1
|
Alkathiry HA, Alghamdi SQ, Sinha A, Margos G, Stekolnikov AA, Alagaili AN, Darby AC, Makepeace BL, Khoo JJ. Microbiome and mitogenomics of the chigger mite Pentidionis agamae: potential role as an Orientia vector and associations with divergent clades of Wolbachia and Borrelia. BMC Genomics 2024; 25:380. [PMID: 38632506 PMCID: PMC11025265 DOI: 10.1186/s12864-024-10301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Trombiculid mites are globally distributed, highly diverse arachnids that largely lack molecular resources such as whole mitogenomes for the elucidation of taxonomic relationships. Trombiculid larvae (chiggers) parasitise vertebrates and can transmit bacteria (Orientia spp.) responsible for scrub typhus, a zoonotic febrile illness. Orientia tsutsugamushi causes most cases of scrub typhus and is endemic to the Asia-Pacific Region, where it is transmitted by Leptotrombidium spp. chiggers. However, in Dubai, Candidatus Orientia chuto was isolated from a case of scrub typhus and is also known to circulate among rodents in Saudi Arabia and Kenya, although its vectors remain poorly defined. In addition to Orientia, chiggers are often infected with other potential pathogens or arthropod-specific endosymbionts, but their significance for trombiculid biology and public health is unclear. RESULTS Ten chigger species were collected from rodents in southwestern Saudi Arabia. Chiggers were pooled according to species and screened for Orientia DNA by PCR. Two species (Microtrombicula muhaylensis and Pentidionis agamae) produced positive results for the htrA gene, although Ca. Orientia chuto DNA was confirmed by Sanger sequencing only in P. agamae. Metagenomic sequencing of three pools of P. agamae provided evidence for two other bacterial associates: a spirochaete and a Wolbachia symbiont. Phylogenetic analysis of 16S rRNA and multi-locus sequence typing genes placed the spirochaete in a clade of micromammal-associated Borrelia spp. that are widely-distributed globally with no known vector. For the Wolbachia symbiont, a genome assembly was obtained that allowed phylogenetic localisation in a novel, divergent clade. Cytochrome c oxidase I (COI) barcodes for Saudi Arabian chiggers enabled comparisons with global chigger diversity, revealing several cases of discordance with classical taxonomy. Complete mitogenome assemblies were obtained for the three P. agamae pools and almost 50 SNPs were identified, despite a common geographic origin. CONCLUSIONS P. agamae was identified as a potential vector of Ca. Orientia chuto on the Arabian Peninsula. The detection of an unusual Borrelia sp. and a divergent Wolbachia symbiont in P. agamae indicated links with chigger microbiomes in other parts of the world, while COI barcoding and mitogenomic analyses greatly extended our understanding of inter- and intraspecific relationships in trombiculid mites.
Collapse
Affiliation(s)
- Hadil A Alkathiry
- Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| | - Samia Q Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, P.O.Box1988, Al-Baha, 65799, Saudi Arabia
| | - Amit Sinha
- New England Biolabs, Ipswich, Massachusetts, 01938, USA
| | - Gabriele Margos
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, Oberschleissheim, 85764, Germany
| | - Alexandr A Stekolnikov
- Laboratory of Parasitic Arthropods, Zoological Institute of the Russian Academy of Sciences, Universitetskaya embankment 1, St. Petersburg, 199034, Russia
| | | | - Alistair C Darby
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| | - Benjamin L Makepeace
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| | - Jing Jing Khoo
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK.
| |
Collapse
|
2
|
Zhang Q, Lu YW, Liu XY, Li Y, Gao WN, Sun JT, Hong XY, Shao R, Xue XF. Phylogenomics resolves the higher-level phylogeny of herbivorous eriophyoid mites (Acariformes: Eriophyoidea). BMC Biol 2024; 22:70. [PMID: 38519936 PMCID: PMC10960459 DOI: 10.1186/s12915-024-01870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Eriophyoid mites (Eriophyoidea) are among the largest groups in the Acariformes; they are strictly phytophagous. The higher-level phylogeny of eriophyoid mites, however, remains unresolved due to the limited number of available morphological characters-some of them are homoplastic. Nevertheless, the eriophyoid mites sequenced to date showed highly variable mitochondrial (mt) gene orders, which could potentially be useful for resolving the higher-level phylogenetic relationships. RESULTS Here, we sequenced and compared the complete mt genomes of 153 eriophyoid mite species, which showed 54 patterns of rearranged mt gene orders relative to that of the hypothetical ancestor of arthropods. The shared derived mt gene clusters support the monophyly of eriophyoid mites (Eriophyoidea) as a whole and the monophylies of six clades within Eriophyoidea. These monophyletic groups and their relationships were largely supported in the phylogenetic trees inferred from mt genome sequences as well. Our molecular dating results showed that Eriophyoidea originated in the Triassic and diversified in the Cretaceous, coinciding with the diversification of angiosperms. CONCLUSIONS This study reveals multiple molecular synapomorphies (i.e. shared derived mt gene clusters) at different levels (i.e. family, subfamily or tribe level) from the complete mt genomes of 153 eriophyoid mite species. We demonstrated the use of derived mt gene clusters in unveiling the higher-level phylogeny of eriophyoid mites, and underlines the origin of these mites and their co-diversification with angiosperms.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yi-Wen Lu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xin-Yu Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ye Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wei-Nan Gao
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Renfu Shao
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Xiao-Feng Xue
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
3
|
Meng X, Wang D, Pang Q, Wang H, Zhou H. Multiple independent origins of duplicated mitochondrial control regions indicate an apomorphy in the Thysanoptera (Insecta). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22087. [PMID: 38288498 DOI: 10.1002/arch.22087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
The mitochondrial genome (mitogenome) of thrips is characterized by the presence of control region (CR) duplication. However, the evolution pattern of duplicated CRs in thrips is still unclear. In this study, the multiple independent origins of duplicated CR indicated that the CR duplication was not an ancestral state for Thysanoptera. The macroevolutionary pattern suggested that the earliest CR duplication event occurred in the middle Cretaceous (94.85 Ma) coincided with rearrangement events forming the ancestors of Aeolothripidae, but much later than that forming the ancestors of the suborder Terebrantia. The mitogenome with duplicated CRs showed a higher rate of gene rearrangement. The sequence similarity of the CR copies and divergence time were negatively correlated, indicating age-related deterioration of mitochondrial function. No significant differences were found in the mitochondrial DNA, the P123 and P4FD between the single and multiple-CR charactered mitogenomes, which suggested that the duplicated CRs may not affect the replication process in thrip mitogenome. The mitogenomes with duplicated CRs (mean: 0.0088 subs/s/my) show a significantly increased evolutionary rate than that with a single one (mean: 0.0058 subs/s/my). However, it seems that this higher evolutionary rate did not have adaptive mechanisms in Terebrantia. We speculated that the duplicated CRs may cause a more intense production of energy by mitochondria, and an accelerated mutation and substitution rate is expected in such mitogenomes. Our study provided new insights into the presence of CR duplications and their evolution in the mitogenomes of thrips.
Collapse
Affiliation(s)
| | - Dong Wang
- Qingdao Technical College, Qingdao, China
| | - Qiang Pang
- Qingdao Technical College, Qingdao, China
| | - Heng Wang
- Rizhao Agricultural Technology Service Center, Rizhao, China
| | - Hongxu Zhou
- Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
4
|
Zajkowska P, Postawa T, Mąkol J. Let me know your name: a study of chigger mites (Acariformes: Trombiculidae) associated with the edible dormouse (Glis glis) in the Carpathian-Balkan distribution gradient. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:1-27. [PMID: 37553534 PMCID: PMC10462554 DOI: 10.1007/s10493-023-00824-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023]
Abstract
Trombiculid mites were collected from the edible dormouse (Glis glis) within the Carpathian-Balkan distribution gradient of host species. Representatives of five genera (Leptotrombidium, Neotrombicula, Brunehaldia, Hirsutiella, Schoutedenichia) and 10 species of chiggers were discovered in the material, based on morphological and/or molecular data. Brunehaldia, new to the fauna of Greece, was recorded for the first time from the edible dormouse. Neotrombicula talmiensis was new to the fauna of Greece and Neotrombicula vulgaris was new to the fauna of North Macedonia. Successful amplification and sequencing of COI was carried out in relation to three genera and six species. The intraspecific variation of taxa hitherto distinguished based on morphological criteria was juxtaposed with molecular data, using the distance method and the phylogenetic approach. The molecular methods indicated wider than hitherto recognized, intraspecific morphological variation for Leptotrombidium europaeum and N. talmiensis. On the other hand, an inference limited to morphology proved to be insufficient for species delineation, which was confirmed by the relatively low identity (%) of examined COI sequences as well as the size of inter-/intraspecific K2P distance threshold. Our study provides support for integrative taxonomy that combines different sources of evidence and contributes to recognition of the scope of intraspecific variation. The high degree of hidden diversity revealed with the application of molecular tools, votes for a careful approach to the identification of chiggers. The confirmed cases of co-invasion, including the representatives of various genera (Leptotrombidium and Neotrombicula, Brunehaldia and Neotrombicula, Neotrombicula and Schoutedenichia, Hirsutiella and Schoutedenichia) additionally support the need to include all larvae found on a given host specimen in the identification process.
Collapse
Affiliation(s)
- Paula Zajkowska
- Department of Invertebrate Systematics and Ecology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska Str. 5b, 51-631, Wrocław, Poland.
| | - Tomasz Postawa
- Landscape Ecology Team, Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska Str. 17, 31-016, Kraków, Poland
| | - Joanna Mąkol
- Department of Invertebrate Systematics and Ecology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska Str. 5b, 51-631, Wrocław, Poland
| |
Collapse
|
5
|
Struck TH, Golombek A, Hoesel C, Dimitrov D, Elgetany AH. Mitochondrial Genome Evolution in Annelida-A Systematic Study on Conservative and Variable Gene Orders and the Factors Influencing its Evolution. Syst Biol 2023; 72:925-945. [PMID: 37083277 PMCID: PMC10405356 DOI: 10.1093/sysbio/syad023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023] Open
Abstract
The mitochondrial genomes of Bilateria are relatively conserved in their protein-coding, rRNA, and tRNA gene complement, but the order of these genes can range from very conserved to very variable depending on the taxon. The supposedly conserved gene order of Annelida has been used to support the placement of some taxa within Annelida. Recently, authors have cast doubts on the conserved nature of the annelid gene order. Various factors may influence gene order variability including, among others, increased substitution rates, base composition differences, structure of noncoding regions, parasitism, living in extreme habitats, short generation times, and biomineralization. However, these analyses were neither done systematically nor based on well-established reference trees. Several focused on only a few of these factors and biological factors were usually explored ad-hoc without rigorous testing or correlation analyses. Herein, we investigated the variability and evolution of the annelid gene order and the factors that potentially influenced its evolution, using a comprehensive and systematic approach. The analyses were based on 170 genomes, including 33 previously unrepresented species. Our analyses included 706 different molecular properties, 20 life-history and ecological traits, and a reference tree corresponding to recent improvements concerning the annelid tree. The results showed that the gene order with and without tRNAs is generally conserved. However, individual taxa exhibit higher degrees of variability. None of the analyzed life-history and ecological traits explained the observed variability across mitochondrial gene orders. In contrast, the combination and interaction of the best-predicting factors for substitution rate and base composition explained up to 30% of the observed variability. Accordingly, correlation analyses of different molecular properties of the mitochondrial genomes showed an intricate network of direct and indirect correlations between the different molecular factors. Hence, gene order evolution seems to be driven by molecular evolutionary aspects rather than by life history or ecology. On the other hand, variability of the gene order does not predict if a taxon is difficult to place in molecular phylogenetic reconstructions using sequence data or not. We also discuss the molecular properties of annelid mitochondrial genomes considering canonical views on gene evolution and potential reasons why the canonical views do not always fit to the observed patterns without making some adjustments. [Annelida; compositional biases; ecology; gene order; life history; macroevolution; mitochondrial genomes; substitution rates.].
Collapse
Affiliation(s)
- Torsten H Struck
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, 0318 Oslo, Norway
- Centre of Molecular Biodiversity Research, Zoological Research Museum Alexander KoenigBonn 53113, Germany
- FB05 Biology/Chemistry; University of Osnabrück, Osnabrück 49069, Germany
| | - Anja Golombek
- Centre of Molecular Biodiversity Research, Zoological Research Museum Alexander KoenigBonn 53113, Germany
- FB05 Biology/Chemistry; University of Osnabrück, Osnabrück 49069, Germany
| | - Christoph Hoesel
- FB05 Biology/Chemistry; University of Osnabrück, Osnabrück 49069, Germany
| | - Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway
| | - Asmaa Haris Elgetany
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, 0318 Oslo, Norway
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Central zone, 34517, Egypt
| |
Collapse
|
6
|
Chen K, Roe RM, Ponnusamy L. Biology, Systematics, Microbiome, Pathogen Transmission and Control of Chiggers (Acari: Trombiculidae, Leeuwenhoekiidae) with Emphasis on the United States. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15147. [PMID: 36429867 PMCID: PMC9690316 DOI: 10.3390/ijerph192215147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Chiggers are the larval stage of Trombiculidae and Leeuwenhoekiidae mites of medical and veterinary importance. Some species in the genus Leptotrombidium and Herpetacarus vector Orientia species, the bacteria that causes scrub typhus disease in humans. Scrub typhus is a life-threatening, febrile disease. Chigger bites can also cause dermatitis. There were 248 chigger species reported from the US from almost every state. However, there are large gaps in our knowledge of the life history of other stages of development. North American wide morphological keys are needed for better species identification, and molecular sequence data for identification are minimal and not clearly matched with morphological data. The role of chiggers in disease transmission in the US is especially understudied, and the role of endosymbionts in Orientia infection are suggested in the scientific literature but not confirmed. The most common chiggers in the eastern United States were identified as Eutrombicula alfreddugesi but were likely misidentified and should be replaced with Eutrombicula cinnabaris. Scrub typhus was originally believed to be limited to the Tsutsugamushi Triangle and the chigger genus, Leptotrombidium, but there is increasing evidence this is not the case. The potential of Orientia species establishing in the US is high. In addition, several other recognized pathogens to infect humans, namely Hantavirus, Bartonella, Borrelia, and Rickettsia, were also detected in chiggers. The role that chiggers play in these disease transmissions in the US needs further investigation. It is possible some of the tick-borne diseases and red meat allergies are caused by chiggers.
Collapse
Affiliation(s)
- Kaiying Chen
- Department of Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - R. Michael Roe
- Department of Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| | - Loganathan Ponnusamy
- Department of Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
7
|
Tian J, Hou X, Ge M, Xu H, Yu B, Liu J, Shao R, Holmes EC, Lei C, Shi M. The diversity and evolutionary relationships of ticks and tick-borne bacteria collected in China. Parasit Vectors 2022; 15:352. [PMID: 36182913 PMCID: PMC9526939 DOI: 10.1186/s13071-022-05485-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023] Open
Abstract
Background Ticks (order Ixodida) are ectoparasites, vectors and reservoirs of many infectious agents affecting humans and domestic animals. However, the lack of information on tick genomic diversity leaves significant gaps in the understanding of the evolution of ticks and associated bacteria. Results We collected > 20,000 contemporary and historical (up to 60 years of preservation) tick samples representing a wide range of tick biodiversity across diverse geographic regions in China. Metagenomic sequencing was performed on individual ticks to obtain the complete or near-complete mitochondrial (mt) genome sequences from 46 tick species, among which mitochondrial genomes of 23 species were recovered for the first time. These new mt genomes data greatly expanded the diversity of many tick groups and revealed five cryptic species. Utilizing the same metagenomic sequence data we identified divergent and abundant bacteria in Haemaphysalis, Ixodes, Dermacentor and Carios ticks, including nine species of pathogenetic bacteria and potentially new species within the genus Borrelia. We also used these data to explore the evolutionary relationship between ticks and their associated bacteria, revealing a pattern of long-term co-divergence relationship between ticks and Rickettsia and Coxiella bacteria. Conclusions In sum, our study provides important new information on the genetic diversity of ticks based on an analysis of mitochondrial DNA as well as on the prevalence of tick-borne pathogens in China. It also sheds new light on the long-term evolutionary and ecological relationships between ticks and their associated bacteria. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05485-3.
Collapse
Affiliation(s)
- JunHua Tian
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.,Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei Province, 430015, China
| | - Xin Hou
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518107, China
| | - MiHong Ge
- Wuhan Academy of Agricultural Sciences, Wuhan, Hubei Province, 430345, China
| | - HongBin Xu
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, Jiangxi Province, 330029, China
| | - Bin Yu
- Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei Province, 430015, China
| | - Jing Liu
- Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei Province, 430015, China
| | - RenFu Shao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4558, Australia.,GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, 4558, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Life & Environmental Sciences and School of Medical Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - ChaoLiang Lei
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Mang Shi
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518107, China.
| |
Collapse
|
8
|
Towett-Kirui S, Morrow JL, Riegler M. Substantial rearrangements, single nucleotide frameshift deletion and low diversity in mitogenome of Wolbachia-infected strepsipteran endoparasitoid in comparison to its tephritid hosts. Sci Rep 2022; 12:477. [PMID: 35013476 PMCID: PMC8748643 DOI: 10.1038/s41598-021-04398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/21/2021] [Indexed: 12/01/2022] Open
Abstract
Insect mitogenome organisation is highly conserved, yet, some insects, especially with parasitic life cycles, have rearranged mitogenomes. Furthermore, intraspecific mitochondrial diversity can be reduced by fitness-affecting bacterial endosymbionts like Wolbachia due to their maternal coinheritance with mitochondria. We have sequenced mitogenomes of the Wolbachia-infected endoparasitoid Dipterophagus daci (Strepsiptera: Halictophagidae) and four of its 22 known tephritid fruit fly host species using total genomic extracts of parasitised flies collected across > 700 km in Australia. This halictophagid mitogenome revealed extensive rearrangements relative to the four fly mitogenomes which exhibited the ancestral insect mitogenome pattern. Compared to the only four available other strepsipteran mitogenomes, the D. daci mitogenome had additional transpositions of one rRNA and two tRNA genes, and a single nucleotide frameshift deletion in nad5 requiring translational frameshifting or, alternatively, resulting in a large protein truncation. Dipterophagus daci displays an almost completely endoparasitic life cycle when compared to Strepsiptera that have maintained the ancestral state of free-living adults. Our results support the hypothesis that the transition to extreme endoparasitism evolved together with increased levels of mitogenome changes. Furthermore, intraspecific mitogenome diversity was substantially smaller in D. daci than the parasitised flies suggesting Wolbachia reduced mitochondrial diversity because of a role in D. daci fitness.
Collapse
Affiliation(s)
- Sharon Towett-Kirui
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jennifer L Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
9
|
Thia JA, Young ND, Korhnen PK, Yang Q, Gasser RB, Umina PA, Hoffmann AA. The mitogenome of Halotydeus destructor (Tucker) and its relationships with other trombidiform mites as inferred from nucleotide sequences and gene arrangements. Ecol Evol 2021; 11:14162-14174. [PMID: 34707848 PMCID: PMC8525180 DOI: 10.1002/ece3.8133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 01/02/2023] Open
Abstract
The redlegged earth mite, Halotydeus destructor (Tucker, 1925: Trombidiformes, Eupodoidea, Penthaleidae), is an invasive mite species. In Australia, this mite has become a pest of winter pastures and grain crops. We report the complete mitogenome for H. destructor, the first to represent the family Penthaleidae, superfamily Eupodoidea. The mitogenome of H. destructor is 14,691 bp in size, and has a GC content of 27.87%, 13 protein-coding genes, two rRNA genes, and 22 tRNA genes. We explored evolutionary relationships of H. destructor with other members of the Trombidiformes using phylogenetic analyses of nucleotide sequences and the order of protein-coding and rRNA genes. We found strong, consistent support for the superfamily Tydeoidea being the sister taxon to the superfamily Eupodoidea based on nucleotide sequences and gene arrangements. Moreover, the gene arrangements of Eupodoidea and Tydeoidea are not only identical to each other but also identical to that of the hypothesized arthropod ancestor, showing a high level of conservatism in the mitogenomic structure of these mite superfamilies. Our study illustrates the utility of gene arrangements for providing complementary information to nucleotide sequences with respect to inferring the evolutionary relationships of species within the order Trombidiformes. The mitogenome of H. destructor provides a valuable resource for further population genetic studies of this important agricultural pest. Given the co-occurrence of closely related, morphologically similar Penthaleidae mites with H. destructor in the field, a complete mitogenome provides new opportunities to develop metabarcoding tools to study mite diversity in agro-ecosystems. Moreover, the H. destructor mitogenome fills an important taxonomic gap that will facilitate further study of trombidiform mite evolution.
Collapse
Affiliation(s)
- Joshua A. Thia
- Bio 21 Institute, School of BioSciencesThe University of MelbourneMelbourneVictoriaAustralia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary SchoolThe University of MelbourneMelbourneVictoriaAustralia
| | - Pasi K. Korhnen
- Department of Veterinary Biosciences, Melbourne Veterinary SchoolThe University of MelbourneMelbourneVictoriaAustralia
| | - Qiong Yang
- Bio 21 Institute, School of BioSciencesThe University of MelbourneMelbourneVictoriaAustralia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary SchoolThe University of MelbourneMelbourneVictoriaAustralia
| | - Paul A. Umina
- Bio 21 Institute, School of BioSciencesThe University of MelbourneMelbourneVictoriaAustralia
- Cesar AustraliaBrunswickVictoriaAustralia
| | - Ary A. Hoffmann
- Bio 21 Institute, School of BioSciencesThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
10
|
Warren JM, Sloan DB. Hopeful monsters: unintended sequencing of famously malformed mite mitochondrial tRNAs reveals widespread expression and processing of sense-antisense pairs. NAR Genom Bioinform 2021; 3:lqaa111. [PMID: 33575653 PMCID: PMC7803006 DOI: 10.1093/nargab/lqaa111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Although tRNA structure is one of the most conserved and recognizable shapes in molecular biology, aberrant tRNAs are frequently found in the mitochondrial genomes of metazoans. The extremely degenerate structures of several mitochondrial tRNAs (mt-tRNAs) have led to doubts about their expression and function. Mites from the arachnid superorder Acariformes are predicted to have some of the shortest mt-tRNAs, with a complete loss of cloverleaf-like shape. While performing mitochondrial isolations and recently developed tRNA-seq methods in plant tissue, we inadvertently sequenced the mt-tRNAs from a common plant pest, the acariform mite Tetranychus urticae, to a high enough coverage to detect all previously annotated T. urticae tRNA regions. The results not only confirm expression, CCA-tailing and post-transcriptional base modification of these highly divergent tRNAs, but also revealed paired sense and antisense expression of multiple T. urticae mt-tRNAs. Mirrored expression of mt-tRNA genes has been hypothesized but not previously demonstrated to be common in any system. We discuss the functional roles that these divergent tRNAs could have as both decoding molecules in translation and processing signals in transcript maturation pathways, as well as how sense–antisense pairs add another dimension to the bizarre tRNA biology of mitochondrial genomes.
Collapse
Affiliation(s)
- Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, 80521 USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80521 USA
| |
Collapse
|
11
|
Lu C, Huang X, Deng J. The challenge of Coccidae (Hemiptera: Coccoidea) mitochondrial genomes: The case of Saissetia coffeae with novel truncated tRNAs and gene rearrangements. Int J Biol Macromol 2020; 158:854-864. [PMID: 32387610 DOI: 10.1016/j.ijbiomac.2020.04.257] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 11/23/2022]
Abstract
There have been few reports of complete mitochondrial genomes (mitogenomes) of scale insects, and it has been indicated that complex and novel structures in their mitogenomes may lead to difficulties in sequencing, assembly and annotation. Transfer RNAs (tRNAs) usually possess typical cloverleaf secondary structures, and truncated tRNAs are rarely found in insect mitogenomes. Here, we report a complete Saissetia coffeae mitogenome (15,389 bp) with high A+T content (84.7%) sequenced by next-generation sequencing (NGS) methods. Genes in the mitogenome were annotated, and nine tRNAs were not found using MITOS. Most of the detected tRNAs were significantly truncated without the dihydrouridine (DHU) arm or the TΨC (T) arm. In addition, the 9 "lost" tRNAs containing mismatched base pairs were retrieved based on the tRNA annotation workflow for Coccidae described in our study. The gene arrangement in the Saissetia coffeae mitogenome was significantly different from that in other hemipteran insects. Additionally, Bayesian and maximum likelihood trees based on the mitochondrial genes showed a long branch of the Saissetia lineage, indicating significant nonsynonymous substitutions or high evolutionary rates in the Saissetia lineage. We provide a reference mitogenome for the assembly and annotation of the Coccidae mitogenome and offer insights into the evolution of scale insects.
Collapse
Affiliation(s)
- Congcong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Deng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
12
|
Wang T, Zhang S, Pei T, Yu Z, Liu J. Tick mitochondrial genomes: structural characteristics and phylogenetic implications. Parasit Vectors 2019; 12:451. [PMID: 31519208 PMCID: PMC6743180 DOI: 10.1186/s13071-019-3705-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/05/2019] [Indexed: 11/10/2022] Open
Abstract
Ticks are obligate blood-sucking arachnid ectoparasites from the order Acarina, and many are notorious as vectors of a wide variety of zoonotic pathogens. However, the systematics of ticks in several genera is still controversial. The mitochondrial genome (mt-genome) has been widely used in arthropod phylogeny, molecular evolution and population genetics. With the development of sequencing technologies, an increasing number of tick mt-genomes have been sequenced and annotated. To date, 63 complete tick mt-genomes are available in the NCBI database, and these genomes have become an increasingly important genetic resource and source of molecular markers in phylogenetic studies of ticks in recent years. The present review summarizes all available complete mt-genomes of ticks in the NCBI database and analyses their characteristics, including structure, base composition and gene arrangement. Furthermore, a phylogenetic tree was constructed using mitochondrial protein-coding genes (PCGs) and ribosomal RNA (rRNA) genes from ticks. The results will provide important clues for deciphering new tick mt-genomes and establish a foundation for subsequent taxonomic research.
Collapse
Affiliation(s)
- Tianhong Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Shiqi Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Tingwei Pei
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| |
Collapse
|
13
|
Li WN, Xue XF. Mitochondrial genome reorganization provides insights into the relationship between oribatid mites and astigmatid mites (Acari: Sarcoptiformes: Oribatida). Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Oribatida s.l. represents one of the most species-rich mite lineages, including two recognized groups: oribatid mites (Oribatida s.s., non-astigmatan oribatids) and astigmatid mites (Astigmata). However, the relationship between these two groups has been debated. Here, we sequenced the complete mitochondrial (mt) genome of one oribatid mite and one astigmatid mite, retrieved complete mt genomes of three oribatid mites, and compared them with two other oribatid mites and 12 astigmatid mites sequenced previously. We find that gene orders in the mt genomes of both oribatid mites and astigmatid mites are rearranged relative to the hypothetical ancestral arrangement of the arthropods. Based on the shared derived gene clusters in each mt genome group, rearranged mt genomes are roughly divided into two groups corresponding to each mite group (oribatid mites or astigmatid mites). Phylogenetic results show that Astigmata nested in Oribatida. The monophyly of Astigmata is recovered, while paraphyly of Oribatida s.s. is observed. Our results show that rearranged gene orders in the mt genomes characterize various lineages of oribatid mites and astigmatid mites, and have potential phylogenetic information for resolving the high-level (cohort or supercohort) phylogeny of Oribatida.
Collapse
Affiliation(s)
- Wei-Ning Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | |
Collapse
|
14
|
Relation between mitochondrial DNA hyperdiversity, mutation rate and mitochondrial genome evolution in Melarhaphe neritoides (Gastropoda: Littorinidae) and other Caenogastropoda. Sci Rep 2018; 8:17964. [PMID: 30568252 PMCID: PMC6299273 DOI: 10.1038/s41598-018-36428-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/19/2018] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial DNA hyperdiversity is primarily caused by high mutation rates (µ) and has potential implications for mitogenome architecture and evolution. In the hyperdiverse mtDNA of Melarhaphe neritoides (Gastropoda: Littorinidae), high mutational pressure generates unusually large amounts of synonymous variation, which is expected to (1) promote changes in synonymous codon usage, (2) reflect selection at synonymous sites, (3) increase mtDNA recombination and gene rearrangement, and (4) be correlated with high mtDNA substitution rates. The mitogenome of M. neritoides was sequenced, compared to closely related littorinids and put in the phylogenetic context of Caenogastropoda, to assess the influence of mtDNA hyperdiversity and high µ on gene content and gene order. Most mitogenome features are in line with the trend in Mollusca, except for the atypical secondary structure of the methionine transfer RNA lacking the TΨC-loop. Therefore, mtDNA hyperdiversity and high µ in M. neritoides do not seem to affect its mitogenome architecture. Synonymous sites are under positive selection, which adds to the growing evidence of non-neutral evolution at synonymous sites. Under such non-neutrality, substitution rate involves neutral and non-neutral substitutions, and high µ is not necessarily associated with high substitution rate, thus explaining that, unlike high µ, a high substitution rate is associated with gene order rearrangement.
Collapse
|
15
|
Lv Y, Guo XG, Jin DC. Research Progress on Leptotrombidium deliense. THE KOREAN JOURNAL OF PARASITOLOGY 2018; 56:313-324. [PMID: 30196663 PMCID: PMC6137299 DOI: 10.3347/kjp.2018.56.4.313] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/10/2018] [Indexed: 01/31/2023]
Abstract
This article reviews Leptotrombidium deliense, including its discovery and nomenclature, morphological features and identification, life cycle, ecology, relationship with diseases, chromosomes and artificial cultivation. The first record of L. deliense was early in 1922 by Walch. Under the genus Leptotrombidium, there are many sibling species similar to L. deliense, which makes it difficult to differentiate L. deliense from another sibling chigger mites, for example, L. rubellum. The life cycle of the mite (L. deliense) includes 7 stages: egg, deutovum (or prelarva), larva, nymphochrysalis, nymph, imagochrysalis and adult. The mite has a wide geographical distribution with low host specificity, and it often appears in different regions and habitats and on many species of hosts. As a vector species of chigger mite, L. deliense is of great importance in transmitting scrub typhus (tsutsugamushi disease) in many parts of the world, especially in tropical regions of Southeast Asia. The seasonal fluctuation of the mite population varies in different geographical regions. The mite has been successfully cultured in the laboratory, facilitating research on its chromosomes, biochemistry and molecular biology.
Collapse
Affiliation(s)
- Yan Lv
- Institute of Entomology, Guizhou University, and the Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, P. R. China.,Vector Laboratory, Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan Province 671000, P. R. China
| | - Xian-Guo Guo
- Institute of Entomology, Guizhou University, and the Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, P. R. China.,Vector Laboratory, Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan Province 671000, P. R. China
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University, and the Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, P. R. China
| |
Collapse
|
16
|
Lv C, Li Q, Kong L. Comparative analyses of the complete mitochondrial genomes of Dosinia clams and their phylogenetic position within Veneridae. PLoS One 2018; 13:e0196466. [PMID: 29718949 PMCID: PMC5931646 DOI: 10.1371/journal.pone.0196466] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/13/2018] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial genomes have proved to be a powerful tool in resolving phylogenetic relationship. In order to understand the mitogenome characteristics and phylogenetic position of the genus Dosinia, we sequenced the complete mitochondrial genomes of Dosinia altior and Dosinia troscheli (Bivalvia: Veneridae), compared them with that of Dosinia japonica and established a phylogenetic tree for Veneridae. The mitogenomes of D. altior (17,536 bp) and D. troscheli (17,229 bp) are the two smallest in Veneridae, which include 13 protein-coding genes, 2 ribosomal RNA genes, 22 tRNA genes, and non-coding regions. The mitogenomes of the Dosinia species are similar in size, gene content, AT content, AT- and GC- skews, and gene arrangement. The phylogenetic relationships of family Veneridae were established based on 12 concatenated protein-coding genes using maximum likelihood and Bayesian analyses, which supported that Dosininae and Meretricinae have a closer relationship, with Tapetinae being the sister taxon. The information obtained in this study will contribute to further understanding of the molecular features of bivalve mitogenomes and the evolutionary history of the genus Dosinia.
Collapse
Affiliation(s)
- Changda Lv
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| |
Collapse
|
17
|
The Nothoaspis amazoniensis Complete Mitogenome: A Comparative and Phylogenetic Analysis. Vet Sci 2018; 5:vetsci5020037. [PMID: 29584648 PMCID: PMC6024882 DOI: 10.3390/vetsci5020037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/03/2022] Open
Abstract
The molecular biology era, together with morphology, molecular phylogenetics, bioinformatics, and high-throughput sequencing technologies, improved the taxonomic identification of Argasidae family members, especially when considering specimens at different development stages, which remains a great difficulty for acarologists. These tools could provide important data and insights on the history and evolutionary relationships of argasids. To better understand these relationships, we sequenced and assembled the first complete mitochondrial genome of Nothoaspis amazoniensis. We used phylogenomics to identify the evolutionary history of this species of tick, comparing the data obtained with 26 complete mitochondrial sequences available in biological databases. The results demonstrated the absence of genetic rearrangements, high similarity and identity, and a close organizational link between the mitogenomes of N. amazoniensis and other argasids analyzed. In addition, the mitogenome had a monophyletic cladistic taxonomic arrangement, encompassed by representatives of the Afrotropical and Neotropical regions, with specific parasitism in bats, which may be indicative of an evolutionary process of cospeciation between vectors and the host.
Collapse
|
18
|
Kumlert R, Chaisiri K, Anantatat T, Stekolnikov AA, Morand S, Prasartvit A, Makepeace BL, Sungvornyothin S, Paris DH. Autofluorescence microscopy for paired-matched morphological and molecular identification of individual chigger mites (Acari: Trombiculidae), the vectors of scrub typhus. PLoS One 2018; 13:e0193163. [PMID: 29494599 PMCID: PMC5832206 DOI: 10.1371/journal.pone.0193163] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/06/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Conventional gold standard characterization of chigger mites involves chemical preparation procedures (i.e. specimen clearing) for visualization of morphological features, which however contributes to destruction of the arthropod host DNA and any endosymbiont or pathogen DNA harbored within the specimen. METHODOLOGY/PRINCIPAL FINDINGS In this study, a novel work flow based on autofluorescence microscopy was developed to enable identification of trombiculid mites to the species level on the basis of morphological traits without any special preparation, while preserving the mite DNA for subsequent genotyping. A panel of 16 specifically selected fluorescence microscopy images of mite features from available identification keys served for complete chigger morphological identification to the species level, and was paired with corresponding genotype data. We evaluated and validated this method for paired chigger morphological and genotypic ID using the mitochondrial cytochrome c oxidase subunit I gene (coi) in 113 chigger specimens representing 12 species and 7 genera (Leptotrombidium, Ascoschoengastia, Gahrliepia, Walchia, Blankaartia, Schoengastia and Schoutedenichia) from the Lao People's Democratic Republic (Lao PDR) to the species level (complete characterization), and 153 chiggers from 5 genera (Leptotrombidium, Ascoschoengastia, Helenicula, Schoengastiella and Walchia) from Thailand, Cambodia and Lao PDR to the genus level. A phylogenetic tree constructed from 77 coi gene sequences (approximately 640 bp length, n = 52 new coi sequences and n = 25 downloaded from GenBank), demonstrated clear grouping of assigned morphotypes at the genus levels, although evidence of both genetic polymorphism and morphological plasticity was found. CONCLUSIONS/SIGNIFICANCE With this new methodology, we provided the largest collection of characterized coi gene sequences for trombiculid mites to date, and almost doubled the number of available characterized coi gene sequences with a single study. The ability to provide paired phenotypic-genotypic data is of central importance for future characterization of mites and dissecting the molecular epidemiology of mites transmitting diseases like scrub typhus.
Collapse
Affiliation(s)
- Rawadee Kumlert
- Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
- Department of Disease Control, Ministry of Public Health, Nonthaburi, Bangkok, Thailand
| | - Kittipong Chaisiri
- Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
- Department of Infection Biology, Institute of Infection & Global Health, University of Liverpool, Liverpool Science Park IC2, Liverpool, United Kingdom
| | - Tippawan Anantatat
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Alexandr A. Stekolnikov
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya Embankment 1, Saint Petersburg, Russia
| | - Serge Morand
- CNRS ISEM—CIRAD ASTRE, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Anchana Prasartvit
- Department of Disease Control, Ministry of Public Health, Nonthaburi, Bangkok, Thailand
| | - Benjamin L. Makepeace
- Department of Infection Biology, Institute of Infection & Global Health, University of Liverpool, Liverpool Science Park IC2, Liverpool, United Kingdom
| | | | - Daniel H. Paris
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- Faculty of Medicine, University Basel, Basel, Switzerland
| |
Collapse
|
19
|
de Lima PHC, Barcelos RM, Klein RC, Vidigal PMP, Montandon CE, Fabres-Klein MH, Dergam JA, Mafra C. Sequencing and comparative analysis of the Amblyomma sculptum mitogenome. Vet Parasitol 2017; 247:121-128. [DOI: 10.1016/j.vetpar.2017.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 10/08/2017] [Accepted: 10/14/2017] [Indexed: 11/25/2022]
|
20
|
Xia Y, Zheng Y, Murphy RW, Zeng X. Intraspecific rearrangement of mitochondrial genome suggests the prevalence of the tandem duplication-random loss (TDLR) mechanism in Quasipaa boulengeri. BMC Genomics 2016; 17:965. [PMID: 27881087 PMCID: PMC5122201 DOI: 10.1186/s12864-016-3309-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tandem duplication followed by random loss (TDRL) is the most frequently invoked model to explain the diversity of gene rearrangements in metazoan mitogenomes. The initial stages of gene rearrangement are difficult to observe in nature, which limits our understanding of incipient duplication events and the subsequent process of random loss. Intraspecific gene reorganizations may represent intermediate states, and if so they potentially shed light on the evolutionary dynamics of TDRL. RESULTS Nucleotide sequences in a hotspot of gene-rearrangement in 28 populations of a single species of frog, Quasipaa boulengeri, provide such predicted intermediate states. Gene order and phylogenetic analyses support a single tandem duplication event and a step-by-step process of random loss. Intraspecific gene rearrangements are not commonly found through comparison of all mitochondrial DNA records of amphibians and squamate reptiles in GenBank. CONCLUSIONS The intraspecific variation in Q. boulengeri provides insights into the rate of partial duplications and deletions within a mitogenome, and reveals that fixation and gene-distribution in mitogenomic reorganization is likely non-adaptive.
Collapse
Affiliation(s)
- Yun Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yuchi Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Robert W Murphy
- Centre for Biodiversity, Royal Ontario Museum, 100 Queen's Park, Toronto, ON, M5S 2C6, Canada
| | - Xiaomao Zeng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
21
|
Mitochondrial Genomes of Kinorhyncha: trnM Duplication and New Gene Orders within Animals. PLoS One 2016; 11:e0165072. [PMID: 27755612 PMCID: PMC5068742 DOI: 10.1371/journal.pone.0165072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/05/2016] [Indexed: 11/19/2022] Open
Abstract
Many features of mitochondrial genomes of animals, such as patterns of gene arrangement, nucleotide content and substitution rate variation are extensively used in evolutionary and phylogenetic studies. Nearly 6,000 mitochondrial genomes of animals have already been sequenced, covering the majority of animal phyla. One of the groups that escaped mitogenome sequencing is phylum Kinorhyncha-an isolated taxon of microscopic worm-like ecdysozoans. The kinorhynchs are thought to be one of the early-branching lineages of Ecdysozoa, and their mitochondrial genomes may be important for resolving evolutionary relations between major animal taxa. Here we present the results of sequencing and analysis of mitochondrial genomes from two members of Kinorhyncha, Echinoderes svetlanae (Cyclorhagida) and Pycnophyes kielensis (Allomalorhagida). Their mitochondrial genomes are circular molecules approximately 15 Kbp in size. The kinorhynch mitochondrial gene sequences are highly divergent, which precludes accurate phylogenetic inference. The mitogenomes of both species encode a typical metazoan complement of 37 genes, which are all positioned on the major strand, but the gene order is distinct and unique among Ecdysozoa or animals as a whole. We predict four types of start codons for protein-coding genes in E. svetlanae and five in P. kielensis with a consensus DTD in single letter code. The mitochondrial genomes of E. svetlanae and P. kielensis encode duplicated methionine tRNA genes that display compensatory nucleotide substitutions. Two distant species of Kinorhyncha demonstrate similar patterns of gene arrangements in their mitogenomes. Both genomes have duplicated methionine tRNA genes; the duplication predates the divergence of two species. The kinorhynchs share a few features pertaining to gene order that align them with Priapulida. Gene order analysis reveals that gene arrangement specific of Priapulida may be ancestral for Scalidophora, Ecdysozoa, and even Protostomia.
Collapse
|
22
|
Zhang XC, Li W, Zhao J, Chen HG, Zhu XP. Novel duplication pattern of the mitochondrial control region in Cantor's Giant softshell turtle Pelochelys cantorii. Gene 2016; 593:242-248. [PMID: 27565702 DOI: 10.1016/j.gene.2016.08.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/06/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Cantor's Giant Softshell Turtle, Pelochelys cantorii has become one of the most critically endangered species in the world. When comparative analyses of the P. cantorii complete mitochondrial genome sequences were conducted, we discovered a duplication of a segment of the control region in the mitochondrial genome of P. cantorii. The duplication is characterized by two copies of conserved sequence box 2 (CSB2) and CSB3 in a single control region. In contrast to previous reports of duplications involving the control regions of other animals, this particular pattern of duplications appears to be unique to P. cantorii. Copies of the CSB2 and CSB3 show many of the conserved sequence features typically found in mitochondrial control regions, and rare differences were found between the paralogous copies. Using the primer design principle of simple sequence repeats (SSR) and the reference sequence of the duplicated CSBs, specific primers were designed to amplify the duplicated CSBs. These primers were validated among different individuals and populations of P. cantorii. This unique duplication structure suggests the two copies of the CSB2 and CSB3 may have arisen through occasional tandem duplication and subsequent concerted evolution.
Collapse
Affiliation(s)
- Xin-Cheng Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Jian Zhao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Hai-Gang Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Xin-Ping Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China.
| |
Collapse
|
23
|
Mitochondrial genome evolution and tRNA truncation in Acariformes mites: new evidence from eriophyoid mites. Sci Rep 2016; 6:18920. [PMID: 26732998 PMCID: PMC4702108 DOI: 10.1038/srep18920] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/30/2015] [Indexed: 11/08/2022] Open
Abstract
The subclass Acari (mites and ticks) comprises two super-orders: Acariformes and Parasitiformes. Most species of the Parasitiformes known retained the ancestral pattern of mitochondrial (mt) gene arrangement of arthropods, and their mt tRNAs have the typical cloverleaf structure. All of the species of the Acariformes known, however, have rearranged mt genomes and truncated mt tRNAs. We sequenced the mt genomes of two species of Eriophyoidea: Phyllocoptes taishanensis and Epitrimerus sabinae. The mt genomes of P. taishanensis and E. sabinae are 13,475 bp and 13,531 bp, respectively, are circular and contain the 37 genes typical of animals; most mt tRNAs are highly truncated in both mites. On the other hand, these two eriophyoid mites have the least rearranged mt genomes seen in the Acariformes. Comparison between eriophyoid mites and other Aacariformes mites showed that: 1) the most recent common ancestor of Acariformes mites retained the ancestral pattern of mt gene arrangement of arthropods with slight modifications; 2) truncation of tRNAs for cysteine, phenylalanine and histidine occurred once in the most recent common ancestor of Acariformes mites whereas truncation of other tRNAs occurred multiple times; and 3) the placement of eriophyoid mites in the order Trombidiformes needs to be reviewed.
Collapse
|
24
|
Characterization of the complete mitochondrial genome of the storage mite pest Tyrophagus longior (Gervais) (Acari: Acaridae) and comparative mitogenomic analysis of four acarid mites. Gene 2015; 576:807-19. [PMID: 26584537 DOI: 10.1016/j.gene.2015.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/03/2015] [Accepted: 11/11/2015] [Indexed: 02/07/2023]
Abstract
Mites of the genus Tyrophagus are economically important polyphagous pest commonly living on stored products and also responsible for allergic reactions to humans. Complete mitochondrial genomes (mitogenomes) and the gene features therein are widely used as molecular markers in the study of population genetics, phylogenetics as well as molecular evolution. However, scarcity on the sequence data has greatly impeded the studies in these areas pertaining to the Acari (mites and ticks). Information on the Tyrophagus mitogenomes is quite critical for phylogenetic evaluation and molecular evolution of the mitogenomes within Acariformes. Herein, we reported the complete mitogenome of the allergenic acarid storage mite Tyrophagus longior (Astigmata: Acaridae), an important member of stored food pests, and compared with those of other three acarid mites. The complete mitogenome of T. longior was a circular molecule of 13,271 bp. Unexpectedly, only 19 transfer RNA genes (tRNAs) were present, lacking trnF, trnS1 and trnQ. Furthermore, it also contained 13 protein-coding genes (PCGs) and 2 genes for rRNA (rrnS and rrnL) commonly detected in metazoans. The four mitogenomes displayed similar characteristics with respect to the gene content, nucleotide comparison, and codon usages. Yet, the gene order of T. longior was different from that in other Acari. The J-strands of the four mitogenomes possessed high A+T content (67.4-70.0%), and exhibited positive GC-skews and negative AT-skews. Most inferred tRNAs of T. longior were extremely truncated, lacking either a D- or T-arm, as found in other acarid mites. In T. longior mitogenome the A+T-rich region was just 50 bp in length and can be folded as a stable stem-loop structure, whereas in the region some structures of microsatellite-like (AT)n and palindromic sequences was not present. Besides, reconstructing of the phylogenetic relationship based on concatenated amino acid sequences of 13 PCGs supported that monophyly of the family Acaridae and the order Astigmata, to which the former belongs. Our results were consistent with the traditional classifications.
Collapse
|
25
|
Palopoli MF, Minot S, Pei D, Satterly A, Endrizzi J. Complete mitochondrial genomes of the human follicle mites Demodex brevis and D. folliculorum: novel gene arrangement, truncated tRNA genes, and ancient divergence between species. BMC Genomics 2014; 15:1124. [PMID: 25515815 PMCID: PMC4320518 DOI: 10.1186/1471-2164-15-1124] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/26/2014] [Indexed: 01/14/2023] Open
Abstract
Background Follicle mites of the genus Demodex are found on a wide diversity of mammals, including humans; surprisingly little is known, however, about the evolution of this association. Additional sequence information promises to facilitate studies of Demodex variation within and between host species. Here we report the complete mitochondrial genome sequences of two species of Demodex known to live on humans—Demodex brevis and D. folliculorum—which are the first such genomes available for any member of the genus. We analyzed these sequences to gain insight into the evolution of mitochondrial genomes within the Acariformes. We also used relaxed molecular clock analyses, based on alignments of mitochondrial proteins, to estimate the time of divergence between these two species. Results Both Demodex genomes shared a novel gene order that differs substantially from the ancestral chelicerate pattern, with transfer RNA (tRNA) genes apparently having moved much more often than other genes. Mitochondrial tRNA genes of both species were unusually short, with most of them unable to encode tRNAs that could fold into the canonical cloverleaf structure; indeed, several examples lacked both D- and T-arms. Finally, the high level of sequence divergence observed between these species suggests that these two lineages last shared a common ancestor no more recently than about 87 mya. Conclusions Among Acariformes, rearrangements involving tRNA genes tend to occur much more often than those involving other genes. The truncated tRNA genes observed in both Demodex species would seem to require the evolution of extensive tRNA editing capabilities and/or coevolved interacting factors. The molecular machinery necessary for these unusual tRNAs to function might provide an avenue for developing treatments of skin disorders caused by Demodex. The deep divergence time estimated between these two species sets a lower bound on the time that Demodex have been coevolving with their mammalian hosts, and supports the hypothesis that there was an early split within the genus Demodex into species that dwell in different skin microhabitats. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1124) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael F Palopoli
- Department of Biology, Bowdoin College, Brunswick 6500, College Station ME 04011, USA.
| | | | | | | | | |
Collapse
|
26
|
Sun S, Kong L, Yu H, Li Q. The complete mitochondrial DNA of Tegillarca granosa and comparative mitogenomic analyses of three Arcidae species. Gene 2014; 557:61-70. [PMID: 25499696 DOI: 10.1016/j.gene.2014.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 10/24/2022]
Abstract
To better understand the characteristics and the evolutionary dynamics of mt genomes in Arcidae, the complete mitochondrial genome of Tegillarca granosa was firstly determined and compared with other two Arcidae species (Scapharca broughtonii and Scapharca kagoshimensis). The complete mitochondrial genome of T. granosa was 31,589 bp in length, including 12 protein-coding genes, 2 rRNA genes and 23 tRNA genes, and a major non-coding region. Three tandem repeat fragments were identified in the major non-coding region and the tandem repeat motifs of these fragments can be folded into stem-loop structures. The mitochondrial genome of the three species has several common features such as the AT content, the arrangement of the protein-coding genes, the codon usage of the protein-coding genes and AT/GC skew. However, a high level of variability is presented in the size of the genome, the number of tRNA genes and the length of non-coding sequences in the three mitogenomes. According to the phylogenetic analyses, these mitogenome-level characters are correlated with their phylogenetic relationships. It is the absence of the duplicated tRNAs and large non-coding sequences that are responsible for the length divergence of mitogenomes between T. granosa and other two Arcidae species. The phylogenetic analyses were conducted based on 12 partitioned protein genes, which support the relationship at the family level: (((Pectinidae+Ostreidae)+Mytilidae)+Arcidae).
Collapse
Affiliation(s)
- Shao'e Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
27
|
Chen DS, Jin PY, Zhang KJ, Ding XL, Yang SX, Ju JF, Zhao JY, Hong XY. The complete mitochondrial genomes of six species of Tetranychus provide insights into the phylogeny and evolution of spider mites. PLoS One 2014; 9:e110625. [PMID: 25329165 PMCID: PMC4199730 DOI: 10.1371/journal.pone.0110625] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/15/2014] [Indexed: 11/18/2022] Open
Abstract
Many spider mites belonging to the genus Tetranychus are of agronomical importance. With limited morphological characters, Tetranychus mites are usually identified by a combination of morphological characteristics and molecular diagnostics. To clarify their molecular evolution and phylogeny, the mitochondrial genomes of the green and red forms of Tetranychus urticae as well as T. kanzawai, T. ludeni, T. malaysiensis, T. phaselus, T. pueraricola were sequenced and compared. The seven mitochondrial genomes are typical circular molecules of about 13,000 bp encoding and they are composed of the complete set of 37 genes that are usually found in metazoans. The order of the mitochondrial (mt) genes is the same as that in the mt genomes of Panonychus citri and P. ulmi, but very different from that in other Acari. The J-strands of the mitochondrial genomes have high (∼ 84%) A+T contents, negative GC-skews and positive AT-skews. The nucleotide sequence of the cox1 gene, which is commonly used as a taxon barcode and molecular marker, is more highly conserved than the nucleotide sequences of other mitochondrial genes in these seven species. Most tRNA genes in the seven genomes lose the D-arm and/or the T-arm. The functions of these tRNAs need to be evaluated. The mitochondrial genome of T. malaysiensis differs from the other six genomes in having a slightly smaller genome size, a slight difference in codon usage, and a variable loop in place of the T-arm of some tRNAs by a variable loop. A phylogenic analysis shows that T. malaysiensis first split from other Tetranychus species and that the clade of the family Tetranychoidea occupies a basal position in the Trombidiformes. The mt genomes of the green and red forms of T. urticae have limited divergence and short evolutionary distance.
Collapse
Affiliation(s)
- Da-Song Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Peng-Yu Jin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kai-Jun Zhang
- Department of Entomology, College of Plant Protection, Southwest University, Chongqing, China
| | - Xiu-Lei Ding
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Si-Xia Yang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jia-Fei Ju
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jing-Yu Zhao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Chen SC, Wei DD, Shao R, Shi JX, Dou W, Wang JJ. Evolution of multipartite mitochondrial genomes in the booklice of the genus Liposcelis (Psocoptera). BMC Genomics 2014; 15:861. [PMID: 25282613 PMCID: PMC4197233 DOI: 10.1186/1471-2164-15-861] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genus Liposcelis (Psocoptera: Troctomorpha) has more than 120 species with a worldwide distribution and they pose a risk for global food security. The organization of mitochondrial (mt) genomes varies between the two species of booklice investigated in the genus Liposcelis. Liposcelis decolor has its mt genes on a single chromosome, like most other insects; L. bostrychophila, however, has a multipartite mt genome with genes on two chromosomes. RESULTS To understand how multipartite mt genome organization evolved in the genus Liposcelis, we sequenced the mt genomes of L. entomophila and L. paeta in this study. We found that these two species of booklice also have multipartite mt genomes, like L. bostrychophila, with the mt genes we identified on two chromosomes. Numerous pseudo mt genes and non-coding regions were found in the mt genomes of these two booklice, and account for 30% and 10% respectively of the entire length we sequenced. In L. bostrychophila, the mt genes are distributed approximately equally between the two chromosomes. In L. entomophila and L. paeta, however, one mt chromosome has most of the genes we identified whereas the other chromosome has largely pseudogenes and non-coding regions. L. entomophila and L. paeta differ substantially from each other and from L. bostrychophila in gene content and gene arrangement in their mt chromosomes. CONCLUSIONS Our results indicate unusually fast evolution in mt genome organization in the booklice of the genus Liposcelis, and reveal different patterns of mt genome fragmentation among L. bostrychophila, L. entomophila and L. paeta.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, P, R, China.
| |
Collapse
|
29
|
Sun ET, Li CP, Nie LW, Jiang YX. The complete mitochondrial genome of the brown leg mite, Aleuroglyphus ovatus (Acari: Sarcoptiformes): evaluation of largest non-coding region and unique tRNAs. EXPERIMENTAL & APPLIED ACAROLOGY 2014; 64:141-157. [PMID: 24777358 DOI: 10.1007/s10493-014-9816-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
The circular mitochondrial genome (mitogenome) of Aleuroglyphus ovatus was sequenced. It was 14,328 bp long, and consisted of 37 coding genes including 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes. This is the first description of the complete mitogenome of a species in the Acaridae (Acari: Sarcoptiformes). The mtDNA gene order for A. ovatus is identical to those of Dermatophagoides farinae and D. pteronyssinus, but distinctly different from the mtDNA of other Acari. Most inferred tRNA genes of A. ovatus are extremely truncated (48-62 bp), lack stem-loops on either the T- or D-arm (except the trnK), and are unable to fold into the canonical tRNA cloverleaf structure. The largest non-coding region (378 bp) contained several conserved sequences involved in the regulation of mitogenome replication, including one core sequence (ACAT) associated with termination of the J-strand replication and several hypothetical stem-loop structures. The microsatellite-like (AT)n sequence in the largest non-coding region was observed in two other Astigmata species, but it has not been found in other Acari.
Collapse
Affiliation(s)
- En-Tao Sun
- The Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Life Science College, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | | | | | | |
Collapse
|
30
|
Shotgun assembly of the assassin bug Brontostoma colossus mitochondrial genome (Heteroptera, Reduviidae). Gene 2014; 552:184-94. [PMID: 25240790 DOI: 10.1016/j.gene.2014.09.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/27/2014] [Accepted: 09/15/2014] [Indexed: 12/26/2022]
Abstract
The complete mitochondrial genome of the assassin bug Brontostoma colossus (Distant, 1902) (Heteroptera: Reduviidae) has been sequenced using a genome-skimming approach on an Illumina Hiseq 2000 platform. Fifty-four additional heteropteran mitogenomes, including five assassin bug species, were retrieved to allow for comparisons and phylogenetic analyses. The mitochondrial genome of B. colossus was determined to be 16,625 bp long, and consists of 13 protein-coding genes (PCGs), 23 transfer-RNA genes (tRNAs), two ribosomal-RNA genes (rRNAs), and one control region. The nucleotide composition is biased toward adenine and thymine (A+T=73.4%). Overall, architecture, nucleotide composition and genome asymmetry are similar among all available assassin bug mitogenomes. All PCGs have usual start-codons (Met and Ile). Three T and two TA incomplete termination codons were identified adjacent to tRNAs, which was consistent with the punctuation model for primary transcripts processing followed by 3' polyadenylation of mature mRNA. All tRNAs exhibit the classic clover-leaf secondary structure except for tRNASer(AGN) in which the DHU arm forms a simple loop. Two notable features are present in the B. colossus mitogenome: (i) a 131 bp duplicated unit including the complete tRNAArg gene, resulting in 23 potentially functional tRNAs in total, and (ii) a 857 bp duplicated region comprising 277 bp of the srRNA gene and 580 bp of the control region. A phylogenetic analysis based on 55 true bug mitogenomes confirmed that B. colossus belongs to Reduviidae, but contradicted a widely accepted hypothesis. This highlights the limits of phylogenetic analyses based on mitochondrial data only.
Collapse
|
31
|
Yan D, Tang Y, Hu M, Liu F, Zhang D, Fan J. The mitochondrial genome of Frankliniella intonsa: insights into the evolution of mitochondrial genomes at lower taxonomic levels in Thysanoptera. Genomics 2014; 104:306-12. [PMID: 25128725 DOI: 10.1016/j.ygeno.2014.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/17/2014] [Accepted: 08/06/2014] [Indexed: 11/26/2022]
Abstract
Thrips is an ideal group for studying the evolution of mitochondrial (mt) genomes in the genus and family due to independent rearrangements within this order. The complete sequence of the mitochondrial DNA (mtDNA) of the flower thrips Frankliniella intonsa has been completed and annotated in this study. The circular genome is 15,215bp in length with an A+T content of 75.9% and contains the typical 37 genes and it has triplicate putative control regions. Nucleotide composition is A+T biased, and the majority of the protein-coding genes present opposite CG skew which is reflected by the nucleotide composition, codon and amino acid usage. Although the known thrips have massive gene rearrangements, it showed no reversal of strand asymmetry. Gene rearrangements have been found in the lower taxonomic levels of thrips. Three tRNA genes were translocated in the genus Frankliniella and eight tRNA genes in the family Thripidae. Although the gene arrangements of mt genomes of all three thrips species differ massively from the ancestral insect, they are all very similar to each other, indicating that there was a large rearrangement somewhere before the most recent common ancestor of these three species and very little genomic evolution or rearrangements after then. The extremely similar sequences among the CRs suggest that they are ongoing concerted evolution. Analyses of the up and downstream sequence of CRs reveal that the CR2 is actually the ancestral CR. The three CRs are in the same spot in each of the three thrips mt genomes which have the identical inverted genes. These characteristics might be obtained from the most recent common ancestor of this three thrips. Above observations suggest that the mt genomes of the three thrips keep a single massive rearrangement from the common ancestor and have low evolutionary rates among them.
Collapse
Affiliation(s)
- Dankan Yan
- College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yunxia Tang
- College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Min Hu
- College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Fengquan Liu
- College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Dongfang Zhang
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Jiaqin Fan
- College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China.
| |
Collapse
|
32
|
Bernt M, Bleidorn C, Braband A, Dambach J, Donath A, Fritzsch G, Golombek A, Hadrys H, Jühling F, Meusemann K, Middendorf M, Misof B, Perseke M, Podsiadlowski L, von Reumont B, Schierwater B, Schlegel M, Schrödl M, Simon S, Stadler PF, Stöger I, Struck TH. A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Mol Phylogenet Evol 2013; 69:352-64. [PMID: 23684911 DOI: 10.1016/j.ympev.2013.05.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/27/2013] [Accepted: 05/03/2013] [Indexed: 12/16/2022]
Abstract
About 2800 mitochondrial genomes of Metazoa are present in NCBI RefSeq today, two thirds belonging to vertebrates. Metazoan phylogeny was recently challenged by large scale EST approaches (phylogenomics), stabilizing classical nodes while simultaneously supporting new sister group hypotheses. The use of mitochondrial data in deep phylogeny analyses was often criticized because of high substitution rates on nucleotides, large differences in amino acid substitution rate between taxa, and biases in nucleotide frequencies. Nevertheless, mitochondrial genome data might still be promising as it allows for a larger taxon sampling, while presenting a smaller amount of sequence information. We present the most comprehensive analysis of bilaterian relationships based on mitochondrial genome data. The analyzed data set comprises more than 650 mitochondrial genomes that have been chosen to represent a profound sample of the phylogenetic as well as sequence diversity. The results are based on high quality amino acid alignments obtained from a complete reannotation of the mitogenomic sequences from NCBI RefSeq database. However, the results failed to give support for many otherwise undisputed high-ranking taxa, like Mollusca, Hexapoda, Arthropoda, and suffer from extreme long branches of Nematoda, Platyhelminthes, and some other taxa. In order to identify the sources of misleading phylogenetic signals, we discuss several problems associated with mitochondrial genome data sets, e.g. the nucleotide and amino acid landscapes and a strong correlation of gene rearrangements with long branches.
Collapse
Affiliation(s)
- Matthias Bernt
- Parallel Computing and Complex Systems Group, Department of Computer Science, University of Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li H, Shao R, Song F, Zhou X, Yang Q, Li Z, Cai W. Mitochondrial genomes of two Barklice, Psococerastis albimaculata and Longivalvus hyalospilus (Psocoptera: Psocomorpha): contrasting rates in mitochondrial gene rearrangement between major lineages of Psocodea. PLoS One 2013; 8:e61685. [PMID: 23630609 PMCID: PMC3632521 DOI: 10.1371/journal.pone.0061685] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/13/2013] [Indexed: 11/19/2022] Open
Abstract
The superorder Psocodea has ∼10,000 described species in two orders: Psocoptera (barklice and booklice) and Phthiraptera (parasitic lice). One booklouse, Liposcelis bostrychophila and six species of parasitic lice have been sequenced for complete mitochondrial (mt) genomes; these seven species have the most rearranged mt genomes seen in insects. The mt genome of a barklouse, lepidopsocid sp., has also been sequenced and is much less rearranged than those of the booklouse and the parasitic lice. To further understand mt gene rearrangements in the Psocodea, we sequenced the mt genomes of two barklice, Psococerastis albimaculata and Longivalvus hyalospilus, the first representatives from the suborder Psocomorpha, which is the most species-rich suborder of the Psocodea. We found that these two barklice have the least rearranged mt genomes seen in the Psocodea to date: a protein-coding gene (nad3) and five tRNAs (trnN, trnS1, trnE, trnM and trnC) have translocated. Rearrangements of mt genes in these two barklice can be accounted for by two events of tandem duplication followed by random deletions. Phylogenetic analyses of the mt genome sequences support the view that Psocoptera is paraphyletic whereas Phthiraptera is monophyletic. The booklouse, L. bostrychophila (suborder Troctomorpha) is most closely related to the parasitic lice. The barklice (suborders Trogiomorpha and Psocomorpha) are closely related and form a monophyletic group. We conclude that mt gene rearrangement has been substantially faster in the lineage leading to the booklice and the parasitic lice than in the lineage leading to the barklice. Lifestyle change appears to be associated with the contrasting rates in mt gene rearrangements between the two lineages of the Psocodea.
Collapse
Affiliation(s)
- Hu Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Renfu Shao
- GeneCology Research Centre, Faculty of Science, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Fan Song
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Qianqian Yang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Zhihong Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Montagna M, Sassera D, Griggio F, Epis S, Bandi C, Gissi C. Tick-box for 3'-end formation of mitochondrial transcripts in Ixodida, basal chelicerates and Drosophila. PLoS One 2012; 7:e47538. [PMID: 23077630 PMCID: PMC3471875 DOI: 10.1371/journal.pone.0047538] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/12/2012] [Indexed: 01/01/2023] Open
Abstract
According to the tRNA punctuation model, the mitochondrial genome (mtDNA) of mammals and arthropods is transcribed as large polycistronic precursors that are maturated by endonucleolytic cleavage at tRNA borders and RNA polyadenylation. Starting from the newly sequenced mtDNA of Ixodes ricinus and using a combination of mitogenomics and transcriptional analyses, we found that in all currently-sequenced tick lineages (Prostriata, Metastriata and Argasidae) the 3'-end of the polyadenylated nad1 and rrnL transcripts does not follow the tRNA punctuation model and is located upstream of a degenerate 17-bp DNA motif. A slightly different motif is also present downstream the 3'-end of nad1 transcripts in the primitive chelicerate Limulus polyphemus and in Drosophila species, indicating the ancient origin and the evolutionary conservation of this motif in arthropods. The transcriptional analyses suggest that this motif directs the 3'-end formation of the nad1/rrnL mature RNAs, likely working as a transcription termination signal or a processing signal of precursor transcripts. Moreover, as most regulatory elements, this motif is characterized by a taxon-specific evolution. Although this signal is not exclusive of ticks, making a play on words it has been named "Tick-Box", since it is a check mark that has to be verified for the 3'-end formation of some mt transcripts, and its consensus sequence has been here carefully characterized in ticks. Indeed, in the whole mtDNA of all ticks, the Tick-Box is always present downstream of nad1 and rrnL, mainly in non-coding regions (NCRs) and occasionally within trnL(CUN). However, some metastriates present a third Tick-Box at an intriguing site--inside the small NCR located at one end of a 3.4 kb translocated region, the other end of which exhibits the nad1 Tick-Box--hinting that this motif could have been involved in metastriate gene order rearrangements.
Collapse
Affiliation(s)
- Matteo Montagna
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli Studi di Milano, Milano, Italy
| | - Davide Sassera
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli Studi di Milano, Milano, Italy
| | - Francesca Griggio
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Sara Epis
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli Studi di Milano, Milano, Italy
| | - Claudio Bandi
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli Studi di Milano, Milano, Italy
| | - Carmela Gissi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
35
|
The complete mitochondrial genome sequence of the western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae) contains triplicate putative control regions. Gene 2012; 506:117-24. [PMID: 22750320 DOI: 10.1016/j.gene.2012.06.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/23/2012] [Accepted: 06/15/2012] [Indexed: 11/22/2022]
Abstract
To investigate the features of the control region (CR) and the gene rearrangement in the mitochondrial (mt) genome of Thysanoptera insects, we sequenced the whole mt genome of the western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae). The mt genome is a circular molecule with 14,889 nucleotides and an A+T content of 76.6%, and it has triplicate putative CRs. We propose that tandem duplication and deletion account for the evolution of the CR and the gene translocations. Intramitochondrial recombination is a plausible model for the gene inversions. We discuss the excessive duplicate CR sequences and the transcription of the rRNA genes, which are distant from one another and from the CR. Finally, we address the significance of the complicated mt genomes in Thysanoptera for the evolution of the CR and the gene arrangement of the mt genome.
Collapse
|
36
|
Ovchinnikov S, Masta SE. Pseudoscorpion mitochondria show rearranged genes and genome-wide reductions of RNA gene sizes and inferred structures, yet typical nucleotide composition bias. BMC Evol Biol 2012; 12:31. [PMID: 22409411 PMCID: PMC3325882 DOI: 10.1186/1471-2148-12-31] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 03/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudoscorpions are chelicerates and have historically been viewed as being most closely related to solifuges, harvestmen, and scorpions. No mitochondrial genomes of pseudoscorpions have been published, but the mitochondrial genomes of some lineages of Chelicerata possess unusual features, including short rRNA genes and tRNA genes that lack sequence to encode arms of the canonical cloverleaf-shaped tRNA. Additionally, some chelicerates possess an atypical guanine-thymine nucleotide bias on the major coding strand of their mitochondrial genomes. RESULTS We sequenced the mitochondrial genomes of two divergent taxa from the chelicerate order Pseudoscorpiones. We find that these genomes possess unusually short tRNA genes that do not encode cloverleaf-shaped tRNA structures. Indeed, in one genome, all 22 tRNA genes lack sequence to encode canonical cloverleaf structures. We also find that the large ribosomal RNA genes are substantially shorter than those of most arthropods. We inferred secondary structures of the LSU rRNAs from both pseudoscorpions, and find that they have lost multiple helices. Based on comparisons with the crystal structure of the bacterial ribosome, two of these helices were likely contact points with tRNA T-arms or D-arms as they pass through the ribosome during protein synthesis.The mitochondrial gene arrangements of both pseudoscorpions differ from the ancestral chelicerate gene arrangement. One genome is rearranged with respect to the location of protein-coding genes, the small rRNA gene, and at least 8 tRNA genes. The other genome contains 6 tRNA genes in novel locations. Most chelicerates with rearranged mitochondrial genes show a genome-wide reversal of the CA nucleotide bias typical for arthropods on their major coding strand, and instead possess a GT bias. Yet despite their extensive rearrangement, these pseudoscorpion mitochondrial genomes possess a CA bias on the major coding strand. Phylogenetic analyses of all 13 mitochondrial protein-coding gene sequences consistently yield trees that place pseudoscorpions as sister to acariform mites. CONCLUSION The well-supported phylogenetic placement of pseudoscorpions as sister to Acariformes differs from some previous analyses based on morphology. However, these two lineages share multiple molecular evolutionary traits, including substantial mitochondrial genome rearrangements, extensive nucleotide substitution, and loss of helices in their inferred tRNA and rRNA structures.
Collapse
Affiliation(s)
- Sergey Ovchinnikov
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, USA
| | - Susan E Masta
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, USA
| |
Collapse
|
37
|
Arabi J, Judson MLI, Deharveng L, Lourenço WR, Cruaud C, Hassanin A. Nucleotide composition of CO1 sequences in Chelicerata (Arthropoda): detecting new mitogenomic rearrangements. J Mol Evol 2012; 74:81-95. [PMID: 22362465 DOI: 10.1007/s00239-012-9490-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/02/2012] [Indexed: 11/26/2022]
Abstract
Here we study the evolution of nucleotide composition in third codon-positions of CO1 sequences of Chelicerata, using a phylogenetic framework, based on 180 taxa and three markers (CO1, 18S, and 28S rRNA; 5,218 nt). The analyses of nucleotide composition were also extended to all CO1 sequences of Chelicerata found in GenBank (1,701 taxa). The results show that most species of Chelicerata have a positive strand bias in CO1, i.e., in favor of C nucleotides, including all Amblypygi, Palpigradi, Ricinulei, Solifugae, Uropygi, and Xiphosura. However, several taxa show a negative strand bias, i.e., in favor of G nucleotides: all Scorpiones, Opisthothelae spiders and several taxa within Acari, Opiliones, Pseudoscorpiones, and Pycnogonida. Several reversals of strand-specific bias can be attributed to either a rearrangement of the control region or an inversion of a fragment containing the CO1 gene. Key taxa for which sequencing of complete mitochondrial genomes will be necessary to determine the origin and nature of mtDNA rearrangements involved in the reversals are identified. Acari, Opiliones, Pseudoscorpiones, and Pycnogonida were found to show a strong variability in nucleotide composition. In addition, both mitochondrial and nuclear genomes have been affected by higher substitution rates in Acari and Pseudoscorpiones. The results therefore indicate that these two orders are more liable to fix mutations of all types, including base substitutions, indels, and genomic rearrangements.
Collapse
Affiliation(s)
- Juliette Arabi
- Département Systématique et Evolution, UMR 7205, Origine, Structure et Evolution de la Biodiversité, Muséum national d'Histoire naturelle, 57, Rue Cuvier, 75005, Paris, France
| | | | | | | | | | | |
Collapse
|
38
|
Xu X, Wu X, Yu Z. Comparative studies of the complete mitochondrial genomes of four Paphia clams and reconsideration of subgenus Neotapes (Bivalvia: Veneridae). Gene 2012; 494:17-23. [DOI: 10.1016/j.gene.2011.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 11/09/2011] [Accepted: 12/02/2011] [Indexed: 10/14/2022]
|
39
|
Edwards DD, Jackson LE, Johnson AJ, Ernsting BR. Mitochondrial genome sequence of Unionicola parkeri (Acari: Trombidiformes: Unionicolidae): molecular synapomorphies between closely-related Unionicola gill mites. EXPERIMENTAL & APPLIED ACAROLOGY 2011; 54:105-117. [PMID: 21350973 DOI: 10.1007/s10493-011-9433-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 02/08/2011] [Indexed: 05/30/2023]
Abstract
The mitochondrial genome of Unionicola parkeri is a 14,734 bp circular DNA molecule. The sequence and annotation revealed a unique gene order, related to but distinct from the gene order in the closely related species U. foili. Mitochondrial tRNA sequences annotated in this genome predict non-canonical secondary structures for these molecules. The continuing patterns of unique gene orders and unusual tRNA structures in the Trombidiformes in general and Unionicola in particular support the use of phylogenetic approaches that use these types of molecular features as shared, derived character states. Further progress in using these molecular character states to reconstruct phylogeny will depend on careful annotation, especially of tRNA genes.
Collapse
Affiliation(s)
- Dale D Edwards
- Department of Biology, University of Evansville, Evansville, IN 47722, USA
| | | | | | | |
Collapse
|
40
|
Klimov PB, Knowles LL. Repeated parallel evolution of minimal rRNAs revealed from detailed comparative analysis. ACTA ACUST UNITED AC 2011; 102:283-93. [PMID: 21422103 DOI: 10.1093/jhered/esr005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The concept of a minimal ribosomal RNA-containing ribosome, a structure with a minimal set of elements capable of providing protein biosynthesis, is essential for understanding this fundamental cellular process. Nematodes and trypanosomes have minimal mitochondrial rRNAs and detailed reconstructions of their secondary structures indicate that certain conserved helices have been lost in these taxa. In contrast, several recent studies on acariform mites have argued that minimal rRNAs may evolve via shortening of secondary structure elements but not the loss of these elements as shown for trypanosomes and nematodes. Based on extensive structural analysis of chelicerate arthropods, we demonstrate that extremely short rRNAs of acariform mites share certain structural modifications with nematodes and trypanosomes: loss of helices of the GTPase region and divergence in the evolutionarily conserved connecting loop between helices H1648 and H1764 of the large subunit rRNA. These highly concerted parallel modifications indicate that minimal rRNAs were generated under the strong selection that favored or tolerated reductions of helices in particular locations while maintaining the functionality of the rRNA molecules throughout evolution. We also discuss potential evolution of minimal rRNAs and atypical transfer RNAs.
Collapse
Affiliation(s)
- Pavel B Klimov
- University of Michigan, Museum of Zoology, 1109 Geddes Avenue, Ann Arbor, MI 48109-1079, USA.
| | | |
Collapse
|
41
|
Minxiao W, Song S, Chaolun L, Xin S. Distinctive mitochondrial genome of Calanoid copepod Calanus sinicus with multiple large non-coding regions and reshuffled gene order: useful molecular markers for phylogenetic and population studies. BMC Genomics 2011; 12:73. [PMID: 21269523 PMCID: PMC3041745 DOI: 10.1186/1471-2164-12-73] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 01/27/2011] [Indexed: 11/10/2022] Open
Abstract
Background Copepods are highly diverse and abundant, resulting in extensive ecological radiation in marine ecosystems. Calanus sinicus dominates continental shelf waters in the northwest Pacific Ocean and plays an important role in the local ecosystem by linking primary production to higher trophic levels. A lack of effective molecular markers has hindered phylogenetic and population genetic studies concerning copepods. As they are genome-level informative, mitochondrial DNA sequences can be used as markers for population genetic studies and phylogenetic studies. Results The mitochondrial genome of C. sinicus is distinct from other arthropods owing to the concurrence of multiple non-coding regions and a reshuffled gene arrangement. Further particularities in the mitogenome of C. sinicus include low A + T-content, symmetrical nucleotide composition between strands, abbreviated stop codons for several PCGs and extended lengths of the genes atp6 and atp8 relative to other copepods. The monophyletic Copepoda should be placed within the Vericrustacea. The close affinity between Cyclopoida and Poecilostomatoida suggests reassigning the latter as subordinate to the former. Monophyly of Maxillopoda is rejected. Within the alignment of 11 C. sinicus mitogenomes, there are 397 variable sites harbouring three 'hotspot' variable sites and three microsatellite loci. Conclusion The occurrence of the circular subgenomic fragment during laboratory assays suggests that special caution should be taken when sequencing mitogenomes using long PCR. Such a phenomenon may provide additional evidence of mitochondrial DNA recombination, which appears to have been a prerequisite for shaping the present mitochondrial profile of C. sinicus during its evolution. The lack of synapomorphic gene arrangements among copepods has cast doubt on the utility of gene order as a useful molecular marker for deep phylogenetic analysis. However, mitochondrial genomic sequences have been valuable markers for resolving phylogenetic issues concerning copepods. The variable site maps of C. sinicus mitogenomes provide a solid foundation for population genetic studies.
Collapse
Affiliation(s)
- Wang Minxiao
- KLMEES and JBMERS, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | |
Collapse
|
42
|
Yuan ML, Wei DD, Wang BJ, Dou W, Wang JJ. The complete mitochondrial genome of the citrus red mite Panonychus citri (Acari: Tetranychidae): high genome rearrangement and extremely truncated tRNAs. BMC Genomics 2010; 11:597. [PMID: 20969792 PMCID: PMC3091742 DOI: 10.1186/1471-2164-11-597] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 10/23/2010] [Indexed: 01/04/2023] Open
Abstract
Background The family Tetranychidae (Chelicerata: Acari) includes ~1200 species, many of which are of agronomic importance. To date, mitochondrial genomes of only two Tetranychidae species have been sequenced, and it has been found that these two mitochondrial genomes are characterized by many unusual features in genome organization and structure such as gene order and nucleotide frequency. The scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). Information on Tetranychidae mitochondrial genomes is quite important for phylogenetic evaluation and population genetics, as well as the molecular evolution of functional genes such as acaricide-resistance genes. In this study, we sequenced the complete mitochondrial genome of Panonychus citri (Family Tetranychidae), a worldwide citrus pest, and provide a comparison to other Acari. Results The mitochondrial genome of P. citri is a typical circular molecule of 13,077 bp, and contains the complete set of 37 genes that are usually found in metazoans. This is the smallest mitochondrial genome within all sequenced Acari and other Chelicerata, primarily due to the significant size reduction of protein coding genes (PCGs), a large rRNA gene, and the A + T-rich region. The mitochondrial gene order for P. citri is the same as those for P. ulmi and Tetranychus urticae, but distinctly different from other Acari by a series of gene translocations and/or inversions. The majority of the P. citri mitochondrial genome has a high A + T content (85.28%), which is also reflected by AT-rich codons being used more frequently, but exhibits a positive GC-skew (0.03). The Acari mitochondrial nad1 exhibits a faster amino acid substitution rate than other genes, and the variation of nucleotide substitution patterns of PCGs is significantly correlated with the G + C content. Most tRNA genes of P. citri are extremely truncated and atypical (44-65, 54.1 ± 4.1 bp), lacking either the T- or D-arm, as found in P. ulmi, T. urticae, and other Acariform mites. Conclusions The P. citri mitochondrial gene order is markedly different from those of other chelicerates, but is conserved within the family Tetranychidae indicating that high rearrangements have occurred after Tetranychidae diverged from other Acari. Comparative analyses suggest that the genome size, gene order, gene content, codon usage, and base composition are strongly variable among Acari mitochondrial genomes. While extremely small and unusual tRNA genes seem to be common for Acariform mites, further experimental evidence is needed.
Collapse
Affiliation(s)
- Ming-Long Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | | | | | | | | |
Collapse
|
43
|
Eda M, Kuro-o M, Higuchi H, Hasegawa H, Koike H. Mosaic gene conversion after a tandem duplication of mtDNA sequence in Diomedeidae (albatrosses). Genes Genet Syst 2010; 85:129-39. [PMID: 20558899 DOI: 10.1266/ggs.85.129] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although the tandem duplication of mitochondrial (mt) sequences, especially those of the control region (CR), has been detected in metazoan species, few studies have focused on the features of the duplicated sequence itself, such as the gene conversion rate, distribution patterns of the variation, and relative rates of evolution between the copies. To investigate the features of duplicated mt sequences, we partially sequenced the mt genome of 16 Phoebastria albatrosses belonging to three species (P. albatrus, P. nigripes, and P. immutabilis). More than 2,300 base pairs of tandemly-duplicated sequence were shared by all three species. The observed gene arrangement was shared in the three Phoebastria albatrosses and suggests that the duplication event occurred in the common ancestor of the three species. Most of the copies in each individual were identical or nearly identical, and were maintained through frequent gene conversions. By contrast, portions of CR domains I and III had different phylogenetic signals, suggesting that gene conversion had not occurred in those sections after the speciation of the three species. Several lines of data, including the heterogeneity of the rate of molecular evolution, nucleotide differences, and putative secondary structures, suggests that the two sequences in CR domain I are maintained through selection; however, additional studies into the mechanisms of gene conversion and mtDNA synthesis are required to confirm this hypothesis.
Collapse
Affiliation(s)
- Masaki Eda
- Graduate School of Social and Cultural Studies, Kyusyu University.
| | | | | | | | | |
Collapse
|
44
|
Wei SJ, Shi M, Sharkey MJ, van Achterberg C, Chen XX. Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects. BMC Genomics 2010; 11:371. [PMID: 20537196 PMCID: PMC2890569 DOI: 10.1186/1471-2164-11-371] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 06/11/2010] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Animal mitochondrial genomes are potential models for molecular evolution and markers for phylogenetic and population studies. Previous research has shown interesting features in hymenopteran mitochondrial genomes. Here, we conducted a comparative study of mitochondrial genomes of the family Braconidae, one of the largest families of Hymenoptera, and assessed the utility of mitochondrial genomic data for phylogenetic inference at three different hierarchical levels, i.e., Braconidae, Hymenoptera, and Holometabola. RESULTS Seven mitochondrial genomes from seven subfamilies of Braconidae were sequenced. Three of the four sequenced A+T-rich regions are shown to be inverted. Furthermore, all species showed reversal of strand asymmetry, suggesting that inversion of the A+T-rich region might be a synapomorphy of the Braconidae. Gene rearrangement events occurred in all braconid species, but gene rearrangement rates were not taxonomically correlated. Most rearranged genes were tRNAs, except those of Cotesia vestalis, in which 13 protein-coding genes and 14 tRNA genes changed positions or/and directions through three kinds of gene rearrangement events. Remote inversion is posited to be the result of two independent recombination events. Evolutionary rates were lower in species of the cyclostome group than those of noncyclostomes. Phylogenetic analyses based on complete mitochondrial genomes and secondary structure of rrnS supported a sister-group relationship between Aphidiinae and cyclostomes. Many well accepted relationships within Hymenoptera, such as paraphyly of Symphyta and Evaniomorpha, a sister-group relationship between Orussoidea and Apocrita, and monophyly of Proctotrupomorpha, Ichneumonoidea and Aculeata were robustly confirmed. New hypotheses, such as a sister-group relationship between Evanioidea and Aculeata, were generated. Among holometabolous insects, Hymenoptera was shown to be the sister to all other orders. Mecoptera was recovered as the sister-group of Diptera. Neuropterida (Neuroptera + Megaloptera), and a sister-group relationship with (Diptera + Mecoptera) were supported across all analyses. CONCLUSIONS Our comparative studies indicate that mitochondrial genomes are a useful phylogenetic tool at the ordinal level within Holometabola, at the superfamily within Hymenoptera and at the subfamily level within Braconidae. Variation at all of these hierarchical levels suggests that the utility of mitochondrial genomes is likely to be a valuable tool for systematics in other groups of arthropods.
Collapse
Affiliation(s)
- Shu-jun Wei
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310029, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Min Shi
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310029, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | - Michael J Sharkey
- Department of Entomology, University of Kentucky, Lexington KY 40546-0091, USA
| | - Cornelis van Achterberg
- Department of Entomology, Nationaal Natuurhistorisch Museum, Postbus 9517, 2300 RA Leiden, Netherlands
| | - Xue-xin Chen
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310029, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
45
|
Improved tRNA prediction in the American house dust mite reveals widespread occurrence of extremely short minimal tRNAs in acariform mites. BMC Genomics 2009; 10:598. [PMID: 20003349 PMCID: PMC2797822 DOI: 10.1186/1471-2164-10-598] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 12/11/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Atypical tRNAs are functional minimal tRNAs, lacking either the D- or T-arm. They are significantly shorter than typical cloverleaf tRNAs. Widespread occurrence of atypical tRNAs was first demonstrated for secernentean nematodes and later in various arachnids. Evidence started to accumulate that tRNAs of certain acariform mites are even shorter than the minimal tRNAs of nematodes, raising the possibility that tRNAs lacking both D- and T-arms might exist in these organisms. The presence of cloverleaf tRNAs in acariform mites, particularly in the house dust mite genus Dermatophagoides, is still disputed. RESULTS Mitochondrial tRNAs of Dermatophagoides farinae are minimal, atypical tRNAs lacking either the T- or D-arm. The size (49-62, 54.4 +/- 2.86 nt) is significantly (p = 0.019) smaller than in Caenorhabditis elegans (53-63, 56.3 +/- 2.30 nt), a model minimal tRNA taxon. The shortest tRNA (49 nt) in Dermatophagoides is approaching the length of the shortest known tRNAs (45-49 nt) described in other acariform mites. The D-arm is absent in these tRNAs, and the inferred T-stem is small (2-3 bp) and thermodynamically unstable, suggesting that it may not exist in reality. The discriminator nucleotide is probably not encoded and is added postranscriptionally in many Dermatophagoides tRNAs. CONCLUSIONS Mitochondrial tRNAs of acariform mites are largely atypical, non-cloverleaf tRNAs. Among them, the shortest known tRNAs with no D-arm and a short and unstable T-arm can be inferred. While our study confirmed seven tRNAs in Dermatophagoides by limited EST data, further experimental evidence is needed to demonstrate extremely small and unusual tRNAs in acariform mites.
Collapse
|
46
|
Ernsting BR, Edwards DD, Aldred KJ, Fites JS, Neff CR. Mitochondrial genome sequence of Unionicola foili (Acari: Unionicolidae): a unique gene order with implications for phylogenetic inference. EXPERIMENTAL & APPLIED ACAROLOGY 2009; 49:305-316. [PMID: 19353278 DOI: 10.1007/s10493-009-9263-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 03/22/2009] [Indexed: 05/27/2023]
Abstract
The mitochondrial genome of Unionicola foili is circular, 14,738 bp in length, and contains several notable features. The sequence and annotation revealed a unique gene order, continuing a pattern of highly rearranged mitochondrial genomes in the Trombidiformes. U. foili mitochondrial tRNA sequences predict non-canonical secondary structures for these molecules, and our annotation suggests an in-frame fusion between the nad4L and nad5 genes in this genome. The unique gene order and unusual tRNA structures could serve as idiosyncratic characters and have the potential to be phylogenetically informative.
Collapse
Affiliation(s)
- Brian R Ernsting
- Department of Biology, University of Evansville, Evansville, IN 47722, USA.
| | | | | | | | | |
Collapse
|
47
|
Miyamoto H, Machida RJ, Nishida S. Complete mitochondrial genome sequences of the three pelagic chaetognaths Sagitta nagae, Sagitta decipiens and Sagitta enflata. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2009; 5:65-72. [PMID: 20374943 DOI: 10.1016/j.cbd.2009.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 11/25/2022]
Abstract
The complete nucleotide sequences of the mitochondrial genomes were determined for the three pelagic chaetognaths, Sagitta nagae, Sagitta decipiens, and Sagitta enflata. The mitochondrial genomes of these species which were 11,459, 11,121, and 12,631bp in length, respectively, contained 14 genes (11 protein-coding genes, one transfer RNA gene, and two ribosomal RNA genes), and were found to have lost 23 genes that are present in the typical metazoan mitochondrial genome. The same mitochondrial genome contents have been reported from the benthic chaetognaths belonging to the family Spadellidae, Paraspadella gotoi and Spadella cephaloptera. Within the phylum Chaetognatha, Sagitta and Spadellidae are distantly related, suggesting that the gene loss occurred in the ancestral species of the phylum. The gene orders of the three Sagitta species are markedly different from those of the other non-Chaetognatha metazoans. In contrast to the region with frequent gene rearrangements, no gene rearrangements were observed in the gene cluster encoding COII-III, ND1-3, srRNA, and tRNA(met). Within this conserved gene cluster, gene rearrangements were not observed in the three Sagitta species or between the Sagitta and Spadellidae species. The gene order of this cluster was also assumed to be the ancestral state of the phylum.
Collapse
Affiliation(s)
- Hiroomi Miyamoto
- Ocean Research Institute, University of Tokyo, Tokyo, 164-8639, Japan.
| | | | | |
Collapse
|
48
|
Mitochondrial rRNA secondary structures and genome arrangements distinguish chelicerates: comparisons with a harvestman (Arachnida: Opiliones: Phalangium opilio). Gene 2009; 449:9-21. [PMID: 19800399 DOI: 10.1016/j.gene.2009.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/20/2009] [Accepted: 09/22/2009] [Indexed: 11/23/2022]
Abstract
Arachnids are a highly diverse group of arthropods, and many of the mitochondrial genomes that have been sequenced from arachnids possess unusual features in their inferred gene structures and genome organization. The first complete sequence of a mitochondrial genome from the arachnid order Opiliones (harvestmen) is presented here. Secondary structures of the two mitochondrial ribosomal subunits of Phalangium opilio are inferred and compared to mitochondrial rRNA structures of a hexapod and a chelicerate. The large subunit rRNA of P. opilio is found to have more helices conserved than in other arthropods, while the small subunit rRNA shows a complexity similar to that of other arthropods. These comparisons suggest that a reduction in rRNA complexity occurred in Pancrustacea after the divergence of Pancrustacea and Chelicerata from a common ancestor. The gene arrangement of the mitochondrial genome of P. opilio is compared with the gene order of taxa from all seven other orders of arachnids for which representative mitochondrial genomes have been sequenced. Taxa from five of these seven orders possess gene arrangements identical to that of Limulus polyphemus, and P. opilio is found to have a similar arrangement. However, in P. opilio, some genes near the putative control region are rearranged, with the suite of genes encoding tRNA(Gln), the control region, and tRNA(Ile) located downstream of the two ribosomal RNA genes, and upstream of where they are typically located in chelicerates. The genome encodes only 21 of the typical 22 mitochondrial tRNA genes and lacks the gene for tRNA(Leu(CUN)). The protein-coding genes in the mitochondrial genome of P. opilio show a significantly decreased use of codons recognized by tRNA(Leu(CUN)), likely due to selection to utilize the more specific tRNA(Leu(UUR)) anticodon. The gene arrangement and lack of a tRNA(Leu(CUN)) gene in P. opilio is most parsimoniously explained by the occurrence of at least two translocation events, one of which probably destroyed the function of the tRNA(Leu(CUN)) gene. Phylogenetic relationships among the major orders of arachnids are inferred, using all 13 mt protein-coding genes, and gene rearrangements are mapped onto the phylogeny. The phylogenetic analyses are unable to resolve the placement of P. opilio but are generally consistent with an early divergence of members of the Dromopoda (harvestmen, scorpions, and solifuges) from the Micruran arachnids (spiders, whip spiders, vinegaroons, ricinuleids, and mites). However, unlike some morphologically based phylogenetic analyses, the existence of a clade of Dromopoda is not supported. While data on genome arrangement and gene loss do not provide further information to help resolve relationships among the arachnid orders, they distinguish some groups of arachnids, distinguish chelicerates from other arthropods, and further clarify the ancestral gene order of this diverse group of arthropods.
Collapse
|
49
|
Fahrein K, Masta SE, Podsiadlowski L. The first complete mitochondrial genome sequences of Amblypygi (Chelicerata: Arachnida) reveal conservation of the ancestral arthropod gene order. Genome 2009; 52:456-66. [PMID: 19448726 DOI: 10.1139/g09-023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amblypygi (whip spiders) are terrestrial chelicerates inhabiting the subtropics and tropics. In morphological and rRNA-based phylogenetic analyses, Amblypygi cluster with Uropygi (whip scorpions) and Araneae (spiders) to form the taxon Tetrapulmonata, but there is controversy regarding the interrelationship of these three taxa. Mitochondrial genomes provide an additional large data set of phylogenetic information (sequences, gene order, RNA secondary structure), but in arachnids, mitochondrial genome data are missing for some of the major orders. In the course of an ongoing project concerning arachnid mitochondrial genomics, we present the first two complete mitochondrial genomes from Amblypygi. Both genomes were found to be typical circular duplex DNA molecules with all 37 genes usually present in bilaterian mitochondrial genomes. In both species, gene order is identical to that of Limulus polyphemus (Xiphosura), which is assumed to reflect the putative arthropod ground pattern. All tRNA gene sequences have the potential to fold into structures that are typical of metazoan mitochondrial tRNAs, except for tRNA-Ala, which lacks the D arm in both amblypygids, suggesting the loss of this feature early in amblypygid evolution. Phylogenetic analysis resulted in weak support for Uropygi being the sister group of Amblypygi.
Collapse
Affiliation(s)
- Kathrin Fahrein
- Department of Biology, Koenigin-Luise-Str 1-3, D-14195 Berlin, Germany
| | | | | |
Collapse
|
50
|
Dowton M, Cameron SL, Dowavic JI, Austin AD, Whiting MF. Characterization of 67 Mitochondrial tRNA Gene Rearrangements in the Hymenoptera Suggests That Mitochondrial tRNA Gene Position Is Selectively Neutral. Mol Biol Evol 2009; 26:1607-17. [DOI: 10.1093/molbev/msp072] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|