmingham, Birmingham, UK
- Neuroimaging, University of Birmingham, Birmingham, UK
| |
Collapse
|
12
|
Gómez Vecchio T, Neimantaite A, Thurin E, Furtner J, Solheim O, Pallud J, Berger M, Widhalm G, Bartek J, Häggström I, Gu IYH, Jakola AS. Clinical application of machine-based deep learning in patients with radiologically presumed adult-type diffuse glioma grades 2 or 3. Neurooncol Adv 2024; 6:vdae192. [PMID: 39659833 PMCID: PMC11631182 DOI: 10.1093/noajnl/vdae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Background Radiologically presumed diffuse lower-grade glioma (dLGG) are typically non or minimal enhancing tumors, with hyperintensity in T2w-images. The aim of this study was to test the clinical usefulness of deep learning (DL) in IDH mutation prediction in patients with radiologically presumed dLGG. Methods Three hundred and fourteen patients were retrospectively recruited from 6 neurosurgical departments in Sweden, Norway, France, Austria, and the United States. Collected data included patients' age, sex, tumor molecular characteristics (IDH, and 1p19q), and routine preoperative radiological images. A clinical model was built using multivariable logistic regression with the variables age and tumor location. DL models were built using MRI data only, and 4 DL architectures used in glioma research. In the final validation test, the clinical model and the best DL model were scored on an external validation cohort with 155 patients from the Erasmus Glioma Dataset. Results The mean age in the recruited and external cohorts was 45.0 (SD 14.3) and 44.3 years (SD 14.6). The cohorts were rather similar, except for sex distribution (53.5% vs 64.5% males, P-value = .03) and IDH status (30.9% vs 12.9% IDH wild-type, P-value <.01). Overall, the area under the curve for the prediction of IDH mutations in the external validation cohort was 0.86, 0.82, and 0.87 for the clinical model, the DL model, and the model combining both models' probabilities. Conclusions In their current state, when these complex models were applied to our clinical scenario, they did not seem to provide a net gain compared to our baseline clinical model.
Collapse
Affiliation(s)
- Tomás Gómez Vecchio
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alice Neimantaite
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Thurin
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Julia Furtner
- Medical Image Analysis and Artificial Intelligence, Danube Private University, Krems an der Donau, Austria
| | - Ole Solheim
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurosurgery, St. Olavs Hospital, Trondheim, Norway
| | - Johan Pallud
- Department of Neurosurgery, GHU Paris Psychiatrie & Neurosciences, Paris, France
| | - Mitchel Berger
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Jiri Bartek
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Ida Häggström
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Irene Y H Gu
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Asgeir Store Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Nakhate V, Gonzalez Castro LN. Artificial intelligence in neuro-oncology. Front Neurosci 2023; 17:1217629. [PMID: 38161802 PMCID: PMC10755952 DOI: 10.3389/fnins.2023.1217629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Artificial intelligence (AI) describes the application of computer algorithms to the solution of problems that have traditionally required human intelligence. Although formal work in AI has been slowly advancing for almost 70 years, developments in the last decade, and particularly in the last year, have led to an explosion of AI applications in multiple fields. Neuro-oncology has not escaped this trend. Given the expected integration of AI-based methods to neuro-oncology practice over the coming years, we set to provide an overview of existing technologies as they are applied to the neuropathology and neuroradiology of brain tumors. We highlight current benefits and limitations of these technologies and offer recommendations on how to appraise novel AI-tools as they undergo consideration for integration into clinical workflows.
Collapse
Affiliation(s)
- Vihang Nakhate
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - L. Nicolas Gonzalez Castro
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- The Center for Neuro-Oncology, Dana–Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
14
|
Lasocki A, Buckland ME, Molinaro T, Xie J, Gaillard F. Radiogenomics Provides Insights into Gliomas Demonstrating Single-Arm 1p or 19q Deletion. AJNR Am J Neuroradiol 2023; 44:1270-1274. [PMID: 37884300 PMCID: PMC10631530 DOI: 10.3174/ajnr.a8034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND AND PURPOSE IDH-mutant gliomas are further divided on the basis of 1p/19q status: oligodendroglioma, IDH-mutant and 1p/19q-codeleted, and astrocytoma, IDH-mutant (without codeletion). Occasionally, testing may reveal single-arm 1p or 19q deletion (unideletion), which remains within the diagnosis of astrocytoma. Molecular assessment has some limitations, however, raising the possibility that some unideleted tumors could actually be codeleted. This study assessed whether unideleted tumors had MR imaging features and survival more consistent with astrocytomas or oligodendrogliomas. MATERIALS AND METHODS One hundred twenty-one IDH-mutant grade 2-3 gliomas with 1p/19q results were identified. Two neuroradiologists assessed the T2-FLAIR mismatch sign and calcifications, as differentiators of astrocytomas and oligodendrogliomas. MR imaging features and survival were compared among the unideleted tumors, codeleted tumors, and those without 1p or 19q deletion. RESULTS The cohort comprised 65 tumors without 1p or 19q deletion, 12 unideleted tumors, and 44 codeleted. The proportion of unideleted tumors demonstrating the T2-FLAIR mismatch sign (33%) was similar to that in tumors without deletion (49%; P = .39), but significantly higher than codeleted tumors (0%; P = .001). Calcifications were less frequent in unideleted tumors (0%) than in codeleted tumors (25%), but this difference did not reach statistical significance (P = .097). The median survival of patients with unideleted tumors was 7.8 years, which was similar to that in tumors without deletion (8.5 years; P = .72) but significantly shorter than that in codeleted tumors (not reaching median survival after 12 years; P = .013). CONCLUSIONS IDH-mutant gliomas with single-arm 1p or 19q deletion have MR imaging appearance and survival that are similar to those of astrocytomas without 1p or 19q deletion and significantly different from those of 1p/19q-codeleted oligodendrogliomas.
Collapse
Affiliation(s)
- Arian Lasocki
- From the Department of Cancer Imaging (A.L.), Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology (A.L.), The University of Melbourne, Parkville, Victoria, Australia
- Department of Radiology (A.L., F.G.), The University of Melbourne, Parkville, Victoria, Australia
| | - Michael E Buckland
- Department of Neuropathology (M.E.B.), Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- School of Medical Sciences (M.E.B.), University of Sydney, Camperdown, New South Wales, Australia
| | - Tahlia Molinaro
- Department of Medical Oncology (T.M.), Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jing Xie
- Centre for Biostatistics and Clinical Trials (J.X.), Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Frank Gaillard
- Department of Radiology (A.L., F.G.), The University of Melbourne, Parkville, Victoria, Australia
- Department of Radiology (F.G.), The Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Liu X, Han T, Wang Y, Ke X, Xue C, Deng J, Li S, Sun Q, Liu H, Zhou J. Utility of Apparent Diffusion Coefficient Histogram Analysis in Differentiating Microcystic Meningioma from Intracranial Solitary Fibrous Tumor. World Neurosurg 2023; 177:e446-e452. [PMID: 37356483 DOI: 10.1016/j.wneu.2023.06.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND To investigate the possibility of histogram analysis of apparent diffusion coefficient (ADC) maps in differentiating microcystic meningioma (MM) from intracranial solitary fibrous tumor (SFT). METHODS Eighteen patients with MM and 23 patients with SFT were enrolled in this retrospective study. Conventional magnetic resonance imaging (MRI) features and 9 ADC histogram parameters (including mean, first (ADC1), 10th (ADC10), 50th (ADC50), 90th (ADC90), and 99th (ADC99) percentiles ADC, as well as variance, skewness, and kurtosis) between MM and SFT were compared. The diagnostic performance of the optimal parameter was determined by the receiver operating characteristic analysis. RESULTS SFT showed a significantly lower mean, ADC1, ADC10, ADC50, ADC90, and ADC99 than MM (all P < 0.05), while no significant difference was found in conventional MRI features or other ADC histogram parameters (all P > 0.05). ADC1 was identified as the optimal parameter in differentiating between MM and SFT, which achieved an area under the curve of 0.861, with sensitivity, specificity, and accuracy of 78.26%, 88.89%, and 82.93%, respectively. CONCLUSIONS MM and SFT show overlapping conventional MRI features. ADC histogram analysis helps to differentiate between MM and SFT, with ADC1 being the optimal parameter with the best discrimination performance.
Collapse
Affiliation(s)
- Xianwang Liu
- Radiology of Department, Lanzhou University Second Hospital, Lanzhou, People's Republic of China; Second Clinical School, Lanzhou University, Lanzhou, People's Republic of China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, People's Republic of China
| | - Tao Han
- Radiology of Department, Lanzhou University Second Hospital, Lanzhou, People's Republic of China; Second Clinical School, Lanzhou University, Lanzhou, People's Republic of China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, People's Republic of China
| | - Yuzhu Wang
- Second Clinical School, Lanzhou University, Lanzhou, People's Republic of China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China
| | - Xiaoai Ke
- Radiology of Department, Lanzhou University Second Hospital, Lanzhou, People's Republic of China; Second Clinical School, Lanzhou University, Lanzhou, People's Republic of China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, People's Republic of China
| | - Caiqiang Xue
- Radiology of Department, Lanzhou University Second Hospital, Lanzhou, People's Republic of China; Second Clinical School, Lanzhou University, Lanzhou, People's Republic of China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, People's Republic of China
| | - Juan Deng
- Radiology of Department, Lanzhou University Second Hospital, Lanzhou, People's Republic of China; Second Clinical School, Lanzhou University, Lanzhou, People's Republic of China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, People's Republic of China
| | - Shenglin Li
- Radiology of Department, Lanzhou University Second Hospital, Lanzhou, People's Republic of China; Second Clinical School, Lanzhou University, Lanzhou, People's Republic of China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, People's Republic of China
| | - Qiu Sun
- Radiology of Department, Lanzhou University Second Hospital, Lanzhou, People's Republic of China; Second Clinical School, Lanzhou University, Lanzhou, People's Republic of China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, People's Republic of China
| | - Hong Liu
- Radiology of Department, Lanzhou University Second Hospital, Lanzhou, People's Republic of China; Second Clinical School, Lanzhou University, Lanzhou, People's Republic of China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, People's Republic of China
| | - Junlin Zhou
- Radiology of Department, Lanzhou University Second Hospital, Lanzhou, People's Republic of China; Second Clinical School, Lanzhou University, Lanzhou, People's Republic of China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, People's Republic of China.
| |
Collapse
|
16
|
Kalaroopan D, Lasocki A. MRI-based deep learning techniques for the prediction of isocitrate dehydrogenase and 1p/19q status in grade 2-4 adult gliomas. J Med Imaging Radiat Oncol 2023; 67:492-498. [PMID: 36919468 DOI: 10.1111/1754-9485.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/16/2023] [Indexed: 03/16/2023]
Abstract
Molecular biomarkers are becoming increasingly important in the classification of intracranial gliomas. While tissue sampling remains the gold standard, there is growing interest in the use of deep learning (DL) techniques to predict these markers. This narrative review with a systematic approach identifies and synthesises the current published data on DL techniques using conventional MRI sequences for predicting isocitrate dehydrogenase (IDH) and 1p/19q-codeletion status in World Health Organisation grade 2-4 gliomas. Three databases were searched for relevant studies. In all, 13 studies met the inclusion criteria after exclusions. Key results, limitations and discrepancies between studies were synthesised. High accuracy has been reported in some studies, but the existing literature has several limitations, including generally small cohort sizes, a paucity of studies with independent testing cohorts and a lack of studies assessing IDH and 1p/19q together. While DL shows promise as a non-invasive means of predicting glioma genotype, addressing these limitations in future research will be important for facilitating clinical translation.
Collapse
Affiliation(s)
- Dinusha Kalaroopan
- Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Arian Lasocki
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Radiology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Lasocki A, Buckland ME, Molinaro T, Xie J, Whittle JR, Wei H, Gaillard F. Correlating MRI features with additional genetic markers and patient survival in histological grade 2-3 IDH-mutant astrocytomas. Neuroradiology 2023; 65:1215-1223. [PMID: 37316586 PMCID: PMC10338396 DOI: 10.1007/s00234-023-03175-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE The increasing importance of molecular markers for classification and prognostication of diffuse gliomas has prompted the use of imaging features to predict genotype ("radiogenomics"). CDKN2A/B homozygous deletion has only recently been added to the diagnostic paradigm for IDH[isocitrate dehydrogenase]-mutant astrocytomas; thus, associated radiogenomic literature is sparse. There is also little data on whether different IDH mutations are associated with different imaging appearances. Furthermore, given that molecular status is now generally obtained routinely, the additional prognostic value of radiogenomic features is less clear. This study correlated MRI features with CDKN2A/B status, IDH mutation type and survival in histological grade 2-3 IDH-mutant brain astrocytomas. METHODS Fifty-eight grade 2-3 IDH-mutant astrocytomas were identified, 50 with CDKN2A/B results. IDH mutations were stratified into IDH1-R132H and non-canonical mutations. Background and survival data were obtained. Two neuroradiologists independently assessed the following MRI features: T2-FLAIR mismatch (<25%, 25-50%, >50%), well-defined tumour margins, contrast-enhancement (absent, wispy, solid) and central necrosis. RESULTS 8/50 tumours with CDKN2A/B results demonstrated homozygous deletion; slightly shorter survival was not significant (p=0.571). IDH1-R132H mutations were present in 50/58 (86%). No MRI features correlated with CDKN2A/B status or IDH mutation type. T2-FLAIR mismatch did not predict survival (p=0.977), but well-defined margins predicted longer survival (HR 0.36, p=0.008), while solid enhancement predicted shorter survival (HR 3.86, p=0.004). Both correlations remained significant on multivariate analysis. CONCLUSION MRI features did not predict CDKN2A/B homozygous deletion, but provided additional positive and negative prognostic information which correlated more strongly with prognosis than CDKN2A/B status in our cohort.
Collapse
Affiliation(s)
- Arian Lasocki
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Grattan St, Melbourne, Melbourne, Victoria, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
- Department of Radiology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Tahlia Molinaro
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jing Xie
- Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - James R Whittle
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Personalised Oncology Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Heng Wei
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Frank Gaillard
- Department of Radiology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Radiology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
18
|
Picca A, Bruno F, Nichelli L, Sanson M, Rudà R. Advances in molecular and imaging biomarkers in lower-grade gliomas. Expert Rev Neurother 2023; 23:1217-1231. [PMID: 37982735 DOI: 10.1080/14737175.2023.2285472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Lower-grade (grade 2-3) gliomas (LGGs) constitutes a group of primary brain tumors with variable clinical behaviors and treatment responses. Recent advancements in molecular biology have redefined their classification, and novel imaging modalities emerged for the noninvasive diagnosis and follow-up. AREAS COVERED This review comprehensively analyses the current knowledge on molecular and imaging biomarkers in LGGs. Key molecular alterations, such as IDH mutations and 1p/19q codeletion, are discussed for their prognostic and predictive implications in guiding treatment decisions. Moreover, the authors explore theranostic biomarkers for the potential of tailored therapies. Additionally, they also describe the utility of advanced imaging modalities, including widely available techniques, as dynamic susceptibility contrast perfusion-weighted imaging and less validated, emerging approaches, for the noninvasive LGGs characterization and follow-up. EXPERT OPINION The integration of molecular markers enhanced the stratification of LGGs, leading to the new concept of integrated histomolecular classification. While the IDH mutation is an established key prognostic and predictive marker, recent results from IDH inhibitors trials showed its potential value as a theranostic marker. In this setting, advanced MRI techniques such as 2-D-hydroxyglutarate spectroscopy are very promising for the noninvasive diagnosis and monitoring of LGGs. This progress offers exciting prospects for personalized medicine and improved treatment outcomes in LGGs.
Collapse
Affiliation(s)
- Alberto Picca
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Francesco Bruno
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| | - Lucia Nichelli
- Service de Neuroradiologie, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
| | - Marc Sanson
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| |
Collapse
|
19
|
Griessmair M, Delbridge C, Ziegenfeuter J, Bernhardt D, Gempt J, Schmidt-Graf F, Kertels O, Thomas M, Meyer HS, Zimmer C, Meyer B, Combs SE, Yakushev I, Wiestler B, Metz MC. Imaging the WHO 2021 Brain Tumor Classification: Fully Automated Analysis of Imaging Features of Newly Diagnosed Gliomas. Cancers (Basel) 2023; 15:2355. [PMID: 37190283 PMCID: PMC10136825 DOI: 10.3390/cancers15082355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/13/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND The fifth version of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS) in 2021 brought substantial changes. Driven by the enhanced implementation of molecular characterization, some diagnoses were adapted while others were newly introduced. How these changes are reflected in imaging features remains scarcely investigated. MATERIALS AND METHODS We retrospectively analyzed 226 treatment-naive primary brain tumor patients from our institution who received extensive molecular characterization by epigenome-wide methylation microarray and were diagnosed according to the 2021 WHO brain tumor classification. From multimodal preoperative 3T MRI scans, we extracted imaging metrics via a fully automated, AI-based image segmentation and processing pipeline. Subsequently, we examined differences in imaging features between the three main glioma entities (glioblastoma, astrocytoma, and oligodendroglioma) and particularly investigated new entities such as astrocytoma, WHO grade 4. RESULTS Our results confirm prior studies that found significantly higher median CBV (p = 0.00003, ANOVA) and lower median ADC in contrast-enhancing areas of glioblastomas, compared to astrocytomas and oligodendrogliomas (p = 0.41333, ANOVA). Interestingly, molecularly defined glioblastoma, which usually does not contain contrast-enhancing areas, also shows significantly higher CBV values in the non-enhancing tumor than common glioblastoma and astrocytoma grade 4 (p = 0.01309, ANOVA). CONCLUSIONS This work provides extensive insights into the imaging features of gliomas in light of the new 2021 WHO CNS tumor classification. Advanced imaging shows promise in visualizing tumor biology and improving the diagnosis of brain tumor patients.
Collapse
Affiliation(s)
- Michael Griessmair
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, 81675 Munich, Germany
| | - Claire Delbridge
- Department of Pathology, Klinikum Rechts der Isar, TU Munich, 81675 Munich, Germany
| | - Julian Ziegenfeuter
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, 81675 Munich, Germany
| | - Denise Bernhardt
- Department of Radiation Oncology, Klinikum Rechts der Isar, TU Munich, 81675 Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum Rechts der Isar, TU Munich, 81675 Munich, Germany
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | - Olivia Kertels
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, 81675 Munich, Germany
| | - Marie Thomas
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, 81675 Munich, Germany
| | - Hanno S. Meyer
- Department of Neurosurgery, Klinikum Rechts der Isar, TU Munich, 81675 Munich, Germany
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, 81675 Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum Rechts der Isar, TU Munich, 81675 Munich, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, Klinikum Rechts der Isar, TU Munich, 81675 Munich, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, Klinikum Rechts der Isar, TU Munich, 81675 Munich, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, 81675 Munich, Germany
- TranslaTUM, TU Munich, 81675 Munich, Germany
| | - Marie-Christin Metz
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, 81675 Munich, Germany
| |
Collapse
|
20
|
Yang J, Li L, Luo T, Nie C, Fan R, Li D, Yang R, Zhou C, Li Q, Hu X, Chen W. Cyclin-Dependent Kinase Inhibitor 2A/B Homozygous Deletion Prediction and Survival Analysis. Brain Sci 2023; 13:brainsci13040548. [PMID: 37190513 DOI: 10.3390/brainsci13040548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Cyclin-Dependent Kinase Inhibitor 2A/B (CDKN2A/B) homozygous deletion was a significant prognostic factor for gliomas and affected the treatment strategy. However, the radiomic features of CDKN2A/B homozygous deletion in gliomas have not been developed, and whether the radiomic features and molecular subgroups can provide prognostic value in low-grade gliomas (LGGs) has yet to be studied. Thus, this study aimed to develop a predictive model of CDKN2A/B in gliomas and investigate the prognostic value of this biomarker and radiomic features in isocitrate dehydrogenase (IDH)-mutant LGGs. First, we developed the predictive model of CDKN2A/B homozygous deletion in 292 patients. The results revealed that radiomic features predict CDKN2A/B homozygous deletion with high accuracy and reliability. Subsequently, the prognostic survival models of 104 patients (IDH-mutant LGGs) were established, which provided an essential value for prognostic evaluation and indicated that CDKN2A/B homozygous deletion can be used as an independent predictor of prognosis in LGGs.
Collapse
|
21
|
Guo D, Jiang B. Noninvasively evaluating the grade and IDH mutation status of gliomas by using mono-exponential, bi-exponential diffusion-weighted imaging and three-dimensional pseudo-continuous arterial spin labeling. Eur J Radiol 2023; 160:110721. [PMID: 36738600 DOI: 10.1016/j.ejrad.2023.110721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVES To noninvasively assess the diagnostic performance of diffusion-weighted imaging (DWI), bi-exponential intravoxel incoherent motion imaging (IVIM) and three-dimensional pseudo-continuous arterial spin labeling (3D pCASL) in differentiating lower-grade gliomas (LGGs) from high-grade gliomas (HGGs), and predicting the isocitrate dehydrogenase (IDH) mutation status. MATERIALS AND METHODS Ninety-five patients with pathologically confirmed grade 2-4 gliomas with preoperative DWI, IVIM and 3D pCASL were enrolled in this study. The Student's t test and Mann-Whitney U test were used to evaluate differences in parameters of DWI, IVIM and 3D pCASL between LGG and HGG as well as between mutant and wild-type IDH in grade 2 and 3 diffusion astrocytoma; receiver operator characteristic (ROC) analysis was used to assess the diagnostic performance. RESULTS The value of ADCmean, ADCmin, Dmean and Dmin in HGGs were lower than in LGGs, while the value of CBFmean and CBFmax in HGGs were higher than in LGGs. In ROC analysis, the AUC values of Dmean, Dmin and CBFmax were 0.827, 0.878 and 0.839, respectively. The combination of CBFmax and Dmin displayed the highest diagnostic performance to distinguish LGGs from HGGs, with AUC 0.906, sensitivity 82.4 %, and specificity 86.4 %. In grades 2 and 3 diffusion astrocytoma patients, ADCmin, Dmean, Dmin, CBFmean and CBFmax showed significant differences between IDHmut and IDHwt group (p < 0.05, 0.001, 0.001, 0.01 and 0.001, respectively) and the AUC values were 0. 709, 0.849, 0.919, 0.755 and 0.873, respectively. Similarly, the combination of CBFmax and Dmin demonstrated the highest AUC value (0.938) in prediction IDH mutation status, with sensitivity 92.9 %, and specificity 95.5 %. CONCLUSION The combination of IVIM and 3D pCASL can be used in prediction histologic grade and IDH mutation status of glioma noninvasively.
Collapse
Affiliation(s)
- Da Guo
- Department of Radiology, The Sixth People's Hospital of Nanchong, Sichuan Province, People's Republic of China
| | - Binghu Jiang
- Department of Radiology, Nanchong Central Hospital, Sichuan Province, People's Republic of China.
| |
Collapse
|
22
|
Lechpammer M, Mahammedi A, Pomeranz Krummel DA, Sengupta S. Lessons learned from evolving frameworks in adult glioblastoma. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:131-140. [PMID: 36796938 DOI: 10.1016/b978-0-323-85538-9.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant adult brain tumor. Significant effort has been directed to achieve a molecular subtyping of GBM to impact treatment. The discovery of new unique molecular alterations has resulted in a more effective classification of tumors and has opened the door to subtype-specific therapeutic targets. Morphologically identical GBM may have different genetic, epigenetic, and transcriptomic alterations and therefore different progression trajectories and response to treatments. With a transition to molecularly guided diagnosis, there is now a potential to personalize and successfully manage this tumor type to improve outcomes. The steps to achieve subtype-specific molecular signatures can be extrapolated to other neuroproliferative as well as neurodegenerative disorders.
Collapse
Affiliation(s)
- Mirna Lechpammer
- Foundation Medicine, Inc., Cambridge, MA, United States; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Abdelkader Mahammedi
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Daniel A Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
23
|
Importance of Age and Noncontrast-Enhancing Tumor as Biomarkers for Isocitrate Dehydrogenase-Mutant Glioblastoma: A Multicenter Study. J Comput Assist Tomogr 2023:00004728-990000000-00142. [PMID: 36877775 DOI: 10.1097/rct.0000000000001456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
PURPOSE This study aimed to investigate the most useful clinical and magnetic resonance imaging (MRI) parameters for differentiating isocitrate dehydrogenase (IDH)-mutant and -wildtype glioblastomas in the 2016 World Health Organization Classification of Tumors of the Central Nervous System. METHODS This multicenter study included 327 patients with IDH-mutant or IDH-wildtype glioblastoma in the 2016 World Health Organization classification who preoperatively underwent MRI. Isocitrate dehydrogenase mutation status was determined by immunohistochemistry, high-resolution melting analysis, and/or IDH1/2 sequencing. Three radiologists independently reviewed the tumor location, tumor contrast enhancement, noncontrast-enhancing tumor (nCET), and peritumoral edema. Two radiologists independently measured the maximum tumor size and mean and minimum apparent diffusion coefficients of the tumor. Univariate and multivariate logistic regression analyses with an odds ratio (OR) were performed. RESULTS The tumors were IDH-wildtype glioblastoma in 306 cases and IDH-mutant glioblastoma in 21. Interobserver agreement for both qualitative and quantitative evaluations was moderate to excellent. The univariate analyses revealed a significant difference in age, seizure, tumor contrast enhancement, and nCET (P < 0.05). The multivariate analysis revealed significant difference in age for all 3 readers (reader 1, odds ratio [OR] = 0.960, P = 0.012; reader 2, OR = 0.966, P = 0.048; reader 3, OR = 0.964, P = 0.026) and nCET for 2 readers (reader 1, OR = 3.082, P = 0.080; reader 2, OR = 4.500, P = 0.003; reader 3, OR = 3.078, P = 0.022). CONCLUSIONS Age and nCET are the most useful parameters among the clinical and MRI parameters for differentiating IDH-mutant and IDH-wildtype glioblastomas.
Collapse
|
24
|
Lasocki A, Abdalla G, Chow G, Thust SC. Imaging features associated with H3 K27-altered and H3 G34-mutant gliomas: a narrative systematic review. Cancer Imaging 2022; 22:63. [DOI: 10.1186/s40644-022-00500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract
Background
Advances in molecular diagnostics accomplished the discovery of two malignant glioma entities harboring alterations in the H3 histone: diffuse midline glioma, H3 K27-altered and diffuse hemispheric glioma, H3 G34-mutant. Radiogenomics research, which aims to correlate tumor imaging features with genotypes, has not comprehensively examined histone-altered gliomas (HAG). The aim of this research was to synthesize the current published data on imaging features associated with HAG.
Methods
A systematic search was performed in March 2022 using PubMed and the Cochrane Library, identifying studies on the imaging features associated with H3 K27-altered and/or H3 G34-mutant gliomas.
Results
Forty-seven studies fulfilled the inclusion criteria, the majority on H3 K27-altered gliomas. Just under half (21/47) were case reports or short series, the remainder being diagnostic accuracy studies. Despite heterogeneous methodology, some themes emerged. In particular, enhancement of H3 K27M-altered gliomas is variable and can be less than expected given their highly malignant behavior. Low apparent diffusion coefficient values have been suggested as a biomarker of H3 K27-alteration, but high values do not exclude this genotype. Promising correlations between high relative cerebral blood volume values and H3 K27-alteration require further validation. Limited data on H3 G34-mutant gliomas suggest some morphologic overlap with 1p/19q-codeleted oligodendrogliomas.
Conclusions
The existing data are limited, especially for H3 G34-mutant gliomas and artificial intelligence techniques. Current evidence indicates that imaging-based predictions of HAG are insufficient to replace histological assessment. In particular, H3 K27-altered gliomas should be considered when occurring in typical midline locations irrespective of enhancement characteristics.
Collapse
|
25
|
Jing H, Yang F, Peng K, Qin D, He Y, Yang G, Zhang H. Multimodal MRI-Based Radiomic Nomogram for the Early Differentiation of Recurrence and Pseudoprogression of High-Grade Glioma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4667117. [PMID: 36246986 PMCID: PMC9553483 DOI: 10.1155/2022/4667117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022]
Abstract
Objective To evaluate the diagnostic value of multimodal MRI radiomics based on T2-weighted fluid attenuated inversion recovery imaging (T2WI-FLAIR) combined with T1-weighted contrast enhanced imaging (T1WI-CE) in the early differentiation of high-grade glioma recurrence from pseudoprogression. Methods A total of one hundred eighteen patients with brain gliomas who were diagnosed from March 2014 to April 2020 were retrospectively analyzed. According to the clinical characteristics, the patients were randomly split into a training group (n = 83) and a test group (n = 35) at a 7 : 3 ratio. The region of interest (ROI) was delineated, and 2632 radiomic features were extracted. We used multiple logistic regression to establish a classification model, including the T1 model, T2 model, and T1 + T2 model, to differentiate recurrence from pseudoprogression. The diagnostic efficiency of the model was evaluated by calculating the area under the receiver operating characteristic curve (AUC) and accuracy (ACC) and by analyzing the calibration curve of the nomogram and decision curve. Results There were 75 cases of recurrence and 43 cases of pseudoprogression. The diagnostic efficacies of the multimodal MRI-based radiomic model were relatively high. The AUC values and ACC of the training group were 0.831 and 77.11%, respectively, and the AUC values and ACC of the test group were 0.829 and 88.57%, respectively. The calibration curve of the nomogram showed that the discrimination probability was consistent with the actual occurrence in the training group, and the discrimination probability was roughly the same as the actual occurrence in the test group. In the decision curve analysis, the T1 + T2 model showed greater overall net efficiency. Conclusion The multimodal MRI radiomic model has relatively high efficiency in the early differentiation of recurrence from pseudoprogression, and it could be helpful for clinicians in devising correct treatment plans so that patients can be treated in a timely and accurate manner.
Collapse
Affiliation(s)
- Hui Jing
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province, China
- Department of Radiology, The Sixth Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Fan Yang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Kun Peng
- Department of Radiology, The Sixth Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Danlei Qin
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yexin He
- Department of Radiology, Shanxi Provincial People's Hospital, Affiliated People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Guoqiang Yang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hui Zhang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province, China
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
26
|
Johnson DR, Giannini C, Vaubel RA, Morris JM, Eckel LJ, Kaufmann TJ, Guerin JB. A Radiologist's Guide to the 2021 WHO Central Nervous System Tumor Classification: Part I-Key Concepts and the Spectrum of Diffuse Gliomas. Radiology 2022; 304:494-508. [PMID: 35880978 DOI: 10.1148/radiol.213063] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The fifth edition of the World Health Organization (WHO) classification of tumors of the central nervous system, published in 2021, contains substantial updates in the classification of tumor types. Many of these changes are relevant to radiologists, including "big picture" changes to tumor diagnosis methods, nomenclature, and grading, which apply broadly to many or all central nervous system tumor types, as well as the addition, elimination, and renaming of multiple specific tumor types. Radiologists are integral in interpreting brain tumor imaging studies and have a considerable impact on patient care. Thus, radiologists must be aware of pertinent changes in the field. Staying updated with the most current guidelines allows radiologists to be informed and effective at multidisciplinary tumor boards and in interactions with colleagues in neuro-oncology, neurosurgery, radiation oncology, and neuropathology. This review represents the first of a two-installment review series on the most recent changes to the WHO brain tumor classification system. This first installment focuses on the changes to the classification of adult and pediatric gliomas of greatest relevance for radiologists.
Collapse
Affiliation(s)
- Derek R Johnson
- From the Departments of Radiology (D.R.J., J.M.M., L.J.E., T.J.K., J.B.G.), Neurology (D.R.J.), and Laboratory Medicine and Pathology (C.G., R.A.V.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy (C.G.)
| | - Caterina Giannini
- From the Departments of Radiology (D.R.J., J.M.M., L.J.E., T.J.K., J.B.G.), Neurology (D.R.J.), and Laboratory Medicine and Pathology (C.G., R.A.V.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy (C.G.)
| | - Rachael A Vaubel
- From the Departments of Radiology (D.R.J., J.M.M., L.J.E., T.J.K., J.B.G.), Neurology (D.R.J.), and Laboratory Medicine and Pathology (C.G., R.A.V.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy (C.G.)
| | - Jonathan M Morris
- From the Departments of Radiology (D.R.J., J.M.M., L.J.E., T.J.K., J.B.G.), Neurology (D.R.J.), and Laboratory Medicine and Pathology (C.G., R.A.V.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy (C.G.)
| | - Laurence J Eckel
- From the Departments of Radiology (D.R.J., J.M.M., L.J.E., T.J.K., J.B.G.), Neurology (D.R.J.), and Laboratory Medicine and Pathology (C.G., R.A.V.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy (C.G.)
| | - Timothy J Kaufmann
- From the Departments of Radiology (D.R.J., J.M.M., L.J.E., T.J.K., J.B.G.), Neurology (D.R.J.), and Laboratory Medicine and Pathology (C.G., R.A.V.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy (C.G.)
| | - Julie B Guerin
- From the Departments of Radiology (D.R.J., J.M.M., L.J.E., T.J.K., J.B.G.), Neurology (D.R.J.), and Laboratory Medicine and Pathology (C.G., R.A.V.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy (C.G.)
| |
Collapse
|
27
|
Lasocki A, Sia J, Stuckey SL. Improving the diagnosis of radiation necrosis after stereotactic radiosurgery to intracranial metastases with conventional MRI features: a case series. Cancer Imaging 2022; 22:33. [PMID: 35794677 PMCID: PMC9258115 DOI: 10.1186/s40644-022-00470-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
Background The distinction between true disease progression and radiation necrosis after stereotactic radiosurgery to intracranial metastases is a common, but challenging, clinical scenario. Improvements in systemic therapies are increasing the importance of this distinction. A variety of imaging techniques have been investigated, but the value of any individual technique is limited. Case presentation Assessment should extend beyond simply the appearances of the lesion at a given timepoint, but also consider local anatomy and lesion evolution. Firstly, enlargement of a metastasis is affected by local anatomical boundaries, such as the dural reflections or cerebrospinal fluid spaces. In contrast, the radiation dose administered with stereotactic radiosurgery does not respect these anatomical boundaries and is largely concentric around the treated lesion. Therefore, new, non-contiguous enhancement across such a boundary can be confidently attributed to radiation necrosis. Secondly, the dynamic nature of radiation necrosis may result in a change in lesion shape, with different portions of the lesion simultaneously enlarging and regressing. Regression of part of a lesion indicates radiation necrosis, even if the overall lesion enlarges. This case series describes these two features and provides illustrative clinical examples in which these features allowed a confident diagnosis of radiation necrosis. Conclusions The distinction between true disease progression and radiation necrosis should extend beyond just the appearances of the lesion. More nuanced interpretation incorporating a relationship to anatomical boundaries and a change in shape can improve accurate diagnosis of radiation necrosis.
Collapse
|
28
|
Du N, Zhou X, Mao R, Shu W, Xiao L, Ye Y, Xu X, Shen Y, Lin G, Fang X, Li S. Preoperative and Noninvasive Prediction of Gliomas Histopathological Grades and IDH Molecular Types Using Multiple MRI Characteristics. Front Oncol 2022; 12:873839. [PMID: 35712483 PMCID: PMC9196247 DOI: 10.3389/fonc.2022.873839] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/05/2022] [Indexed: 01/30/2023] Open
Abstract
Background and Purpose Gliomas are one of the most common tumors in the central nervous system. This study aimed to explore the correlation between MRI morphological characteristics, apparent diffusion coefficient (ADC) parameters and pathological grades, as well as IDH gene phenotypes of gliomas. Methods Preoperative MRI data from 166 glioma patients with pathological confirmation were retrospectively analyzed to compare the differences of MRI characteristics and ADC parameters between the low-grade and high-grade gliomas (LGGs vs. HGGs), IDH mutant and wild-type gliomas (IDHmut vs. IDHwt). Multivariate models were constructed to predict the pathological grades and IDH gene phenotypes of gliomas and the performance was assessed by the receiver operating characteristic (ROC) analysis. Results Two multivariable logistic regression models were developed by incorporating age, ADC parameters, and MRI morphological characteristics to predict pathological grades, and IDH gene phenotypes of gliomas, respectively. The Noninvasive Grading Model classified tumor grades with areas under the ROC curve (AUROC) of 0.934 (95% CI=0.895-0.973), sensitivity of 91.2%, and specificity of 78.6%. The Noninvasive IDH Genotyping Model differentiated IDH types with an AUROC of 0.857 (95% CI=0.787-0.926), sensitivity of 88.2%, and specificity of 63.8%. Conclusion MRI features were correlated with glioma grades and IDH mutation status. Multivariable logistic regression models combined with MRI morphological characteristics and ADC parameters may provide a noninvasive and preoperative approach to predict glioma grades and IDH mutation status.
Collapse
Affiliation(s)
- Ningfang Du
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| | - Xiaotao Zhou
- Department of Emergency, Changhai Hospital, Naval Medical University, Second Military Medical University, Shanghai, China
| | - Renling Mao
- Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Weiquan Shu
- Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Li Xiao
- Department of Pathology, Huadong Hospital, Fudan University, Shanghai, China
| | - Yao Ye
- Department of Pathology, Huadong Hospital, Fudan University, Shanghai, China
| | - Xinxin Xu
- Clinical Research Center for Gerontology, Huadong Hospital, Fudan University, Shanghai, China
| | - Yilang Shen
- Institute of Business Analytics, Adelphi University, Garden City, NY, United States
| | - Guangwu Lin
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| | - Xuhao Fang
- Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Shihong Li
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Balana C, Castañer S, Carrato C, Moran T, Lopez-Paradís A, Domenech M, Hernandez A, Puig J. Preoperative Diagnosis and Molecular Characterization of Gliomas With Liquid Biopsy and Radiogenomics. Front Neurol 2022; 13:865171. [PMID: 35693015 PMCID: PMC9177999 DOI: 10.3389/fneur.2022.865171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
Gliomas are a heterogenous group of central nervous system tumors with different outcomes and different therapeutic needs. Glioblastoma, the most common subtype in adults, has a very poor prognosis and disabling consequences. The World Health Organization (WHO) classification specifies that the typing and grading of gliomas should include molecular markers. The molecular characterization of gliomas has implications for prognosis, treatment planning, and prediction of treatment response. At present, gliomas are diagnosed via tumor resection or biopsy, which are always invasive and frequently risky methods. In recent years, however, substantial advances have been made in developing different methods for the molecular characterization of tumors through the analysis of products shed in body fluids. Known as liquid biopsies, these analyses can potentially provide diagnostic and prognostic information, guidance on choice of treatment, and real-time information on tumor status. In addition, magnetic resonance imaging (MRI) is another good source of tumor data; radiomics and radiogenomics can link the imaging phenotypes to gene expression patterns and provide insights to tumor biology and underlying molecular signatures. Machine and deep learning and computational techniques can also use quantitative imaging features to non-invasively detect genetic mutations. The key molecular information obtained with liquid biopsies and radiogenomics can be useful not only in the diagnosis of gliomas but can also help predict response to specific treatments and provide guidelines for personalized medicine. In this article, we review the available data on the molecular characterization of gliomas using the non-invasive methods of liquid biopsy and MRI and suggest that these tools could be used in the future for the preoperative diagnosis of gliomas.
Collapse
Affiliation(s)
- Carmen Balana
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
- *Correspondence: Carmen Balana
| | - Sara Castañer
- Diagnostic Imaging Institute (IDI), Hospital Universitari Germans Trias I Pujol, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Cristina Carrato
- Department of Pathology, Hospital Universitari Germans Trias I Pujol, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Teresa Moran
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Assumpció Lopez-Paradís
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Marta Domenech
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Ainhoa Hernandez
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Josep Puig
- Department of Radiology IDI [Girona Biomedical Research Institute] IDIBGI, Hospital Universitari Dr Josep Trueta, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Comparative Medicine and Bioimage of Catalonia, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| |
Collapse
|
30
|
Vagvala S, Guenette JP, Jaimes C, Huang RY. Imaging diagnosis and treatment selection for brain tumors in the era of molecular therapeutics. Cancer Imaging 2022; 22:19. [PMID: 35436952 PMCID: PMC9014574 DOI: 10.1186/s40644-022-00455-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/29/2022] [Indexed: 01/12/2023] Open
Abstract
Currently, most CNS tumors require tissue sampling to discern their molecular/genomic landscape. However, growing research has shown the powerful role imaging can play in non-invasively and accurately detecting the molecular signature of these tumors. The overarching theme of this review article is to provide neuroradiologists and neurooncologists with a framework of several important molecular markers, their associated imaging features and the accuracy of those features. A particular emphasis is placed on those tumors and mutations that have specific or promising imaging correlates as well as their respective therapeutic potentials.
Collapse
Affiliation(s)
- Saivenkat Vagvala
- Division of Neuroradiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, 75 Francis St, Boston, MA, 02115, USA
| | - Jeffrey P Guenette
- Division of Neuroradiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, 75 Francis St, Boston, MA, 02115, USA
| | - Camilo Jaimes
- Division of Neuroradiology, Boston Children's, 300 Longwood Ave., 2nd floor, Main Building, Boston, MA, 02115, USA
| | - Raymond Y Huang
- Division of Neuroradiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, 75 Francis St, Boston, MA, 02115, USA.
| |
Collapse
|
31
|
Differences in the MRI Signature and ADC Values of Diffuse Midline Gliomas with H3 K27M Mutation Compared to Midline Glioblastomas. Cancers (Basel) 2022; 14:cancers14061397. [PMID: 35326549 PMCID: PMC8946584 DOI: 10.3390/cancers14061397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/26/2022] [Accepted: 03/06/2022] [Indexed: 12/21/2022] Open
Abstract
We conducted a two-center retrospective survey on standard MRI features including apparent diffusion coefficient mapping (ADC) of diffuse midline gliomas H3 K27M-mutant (DMG) compared to midline glioblastomas H3 K27M-wildtype (midGBM-H3wt). We identified 39 intracranial DMG and 18 midGBM-H3wt tumors. Samples were microscopically re-evaluated for microvascular proliferations and necrosis. Image analysis focused on location, peritumoral edema, degree of contrast enhancement and DWI features. Within DMG, MRI features between tumors with or without histomorphological GBM features were compared. DMG occurred in 15/39 samples from the thalamus (38%), in 23/39 samples from the brainstem (59%) and in 1/39 tumors involving primarily the cerebellum (2%). Edema was present in 3/39 DMG cases (8%) versus 78% in the control (midGBM-H3wt) group (p < 0.001). Contrast enhancement at the tumor rim was detected in 17/39 DMG (44%) versus 67% in control (p = 0.155), and necrosis in 24/39 (62%) versus 89% in control (p = 0.060). Strong contrast enhancement was observed in 15/39 DMG (38%) versus 56% in control (p = 0.262). Apparent diffusion coefficient (ADC) histogram analysis showed significantly higher skewness and kurtosis values in the DMG group compared to the controls (p = 0.0016/p = 0.002). Minimum relative ADC (rADC) values, as well as the 10th and 25th rADC-percentiles, were lower in DMGs with GBM features within the DMG group (p < 0.001/p = 0.012/p = 0.027). In conclusion, DMG cases exhibited markedly less edema than midGBM-H3wt, even if histomorphological malignancy was present. Histologically malignant DMGs and midGBM-H3wt more often displayed strong enhancement, as well as rim enhancement, than DMGs without histomorphological malignancy. DMGs showed higher skewness and kurtosis values on ADC-histogram analysis compared to midGBM-H3wt. Lower minimum rADC values in DMGs indicated malignant histomorphological features, likely representing a more complex tissue microstructure.
Collapse
|
32
|
Maffei ME. Magnetic Fields and Cancer: Epidemiology, Cellular Biology, and Theranostics. Int J Mol Sci 2022; 23:1339. [PMID: 35163262 PMCID: PMC8835851 DOI: 10.3390/ijms23031339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 02/08/2023] Open
Abstract
Humans are exposed to a complex mix of man-made electric and magnetic fields (MFs) at many different frequencies, at home and at work. Epidemiological studies indicate that there is a positive relationship between residential/domestic and occupational exposure to extremely low frequency electromagnetic fields and some types of cancer, although some other studies indicate no relationship. In this review, after an introduction on the MF definition and a description of natural/anthropogenic sources, the epidemiology of residential/domestic and occupational exposure to MFs and cancer is reviewed, with reference to leukemia, brain, and breast cancer. The in vivo and in vitro effects of MFs on cancer are reviewed considering both human and animal cells, with particular reference to the involvement of reactive oxygen species (ROS). MF application on cancer diagnostic and therapy (theranostic) are also reviewed by describing the use of different magnetic resonance imaging (MRI) applications for the detection of several cancers. Finally, the use of magnetic nanoparticles is described in terms of treatment of cancer by nanomedical applications for the precise delivery of anticancer drugs, nanosurgery by magnetomechanic methods, and selective killing of cancer cells by magnetic hyperthermia. The supplementary tables provide quantitative data and methodologies in epidemiological and cell biology studies. Although scientists do not generally agree that there is a cause-effect relationship between exposure to MF and cancer, MFs might not be the direct cause of cancer but may contribute to produce ROS and generate oxidative stress, which could trigger or enhance the expression of oncogenes.
Collapse
Affiliation(s)
- Massimo E Maffei
- Department Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| |
Collapse
|
33
|
Cluceru J, Interian Y, Phillips JJ, Molinaro AM, Luks TL, Alcaide-Leon P, Olson MP, Nair D, LaFontaine M, Shai A, Chunduru P, Pedoia V, Villanueva-Meyer JE, Chang SM, Lupo JM. Improving the noninvasive classification of glioma genetic subtype with deep learning and diffusion-weighted imaging. Neuro Oncol 2021; 24:639-652. [PMID: 34653254 DOI: 10.1093/neuonc/noab238] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diagnostic classification of diffuse gliomas now requires an assessment of molecular features, often including IDH-mutation and 1p19q-codeletion status. Because genetic testing requires an invasive process, an alternative noninvasive approach is attractive, particularly if resection is not recommended. The goal of this study was to evaluate the effects of training strategy and incorporation of biologically relevant images on predicting genetic subtypes with deep learning. METHODS Our dataset consisted of 384 patients with newly-diagnosed gliomas who underwent preoperative MR imaging with standard anatomical and diffusion-weighted imaging, and 147 patients from an external cohort with anatomical imaging. Using tissue samples acquired during surgery, each glioma was classified into IDH-wildtype (IDHwt), IDH-mutant/1p19q-noncodeleted (IDHmut-intact), and IDH-mutant/1p19q-codeleted (IDHmut-codel) subgroups. After optimizing training parameters, top performing convolutional neural network (CNN) classifiers were trained, validated, and tested using combinations of anatomical and diffusion MRI with either a 3-class or tiered structure. Generalization to an external cohort was assessed using anatomical imaging models. RESULTS The best model used a 3-class CNN containing diffusion-weighted imaging as an input, achieving 85.7% (95% CI:[77.1,100]) overall test accuracy and correctly classifying 95.2%, 88.9%, 60.0% of the IDHwt, IDHmut-intact, and IDHmut-codel tumors. In general, 3-class models outperformed tiered approaches by 13.5-17.5%, and models that included diffusion-weighted imaging were 5-8.8% more accurate than those that used only anatomical imaging. CONCLUSION Training a classifier to predict both IDH-mutation and 1p19q-codeletion status outperformed a tiered structure that first predicted IDH-mutation, then1p19q-codeletion. Including ADC, a surrogate marker of cellularity, more accurately captured differences between subgroups.
Collapse
Affiliation(s)
- Julia Cluceru
- Department of Radiology & Biomedical Imaging, University of California San Francisco
| | | | - Joanna J Phillips
- Department of Neurological Surgery, University of California San Francisco.,Department of Pathology, University of California San Francisco
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco
| | - Tracy L Luks
- Department of Radiology & Biomedical Imaging, University of California San Francisco
| | - Paula Alcaide-Leon
- Department of Radiology & Biomedical Imaging, University of California San Francisco.,Department of Medical Imaging, University of Toronto
| | - Marram P Olson
- Department of Radiology & Biomedical Imaging, University of California San Francisco
| | - Devika Nair
- Department of Radiology & Biomedical Imaging, University of California San Francisco
| | - Marisa LaFontaine
- Department of Radiology & Biomedical Imaging, University of California San Francisco
| | - Anny Shai
- Department of Neurological Surgery, University of California San Francisco
| | - Pranathi Chunduru
- Department of Neurological Surgery, University of California San Francisco
| | - Valentina Pedoia
- Department of Radiology & Biomedical Imaging, University of California San Francisco
| | | | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco
| | - Janine M Lupo
- Department of Radiology & Biomedical Imaging, University of California San Francisco
| |
Collapse
|
34
|
Kinoshita M, Kanemura Y, Narita Y, Kishima H. Reverse Engineering Glioma Radiomics to Conventional Neuroimaging. Neurol Med Chir (Tokyo) 2021; 61:505-514. [PMID: 34373429 PMCID: PMC8443974 DOI: 10.2176/nmc.ra.2021-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel radiological research field pursuing comprehensive quantitative image, namely “Radiomics,” gained traction along with the advancement of computational technology and artificial intelligence. This novel concept for analyzing medical images brought extensive interest to the neuro-oncology and neuroradiology research community to build a diagnostic workflow to detect clinically relevant genetic alteration of gliomas noninvasively. Although quite a few promising results were published regarding MRI-based diagnosis of isocitrate dehydrogenase (IDH) mutation in gliomas, it has become clear that an ample amount of effort is still needed to render this technology clinically applicable. At the same time, many significant insights were discovered through this research project, some of which could be “reverse engineered” to improve conventional non-radiomic MR image acquisition. In this review article, the authors aim to discuss the recent advancements and encountering issues of radiomics, how we can apply the knowledge provided by radiomics to standard clinical images, and further expected technological advances in the realm of radiomics and glioma.
Collapse
Affiliation(s)
- Manabu Kinoshita
- Department of Neurosurgery, Asahikawa Medical University.,Department of Neurosurgery, Osaka University Graduate School of Medicine.,Department of Neurosurgery, Osaka International Cancer Institute
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| |
Collapse
|
35
|
The role of 2-hydroxyglutarate magnetic resonance spectroscopy for the determination of isocitrate dehydrogenase status in lower grade gliomas versus glioblastoma: a systematic review and meta-analysis of diagnostic test accuracy. Neuroradiology 2021; 63:1823-1830. [PMID: 33811494 DOI: 10.1007/s00234-021-02702-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Magnetic resonance spectroscopy (MRS) provides a non-invasive means of determining isocitrate dehydrogenase (IDH) status. Determination of 2-hydroxyglutarate (2-HG) presence through MRS is a means of determining IDH status; however, differences may be seen by grade. The goal of this paper is to perform a diagnostic test accuracy (DTA) meta-analysis on 2-HG MRS for IDH status in both lower-grade glioma (LGG) and glioblastoma (GBM) in preoperative patients. METHODS A systematic review and meta-analysis were performed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses-Diagnostic Test Accuracy guidelines. Quality assessment was performed using the Quality Assessment of Diagnostic Accuracy Studies 2. The search was up to date as of 09/02/2021. Nine English-language journal articles were included. RESULTS The meta-analysis found a pooled sensitivity of 93% (95% CI 58-99%) and specificity of 84% (95% CI 51-96%) for LGG (n= 181). For GBM (n= 77), the pooled sensitivity was 84% (95% CI 25.0-99%) and the specificity was 97% (95% CI 43-100%). CONCLUSION 2-HG MRS shows promise as a non-invasive means of determining IDH status, with specificity higher for GBM and sensitivity higher for LGG. The wide confidence intervals are notable, however, in particular related to the small number of IDH-mutant GBM studied. Diagnostic heterogeneity was particularly present for LGG, and the hierarchical summary receiver operator curves showed poor predictive accuracy in both groups. For more conclusive results, diagnostic test accuracy statistics need to be quantified with larger studies and more deliberate study design.
Collapse
|