1
|
Serrano-Gutiérrez M, Merino E. Antisense-acting riboswitches: A poorly characterized yet important model of transcriptional regulation in prokaryotic organisms. PLoS One 2023; 18:e0281744. [PMID: 36809273 PMCID: PMC9943018 DOI: 10.1371/journal.pone.0281744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
Riboswitches are RNA elements involved in regulating genes that participate in the biosynthesis or transport of essential metabolites. They are characterized by their ability to recognize their target molecules with high affinity and specificity. Riboswitches are commonly cotranscribed with their target genes and are located at the 5' end of their transcriptional units. To date, only two exceptional cases of riboswitches being situated at the 3' end and transcribing in the antisense direction of their regulated genes have been described. The first case involves a SAM riboswitch located at the 3' end of the ubiG-mccB-mccA operon in Clostridium acetobutylicum involved in converting methionine to cysteine. The second case concerns a Cobalamin riboswitch in Listeria monocytogenes that regulates the transcription factor PocR related to this organism's pathogenic process. In almost a decade since the first descriptions of antisense-acting riboswitches, no new examples have been described. In this work, we performed a computational analysis to identify new examples of antisense-acting riboswitches. We found 292 cases in which, according to the available information, we infer that the expected regulation of the riboswitch is consistent with the signaling molecule it senses and the metabolic function of the regulated gene. The metabolic implications of this novel type of regulation are thoroughly discussed.
Collapse
Affiliation(s)
- Mariela Serrano-Gutiérrez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail:
| |
Collapse
|
2
|
Molecular Mechanism of Nramp-Family Transition Metal Transport. J Mol Biol 2021; 433:166991. [PMID: 33865868 DOI: 10.1016/j.jmb.2021.166991] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
The Natural resistance-associated macrophage protein (Nramp) family of transition metal transporters enables uptake and trafficking of essential micronutrients that all organisms must acquire to survive. Two decades after Nramps were identified as proton-driven, voltage-dependent secondary transporters, multiple Nramp crystal structures have begun to illustrate the fine details of the transport process and provide a new framework for understanding a wealth of preexisting biochemical data. Here we review the relevant literature pertaining to Nramps' biological roles and especially their conserved molecular mechanism, including our updated understanding of conformational change, metal binding and transport, substrate selectivity, proton transport, proton-metal coupling, and voltage dependence. We ultimately describe how the Nramp family has adapted the LeuT fold common to many secondary transporters to provide selective transition-metal transport with a mechanism that deviates from the canonical model of symport.
Collapse
|
3
|
Sassa M, Takagi T, Kinjo A, Yoshioka Y, Zayasu Y, Shinzato C, Kanda S, Murakami-Sugihara N, Shirai K, Inoue K. Divalent metal transporter-related protein restricts animals to marine habitats. Commun Biol 2021; 4:463. [PMID: 33846549 PMCID: PMC8041893 DOI: 10.1038/s42003-021-01984-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/12/2021] [Indexed: 12/30/2022] Open
Abstract
Utilization and regulation of metals from seawater by marine organisms are important physiological processes. To better understand metal regulation, we searched the crown-of-thorns starfish genome for the divalent metal transporter (DMT) gene, a membrane protein responsible for uptake of divalent cations. We found two DMT-like sequences. One is an ortholog of vertebrate DMT, but the other is an unknown protein, which we named DMT-related protein (DMTRP). Functional analysis using a yeast expression system demonstrated that DMT transports various metals, like known DMTs, but DMTRP does not. In contrast, DMTRP reduced the intracellular concentration of some metals, especially zinc, suggesting its involvement in negative regulation of metal uptake. Phylogenetic distribution of the DMTRP gene in various metazoans, including sponges, protostomes, and deuterostomes, indicates that it originated early in metazoan evolution. However, the DMTRP gene is only retained in marine species, and its loss seems to have occurred independently in ecdysozoan and vertebrate lineages from which major freshwater and land animals appeared. DMTRP may be an evolutionary and ecological limitation, restricting organisms that possess it to marine habitats, whereas its loss may have allowed other organisms to invade freshwater and terrestrial habitats. Mieko Sassa et al. report a novel divalent metal transporter protein (DMTRP) in the crown-of-thorns starfish genome and determine that all organisms with a DMTRP gene are located in marine habitats. They also show in a functional yeast system that DMTRP can prevent uptake of certain metals, bringing insight into the evolution of metal regulation for marine organisms.
Collapse
Affiliation(s)
- Mieko Sassa
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba, Japan. .,Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan.
| | - Toshiyuki Takagi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Azusa Kinjo
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Yuki Yoshioka
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Yuna Zayasu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Shinji Kanda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | | | - Kotaro Shirai
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Koji Inoue
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| |
Collapse
|
4
|
Electrophysiology Measurements of Metal Transport by MntH2 from Enterococcus faecalis. MEMBRANES 2020; 10:membranes10100255. [PMID: 32987882 PMCID: PMC7599946 DOI: 10.3390/membranes10100255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022]
Abstract
Transition metals are essential trace elements and their high-affinity uptake is required for many organisms. Metal transporters are often characterised using metal-sensitive fluorescent dyes, limiting the metals and experimental conditions that can be studied. Here, we have tested whether metal transport by Enterococcus faecalis MntH2 can be measured with an electrophysiology method that is based on the solid-supported membrane technology. E. faecalis MntH2 belongs to the Natural Resistance-Associated Macrophage Protein (Nramp) family of proton-coupled transporters, which transport divalent transition metals and do not transport the earth metals. Electrophysiology confirms transport of Mn(II), Co(II), Zn(II) and Cd(II) by MntH2. However, no uptake responses for Cu(II), Fe(II) and Ni(II) were observed, while the presence of these metals abolishes the uptake signals for Mn(II). Fluorescence assays confirm that Ni(II) is transported. The data are discussed with respect to properties and structures of Nramp-type family members and the ability of electrophysiology to measure charge transport and not directly substrate transport.
Collapse
|
5
|
van Mastrigt O, Di Stefano E, Hartono S, Abee T, Smid EJ. Large plasmidome of dairy Lactococcus lactis subsp. lactis biovar diacetylactis FM03P encodes technological functions and appears highly unstable. BMC Genomics 2018; 19:620. [PMID: 30119641 PMCID: PMC6098607 DOI: 10.1186/s12864-018-5005-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/09/2018] [Indexed: 11/17/2022] Open
Abstract
Background Important industrial traits have been linked to plasmids in Lactococcus lactis. Results The dairy isolate L. lactis subsp. lactis biovar diacetylactis FM03P was sequenced revealing the biggest plasmidome of all completely sequenced and published L. lactis strains up till now. The 12 plasmids that were identified are: pLd1 (8277 bp), pLd2 (15,218 bp), pLd3 (4242 bp), pLd4 (12,005 bp), pLd5 (7521 bp), pLd6 (3363 bp), pLd7 (30,274 bp), pLd8 (47,015 bp), pLd9 (15,313 bp), pLd10 (39,563 bp), pLd11 (9833 bp) and pLd12 (3321 bp). Structural analysis of the repB promoters and the RepB proteins showed that eleven of the plasmids replicate via the theta-type mechanism, while only plasmid pLd3 replicates via a rolling-circle replication mechanism. Plasmids pLd2, pLd7 and pLd10 contain a highly similar operon involved in mobilisation of the plasmids. Examination of the twelve plasmids of L. lactis FM03P showed that 10 of the plasmids carry putative genes known to be important for growth and survival in the dairy environment. These genes encode technological functions such as lactose utilisation (lacR-lacABCDFEGX), citrate uptake (citQRP), peptide degradation (pepO and pepE) and oligopeptide uptake (oppDFBCA), uptake of magnesium and manganese (2 mntH, corA), exopolysaccharides production (eps operon), bacteriophage resistance (1 hsdM, 1 hsdR and 7 different hsdS genes of a type I restriction-modification system, an operon of three genes encoding a putative type II restriction-modification system and an abortive infection gene) and stress resistance (2 uspA, cspC and cadCA). Acquisition of these plasmids most likely facilitated the adaptation of the recipient strain to the dairy environment. Some plasmids were already lost during a single propagation step signifying their instability in the absence of a selective pressure. Conclusions Lactococcus lactis FM03P carries 12 plasmids important for its adaptation to the dairy environment. Some of the plasmids were easily lost demonstrating that propagation outside the dairy environment should be minimised when studying dairy isolates of L. lactis. Electronic supplementary material The online version of this article (10.1186/s12864-018-5005-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oscar van Mastrigt
- Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700AA, Wageningen, The Netherlands
| | - Elisa Di Stefano
- Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700AA, Wageningen, The Netherlands
| | - Sylviani Hartono
- Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700AA, Wageningen, The Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700AA, Wageningen, The Netherlands
| | - Eddy J Smid
- Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700AA, Wageningen, The Netherlands.
| |
Collapse
|
6
|
Abstract
Specialized adaptations for killing microbes are synonymous with phagocytic cells including macrophages, monocytes, inflammatory neutrophils, and eosinophils. Recent genome sequencing of extant species, however, reveals that analogous antimicrobial machineries exist in certain non-immune cells and also within species that ostensibly lack a well-defined immune system. Here we probe the evolutionary record for clues about the ancient and diverse phylogenetic origins of macrophage killing mechanisms and how some of their properties are shared with cells outside the traditional bounds of immunity in higher vertebrates such as mammals.
Collapse
|
7
|
F. M. Cellier M, Inrs-Institut Armand-Frappier, 531, Bd des prairies, Laval, QC H7V 1B7, Canada. Evolutionary analysis of Slc11 mechanism of proton-coupled metal-ion transmembrane import. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.2.286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
8
|
Ma C, Hao Z, Huysmans G, Lesiuk A, Bullough P, Wang Y, Bartlam M, Phillips SE, Young JD, Goldman A, Baldwin SA, Postis VLG. A Versatile Strategy for Production of Membrane Proteins with Diverse Topologies: Application to Investigation of Bacterial Homologues of Human Divalent Metal Ion and Nucleoside Transporters. PLoS One 2015; 10:e0143010. [PMID: 26606682 PMCID: PMC4659628 DOI: 10.1371/journal.pone.0143010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/29/2015] [Indexed: 01/01/2023] Open
Abstract
Membrane proteins play key roles in many biological processes, from acquisition of nutrients to neurotransmission, and are targets for more than 50% of current therapeutic drugs. However, their investigation is hampered by difficulties in their production and purification on a scale suitable for structural studies. In particular, the nature and location of affinity tags introduced for the purification of recombinant membrane proteins can greatly influence their expression levels by affecting their membrane insertion. The extent of such effects typically depends on the transmembrane topologies of the proteins, which for proteins of unknown structure are usually uncertain. For example, attachment of oligohistidine tags to the periplasmic termini of membrane proteins often interferes with folding and drastically impairs expression in Escherichia coli. To circumvent this problem we have employed a novel strategy to enable the rapid production of constructs bearing a range of different affinity tags compatible with either cytoplasmic or periplasmic attachment. Tags include conventional oligohistidine tags compatible with cytoplasmic attachment and, for attachment to proteins with a periplasmic terminus, either tandem Strep-tag II sequences or oligohistidine tags fused to maltose binding protein and a signal sequence. Inclusion of cleavage sites for TEV or HRV-3C protease enables tag removal prior to crystallisation trials or a second step of purification. Together with the use of bioinformatic approaches to identify members of membrane protein families with topologies favourable to cytoplasmic tagging, this has enabled us to express and purify multiple bacterial membrane transporters. To illustrate this strategy, we describe here its use to purify bacterial homologues of human membrane proteins from the Nramp and ZIP families of divalent metal cation transporters and from the concentrative nucleoside transporter family. The proteins are expressed in E. coli in a correctly folded, functional state and can be purified in amounts suitable for structural investigations.
Collapse
Affiliation(s)
- Cheng Ma
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Zhenyu Hao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Gerard Huysmans
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Amelia Lesiuk
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Per Bullough
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Mark Bartlam
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- College of Life Sciences, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Simon E. Phillips
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - James D. Young
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Adrian Goldman
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- College of Life Sciences, Nankai University, Tianjin, China
- Division of Biochemistry, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Stephen A. Baldwin
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Vincent L. G. Postis
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Biomedicine Research Group, Faculty of Health and Social Sciences, Leeds Beckett University, Leeds, LS1 3HE, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Buracco S, Peracino B, Cinquetti R, Signoretto E, Vollero A, Imperiali F, Castagna M, Bossi E, Bozzaro S. Dictyostelium Nramp1, which is structurally and functionally similar to mammalian DMT1 transporter, mediates phagosomal iron efflux. J Cell Sci 2015; 128:3304-16. [PMID: 26208637 PMCID: PMC4582194 DOI: 10.1242/jcs.173153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/21/2015] [Indexed: 01/01/2023] Open
Abstract
The Nramp (Slc11) protein family is widespread in bacteria and eukaryotes, and mediates transport of divalent metals across cellular membranes. The social amoeba Dictyostelium discoideum has two Nramp proteins. Nramp1, like its mammalian ortholog (SLC11A1), is recruited to phagosomal and macropinosomal membranes, and confers resistance to pathogenic bacteria. Nramp2 is located exclusively in the contractile vacuole membrane and controls, synergistically with Nramp1, iron homeostasis. It has long been debated whether mammalian Nramp1 mediates iron import or export from phagosomes. By selectively loading the iron-chelating fluorochrome calcein in macropinosomes, we show that Dictyostelium Nramp1 mediates iron efflux from macropinosomes in vivo. To gain insight in ion selectivity and the transport mechanism, the proteins were expressed in Xenopus oocytes. Using a novel assay with calcein, and electrophysiological and radiochemical assays, we show that Nramp1, similar to rat DMT1 (also known as SLC11A2), transports Fe(2+) and manganese, not Fe(3+) or copper. Metal ion transport is electrogenic and proton dependent. By contrast, Nramp2 transports only Fe(2+) in a non-electrogenic and proton-independent way. These differences reflect evolutionary divergence of the prototypical Nramp2 protein sequence compared to the archetypical Nramp1 and DMT1 proteins.
Collapse
Affiliation(s)
- Simona Buracco
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, Orbassano 10043, Italy
| | - Barbara Peracino
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, Orbassano 10043, Italy
| | - Raffaella Cinquetti
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, Varese 21100, Italy
| | - Elena Signoretto
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste 2, Milano 20133, Italy
| | - Alessandra Vollero
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, Varese 21100, Italy
| | - Francesca Imperiali
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, Varese 21100, Italy
| | - Michela Castagna
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste 2, Milano 20133, Italy
| | - Elena Bossi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, Varese 21100, Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, Orbassano 10043, Italy
| |
Collapse
|
10
|
Shin JH, Wakeman CA, Goodson JR, Rodionov DA, Freedman BG, Senger RS, Winkler WC. Transport of magnesium by a bacterial Nramp-related gene. PLoS Genet 2014; 10:e1004429. [PMID: 24968120 PMCID: PMC4072509 DOI: 10.1371/journal.pgen.1004429] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 04/24/2014] [Indexed: 12/29/2022] Open
Abstract
Magnesium is an essential divalent metal that serves many cellular functions. While most divalent cations are maintained at relatively low intracellular concentrations, magnesium is maintained at a higher level (∼0.5–2.0 mM). Three families of transport proteins were previously identified for magnesium import: CorA, MgtE, and MgtA/MgtB P-type ATPases. In the current study, we find that expression of a bacterial protein unrelated to these transporters can fully restore growth to a bacterial mutant that lacks known magnesium transporters, suggesting it is a new importer for magnesium. We demonstrate that this transport activity is likely to be specific rather than resulting from substrate promiscuity because the proteins are incapable of manganese import. This magnesium transport protein is distantly related to the Nramp family of proteins, which have been shown to transport divalent cations but have never been shown to recognize magnesium. We also find gene expression of the new magnesium transporter to be controlled by a magnesium-sensing riboswitch. Importantly, we find additional examples of riboswitch-regulated homologues, suggesting that they are a frequent occurrence in bacteria. Therefore, our aggregate data discover a new and perhaps broadly important path for magnesium import and highlight how identification of riboswitch RNAs can help shed light on new, and sometimes unexpected, functions of their downstream genes. Magnesium ions are essential for life, and, correspondingly, all organisms must encode for proteins to transport them. Three classes of bacterial proteins (CorA, MgtE and MgtA/B) have previously been identified for transport of the ion. This current study introduces a new route of magnesium import, which, moreover, is unexpectedly provided by proteins distantly related to Natural resistance-associated macrophage proteins (Nramp). Nramp metal transporters are widespread in the three domains of life; however, most are assumed to function as transporters of transition metals such as manganese or iron. None of the previously characterized Nramps have been shown to transport magnesium. In this study, we demonstrate that certain bacterial proteins, distantly related to Nramp homologues, exhibit transport of magnesium. We also find that these new magnesium transporters are genetically controlled by a magnesium-sensing regulatory element. Importantly, we find numerous additional examples of similar genes sharing this regulatory arrangement, suggesting that these genes may be a frequent occurrence in bacteria, and may represent a class of magnesium transporters. Therefore, our aggregate data discover a new and perhaps broadly important path of magnesium import in bacteria.
Collapse
Affiliation(s)
- Jung-Ho Shin
- The University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, Maryland, United States of America
| | - Catherine A. Wakeman
- The University of Texas Southwestern Medical Center, Department of Biochemistry, Dallas, Texas, United States of America
| | - Jonathan R. Goodson
- The University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, Maryland, United States of America
| | - Dmitry A. Rodionov
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- A.A.Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Benjamin G. Freedman
- Virginia Tech University, Department of Biological Systems Engineering, Blacksburg, Virginia, United States of America
| | - Ryan S. Senger
- Virginia Tech University, Department of Biological Systems Engineering, Blacksburg, Virginia, United States of America
| | - Wade C. Winkler
- The University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
11
|
Cellier MFM. Cell-Type Specific Determinants of NRAMP1 Expression in Professional Phagocytes. BIOLOGY 2013; 2:233-83. [PMID: 24832660 PMCID: PMC4009858 DOI: 10.3390/biology2010233] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 01/15/2013] [Accepted: 01/15/2013] [Indexed: 01/10/2023]
Abstract
The Natural resistance-associated macrophage protein 1 (Nramp1 or Solute carrier 11 member 1, Slc11a1) transports divalent metals across the membrane of late endosomes and lysosomes in professional phagocytes. Nramp1 represents an ancient eukaryotic cell-autonomous defense whereas the gene duplication that yielded Nramp1 and Nramp2 predated the origin of Sarcopterygians (lobe-finned fishes and tetrapods). SLC11A1 genetic polymorphisms associated with human resistance to tuberculosis consist of potential regulatory variants. Herein, current knowledge of the regulation of SLC11A1 gene expression is reviewed and comprehensive analysis of ENCODE data available for hematopoietic cell-types suggests a hypothesis for the regulation of SLC11A1 expression during myeloid development and phagocyte functional polarization. SLC11A1 is part of a 34.6 kb CTCF-insulated locus scattered with predicted regulatory elements: a 3' enhancer, a large 5' enhancer domain and four elements spread around the transcription start site (TSS), including several C/EBP and PU.1 sites. SLC11A1 locus ends appear mobilized by ETS-related factors early during myelopoiesis; activation of both 5' and 3' enhancers in myelo-monocytic cells correlate with transcription factor binding at the TSS. Characterizing the corresponding cis/trans determinants functionally will establish the mechanisms involved and possibly reveal genetic variation that impacts susceptibility to infectious or immune diseases.
Collapse
Affiliation(s)
- Mathieu F M Cellier
- Inrs-Institut Armand-Frappier, 531, Bd des prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
12
|
Peracino B, Buracco S, Bozzaro S. The Nramp (Slc11) proteins regulate development, resistance to pathogenic bacteria and iron homeostasis in Dictyostelium discoideum. J Cell Sci 2012; 126:301-11. [PMID: 22992462 DOI: 10.1242/jcs.116210] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Dictyostelium discoideum genome harbors two genes encoding members of the Nramp superfamily, which is conserved from bacteria (MntH proteins) to humans (Slc11 proteins). Nramps are proton-driven metal ion transporters with a preference for iron and manganese. Acquisition of these metal cations is vital for all cells, as they act as redox cofactors and regulate key cellular processes, such as DNA synthesis, electron transport, energy metabolism and oxidative stress. Dictyostelium Nramp1 (Slc11a1), like its mammalian ortholog, mediates resistance to infection by invasive bacteria. We have extended the analysis to the nramp2 gene, by generating single and double nramp1/nramp2 knockout mutants and cells expressing GFP fusion proteins. In contrast to Nramp1, which is recruited to phagosomes and macropinosomes, the Nramp2 protein is localized exclusively in the membrane of the contractile vacuole, a vesicular tubular network regulating cellular osmolarity. Both proteins colocalize with the V-H(+)-ATPase, which can provide the electrogenic force for vectorial transport. Like nramp1, nramp2 gene disruption affects resistance to Legionella pneumophila. Disrupting both genes additionally leads to defects in development, with strong delay in cell aggregation, formation of large streams and multi-tipped aggregates. Single and double mutants display differential sensitivity to cell growth under conditions of iron overload or depletion. The data favor the hypothesis that Nramp1 and Nramp2, under control of the V-H(+)-ATPase, synergistically regulate iron homeostasis, with the contractile vacuole possibly acting as a store for metal cations.
Collapse
Affiliation(s)
- Barbara Peracino
- Department of Clinical and Biological Sciences, University of Turin, AOU S. Luigi, 10043 Orbassano, Italy
| | | | | |
Collapse
|
13
|
López G, Latorre M, Reyes-Jara A, Cambiazo V, González M. Transcriptomic response of Enterococcus faecalis to iron excess. Biometals 2012; 25:737-47. [DOI: 10.1007/s10534-012-9539-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 03/07/2012] [Indexed: 11/28/2022]
|
14
|
|
15
|
Cellier MFM. Nutritional immunity: homology modeling of Nramp metal import. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 946:335-51. [PMID: 21948377 DOI: 10.1007/978-1-4614-0106-3_19] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Natural resistance-associated macrophage proteins (Nramp1 and 2) are proton-dependent solute carriers of divalent metals such as Fe(2+) and Mn(2+) (Slc11a1 and 2). Their expression in both resting and microbicidal macrophages which metabolize iron differently, raises questions about Nramp mechanism of Me(2+) transport and its impact in distinct phenotypic contexts. We developed a low resolution 3D model for Slc11 based on detailed phylogeny and remote homology threading using Escherichia coli Nramp homolog (proton-dependent Mn(2+) transporter, MntH) as experimental system. The predicted fold is consistent with determinations of transmembrane topology and activity; it indicates Slc11 carriers are part of the LeuT superfamily. Homology implies that inverted structural symmetry facilitates Slc11 H(+)-driven Me(2+) import and provides a 3D framework to test structure-activity relationships in macrophages and study functional evolution of MntH/Nramp (Slc11) carriers.
Collapse
Affiliation(s)
- Mathieu F M Cellier
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, 531, Bd des prairies, H7V 1B7, Laval, QC, Canada.
| |
Collapse
|
16
|
Abstract
Coral reefs are one of the most important marine ecosystems, providing habitat for approximately a quarter of all marine organisms. Within the foundation of this ecosystem, reef-building corals form mutualistic symbioses with unicellular photosynthetic dinoflagellates of the genus Symbiodinium. Exposure to UV radiation (UVR) (280 to 400 nm) especially when combined with thermal stress has been recognized as an important abiotic factor leading to the loss of algal symbionts from coral tissue and/or a reduction in their pigment concentration and coral bleaching. UVR may damage biological macromolecules, increase the level of mutagenesis in cells, and destabilize the symbiosis between the coral host and their dinoflagellate symbionts. In nature, corals and other marine organisms are protected from harmful UVR through several important photoprotective mechanisms that include the synthesis of UV-absorbing compounds such as mycosporine-like amino acids (MAAs). MAAs are small (<400-Da), colorless, water-soluble compounds made of a cyclohexenone or cyclohexenimine chromophore that is bound to an amino acid residue or its imino alcohol. These secondary metabolites are natural biological sunscreens characterized by a maximum absorbance in the UVA and UVB ranges of 310 to 362 nm. In addition to their photoprotective role, MAAs act as antioxidants scavenging reactive oxygen species (ROS) and suppressing singlet oxygen-induced damage. It has been proposed that MAAs are synthesized during the first part of the shikimate pathway, and recently, it has been suggested that they are synthesized in the pentose phosphate pathway. The shikimate pathway is not found in animals, but in plants and microbes, it connects the metabolism of carbohydrates to the biosynthesis of aromatic compounds. However, both the complete enzymatic pathway of MAA synthesis and the extent of their regulation by environmental conditions are not known. This minireview discusses the current knowledge of MAA synthesis, illustrates the diversity of MAA functions, and opens new perspectives for future applications of MAAs in biotechnology.
Collapse
|
17
|
Lin Z, Fernández-Robledo JA, Cellier MFM, Vasta GR. The natural resistance-associated macrophage protein from the protozoan parasite Perkinsus marinus mediates iron uptake. Biochemistry 2011; 50:6340-55. [PMID: 21661746 DOI: 10.1021/bi200343h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microbial pathogens succeed in acquiring essential metals such as iron and manganese despite their limited availability because of the host's immune response. The eukaryotic natural resistance-associated macrophage proteins mediate uptake of divalent metals and, during infection, may compete directly for metal acquisition with the pathogens' transporters. In this study, we characterize the Nramp gene family of Perkinsus marinus, an intracellular parasite of the eastern oyster, and through yeast complementation, we demonstrate for the first time for a protozoan parasite that Nramp imports environmental Fe. Three PmNramp isogenes differ in their exon-intron structures and encode transcripts that display a trans splicing leader at the 5' end. The protein sequences share conserved properties predicted for the Nramp/Solute carrier 11 (Slc11) family, such as 12-transmembrane segment (TMS) topology (N- and C-termini cytoplasmic) and preferential conservation of four TMS predicted to form a pseudosymmetric proton/metal symport pathway. Yeast fet3fet4 mutant complementation assays showed iron transport activity for PmNramp1 and a fusion chimera of the PmNramp3 hydrophobic core and PmNramp1 N- and C-termini. PmNramp1 site-directed mutagenesis demonstrated that Slc11 invariant and predicted pseudosymmetric motifs (TMS1 Asp-Pro-Gly and TMS6 Met-Pro-His) are key for transport function. PmNramp1 TMS1 mutants D76E, G78A, and D76E/G78A prevented membrane protein expression, while TMS6 M250A, H252Y, and M250A/H252Y specifically abrogated Fe uptake; the TMS6 H252Y mutation also correlates with divergence from Nramp specificity for divalent metals.
Collapse
Affiliation(s)
- Zhuoer Lin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, IMET, 701 East Pratt Street, Suite 236, Baltimore, Maryland 21202-3101, USA
| | | | | | | |
Collapse
|
18
|
BioMetals: a historical and personal perspective. Biometals 2011; 24:379-90. [DOI: 10.1007/s10534-011-9417-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/14/2011] [Indexed: 10/18/2022]
|
19
|
Watson RJ, Millichap P, Joyce SA, Reynolds S, Clarke DJ. The role of iron uptake in pathogenicity and symbiosis in Photorhabdus luminescens TT01. BMC Microbiol 2010; 10:177. [PMID: 20569430 PMCID: PMC2905363 DOI: 10.1186/1471-2180-10-177] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 06/22/2010] [Indexed: 12/30/2022] Open
Abstract
Background Photorhabdus are Gram negative bacteria that are pathogenic to insect larvae whilst also having a mutualistic interaction with nematodes from the family Heterorhabditis. Iron is an essential nutrient and bacteria have different mechanisms for obtaining both the ferrous (Fe2+) and ferric (Fe3+) forms of this metal from their environments. In this study we were interested in analyzing the role of Fe3+ and Fe2+ iron uptake systems in the ability of Photorhabdus to interact with its invertebrate hosts. Results We constructed targeted deletion mutants of exbD, feoABC and yfeABCD in P. luminescens TT01. The exbD mutant was predicted to be crippled in its ability to obtain Fe3+ and we show that this mutant does not grow well in iron-limited media. We also show that this mutant was avirulent to the insect but was unaffected in its symbiotic interaction with Heterorhabditis. Furthermore we show that a mutation in feoABC (encoding a predicted Fe2+ permease) was unaffected in both virulence and symbiosis whilst the divalent cation transporter encoded by yfeABCD is required for virulence in the Tobacco Hornworm, Manduca sexta (Lepidoptera) but not in the Greater Wax Moth, Galleria mellonella (Lepidoptera). Moreover the Yfe transporter also appears to have a role during colonization of the IJ stage of the nematode. Conclusion In this study we show that iron uptake (via the TonB complex and the Yfe transporter) is important for the virulence of P. luminescens to insect larvae. Moreover this study also reveals that the Yfe transporter appears to be involved in Mn2+-uptake during growth in the gut lumen of the IJ nematode. Therefore, the Yfe transporter in P. luminescens TT01 is important during colonization of both the insect and nematode and, moreover, the metal ion transported by this pathway is host-dependent.
Collapse
Affiliation(s)
- Robert J Watson
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | | | | | | | | |
Collapse
|
20
|
Courville P, Urbankova E, Rensing C, Chaloupka R, Quick M, Cellier MFM. Solute carrier 11 cation symport requires distinct residues in transmembrane helices 1 and 6. J Biol Chem 2008; 283:9651-8. [PMID: 18227061 DOI: 10.1074/jbc.m709906200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitous solute carriers 11 (SLC11) contribute to metal-ion homeostasis by importing Me(2+) and H(+) into the cytoplasm. To identify residues mediating cation symport, Escherichia coli proton-dependent manganese transporter (MntH) was mutated at five SLC11-specific transmembrane (TM) sites; each mutant activity was compared with wild-type MntH, and the biochemical results were tested by homology threading. Cd(2+) and H(+) uptake kinetics were analyzed in whole cells as a function of pH and temperature, and right-side out membrane vesicles were used to detail energy requirements and to probe site accessibility by Cys replacement and thiol modification. This approach revealed that TM segment 1 (TMS1) residue Asp(34) couples H(+) and Me(2+) symport and contributes to MntH forward transport electrogenicity, whereas the TMS6 His(211) residue mediates pH-dependent Me(2+) uptake; MntH Asn(37), Asn(250), and Asn(401) in TMS1, TMS7, and TMS11 participate in transporter cycling and/or helix packing interactions. These biochemical results fit the LeuT/SLC6 structural fold, which suggests that conserved peptide motifs Asp(34)-Pro-Gly (TMS1) and Met-Pro-His(211) (TMS6) form antiparallel "TM helix/extended peptide" boundaries, lining a "pore" cavity and enabling H(+)-dependent Me(2+) import.
Collapse
Affiliation(s)
- Pascal Courville
- INRS-Institut Armand-Frappier, 531 Boulevard des prairies, Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Phagocytosis and host-pathogen interactions in Dictyostelium with a look at macrophages. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:253-300. [PMID: 19081545 DOI: 10.1016/s1937-6448(08)01206-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Research into phagocytosis and host-pathogen interactions in the lower eukaryote Dictyostelium discoideum has flourished in recent years. This chapter presents a glimpse of where this research stands, with emphasis on the cell biology of the phagocytic process and on the wealth of molecular genetic data that have been gathered. The basic mechanistic machinery and most of the underlying genes appear to be evolutionarily conserved, reflecting the fact that phagocytosis arose as an efficient way to ingest food in single protozoan cells devoid of a rigid cell wall. In spite of some differences, the signal transduction pathways regulating phagosome biogenesis are also emerging as ultimately similar between Dictyostelium and macrophages. Both cell types are hosts for many pathogenic invasive bacteria, which exploit phagocytosis to grow intracellularly. We present an overwiew, based on the analysis of mutants, on how Dictyostelium contributes as a genetic model system to decipher the complexity of host-pathogen interactions.
Collapse
|
22
|
Contribution of the SitABCD, MntH, and FeoB metal transporters to the virulence of avian pathogenic Escherichia coli O78 strain chi7122. Infect Immun 2007; 76:601-11. [PMID: 18025097 DOI: 10.1128/iai.00789-07] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The roles of SitABCD, MntH, and FeoB metal transporters in the virulence of avian pathogenic Escherichia coli (APEC) O78 strain chi7122 were assessed using isogenic mutants in chicken infection models. In a single-strain infection model, compared to chi7122, the Deltasit strain demonstrated reduced colonization of the lungs, liver, and spleen. Complementation of the Deltasit strain restored virulence. In a coinfection model, compared to the virulent APEC strain, the Deltasit strain demonstrated mean 50-fold, 126-fold, and 25-fold decreases in colonization of the lungs, liver, and spleen, respectively. A DeltamntH Deltasit strain was further attenuated, demonstrating reduced persistence in blood and mean 1,400-fold, 954-fold, and 83-fold reduced colonization in the lungs, liver, and spleen, respectively. In coinfections, the DeltafeoB Deltasit strain demonstrated reduced persistence in blood but increased colonization of the liver. The DeltamntH, DeltafeoB, and DeltafeoB DeltamntH strains were as virulent as the wild type in either of the infection models. Strains were also tested for sensitivity to oxidative stress-generating agents. The DeltamntH Deltasit strain was the most sensitive strain and was significantly more sensitive than the other strains to hydrogen peroxide, plumbagin, and paraquat. sit sequences were highly associated with APEC and human extraintestinal pathogenic E. coli compared to commensal isolates and diarrheagenic E. coli. Comparative genomic analyses also demonstrated that sit sequences are carried on conjugative plasmids or associated with phage elements and were likely acquired by distinct genetic events among pathogenic E. coli and Shigella sp. strains. Overall, the results demonstrate that SitABCD contributes to virulence and, together with MntH, to increased resistance to oxidative stress.
Collapse
|
23
|
Turner MS, Tan YP, Giffard PM. Inactivation of an iron transporter in Lactococcus lactis results in resistance to tellurite and oxidative stress. Appl Environ Microbiol 2007; 73:6144-9. [PMID: 17675432 PMCID: PMC2075025 DOI: 10.1128/aem.00413-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Lactococcus lactis, the interactions between oxidative defense, metal metabolism, and respiratory metabolism are not fully understood. To provide an insight into these processes, we isolated and characterized mutants of L. lactis resistant to the oxidizing agent tellurite (TeO(3)(2-)), which generates superoxide radicals intracellularly. A collection of tellurite-resistant mutants was obtained using random transposon mutagenesis of L. lactis. These contained insertions in genes encoding a proton-coupled Mn(2+)/Fe(2+) transport homolog (mntH), the high-affinity phosphate transport system (pstABCDEF), a putative osmoprotectant uptake system (choQ), and a homolog of the oxidative defense regulator spx (trmA). The tellurite-resistant mutants all had better survival than the wild type following aerated growth. The mntH mutant was found to be impaired in Fe(2+) uptake, suggesting that MntH is a Fe(2+) transporter in L. lactis. This mutant is capable of carrying out respiration but does not generate as high a final pH and does not exhibit the long lag phase in the presence of hemin and oxygen that is characteristic of wild-type L. lactis. This study suggests that tellurite-resistant mutants also have increased resistance to oxidative stress and that intracellular Fe(2+) can heighten tellurite and oxygen toxicity.
Collapse
Affiliation(s)
- Mark S Turner
- Infectious Diseases Program, Cells and Tissue Domain, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| | | | | |
Collapse
|
24
|
Courville P, Chaloupka R, Cellier MFM. Recent progress in structure-function analyses of Nramp proton-dependent metal-ion transporters. Biochem Cell Biol 2007; 84:960-78. [PMID: 17215883 DOI: 10.1139/o06-193] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The natural resistance-associated macrophage protein (Nramp) homologs form a family of proton-coupled transporters that facilitate the cellular absorption of divalent metal ions (Me2+, including Mn2+, Fe2+, Co2+, and Cd2+). The Nramp, or solute carrier 11 (SLC11), family is conserved in eukaryotes and bacteria. Humans and rodents express 2 parologous genes that are associated with iron disorders and immune diseases. The NRAMP1 (SLC11A1) protein is specific to professional phagocytes and extrudes Me2+ from the phagosome to defend against ingested microbes; polymorphisms in the NRAMP1 gene are associated with various immune diseases. Several isoforms of NRAMP2 (SLC11A2, DMT1, DCT1) are expressed ubiquitously in recycling endosomes or specifically at the apical membrane of epithelial cells in intestine and kidneys, and can contribute to iron overload, whereas mutations impairing NRAMP2 function cause a form of congenital microcytic hypochromic anemia. Structure-function studies, using various experimental models, and mutagenesis approaches have begun to reveal the overall transmembrane organization of Nramp, some of the transmembrane segments (TMS) that are functionally important, and an unusual mechanism coupling Me2+ and proton H+ transport. The approaches used include functional complementation of yeast knockout strains, electrophysiology analyses in Xenopus oocytes, and transport assays that use mammalian and bacterial cells and direct and indirect measurements of SLC11 transporter properties. These complementary studies enabled the identification of TMS1 and 6 as crucial structural segments for Me2+ and H+ symport, and will help develop a deeper understanding of the Nramp transport mechanism and its contribution to Me2+ homeostasis in human health and diseases.
Collapse
Affiliation(s)
- P Courville
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, 531, Bd. des prairies, Laval, QC H7V 1B7, Canada
| | | | | |
Collapse
|
25
|
Runyen-Janecky L, Dazenski E, Hawkins S, Warner L. Role and regulation of the Shigella flexneri sit and MntH systems. Infect Immun 2006; 74:4666-72. [PMID: 16861654 PMCID: PMC1539580 DOI: 10.1128/iai.00562-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri possesses at least two putative high-affinity manganese acquisition systems, SitABCD and MntH. Mutations in the genes encoding the components of both of these systems were constructed in S. flexneri. The sitA mntH mutant showed reduced growth, relative to the wild type, in Luria broth (L broth) containing the divalent metal chelator ethylene diamino-o-dihydroxyphenyl acetic acid, and the addition of either iron or manganese restored growth to the level of the wild-type strain. Although the sitA mntH mutant was not defective in surviving exposure to superoxide generators, it was defective in surviving exposure to hydrogen peroxide. The sitA mntH mutant formed wild-type plaques on Henle cell monolayers but had a reduced ability to survive in activated macrophage lines. Expression of the S. flexneri sit and mntH promoters was higher when Shigella was in Henle cells than when it was in L broth. Expression of both the sit and mntH promoters was repressed by either iron or manganese, and this repression was partially dependent upon Fur and MntR, respectively. The mntH promoter, but not the sit promoter, exhibited OxyR-dependent induction in the presence of hydrogen peroxide.
Collapse
|
26
|
Ulrich RL, Ulrich MP, Schell MA, Kim HS, DeShazer D. Development of a polymerase chain reaction assay for the specific identification of Burkholderia mallei and differentiation from Burkholderia pseudomallei and other closely related Burkholderiaceae. Diagn Microbiol Infect Dis 2006; 55:37-45. [PMID: 16546342 DOI: 10.1016/j.diagmicrobio.2005.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/14/2005] [Accepted: 11/29/2005] [Indexed: 11/17/2022]
Abstract
Burkholderia mallei and Burkholderia pseudomallei, the etiologic agents responsible for glanders and melioidosis, respectively, are genetically and phenotypically similar and are category B biothreat agents. We used an in silico approach to compare the B. mallei ATCC 23344 and B. pseudomallei K96243 genomes to identify nucleotide sequences unique to B. mallei. Five distinct B. mallei DNA sequences and/or genes were identified and evaluated for polymerase chain reaction (PCR) assay development. Genomic DNAs from a collection of 31 B. mallei and 34 B. pseudomallei isolates, obtained from various geographic, clinical, and environmental sources over a 70-year period, were tested with PCR primers targeted for each of the B. mallei ATCC 23344-specific nucleotide sequences. Of the 5 chromosomal targets analyzed, only PCR primers designed to bimA(Bm) were specific for B. mallei. These primers were used to develop a rapid PCR assay for the definitive identification of B. mallei and differentiation from all other bacteria.
Collapse
Affiliation(s)
- Ricky L Ulrich
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA
| | | | | | | | | |
Collapse
|
27
|
Harrison A, Dyer DW, Gillaspy A, Ray WC, Mungur R, Carson MB, Zhong H, Gipson J, Gipson M, Johnson LS, Lewis L, Bakaletz LO, Munson RS. Genomic sequence of an otitis media isolate of nontypeable Haemophilus influenzae: comparative study with H. influenzae serotype d, strain KW20. J Bacteriol 2005; 187:4627-36. [PMID: 15968074 PMCID: PMC1151754 DOI: 10.1128/jb.187.13.4627-4636.2005] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In 1995, the Institute for Genomic Research completed the genome sequence of a rough derivative of Haemophilus influenzae serotype d, strain KW20. Although extremely useful in understanding the basic biology of H. influenzae, these data have not provided significant insight into disease caused by nontypeable H. influenzae, as serotype d strains are not pathogens. In contrast, strains of nontypeable H. influenzae are the primary pathogens of chronic and recurrent otitis media in children. In addition, these organisms have an important role in acute otitis media in children as well as other respiratory diseases. Such strains must therefore contain a gene repertoire that differs from that of strain Rd. Elucidation of the differences between these genomes will thus provide insight into the pathogenic mechanisms of nontypeable H. influenzae. The genome of a representative nontypeable H. influenzae strain, 86-028NP, isolated from a patient with chronic otitis media was therefore sequenced and annotated. Despite large regions of synteny with the strain Rd genome, there are large rearrangements in strain 86-028NP's genome architecture relative to the strain Rd genome. A genomic island similar to an island originally identified in H. influenzae type b is present in the strain 86-028NP genome, while the mu-like phage present in the strain Rd genome is absent from the strain 86-028NP genome. Two hundred eighty open reading frames were identified in the strain 86-028NP genome that were absent from the strain Rd genome. These data provide new insight that complements and extends the ongoing analysis of nontypeable H. influenzae virulence determinants.
Collapse
Affiliation(s)
- Alistair Harrison
- Center for Microbial Pathogenesis, Columbus Children's Research Institute, Ohio State University College of Medicine and Public Health, Columbus, Ohio 43205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Haemig HAH, Brooker RJ. Importance of conserved acidic residues in mntH, the Nramp homolog of Escherichia coli. J Membr Biol 2005; 201:97-107. [PMID: 15630547 DOI: 10.1007/s00232-004-0711-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 08/04/2004] [Indexed: 10/26/2022]
Abstract
A bioinformatic approach was used for the identification of residues that are conserved within the Nramp family of metal transporters. Site-directed mutagenesis was then carried out to change six conserved acidic residues (i.e., Asp-34, Glu-102, Asp-109, Glu-112, Glu-154, and Asp-238) in the E. coli Nramp homolog mntH. Of these six, five of them, Asp-34, Glu-102, Asp-109, Glu-112, and Asp-238 appear to be important for function since conservative substitutions at these sites result in a substantial loss of transport function. In addition, all of the residues within the signature sequence of the Nramp family, DPGN, were also mutated in this study. Each residue was changed to several different side chains, and of ten site-directed mutations made in this motif, only P35G showed any measurable level of (54)Mn(2+) uptake with a V(max) value of approximately 10% of wild-type and a slightly elevated K(m) value. Overall, the data are consistent with a model where helix breakers in the conserved DPGN motif in TMS-1 provide a binding pocket in which Asp-34, Asn-37, Asp-109, Glu-112 (and possibly other residues) are involved in the coordination of Mn(2+). Other residues such as Glu-102 and Asp238 may play a role in the release of Mn(2+) to the cytoplasm or may be involved in maintaining secondary structure.
Collapse
Affiliation(s)
- H A H Haemig
- Department of Genetics, Cell Biology and Development, the Biotechnology Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
29
|
Montes-Horcasitas C, Ruiz-Medrano R, Magaña-Plaza I, Silva LG, Herrera-Martínez A, Hernández-Montalvo L, Xoconostle-Cázares B. Efficient Transformation of Cellulomonas flavigena by Electroporation and Conjugation with Bacillus thuringiensis. Curr Microbiol 2004; 49:428-32. [PMID: 15696619 DOI: 10.1007/s00284-004-4329-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conjugative self-transmissible plasmid pHT73, harbored in Bacillus thuringiensis var. kurstaki, was demonstrated to be transferred to Cellulomonas flavigena, a cellulolytic bacterium. Both conjugation and transformation procedures yielded resistant colonies; however, chromosomal integration was observed only when bacterial conjugation occurred. The efficiency of conjugation was 10% of recipient strain, which is considered a very efficient process. When the plasmid pHT73 was introduced by transformation, erythromycin-resistant cells contained the plasmid as an episome with no arrangements, as assayed by Southern blot analysis. In contrast, conjugated-resistant cells harbor the plasmid integrated into the chromosome. These data suggest a common mechanism of cell communication between nonrelated bacterial species with similar ecological habitats, and also that both electroporation and conjugation can be used to transform C. flavigena efficiently.
Collapse
Affiliation(s)
- Carmen Montes-Horcasitas
- Departamento de Biotecnología y Bioingeniería, CINVESTAV IPN. Ave. IPN 2508, San Pedro Zacatenco, CP 07360 México, DF
| | | | | | | | | | | | | |
Collapse
|
30
|
Robledo JAF, Courville P, Cellier MFM, Vasta GR. GENE ORGANIZATION AND EXPRESSION OF THE DIVALENT CATION TRANSPORTER NRAMP IN THE PROTISTAN PARASITE PERKINSUS MARINUS. J Parasitol 2004; 90:1004-14. [PMID: 15562599 DOI: 10.1645/ge-240r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Trophozoites of the protistan parasite Perkinsus marinus reside and proliferate inside phagosomelike structures of hemocytes from the host, the eastern oyster Crassostrea virginica. In a murine model, it has been proposed that the outcome of intracellular parasite-host interactions is determined, at least in part, by the activity of the host's divalent cation transporter natural resistance-associated macrophage protein 1 (Nramp1). Although nucleotide sequences from members of the Nramp family in protozoan parasites have recently become available in public databases, little is known about their molecular, structural, and functional aspects that may relate to the parasite's survival of intracellular killing by the host. The complementary DNA (cDNA) sequence of the Nramp from P. marinus (PmNramp) was obtained by polymerase chain reaction amplification with degenerated primers, followed by rapid amplification of cDNA ends. The 2,082-bp cDNA sequence encoded a predicted protein of 558 amino acids. PmNramp is a single-copy gene composed of 7 exons and 6 short introns (44-61 bp) with the canonical splicing signal (GT/AG). A phylogenetic analysis indicates that P. marinus and apicomplexan Nramp genes derive from a common "archetype" Nramp ancestor. However, the apicomplexan Nramps are highly divergent from the P. marinus sequence and the rest of the archetype Nramp group. Preliminary studies suggest that expression of PmNramp in in vitro-cultured P. marinus trophozoites is modulated by metals and by exogenous oxidative stress.
Collapse
Affiliation(s)
- José-Antonio F Robledo
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202-3101, USA
| | | | | | | |
Collapse
|
31
|
Courville P, Chaloupka R, Veyrier F, Cellier MFM. Determination of transmembrane topology of the Escherichia coli natural resistance-associated macrophage protein (Nramp) ortholog. J Biol Chem 2003; 279:3318-26. [PMID: 14607838 DOI: 10.1074/jbc.m309913200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The natural resistance-associated macrophage protein (Nramp) defines a conserved family of secondary metal transporters. Molecular evolutionary analysis of the Nramp family revealed the early duplication of an ancestral eukaryotic Nramp gene, which was likely derived from a bacterial ortholog and characterized as a proton-dependent manganese transporter MntH (Makui, H., Roig, E., Cole, S. T., Helmann, J. D., Gros, P., and Cellier, M. F. (2000) Mol. Microbiol. 35, 1065-1078). Escherichia coli MntH represents a model of choice to study structure function relationship in the Nramp protein family. Here, we report E. coli MntH transmembrane topology using a combination of in silico predictions, genetic fusion with cytoplasmic and periplasmic reporters, and MntH functional assays. Constructs of the secreted form of beta-lactamase (Blam) revealed extra loops between transmembrane domains 1/2, 5/6, 7/8, and 9/10, and placed the C terminus periplasmically; chloramphenicol acetyltransferase constructs indicated cytoplasmic loops 2/3, 6/7, 8/9, and 10/11. Two intra loops for which no data were produced (N terminus, intra loop 4/5) both display composition bias supporting their deduced localization. The extra loops 5/6 and 6/7 and periplasmic exposure of the C terminus were confirmed by targeted reporter insertion. Three of them preserved MntH function as measured by a disk assay of divalent metal uptake and a fluorescence assay of divalent metal-dependent proton transport, whereas a truncated form lacking transmembrane domain 11 was inactive. These results demonstrate that EcoliA is a type III integral membrane protein with 11 transmembrane domains transporting both divalent metal ions and protons.
Collapse
Affiliation(s)
- Pascal Courville
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Québec, Canada H7V 1B7
| | | | | | | |
Collapse
|