1
|
Tao Q, Huang A, Qi J, Yang Z, Guo S, Lu Y, He X, Han X, Jiang S, Xu M, Bai Y, Zhang T, Hu S, Li L, Bai L, Liu H. An mRNA expression atlas for the duck with public RNA-seq datasets. BMC Genomics 2025; 26:268. [PMID: 40102741 PMCID: PMC11916966 DOI: 10.1186/s12864-025-11385-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Ducks are globally important poultry species and a major source of farm animal products, including meat, eggs, and feathers. A thorough understanding of the functional genomic and transcriptomic sequences is crucial for improving production efficiency. RESULT This study constructed the largest duck mRNA expression atlas among all waterfowl species to date. The atlas encompasses 1,257 tissue samples across 30 tissue types, representing all major organ systems. Using advanced clustering analysis, we established co-expression network clusters to describe the transcriptional features in the duck mRNA expression atlas and, when feasible, assign these features to unique tissue types or pathways. Additionally, we identified 27 low-variance, highly expressed housekeeping genes suitable for gene expression experiments. Furthermore, in-depth analysis revealed potential sex-biased gene expression patterns within tissues and specific gene expression profiles in meat-type and egg-type ducks, providing valuable resources to understand the genetic basis of sex differences and particular phenotypes. This research elucidates the biological processes affecting duck productivity. CONCLUSION This study presents the most extensive gene expression atlas for any waterfowl species to date. These findings are of significant value for advancing duck biological research and industrial applications.
Collapse
Affiliation(s)
- Qiuyu Tao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Anqi Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Jingjing Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Zhao Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Shihao Guo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Yinjuan Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Xinxin He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Xu Han
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Shuaixue Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Mengru Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Yuan Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Tao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Shenqiang Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Lili Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - HeHe Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.
| |
Collapse
|
2
|
Mongue AJ, Baird RB. Genetic drift drives faster-Z evolution in the salmon louse Lepeophtheirus salmonis. Evolution 2024; 78:1594-1605. [PMID: 38863398 DOI: 10.1093/evolut/qpae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/25/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
How sex chromosomes evolve compared to autosomes remains an unresolved question in population genetics. Most studies focus on only a handful of taxa, resulting in uncertainty over whether observed patterns reflect general processes or idiosyncrasies in particular clades. For example, in female heterogametic (ZW) systems, bird Z chromosomes tend to evolve quickly but not adaptively, while in Lepidopterans they evolve adaptively, but not always quickly. To understand how these observations fit into broader evolutionary patterns, we explore Z chromosome evolution outside of these two well-studied clades. We utilize a publicly available genome, gene expression, population, and outgroup data in the salmon louse Lepeophtheirus salmonis, an important agricultural pest copepod. We find that the Z chromosome is faster evolving than autosomes, but that this effect is driven by increased drift rather than adaptive evolution. Due to high rates of female reproductive failure, the Z chromosome exhibits a slightly lower effective population size than the autosomes which is nonetheless to decrease efficiency of hemizygous selection acting on the Z. These results highlight the usefulness of organismal life history in calibrating population genetic expectations and demonstrate the value of the ever-expanding wealth of publicly available data to help resolve outstanding evolutionary questions.
Collapse
Affiliation(s)
- Andrew J Mongue
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States
| | - Robert B Baird
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Kim H, Choo H, Cha J, Jang M, Son J, Jeong T, Choi BH, Lim Y, Chai HH, Lee J, Lim D, Shin D, Park W, Park JE. Blood transcriptome comparison between sexes and their function in 4-week Rhode Island red chickens. Anim Cells Syst (Seoul) 2022; 26:358-368. [PMID: 36605592 PMCID: PMC9809412 DOI: 10.1080/19768354.2022.2146187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Sex is a major biological factor in the development and physiology of a sexual reproductive organism, and its role in the growing process is needed to be investigated in various species. We compare blood transcriptome between 5 males and 5 females in 4-week-old Rhode Island Red chickens and perform functional annotation of differentially expressed genes (DEGs). The results are as follows. 141 and 109 DEGs were located in autosomes and sex chromosomes, respectively. The gene ontology (GO) terms are significantly (p < 0.05) enriched, which were limb development, inner ear development, positive regulation of dendrite development, the KEGG pathway the TGF-beta signaling pathway, and melanogenesis (p < 0.05). These pathways are related to morphological maintenance and growth of the tissues. In addition, the SMAD2W and the BMP5 were involved in the TGF-beta signaling pathway, and both play an important role in maintaining tissue development. The major DEGs related to the development of neurons and synapses include the up-regulated NRN1, GDF10, SLC1A1, BMP5, NBEA, and NRXN1. Also, 7 DEGs were validated using RT-qPCR with high correlation (r 2 = 0.74). In conclusion, the differential expression of blood tissue in the early growing chicken was enriched in TGF-beta signaling and related to the development of neurons and synapses including SMAD2W and BMP5. These results suggest that blood in the early growing stage is differentially affected in tissue development, nervous system, and pigmentation by sex. For future research, experimental characterization of DEGs and a holistic investigation of various tissues and growth stages will be required.
Collapse
Affiliation(s)
- Hana Kim
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Hyojun Choo
- Poultry Research Institute, National Institute of Animal Science, Pyeongchang, Korea
| | - Jihye Cha
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Myoungjin Jang
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Juhwan Son
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Taejoon Jeong
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Bong-Hwan Choi
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Youngjo Lim
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Han-Ha Chai
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Jungjae Lee
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Korea
| | - Dajeong Lim
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Korea
| | - Woncheoul Park
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea, Jong-Eun Park Department of Animal Biotechnology, College of Applied Life Science, Jeju National University, Jeju-si, 63243, Korea; Woncheoul Park Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, 55365, Korea
| | - Jong-Eun Park
- Department of Animal Biotechnology, College of Applied Life Science, Jeju National University, Jeju-si, Korea, Jong-Eun Park Department of Animal Biotechnology, College of Applied Life Science, Jeju National University, Jeju-si, 63243, Korea; Woncheoul Park Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, 55365, Korea
| |
Collapse
|
4
|
Wang J, Xi Y, Ma S, Qi J, Li J, Zhang R, Han C, Li L, Wang J, Liu H. Single-molecule long-read sequencing reveals the potential impact of posttranscriptional regulation on gene dosage effects on the avian Z chromosome. BMC Genomics 2022; 23:122. [PMID: 35148676 PMCID: PMC8832729 DOI: 10.1186/s12864-022-08360-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/01/2022] [Indexed: 12/23/2022] Open
Abstract
Background Mammalian sex chromosomes provide dosage compensation, but avian lack a global mechanism of dose compensation. Herein, we employed nanopore sequencing to investigate the genetic basis of gene expression and gene dosage effects in avian Z chromosomes at the posttranscriptional level. Results In this study, the gonad and head skin of female and male duck samples (n = 4) were collected at 16 weeks of age for Oxford nanopore sequencing. Our results revealed a dosage effect and local regulation of duck Z chromosome gene expression. Additionally, AS and APA achieve tissue-specific gene expression, and male-biased lncRNA regulates its Z-linked target genes, with a positive regulatory role for gene dosage effects on the duck Z chromosome. In addition, GO enrichment and KEGG pathway analysis showed that the dosage effects of Z-linked genes were mainly associated with the cellular response to hormone stimulus, melanin biosynthetic, metabolic pathways, and melanogenesis, resulting in sex differences. Conclusions Our data suggested that post transcriptional regulation (AS, APA and lncRNA) has a potential impact on the gene expression effects of avian Z chromosomes. Our study provides a new view of gene regulation underlying the dose effects in avian Z chromosomes at the RNA post transcriptional level. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08360-8.
Collapse
Affiliation(s)
- Jianmei Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Shengchao Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Junpeng Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Rongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China.
| |
Collapse
|
5
|
Chen XI, Mei Y, Chen M, Jing D, He Y, Liu F, He K, Li F. InSexBase: an annotated genomic resource of sex chromosomes and sex-biased genes in insects. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6122465. [PMID: 33507270 PMCID: PMC7904046 DOI: 10.1093/database/baab001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/09/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022]
Abstract
Sex determination and the regulation of sexual dimorphism are among the most fascinating topics in modern biology. As the most species-rich group of sexually reproducing organisms on Earth, insects have multiple sex determination systems. Though sex chromosomes and sex-biased genes are well-studied in dozens of insects, their gene sequences are scattered in various databases. Moreover, a shortage of annotation hinders the deep mining of these data. Here, we collected the chromosome-level sex chromosome data of 49 insect species, including 34 X chromosomes, 15 Z chromosomes, 5 W chromosomes and 2 Y chromosomes. We also obtained Y-linked contigs of four insects species—Anopheles gambiae, Drosophila innubila, Drosophila yakuba and Tribolium castaneum. The unannotated chromosome-level sex chromosomes were annotated using a standard pipeline, yielding a total of 123 030 protein-coding genes, 2 159 427 repeat sequences, 894 miRNAs, 1574 rRNAs, 5105 tRNAs, 395 snoRNAs (small nucleolar RNA), 54 snRNAs (small nuclear RNA) and 5959 other ncRNAs (non-coding RNA). In addition, 36 781 sex-biased genes were identified by analyzing 62 RNA-seq (RNA sequencing) datasets. Together with 5707 sex-biased genes from the Drosophila genus collected from the Sex-Associated Gene Database, we obtained a total of 42 488 sex-biased genes from 13 insect species. All these data were deposited into InSexBase, a new user-friendly database of insect sex chromosomes and sex-biased genes. Database URL:http://www.insect-genome.com/Sexdb/.
Collapse
Affiliation(s)
- X I Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Yang Mei
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Mengyao Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Dong Jing
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Yumin He
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Feiling Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Kang He
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Fei Li
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| |
Collapse
|
6
|
Shioda K, Odajima J, Kobayashi M, Kobayashi M, Cordazzo B, Isselbacher KJ, Shioda T. Transcriptomic and Epigenetic Preservation of Genetic Sex Identity in Estrogen-feminized Male Chicken Embryonic Gonads. Endocrinology 2021; 162:5973467. [PMID: 33170207 PMCID: PMC7745639 DOI: 10.1210/endocr/bqaa208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 12/18/2022]
Abstract
Whereas in ovo exposure of genetically male (ZZ) chicken embryos to exogenous estrogens temporarily feminizes gonads at the time of hatching, the morphologically ovarian ZZ-gonads (FemZZs for feminized ZZ gonads) are masculinized back to testes within 1 year. To identify the feminization-resistant "memory" of genetic male sex, FemZZs showing varying degrees of feminization were subjected to transcriptomic, DNA methylome, and immunofluorescence analyses. Protein-coding genes were classified based on their relative mRNA expression across normal ZZ-testes, genetically female (ZW) ovaries, and FemZZs. We identified a group of 25 genes that were strongly expressed in both ZZ-testes and FemZZs but dramatically suppressed in ZW-ovaries. Interestingly, 84% (21/25) of these feminization-resistant testicular marker genes, including the DMRT1 master masculinizing gene, were located in chromosome Z. Expression of representative marker genes of germline cells (eg, DAZL or DDX4/VASA) was stronger in FemZZs than normal ZZ-testes or ZW-ovaries. We also identified 231 repetitive sequences (RSs) that were strongly expressed in both ZZ-testes and FemZZs, but these RSs were not enriched in chromosome Z. Although 94% (165/176) of RSs exclusively expressed in ZW-ovaries were located in chromosome W, no feminization-inducible RS was detected in FemZZs. DNA methylome analysis distinguished FemZZs from normal ZZ- and ZW-gonads. Immunofluorescence analysis of FemZZ gonads revealed expression of DMRT1 protein in medullary SOX9+ somatic cells and apparent germline cell populations in both medulla and cortex. Taken together, our study provides evidence that both somatic and germline cell populations in morphologically feminized FemZZs maintain significant transcriptomic and epigenetic memories of genetic sex.
Collapse
Affiliation(s)
- Keiko Shioda
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Junko Odajima
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Misato Kobayashi
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Mutsumi Kobayashi
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Bianca Cordazzo
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Kurt J Isselbacher
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Toshi Shioda
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Correspondence: Toshi Shioda, Massachusetts General Hospital Center for Cancer Research, Building 149 – 7th Floor, 13th Street, Charlestown, Massachusetts 02129, USA. E-mail:
| |
Collapse
|
7
|
Ågren JA, Munasinghe M, Clark AG. Sexual conflict through mother's curse and father's curse. Theor Popul Biol 2019; 129:9-17. [PMID: 31054851 DOI: 10.1016/j.tpb.2018.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/15/2018] [Accepted: 12/27/2018] [Indexed: 12/31/2022]
Abstract
In contrast with autosomes, lineages of sex chromosomes reside for different amounts of time in males and females, and this transmission asymmetry makes them hotspots for sexual conflict. Similarly, the maternal inheritance of the mitochondrial genome (mtDNA) means that mutations that are beneficial in females can spread in a population even if they are deleterious in males, a form of sexual conflict known as Mother's Curse. While both Mother's Curse and sex chromosome induced sexual conflict have been well studied on their own, the interaction between mitochondrial genes and genes on sex chromosomes is poorly understood. Here, we use analytical models and computer simulations to perform a comprehensive examination of how transmission asymmetries of nuclear, mitochondrial, and sex chromosome-linked genes may both cause and resolve sexual conflicts. For example, the accumulation of male-biased Mother's Curse mtDNA mutations will lead to selection in males for compensatory nuclear modifier loci that alleviate the effect. We show how the Y chromosome, being strictly paternally transmitted provides a particularly safe harbor for such modifiers. This analytical framework also allows us to discover a novel kind of sexual conflict, by which Y chromosome-autosome epistasis may result in the spread of male beneficial but female deleterious mutations in a population. We christen this phenomenon Father's Curse. Extending this analytical framework to ZW sex chromosome systems, where males are the heterogametic sex, we also show how W-autosome epistasis can lead to a novel kind of nuclear Mother's Curse. Overall, this study provides a comprehensive framework to understand how genetic transmission asymmetries may both cause and resolve sexual conflicts.
Collapse
Affiliation(s)
- J Arvid Ågren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14583, USA
| | - Manisha Munasinghe
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14583, USA; Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
8
|
Catalán A, Macias-Muñoz A, Briscoe AD. Evolution of Sex-Biased Gene Expression and Dosage Compensation in the Eye and Brain of Heliconius Butterflies. Mol Biol Evol 2018; 35:2120-2134. [DOI: 10.1093/molbev/msy111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ana Catalán
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
- Section of Evolutionary Biology, Department of Biology II, Ludwig Maximilians Universität, Planegg-Martinsried, Germany
| | - Aide Macias-Muñoz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| |
Collapse
|
9
|
Huylmans AK, Macon A, Vicoso B. Global Dosage Compensation Is Ubiquitous in Lepidoptera, but Counteracted by the Masculinization of the Z Chromosome. Mol Biol Evol 2017; 34:2637-2649. [PMID: 28957502 PMCID: PMC5850747 DOI: 10.1093/molbev/msx190] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
While chromosome-wide dosage compensation of the X chromosome has been found in many species, studies in ZW clades have indicated that compensation of the Z is more localized and/or incomplete. In the ZW Lepidoptera, some species show complete compensation of the Z chromosome, while others lack full equalization, but what drives these inconsistencies is unclear. Here, we compare patterns of male and female gene expression on the Z chromosome of two closely related butterfly species, Papilio xuthus and Papilio machaon, and in multiple tissues of two moths species, Plodia interpunctella and Bombyx mori, which were previously found to differ in the extent to which they equalize Z-linked gene expression between the sexes. We find that, while some species and tissues seem to have incomplete dosage compensation, this is in fact due to the accumulation of male-biased genes and the depletion of female-biased genes on the Z chromosome. Once this is accounted for, the Z chromosome is fully compensated in all four species, through the up-regulation of Z expression in females and in some cases additional down-regulation in males. We further find that both sex-biased genes and Z-linked genes have increased rates of expression divergence in this clade, and that this can lead to fast shifts in patterns of gene expression even between closely related species. Taken together, these results show that the uneven distribution of sex-biased genes on sex chromosomes can confound conclusions about dosage compensation and that Z chromosome-wide dosage compensation is not only possible but ubiquitous among Lepidoptera.
Collapse
Affiliation(s)
| | - Ariana Macon
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
10
|
Mongue AJ, Walters JR. The Z chromosome is enriched for sperm proteins in two divergent species of Lepidoptera. Genome 2017; 61:248-253. [PMID: 28961403 DOI: 10.1139/gen-2017-0068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genes that promote sexual conflict, such as those with a sex-limited fitness benefit, are expected to accumulate differentially on sex chromosomes relative to autosomes. Few tests of this hypothesis exist for male homogametic (ZZ) taxa, however, and most use RNA expression data to identify such genes. Here, we employ a different identification method by using proteomic analysis of sperm cells to identify genes with a sex-limited benefit. We tested for a bias in genomic location of sperm protein genes in two species of Lepidoptera. An excess of sperm protein genes was identified on the Z chromosomes of both the Carolina sphinx moth (Manduca sexta) and the monarch butterfly (Danaus plexippus). Taking into consideration a Z-autosome fusion in monarchs, we discover that the ancestrally sex-linked portion of the genome is the source of this enrichment, while the newly sex-linked portion still appears similar to autosomes in relative abundance of sperm protein genes. Together, these results point to an enrichment of male-beneficial genes on the Z chromosome and demonstrate the usefulness of proteomic datasets in sexual conflict research.
Collapse
Affiliation(s)
- Andrew J Mongue
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA.,Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - James R Walters
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA.,Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
11
|
Cassone BJ, Kay RGG, Daugherty MP, White BJ. Comparative Transcriptomics of Malaria Mosquito Testes: Function, Evolution, and Linkage. G3 (BETHESDA, MD.) 2017; 7:1127-1136. [PMID: 28159865 PMCID: PMC5386861 DOI: 10.1534/g3.117.040089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/31/2017] [Indexed: 01/05/2023]
Abstract
Testes-biased genes evolve rapidly and are important in the establishment, solidification, and maintenance of reproductive isolation between incipient species. The Anopheles gambiae complex, a group of at least eight isomorphic mosquito species endemic to Sub-Saharan Africa, is an excellent system to explore the evolution of testes-biased genes. Within this group, the testes are an important tissue in the diversification process because hybridization between species results in sterile hybrid males, but fully fertile females. We conducted RNA sequencing of A. gambiae and A. merus carcass and testes to explore tissue- and species-specific patterns of gene expression. Our data provides support for transcriptional repression of X-linked genes in the male germline, which likely drives demasculinization of the X chromosome. Testes-biased genes predominately function in cellular differentiation and show a number of interesting patterns indicative of their rapid evolution, including elevated dN/dS values, low evolutionary conservation, poor annotation in existing reference genomes, and a high likelihood of differential expression between species.
Collapse
Affiliation(s)
- Bryan J Cassone
- Department of Biology, Brandon University, Manitoba R7A 6A9, Canada
| | - Raissa G G Kay
- Department of Entomology, University of California, Riverside, California 92521
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, California 92521
| | - Matthew P Daugherty
- Department of Entomology, University of California, Riverside, California 92521
| | - Bradley J White
- Department of Entomology, University of California, Riverside, California 92521
| |
Collapse
|
12
|
Mueller JC, Kuhl H, Timmermann B, Kempenaers B. Characterization of the genome and transcriptome of the blue tit Cyanistes caeruleus: polymorphisms, sex-biased expression and selection signals. Mol Ecol Resour 2015. [PMID: 26220359 DOI: 10.1111/1755-0998.12450] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Decoding genomic sequences and determining their variation within populations has potential to reveal adaptive processes and unravel the genetic basis of ecologically relevant trait variation within a species. The blue tit Cyanistes caeruleus--a long-time ecological model species--has been used to investigate fitness consequences of variation in mating and reproductive behaviour. However, very little is known about the underlying genetic changes due to natural and sexual selection in the genome of this songbird. As a step to bridge this gap, we assembled the first draft genome of a single blue tit, mapped the transcriptome of five females and five males to this reference, identified genomewide variants and performed sex-differential expression analysis in the gonads, brain and other tissues. In the gonads, we found a high number of sex-biased genes, and of those, a similar proportion were sex-limited (genes only expressed in one sex) in males and females. However, in the brain, the proportion of female-limited genes within the female-biased gene category (82%) was substantially higher than the proportion of male-limited genes within the male-biased category (6%). This suggests a predominant on-off switching mechanism for the female-limited genes. In addition, most male-biased genes were located on the Z-chromosome, indicating incomplete dosage compensation for the male-biased genes. We called more than 500,000 SNPs from the RNA-seq data. Heterozygote detection in the single reference individual was highly congruent between DNA-seq and RNA-seq calling. Using information from these polymorphisms, we identified potential selection signals in the genome. We list candidate genes which can be used for further sequencing and detailed selection studies, including genes potentially related to meiotic drive evolution. A public genome browser of the blue tit with the described information is available at http://public-genomes-ngs.molgen.mpg.de.
Collapse
Affiliation(s)
- Jakob C Mueller
- Department of Behavioural Ecology & Evolutionary Genetics, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Heiner Kuhl
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology & Evolutionary Genetics, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| |
Collapse
|
13
|
Schmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, et alSchmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, Warren WC, Wood JMD, Wragg D, Zhou H. Third Report on Chicken Genes and Chromosomes 2015. Cytogenet Genome Res 2015; 145:78-179. [PMID: 26282327 PMCID: PMC5120589 DOI: 10.1159/000430927] [Show More Authors] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Michael Schmid
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Huylmans AK, Parsch J. Variation in the X:Autosome Distribution of Male-Biased Genes among Drosophila melanogaster Tissues and Its Relationship with Dosage Compensation. Genome Biol Evol 2015; 7:1960-71. [PMID: 26108491 PMCID: PMC4524484 DOI: 10.1093/gbe/evv117] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genes that are expressed differently between males and females (sex-biased genes) often show a nonrandom distribution in their genomic location, particularly with respect to the autosomes and the X chromosome. Previous studies of Drosophila melanogaster found a general paucity of male-biased genes on the X chromosome, although this is mainly limited to comparisons of whole flies or body segments containing the reproductive organs. To better understand the chromosomal distribution of sex-biased genes in various tissues, we used a common analysis framework to analyze microarray and RNA sequence data comparing male and female gene expression in individual tissues (brain, Malpighian tubule, and gonads), composite structures (head and gonadectomized carcass), and whole flies. Although there are relatively few sex-biased genes in the brain, there is a strong and highly significant enrichment of male-biased genes on the X chromosome. A weaker enrichment of X-linked male-biased genes is seen in the head, suggesting that most of this signal comes from the brain. In all other tissues, there is either no departure from the random expectation or a significant paucity of male-biased genes on the X chromosome. The brain and head also differ from other tissues in that their male-biased genes are significantly closer to binding sites of the dosage compensation complex. We propose that the interplay of dosage compensation and sex-specific regulation can explain the observed differences between tissues and reconcile disparate results reported in previous studies.
Collapse
Affiliation(s)
| | - John Parsch
- Faculty of Biology, Ludwig Maximilian University of Munich, Planegg, Germany
| |
Collapse
|
15
|
Prior genetic architecture impacting genomic regions under selection: An example using genomic selection in two poultry breeds. Livest Sci 2015. [DOI: 10.1016/j.livsci.2014.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Uebbing S, Künstner A, Mäkinen H, Ellegren H. Transcriptome sequencing reveals the character of incomplete dosage compensation across multiple tissues in flycatchers. Genome Biol Evol 2013; 5:1555-66. [PMID: 23925789 PMCID: PMC3762201 DOI: 10.1093/gbe/evt114] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sex chromosome divergence, which follows the cessation of recombination and degeneration of the sex-limited chromosome, can cause a reduction in expression level for sex-linked genes in the heterozygous sex, unless some mechanisms of dosage compensation develops to counter the reduction in gene dose. Because large-scale perturbations in expression levels arising from changes in gene dose might have strong deleterious effects, the evolutionary response should be strong. However, in birds and in at least some other female heterogametic organisms, wholesale sex chromosome dosage compensation does not seem to occur. Using RNA-seq of multiple tissues and individuals, we investigated male and female expression levels of Z-linked and autosomal genes in the collared flycatcher, a bird for which a draft genome sequence recently has been reported. We found that male expression of Z-linked genes was on average 50% higher than female expression, although there was considerable variation in the male-to-female ratio among genes. The ratio for individual genes was well correlated among tissues and there was also a correlation in the extent of compensation between flycatcher and chicken orthologs. The relative excess of male expression was positively correlated with expression breadth, expression level, and number of interacting proteins (protein connectivity), and negatively correlated with variance in expression. These observations lead to a model of compensation occurring on a gene-by-gene basis, supported by an absence of clustering of genes on the Z chromosome with respect to the extent of compensation. Equal mean expression level of autosomal and Z-linked genes in males, and 50% higher expression of autosomal than Z-linked genes in females, is compatible with that partial compensation is achieved by hypertranscription from females' single Z chromosome. A comparison with male-to-female expression ratios in orthologous Z-linked genes of ostriches, where Z-W recombination still occurs, suggests that male-biased expression of Z-linked genes is a derived trait after avian sex chromosome divergence.
Collapse
Affiliation(s)
- Severin Uebbing
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Center, Uppsala University, SE-752 36 Uppsala, Sweden;
| |
Collapse
|
18
|
Jaquiéry J, Rispe C, Roze D, Legeai F, Le Trionnaire G, Stoeckel S, Mieuzet L, Da Silva C, Poulain J, Prunier-Leterme N, Ségurens B, Tagu D, Simon JC. Masculinization of the x chromosome in the pea aphid. PLoS Genet 2013; 9:e1003690. [PMID: 23950732 PMCID: PMC3738461 DOI: 10.1371/journal.pgen.1003690] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/17/2013] [Indexed: 11/18/2022] Open
Abstract
Evolutionary theory predicts that sexually antagonistic mutations accumulate differentially on the X chromosome and autosomes in species with an XY sex-determination system, with effects (masculinization or feminization of the X) depending on the dominance of mutations. Organisms with alternative modes of inheritance of sex chromosomes offer interesting opportunities for studying sexual conflicts and their resolution, because expectations for the preferred genomic location of sexually antagonistic alleles may differ from standard systems. Aphids display an XX/X0 system and combine an unusual inheritance of the X chromosome with the alternation of sexual and asexual reproduction. In this study, we first investigated theoretically the accumulation of sexually antagonistic mutations on the aphid X chromosome. Our results show that i) the X is always more favourable to the spread of male-beneficial alleles than autosomes, and should thus be enriched in sexually antagonistic alleles beneficial for males, ii) sexually antagonistic mutations beneficial for asexual females accumulate preferentially on autosomes, iii) in contrast to predictions for standard systems, these qualitative results are not affected by the dominance of mutations. Under the assumption that sex-biased gene expression evolves to solve conflicts raised by the spread of sexually antagonistic alleles, one expects that male-biased genes should be enriched on the X while asexual female-biased genes should be enriched on autosomes. Using gene expression data (RNA-Seq) in males, sexual females and asexual females of the pea aphid, we confirm these theoretical predictions. Although other mechanisms than the resolution of sexual antagonism may lead to sex-biased gene expression, we argue that they could hardly explain the observed difference between X and autosomes. On top of reporting a strong masculinization of the aphid X chromosome, our study highlights the relevance of organisms displaying an alternative mode of sex chromosome inheritance to understanding the forces shaping chromosome evolution.
Collapse
Affiliation(s)
- Julie Jaquiéry
- INRA, UMR 1349, Institute of Genetics, Environment and Plant Protection, Domaine de la Motte, Le Rheu, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
RNA sequencing reveals sexually dimorphic gene expression before gonadal differentiation in chicken and allows comprehensive annotation of the W-chromosome. Genome Biol 2013; 14:R26. [PMID: 23531366 PMCID: PMC4053838 DOI: 10.1186/gb-2013-14-3-r26] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/25/2013] [Indexed: 12/29/2022] Open
Abstract
Background Birds have a ZZ male: ZW female sex chromosome system and while the Z-linked DMRT1 gene is necessary for testis development, the exact mechanism of sex determination in birds remains unsolved. This is partly due to the poor annotation of the W chromosome, which is speculated to carry a female determinant. Few genes have been mapped to the W and little is known of their expression. Results We used RNA-seq to produce a comprehensive profile of gene expression in chicken blastoderms and embryonic gonads prior to sexual differentiation. We found robust sexually dimorphic gene expression in both tissues pre-dating gonadogenesis, including sex-linked and autosomal genes. This supports the hypothesis that sexual differentiation at the molecular level is at least partly cell autonomous in birds. Different sets of genes were sexually dimorphic in the two tissues, indicating that molecular sexual differentiation is tissue specific. Further analyses allowed the assembly of full-length transcripts for 26 W chromosome genes, providing a view of the W transcriptome in embryonic tissues. This is the first extensive analysis of W-linked genes and their expression profiles in early avian embryos. Conclusion Sexual differentiation at the molecular level is established in chicken early in embryogenesis, before gonadal sex differentiation. We find that the W chromosome is more transcriptionally active than previously thought, expand the number of known genes to 26 and present complete coding sequences for these W genes. This includes two novel W-linked sequences and three small RNAs reassigned to the W from the Un_Random chromosome.
Collapse
|
20
|
Frings O, Mank JE, Alexeyenko A, Sonnhammer ELL. Network analysis of functional genomics data: application to avian sex-biased gene expression. ScientificWorldJournal 2012; 2012:130491. [PMID: 23319882 PMCID: PMC3540752 DOI: 10.1100/2012/130491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/25/2012] [Indexed: 12/03/2022] Open
Abstract
Gene expression analysis is often used to investigate the molecular and functional underpinnings of a phenotype. However, differential expression of individual genes is limited in that it does not consider how the genes interact with each other in networks. To address this shortcoming we propose a number of network-based analyses that give additional functional insights into the studied process. These were applied to a dataset of sex-specific gene expression in the chicken gonad and brain at different developmental stages. We first constructed a global chicken interaction network. Combining the network with the expression data showed that most sex-biased genes tend to have lower network connectivity, that is, act within local network environments, although some interesting exceptions were found. Genes of the same sex bias were generally more strongly connected with each other than expected. We further studied the fates of duplicated sex-biased genes and found that there is a significant trend to keep the same pattern of sex bias after duplication. We also identified sex-biased modules in the network, which reveal pathways or complexes involved in sex-specific processes. Altogether, this work integrates evolutionary genomics with systems biology in a novel way, offering new insights into the modular nature of sex-biased genes.
Collapse
Affiliation(s)
- Oliver Frings
- Stockholm Bioinformatics Centre, Science for Life Laboratory, Box 1031, SE-171 21 Solna, Sweden
| | | | | | | |
Collapse
|
21
|
Wright AE, Moghadam HK, Mank JE. Trade-off between selection for dosage compensation and masculinization on the avian Z chromosome. Genetics 2012; 192:1433-45. [PMID: 22997237 PMCID: PMC3512148 DOI: 10.1534/genetics.112.145102] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/12/2012] [Indexed: 01/27/2023] Open
Abstract
Following the suppression of recombination, gene expression levels decline on the sex-limited chromosome, and this can lead to selection for dosage compensation in the heterogametic sex to rebalance average expression from the X or Z chromosome with average autosomal expression. At the same time, due to their unequal pattern of inheritance in males and females, the sex chromosomes are subject to unbalanced sex-specific selection, which contributes to a nonrandom distribution of sex-biased genes compared to the remainder of the genome. These two forces act against each other, and the relative importance of each is currently unclear. The Gallus gallus Z chromosome provides a useful opportunity to study the importance and trade-offs between sex-specific selection and dosage compensation in shaping the evolution of the genome as it shows incomplete dosage compensation and is also present twice as often in males than females, and therefore predicted to be enriched for male-biased genes. Here, we refine our understanding of the evolution of the avian Z chromosome, and show that multiple strata formed across the chromosome over ∼130 million years. We then use this evolutionary history to examine the relative strength of selection for sex chromosome dosage compensation vs. the cumulative effects of masculinizing selection on gene expression. We find that male-biased expression increases over time, indicating that selection for dosage compensation is relatively less important than masculinizing selection in shaping Z chromosome gene expression.
Collapse
Affiliation(s)
- Alison E Wright
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3PS, United Kingdom.
| | | | | |
Collapse
|
22
|
Gschwend AR, Weingartner LA, Moore RC, Ming R. The sex-specific region of sex chromosomes in animals and plants. Chromosome Res 2012; 20:57-69. [PMID: 22105696 DOI: 10.1007/s10577-011-9255-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Our understanding of the evolution of sex chromosomes has increased greatly in recent years due to a number of molecular evolutionary investigations in divergent sex chromosome systems, and these findings are reshaping theories of sex chromosome evolution. In particular, the dynamics of the sex-determining region (SDR) have been demonstrated by recent findings in ancient and incipient sex chromosomes. Radical changes in genomic structure and gene content in the male specific region of the Y chromosome between human and chimpanzee indicated rapid evolution in the past 6 million years, defying the notion that the pace of evolution in the SDR was fast at early stages but slowed down overtime. The chicken Z and the human X chromosomes appeared to have acquired testis-expressed genes and expanded in intergenic regions. Transposable elements greatly contributed to SDR expansion and aided the trafficking of genes in the SDR and its X or Z counterpart through retrotransposition. Dosage compensation is not a destined consequence of sex chromosomes as once thought. Most X-linked microRNA genes escape silencing and are expressed in testis. Collectively, these findings are challenging many of our preconceived ideas of the evolutionary trajectory and fates of sex chromosomes.
Collapse
Affiliation(s)
- Andrea R Gschwend
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
23
|
Magnusson K, Lycett GJ, Mendes AM, Lynd A, Papathanos PA, Crisanti A, Windbichler N. Demasculinization of the Anopheles gambiae X chromosome. BMC Evol Biol 2012; 12:69. [PMID: 22607633 PMCID: PMC3428665 DOI: 10.1186/1471-2148-12-69] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 05/18/2012] [Indexed: 12/31/2022] Open
Abstract
Background In a number of organisms sex-biased genes are non-randomly distributed between autosomes and the shared sex chromosome X (or Z). Studies on Anopheles gambiae have produced conflicting results regarding the underrepresentation of male-biased genes on the X chromosome and it is unclear to what extent sexual antagonism, dosage compensation or X-inactivation in the male germline, the evolutionary forces that have been suggested to affect the chromosomal distribution of sex-biased genes, are operational in Anopheles. Results We performed a meta-analysis of sex-biased gene expression in Anopheles gambiae which provides evidence for a general underrepresentation of male-biased genes on the X-chromosome that increased in significance with the observed degree of sex-bias. A phylogenomic comparison between Drosophila melanogaster, Aedes aegypti and Culex quinquefasciatus also indicates that the Anopheles X chromosome strongly disfavours the evolutionary conservation of male-biased expression and that novel male-biased genes are more likely to arise on autosomes. Finally, we demonstrate experimentally that transgenes situated on the Anopheles gambiae X chromosome are transcriptionally silenced in the male germline. Conclusion The data presented here support the hypothesis that the observed demasculinization of the Anopheles X chromosome is driven by X-chromosome inactivation in the male germline and by sexual antagonism. The demasculinization appears to be the consequence of a loss of male-biased expression, rather than a failure in the establishment or the extinction of male-biased genes.
Collapse
Affiliation(s)
- Kalle Magnusson
- Imperial College London, Department of Life Sciences, Imperial College Road, London, SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Pease JB, Hahn MW. Sex Chromosomes Evolved from Independent Ancestral Linkage Groups in Winged Insects. Mol Biol Evol 2012; 29:1645-53. [DOI: 10.1093/molbev/mss010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
25
|
Gallach M, Domingues S, Betrán E. Gene duplication and the genome distribution of sex-biased genes. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2011; 2011:989438. [PMID: 21904687 PMCID: PMC3167187 DOI: 10.4061/2011/989438] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/26/2011] [Accepted: 06/05/2011] [Indexed: 12/04/2022]
Abstract
In species that have two sexes, a single genome encodes two morphs, as each sex can be thought of as a distinct morph. This means that the same set of genes are differentially expressed in the different sexes. Many questions emanate from this statement. What proportion of genes contributes to sexual dimorphism? How do they contribute to sexual dimorphism? How is sex-biased expression achieved? Which sex and what tissues contribute the most to sex-biased expression? Do sex-biased genes have the same evolutionary patterns as nonbiased genes? We review the current data on sex-biased expression in species with heteromorphic sex chromosomes and comment on the most important hypotheses suggested to explain the origin, evolution, and distribution patterns of sex-biased genes. In this perspective we emphasize how gene duplication serves as an important molecular mechanism to resolve genomic clashes and genetic conflicts by generating sex-biased genes, often sex-specific genes, and contributes greatly to the underlying genetic basis of sexual dimorphism.
Collapse
Affiliation(s)
- Miguel Gallach
- Department of Biology, University of Texas at Arlington, P.O. Box 19498, Arlington, TX 76019, USA
| | | | | |
Collapse
|
26
|
Ellegren H. Emergence of male-biased genes on the chicken Z-chromosome: sex-chromosome contrasts between male and female heterogametic systems. Genome Res 2011; 21:2082-6. [PMID: 21868722 DOI: 10.1101/gr.119065.110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There has been extensive traffic of male-biased genes out of the mammalian and Drosophila X-chromosomes, and there are also reports of an under-representation of male-biased genes on the X. This may reflect an adaptive process driven by natural selection where an autosomal location of male-biased genes is favored since male genes are only exposed to selection one-third of the time when X-linked. However, there are several alternative explanations to "out-of-the-X" gene movement, including mutational bias and a means for X-linked genes to escape meiotic sex chromosome inactivation (MSCI) during spermatogenesis. As a critical test of the hypothesis that genomic relocation of sex-biased genes is an adaptive process, I examined the emergence, and loss, of genes on the chicken Z-chromosome, i.e., a female heterogametic system (males ZZ, females ZW). Here, the analogous prediction would be an emergence of male-biased genes onto, not a loss from, the Z-chromosome because Z is found more often in males than autosomes are. I found that genes expressed in testis but not in ovary are highly over-represented among genes that have emerged on the Z-chromosome during avian evolution. Moreover, genes with male-biased expression are similarly over-represented among new Z-chromosomal genes. Interestingly, genes with female-biased expression have more often moved from than to the Z-chromosome. These observations show that male and female heterogametic organisms display opposing directionalities in the emergence and loss of sex-biased genes on sex chromosomes. This is consistent with theoretical models on the evolution of sexually antagonistic genes in which new mutations are at least partly dominant.
Collapse
Affiliation(s)
- Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden.
| |
Collapse
|
27
|
Checchi PM, Engebrecht J. Heteromorphic sex chromosomes: navigating meiosis without a homologous partner. Mol Reprod Dev 2011; 78:623-32. [PMID: 22113949 DOI: 10.1002/mrd.21369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/20/2011] [Indexed: 11/10/2022]
Abstract
Accurate chromosome segregation during meiosis relies on homology between the maternal and paternal chromosomes. Yet by definition, sex chromosomes of the heterogametic sex lack a homologous partner. Recent studies in a number of systems have shed light on the unique meiotic behavior of heteromorphic sex chromosomes, and highlight both the commonalities and differences in divergent species. During meiotic prophase, the homology-dependent processes of pairing, synapsis, and recombination have been modified in many different ways to ensure segregation of heteromorphic sex chromosomes at the first meiotic division. Additionally, an almost universal feature of heteromorphic sex chromosomes during meiosis is transcriptional silencing, or meiotic sex chromosome inactivation, an essential process proposed to prevent expression of genes deleterious to meiosis in the heterogametic sex as well as to shield unpaired sex chromosomes from recognition by meiotic checkpoints. Comparative analyses of the meiotic behavior of sex chromosomes in nematodes, mammals, and birds reveal important conserved features as well as provide insight into sex chromosome evolution.
Collapse
Affiliation(s)
- Paula M Checchi
- Molecular and Cellular Biology, University of California, Davis, California, USA
| | | |
Collapse
|
28
|
Chen ZX, Zhang YE, Vibranovski M, Luo J, Gao G, Long M. Deficiency of X-linked inverted duplicates with male-biased expression and the underlying evolutionary mechanisms in the Drosophila genome. Mol Biol Evol 2011; 28:2823-32. [PMID: 21546357 PMCID: PMC3176832 DOI: 10.1093/molbev/msr101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Inverted duplicates (IDs) are pervasive in genomes and have been reported to play functional roles in various biological processes. However, the general underlying evolutionary forces that maintain IDs in genomes remain largely elusive. Through a systematic screening of the Drosophila melanogaster genome, 20,223 IDs were detected in nonrepetitive intergenic regions, far more than expectation under the neutrality model. 3,846 of these IDs were identified to have stable hairpin structure (i.e., the structural IDs). Based on whole-genome transcriptome profiling data, we found 628 unannotated expressed structural IDs, which had significantly different genomic distributions and structural properties from the unexpressed IDs. Among the expressed structural IDs, 130 exhibited higher expression in males than in females (i.e., male-biased expression). Compared with sex-unbiased ones, these male-biased IDs were significantly underrepresented on the X chromosome, similar to previously reported pattern of male-biased protein-coding genes. These analyses suggest that a selection-driven process, rather than a purely neutral mutation-driven mechanism, contributes to the maintenance of IDs in the Drosophila genome.
Collapse
Affiliation(s)
- Zhen-Xia Chen
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
29
|
Li Y, Zhang L, Zhang D, Zhang X, Lu X. Faster evolution of Z-linked duplicate genes in chicken. J Genet Genomics 2011; 37:695-702. [PMID: 21035095 DOI: 10.1016/s1673-8527(09)60087-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 10/18/2022]
Abstract
It has been shown that duplicate genes on the X chromosome evolve much faster than duplicate genes on autosomes in Drosophila melanogaster. However, whether this phenomenon is general and can be applied to other species is not known. Here we examined this issue in chicken that have heterogametic females (females have ZW sex chromosome). We compared sequence divergence of duplicate genes on the Z chromosome with those on autosomes. We found that duplications on the Z chromosome indeed evolved faster than those on autosomes and show distinct patterns of molecular evolution from autosomal duplications. Examination of the expression of duplicate genes revealed an enrichment of duplications on the Z chromosome having male-biased expression and an enrichment of duplications on the autosomes having female-biased expression. These results suggest an evolutionary trend of the recruitment of duplicate genes towards reproduction-specific function. The faster evolution of duplications on Z than on the autosomes is most likely contributed by the selective forces driving the fixation of adaptive mutations on Z. Therefore, the common phenomena observed in both flies and chicken suggest that duplicate genes on sex chromosomes have distinct dynamics and are more influenced by natural selection than autosomal duplications, regardless of the kind of sex determination systems.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Biocontrol and International Center for Evolutionary and Genomic Studies, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | | | |
Collapse
|
30
|
Ellegren H. Sex-chromosome evolution: recent progress and the influence of male and female heterogamety. Nat Rev Genet 2011; 12:157-66. [PMID: 21301475 DOI: 10.1038/nrg2948] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is now clear that sex chromosomes differ from autosomes in many aspects of genome biology, such as organization, gene content and gene expression. Moreover, sex linkage has numerous evolutionary genetic implications. Here, I provide a coherent overview of sex-chromosome evolution and function based on recent data. Heteromorphic sex chromosomes are almost as widespread across the animal and plant kingdoms as sexual reproduction itself and an accumulating body of genetic data reveals interesting similarities, as well as dissimilarities, between organisms with XY or ZW sex-determination systems. Therefore, I discuss how patterns and processes associated with sex linkage in male- and female-heterogametic systems offer a useful contrast in the study of sex-chromosome evolution.
Collapse
Affiliation(s)
- Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvgen 18D, SE752 36 Uppsala, Sweden.
| |
Collapse
|
31
|
Abstract
Disruptive selection between males and females can generate sexual antagonism, where alleles improving fitness in one sex reduce fitness in the other. This type of genetic conflict arises because males and females carry nearly identical sets of genes: opposing selection, followed by genetic mixing during reproduction, generates a population genetic "tug-of-war" that constrains adaptation in either sex. Recent verbal models suggest that gene duplication and sex-specific cooption of paralogs might resolve sexual antagonism and facilitate evolutionary divergence between the sexes. However, this intuitive proximal solution for sexual dimorphism potentially belies a complex interaction between mutation, genetic drift, and positive selection during duplicate fixation and sex-specific paralog differentiation. The interaction of these processes--within the explicit context of duplication and sexual antagonism--has yet to be formally described by population genetics theory. Here, we develop and analyze models of gene duplication and sex-specific differentiation between paralogs. We show that sexual antagonism can favor the fixation and maintenance of gene duplicates, eventually leading to the evolution of sexually dimorphic genetic architectures for male and female traits. The timescale for these evolutionary transitions is sensitive to a suite of genetic and demographic variables, including allelic dominance, recombination, sex linkage, and population size. Interestingly, we find that female-beneficial duplicates preferentially accumulate on the X chromosome, whereas male-beneficial duplicates are biased toward autosomes, independent of the dominance parameters of sexually antagonistic alleles. Although this result differs from previous models of sexual antagonism, it is consistent with several findings from the empirical genomics literature.
Collapse
|
32
|
Zechner U, Hameister H. Sex Chromosomes in Vertebrates: XX/XY against ZZ/ZW. Sex Dev 2011; 5:266-71. [DOI: 10.1159/000331233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2011] [Indexed: 01/22/2023] Open
|
33
|
Connallon T, Clark AG. Sex linkage, sex-specific selection, and the role of recombination in the evolution of sexually dimorphic gene expression. Evolution 2010; 64:3417-42. [PMID: 20874735 PMCID: PMC2998557 DOI: 10.1111/j.1558-5646.2010.01136.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sex-biased genes--genes that are differentially expressed within males and females--are nonrandomly distributed across animal genomes, with sex chromosomes and autosomes often carrying markedly different concentrations of male- and female-biased genes. These linkage patterns are often gene- and lineage-dependent, differing between functional genetic categories and between species. Although sex-specific selection is often hypothesized to shape the evolution of sex-linked and autosomal gene content, population genetics theory has yet to account for many of the gene- and lineage-specific idiosyncrasies emerging from the empirical literature. With the goal of improving the connection between evolutionary theory and a rapidly growing body of genome-wide empirical studies, we extend previous population genetics theory of sex-specific selection by developing and analyzing a biologically informed model that incorporates sex linkage, pleiotropy, recombination, and epistasis, factors that are likely to vary between genes and between species. Our results demonstrate that sex-specific selection and sex-specific recombination rates can generate, and are compatible with, the gene- and species-specific linkage patterns reported in the genomics literature. The theory suggests that sexual selection may strongly influence the architectures of animal genomes, as well as the chromosomal distribution of fixed substitutions underlying sexually dimorphic traits.
Collapse
Affiliation(s)
- Tim Connallon
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York 14853-2703, USA.
| | | |
Collapse
|
34
|
Zhang YE, Vibranovski MD, Landback P, Marais GAB, Long M. Chromosomal redistribution of male-biased genes in mammalian evolution with two bursts of gene gain on the X chromosome. PLoS Biol 2010; 8. [PMID: 20957185 PMCID: PMC2950125 DOI: 10.1371/journal.pbio.1000494] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 08/16/2010] [Indexed: 01/20/2023] Open
Abstract
Mammalian X chromosomes evolved under various mechanisms including sexual antagonism, the faster-X process, and meiotic sex chromosome inactivation (MSCI). These forces may contribute to nonrandom chromosomal distribution of sex-biased genes. In order to understand the evolution of gene content on the X chromosome and autosome under these forces, we dated human and mouse protein-coding genes and miRNA genes on the vertebrate phylogenetic tree. We found that the X chromosome recently acquired a burst of young male-biased genes, which is consistent with fixation of recessive male-beneficial alleles by sexual antagonism. For genes originating earlier, however, this pattern diminishes and finally reverses with an overrepresentation of the oldest male-biased genes on autosomes. MSCI contributes to this dynamic since it silences X-linked old genes but not X-linked young genes. This demasculinization process seems to be associated with feminization of the X chromosome with more X-linked old genes expressed in ovaries. Moreover, we detected another burst of gene originations after the split of eutherian mammals and opossum, and these genes were quickly incorporated into transcriptional networks of multiple tissues. Preexisting X-linked genes also show significantly higher protein-level evolution during this period compared to autosomal genes, suggesting positive selection accompanied the early evolution of mammalian X chromosomes. These two findings cast new light on the evolutionary history of the mammalian X chromosome in terms of gene gain, sequence, and expressional evolution.
Collapse
Affiliation(s)
- Yong E. Zhang
- Department of Ecology and Evolution, the University of Chicago, Chicago, Illinois, United States of America
| | - Maria D. Vibranovski
- Department of Ecology and Evolution, the University of Chicago, Chicago, Illinois, United States of America
| | - Patrick Landback
- Department of Ecology and Evolution, the University of Chicago, Chicago, Illinois, United States of America
| | - Gabriel A. B. Marais
- Université de Lyon, Centre National de la Recherche Scientifique, Laboratoire de Biométrie et Biologie évolutive, Villeurbanne, France
| | - Manyuan Long
- Department of Ecology and Evolution, the University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
35
|
Mank JE. Sex chromosomes and the evolution of sexual dimorphism: lessons from the genome. Am Nat 2010; 173:141-50. [PMID: 20374139 DOI: 10.1086/595754] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Females and males of many animals exhibit a striking array of sexual dimorphisms, ranging from the primary differences of the gametes and gonads to the somatic differences often seen in behavior, morphology, and physiology. These differences raise many questions regarding how such divergent phenotypes can arise from a genome that is largely shared between the sexes. Recent progress in genomics has revealed some of the actual genetic mechanisms that create separate sex-specific phenotypes, and the evidence indicates that thousands of genes across all portions of the genome contribute to male and female forms through sex-biased gene expression. Related work has begun to define the strength and influence of sex-specific evolutionary forces that shape these phenotypic dimorphisms and how they in turn affect the genome. Additionally, theory has long suggested that the evolution of sexual dimorphism is facilitated by sex chromosomes, as these are the only portions of the genome that differ between males and females. Genomic analysis indicates that there is indeed a relationship between sexual dimorphism and the sex chromosomes. However, the connection is far more complicated than current theory allows, and this may ultimately require a reexamination of the assumptions so that predictions match the accumulating empirical data.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
| |
Collapse
|
36
|
Lin YP, Chen LR, Chen CF, Liou JF, Chen YL, Yang JR, Shiue YL. Identification of early transcripts related to male development in chicken embryos. Theriogenology 2010; 74:1161-1178.e1-8. [PMID: 20728927 DOI: 10.1016/j.theriogenology.2010.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 05/08/2010] [Accepted: 05/15/2010] [Indexed: 01/21/2023]
Abstract
Early transcripts related to male development in chicken embryos and their expression profiles were examined. A total of 89 and 127 candidate male development transcripts that represented 83 known and 119 unknown non-redundant sequences, respectively, were characterized in an embryonic day 3 (E3; Hamburger and Hamilton Stage 20: HH20) male-subtract-female complementary DNA library. Of 35 selected transcripts, quantitative reverse transcription-polymerase chain reaction validated that the expression levels of 25 transcripts were higher in male E3 whole embryos than in females (P < 0.05). Twelve of these transcripts mapped to the Z chromosome. At 72 wk of age, 20 and 4 transcripts were expressed at higher levels in the testes and brains of male than in the ovaries and brains of female chickens (P < 0.05), respectively. Whole mount and frozen cross-section in situ hybridization, as well as Western blotting analysis further corroborated that riboflavin kinase (RFK), WD repeat domain 36 (WDR36), and EY505808 transcripts; RFK and WDR36 protein products were predominantly expressed in E7 male gonads. Treatment with an aromatase inhibitor formestane at E4 affected the expression levels at E7 of the coatomer protein complex (subunit beta 1), solute carrier family 35 member F1, LOC427316 and EY505812 transcripts across both sexes (P < 0.05), similar to what was observed for the doublesex and mab-3 related transcription factor 1 gene. The interaction effects of sex by formestane treatment were observed in 15 candidate male development transcripts (P < 0.05). Taken together, we identified a panel of potentially candidate male development transcripts during early chicken embryogenesis; some might be regulated by sex hormones.
Collapse
Affiliation(s)
- Yuan-Ping Lin
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
37
|
Prince EG, Kirkland D, Demuth JP. Hyperexpression of the X chromosome in both sexes results in extensive female bias of X-linked genes in the flour beetle. Genome Biol Evol 2010; 2:336-46. [PMID: 20624738 PMCID: PMC2942036 DOI: 10.1093/gbe/evq024] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A genome's ability to produce two separate sexually dimorphic phenotypes is an intriguing biological mystery. Microarray-based studies of a handful of model systems suggest that much of the mystery can be explained by sex-biased gene expression evolved in response to sexually antagonistic selection. We present the first whole-genome study of sex-biased expression in the red flour beetle, Tribolium castaneum. Tribolium is a model for the largest eukaryotic order, Coleoptera, and we show that in whole-body adults, ∼20% of the transcriptome is differentially regulated between the sexes. Among T. castaneum, Drosophila melanogaster, and Anopheles gambiae, we identify 416 1:1:1 orthologs with conserved sex-biased expression. Overrepresented functional categories among sex-biased genes are primarily those involved in gamete production and development. The genomic distribution of sex-biased genes in T. castaneum is distinctly nonrandom, with the strongest deficit of male-biased genes on the X chromosome (9 of 793) of any species studied to date. Tribolium also shows a significant enrichment of X-linked female-biased genes (408 of 793). Our analyses suggest that the extensive female bias of Tribolium X chromosome gene expression is due to hyperexpression of X-linked genes in both males and females. We propose that the overexpression of X chromosomes in females is an evolutionary side effect of the need to dosage compensate in males and that mechanisms to reduce female X chromosome gene expression to autosomal levels are sufficient but imperfect.
Collapse
Affiliation(s)
- Eldon G Prince
- Department of Biology, The University of Texas at Arlington, USA
| | | | | |
Collapse
|
38
|
The chicken Z chromosome is enriched for genes with preferential expression in ovarian somatic cells. J Mol Evol 2009; 70:129-36. [PMID: 20037757 DOI: 10.1007/s00239-009-9315-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
Abstract
Theory predicts that sexually antagonistic mutations will be over- or under-represented on the X and Z chromosomes, depending on their average dominance coefficients. However, as little is known about the dominance coefficients for new mutations, the effect of sexually antagonistic selection is difficult to predict. To elucidate the role of sexually antagonistic selection in the evolution of Z chromosome gene content in chicken, we analyzed publicly available microarray data from several somatic tissues as well as somatic and germ cells of the ovary. We found that the Z chromosome is enriched for genes showing preferential expression in ovarian somatic cells, but not for genes with preferential expression in primary oocytes or non-sex-specific somatic tissues. Our results suggest that sexual antagonism leads to a higher abundance of female-benefit alleles on the Z chromosome. No bias toward Z-linkage for oocyte-enriched genes can be explained by lower intensity of sexually antagonistic selection in ovarian germ cells compared to ovarian somatic cells. An alternative explanation would be that meiotic Z chromosome inactivation hinders accumulation of oocyte-expressed genes on the Z chromosome. Our results are consistent with findings in mammals and indicate that recessive rather than dominant sexually antagonistic mutations shape the gene content of the X and Z chromosomes.
Collapse
|
39
|
Kemkemer C, Kohn M, Kehrer-Sawatzki H, Fundele RH, Hameister H. Enrichment of brain-related genes on the mammalian X chromosome is ancient and predates the divergence of synapsid and sauropsid lineages. Chromosome Res 2009; 17:811-20. [PMID: 19731051 DOI: 10.1007/s10577-009-9072-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 01/26/2023]
Abstract
Previous studies have revealed an enrichment of reproduction- and brain-related genes on the human X chromosome. In the present study, we investigated the evolutionary history that underlies this functional specialization. To do so, we analyzed the orthologous building blocks of the mammalian X chromosome in the chicken genome. We used Affymetrix chicken genome microarrays to determine tissue-selective gene expression in several tissues of the chicken, including testis and brain. Subsequently, chromosomal distribution of genes with tissue-selective expression was determined. These analyzes provided several new findings. Firstly, they showed that chicken chromosomes orthologous to the mammalian X chromosome exhibited an increased concentration of genes expressed selectively in brain. More specifically, the highest concentration of brain-selectively expressed genes was found on chicken chromosome GGA12, which shows orthology to the X chromosomal regions with the highest enrichment of non-syndromic X-linked mental retardation (MRX) genes. Secondly, and in contrast to the first finding, no enrichment of testis-selective genes could be detected on these chicken chromosomes. These findings indicate that the accumulation of brain-related genes on the prospective mammalian X chromosome antedates the divergence of sauropsid and synapsid lineages 315 million years ago, whereas the accumulation of testis-related genes on the mammalian X chromosome is more recent and due to adaptational changes.
Collapse
Affiliation(s)
- Claus Kemkemer
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | | | | | | | | |
Collapse
|
40
|
Abstract
Sex chromosomes have evolved multiple times in many taxa. The recent explosion in the availability of whole genome sequences from a variety of organisms makes it possible to investigate sex chromosome evolution within and across genomes. Comparative genomic studies have shown that quite distant species may share fundamental properties of sex chromosome evolution, while very similar species can evolve unique sex chromosome systems. Furthermore, within-species genomic analyses can illuminate chromosome-wide sequence and expression polymorphisms. Here, we explore recent advances in the study of vertebrate sex chromosomes achieved using genomic analyses.
Collapse
Affiliation(s)
- Melissa A Wilson
- Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
41
|
Abstract
Intralocus sexual conflict arises when there are sex-specific optima for a trait that is expressed in both sexes and when the constraint of a shared gene pool prevents males and females from reaching their optima independently. This situation may result in a negative intersexual correlation for fitness. Here I first discuss key differences between intra- and interlocus conflict, the type of sexual conflict that arises in mating interactions between males and females. I then review the experimental evidence for the existence of genomewide sexually antagonistic variation and discuss how intralocus conflict can be resolved. Substantial genomewide sexually antagonistic variation exists in Drosophila melanogaster lab populations. Yet, in the same species, sex-specific gene regulation appears to evolve rapidly, suggesting that the obstacles to the resolution of intralocus conflict are minor. The fact that negative intersexual correlations for fitness are observed even if sexual dimorphism can evolve rapidly suggests that intralocus conflict is highly dynamic. The final part of this review examines the evolutionary consequences of intralocus sexual conflict for the evolution of the sex chromosomes, sexual selection, and sex determination. Intralocus conflict helps to explain many of the peculiar features of the sex chromosomes and has shaped the functional bias and expression biases of sex-linked genes. The genomic distribution of sexually selected genes, in particular, affects sexual selection in various ways. The presence of sexually antagonistic variation can strongly interfere with the good genes' process of sexual selection and erode the genetic benefits of mate choice. Regarding sex determination, this review concentrates on evolutionary transitions between different sex determination mechanisms. Such transitions have occurred frequently in several taxa. Theory and empirical data suggest an important role for intralocus conflict in triggering switches between sex determination systems.
Collapse
|
42
|
Mank JE. The W, X, Y and Z of sex-chromosome dosage compensation. Trends Genet 2009; 25:226-33. [PMID: 19359064 DOI: 10.1016/j.tig.2009.03.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/07/2009] [Accepted: 03/09/2009] [Indexed: 01/23/2023]
Abstract
In species with highly differentiated sex chromosomes, imbalances in gene dosage between the sexes can affect overall organismal fitness. Regulatory mechanisms were discovered in several unrelated animals, which counter gene-dose differences between females and males, and these early findings suggested that dosage-compensating mechanisms were required for sex-chromosome evolution. However, recent reports in birds and moths contradict this view because these animals locally compensate only a few genes on the sex chromosomes, leaving the majority with different expression levels in males and females. These findings warrant a re-examination of the evolutionary forces underlying dosage compensation.
Collapse
Affiliation(s)
- Judith E Mank
- University of Oxford, Department of Zoology, Edward Grey Institute, South Parks Road, Oxford OX1 3PS, UK.
| |
Collapse
|
43
|
Abstract
The role of sex chromosomes in sex determination has been well studied in diverse groups of organisms. However, the role of the genes on the sex chromosomes in conferring sexual dimorphism is still being experimentally evaluated. An unequal complement of sex chromosomes between two sexes makes them amenable to sex-specific evolutionary forces. Sex-linked genes preferentially expressed in one sex over the other offer a potential means of addressing the role of sex chromosomes in sexual dimorphism. We examined the testis transcriptome of the silkworm, Bombyx mori, which has a ZW chromosome constitution in the female and ZZ in the male, and show that the Z chromosome harbors a significantly higher number of genes expressed preferentially in testis compared to the autosomes. We hypothesize that sexual antagonism and absence of dosage compensation have possibly led to the accumulation of many male-specific genes on the Z chromosome. Further, our analysis of testis-specific paralogous genes suggests that the accumulation on the Z chromosome of genes advantageous to males has occurred primarily by translocation or tandem duplication.
Collapse
|
44
|
Mank JE, Ellegren H. Sex-linkage of sexually antagonistic genes is predicted by female, but not male, effects in birds. Evolution 2009; 63:1464-72. [PMID: 19154378 DOI: 10.1111/j.1558-5646.2009.00618.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Evolutionary theory predicts that sexually antagonistic loci will be preferentially sex-linked, and this association can be empirically testes with data on sex-biased gene expression with the assumption that sex-biased gene expression represents the resolution of past sexual antagonism. However, incomplete dosage compensating mechanisms and meiotic sex chromosome inactivation have hampered efforts to connect expression data to theoretical predictions regarding the genomic distribution of sexually antagonistic loci in a variety of animals. Here we use data on the underlying regulatory mechanism that produce expression sex-bias to test the genomic distribution of sexually antagonistic genes in chicken. Using this approach, which is free from problems associated with the lack of dosage compensation in birds, we show that female-detriment genes are significantly overrepresented on the Z chromosome, and female-benefit genes underrepresented. By contrast, male-effect genes show no over- or underrepresentation on the Z chromosome. These data are consistent with a dominant mode of inheritance for sexually antagonistic genes, in which male-benefit coding mutations are more likely to be fixed on the Z due to stronger male-specific selective pressures. After fixation of male-benefit alleles, regulatory changes in females evolve to minimize antagonism by reducing female expression.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | | |
Collapse
|
45
|
Jaari S, Li MH, Merilä J. A first-generation microsatellite-based genetic linkage map of the Siberian jay (Perisoreus infaustus): insights into avian genome evolution. BMC Genomics 2009; 10:1. [PMID: 19121221 PMCID: PMC2671524 DOI: 10.1186/1471-2164-10-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 01/03/2009] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Genomic resources for the majority of free-living vertebrates of ecological and evolutionary importance are scarce. Therefore, linkage maps with high-density genome coverage are needed for progress in genomics of wild species. The Siberian jay (Perisoreus infaustus; Corvidae) is a passerine bird which has been subject to lots of research in the areas of ecology and evolutionary biology. Knowledge of its genome structure and organization is required to advance our understanding of the genetic basis of ecologically important traits in this species, as well as to provide insights into avian genome evolution. RESULTS We describe the first genetic linkage map of Siberian jay constructed using 117 microsatellites and a mapping pedigree of 349 animals representing five families from a natural population breeding in western Finland from the years 1975 to 2006. Markers were resolved into nine autosomal and a Z-chromosome-specific linkage group, 10 markers remaining unlinked. The best-position map with the most likely positions of all significantly linked loci had a total sex-average size of 862.8 cM, with an average interval distance of 9.69 cM. The female map covered 988.4 cM, whereas the male map covered only 774 cM. The Z-chromosome linkage group comprised six markers, three pseudoautosomal and three sex-specific loci, and spanned 10.6 cM in females and 48.9 cM in males. Eighty-one of the mapped loci could be ordered on a framework map with odds of >1000:1 covering a total size of 809.6 cM in females and 694.2 cM in males. Significant sex specific distortions towards reduced male recombination rates were revealed in the entire best-position map as well as within two autosomal linkage groups. Comparative mapping between Siberian jay and chicken anchored 22 homologous loci on 6 different linkage groups corresponding to chicken chromosomes Gga1, 2, 3, 4, 5, and Z. Quite a few cases of intra-chromosomal rearrangements within the autosomes and three cases of inter-chromosomal rearrangement between the Siberian jay autosomal linkage groups (LG1, LG2 and LG3) and the chicken sex chromosome GgaZ were observed, suggesting a conserved synteny, but changes in marker order, within autosomes during about 100 million years of avian evolution. CONCLUSION The constructed linkage map represents a valuable resource for intraspecific genomics of Siberian jay, as well as for avian comparative genomic studies. Apart from providing novel insights into sex-specific recombination rates and patterns, the described maps - from a previously genomically uncharacterized superfamily (Corvidae) of passerine birds - provide new insights into avian genome evolution. In combination with high-resolution data on quantitative trait variability from the study population, they also provide a foundation for QTL-mapping studies.
Collapse
Affiliation(s)
- Sonja Jaari
- Ecological Genetics Research Unit, Department of Biological and Environmental Sciences, PO Box 65, FIN-00014 University of Helsinki, Finland.
| | | | | |
Collapse
|
46
|
Arnold AP, Itoh Y, Melamed E. A bird's-eye view of sex chromosome dosage compensation. Annu Rev Genomics Hum Genet 2008; 9:109-27. [PMID: 18489256 DOI: 10.1146/annurev.genom.9.081307.164220] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intensive study of a few genetically tractable species with XX/XY sex chromosomes has produced generalizations about the process of sex chromosome dosage compensation that do not fare well when applied to ZZ/ZW sex chromosome systems, such as those in birds. The inherent sexual imbalance in dose of sex chromosome genes has led to the evolution of sex-chromosome-wide mechanisms for balancing gene dosage between the sexes and relative to autosomal genes. Recent advances in our knowledge of avian genomes have led to a reexamination of sex-specific dosage compensation (SSDC) in birds, which is less effective than in known XX/XY systems. Insights about the mechanisms of SSDC in birds also suggest similarities to and differences from those in XX/XY species. Birds are thus offering new opportunities for studying dosage compensation in a ZZ/ZW system, which should shed light on the evolution of SSDC more broadly.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Physiological Science and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
47
|
Gurbich TA, Bachtrog D. Gene content evolution on the X chromosome. Curr Opin Genet Dev 2008; 18:493-8. [PMID: 18929654 DOI: 10.1016/j.gde.2008.09.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/18/2008] [Accepted: 09/20/2008] [Indexed: 12/23/2022]
Abstract
Compared with autosomes, the X chromosome shows different patterns of evolution as a result of its hemizygosity in males. Additionally, inactivation of the X during spermatogenesis can make the X chromosome an unfavorable location for male-specific genes. These factors can help to explain why in many species gene content of the X chromosome differs from that of autosomes. Indeed, the X chromosome in mouse is enriched for male-specific genes while they are depleted on the X in Drosophila but show neither of these trends in mosquito. Here, we will discuss recent findings on the ancestral and neo-X chromosomes in Drosophila that support sexual antagonism as a force shaping gene content evolution of sex chromosomes and suggest that selection could be driving male-biased genes off the X.
Collapse
Affiliation(s)
- Tatiana A Gurbich
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
48
|
The status of dosage compensation in the multiple X chromosomes of the platypus. PLoS Genet 2008; 4:e1000140. [PMID: 18654631 PMCID: PMC2453332 DOI: 10.1371/journal.pgen.1000140] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 06/24/2008] [Indexed: 12/02/2022] Open
Abstract
Dosage compensation has been thought to be a ubiquitous property of sex chromosomes that are represented differently in males and females. The expression of most X-borne genes is equalized between XX females and XY males in therian mammals (marsupials and “placentals”) by inactivating one X chromosome in female somatic cells. However, compensation seems not to be strictly required to equalize the expression of most Z-borne genes between ZZ male and ZW female birds. Whether dosage compensation operates in the third mammal lineage, the egg-laying monotremes, is of considerable interest, since the platypus has a complex sex chromosome system in which five X and five Y chromosomes share considerable genetic homology with the chicken ZW sex chromosome pair, but not with therian XY chromosomes. The assignment of genes to four platypus X chromosomes allowed us to examine X dosage compensation in this unique species. Quantitative PCR showed a range of compensation, but SNP analysis of several X-borne genes showed that both alleles are transcribed in a heterozygous female. Transcription of 14 BACs representing 19 X-borne genes was examined by RNA-FISH in female and male fibroblasts. An autosomal control gene was expressed from both alleles in nearly all nuclei, and four pseudoautosomal BACs were usually expressed from both alleles in male as well as female nuclei, showing that their Y loci are active. However, nine X-specific BACs were usually transcribed from only one allele. This suggests that while some genes on the platypus X are not dosage compensated, other genes do show some form of compensation via stochastic transcriptional inhibition, perhaps representing an ancestral system that evolved to be more tightly controlled in placental mammals such as human and mouse. Dosage compensation equalizes the expression of genes found on sex chromosomes so that they are equally expressed in females and males. In placental and marsupial mammals, this is accomplished by silencing one of the two X chromosomes in female cells. In birds, dosage compensation seems not to be strictly required to balance the expression of most genes on the Z chromosome between ZZ males and ZW females. Whether dosage compensation exists in the third group of mammals, the egg-laying monotremes, is of considerable interest, particularly since the platypus has five different X and five different Y chromosomes. As part of the platypus genome project, genes have now been assigned to four of the five X chromosomes. We have shown that there is some evidence for dosage compensation, but it is variable between genes. Most interesting are our results showing that there is a difference in the probability of expression for X-specific genes, with about 50% of female cells having two active copies of an X gene while the remainder have only one. This means that, although the platypus has the variable compensation characteristic of birds, it also has some level of inactivation, which is characteristic of dosage compensation in other mammals.
Collapse
|
49
|
Ellegren H, Hultin-Rosenberg L, Brunström B, Dencker L, Kultima K, Scholz B. Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes. BMC Biol 2007; 5:40. [PMID: 17883843 PMCID: PMC2099419 DOI: 10.1186/1741-7007-5-40] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 09/20/2007] [Indexed: 11/10/2022] Open
Abstract
Background The contrasting dose of sex chromosomes in males and females potentially introduces a large-scale imbalance in levels of gene expression between sexes, and between sex chromosomes and autosomes. In many organisms, dosage compensation has thus evolved to equalize sex-linked gene expression in males and females. In mammals this is achieved by X chromosome inactivation and in flies and worms by up- or down-regulation of X-linked expression, respectively. While otherwise widespread in systems with heteromorphic sex chromosomes, the case of dosage compensation in birds (males ZZ, females ZW) remains an unsolved enigma. Results Here, we use a microarray approach to show that male chicken embryos generally express higher levels of Z-linked genes than female birds, both in soma and in gonads. The distribution of male-to-female fold-change values for Z chromosome genes is wide and has a mean of 1.4–1.6, which is consistent with absence of dosage compensation and sex-specific feedback regulation of gene expression at individual loci. Intriguingly, without global dosage compensation, the female chicken has significantly lower expression levels of Z-linked compared to autosomal genes, which is not the case in male birds. Conclusion The pronounced sex difference in gene expression is likely to contribute to sexual dimorphism among birds, and potentially has implication to avian sex determination. Importantly, this report, together with a recent study of sex-biased expression in somatic tissue of chicken, demonstrates the first example of an organism with a lack of global dosage compensation, providing an unexpected case of a viable system with large-scale imbalance in gene expression between sexes.
Collapse
Affiliation(s)
- Hans Ellegren
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Lina Hultin-Rosenberg
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Björn Brunström
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
| | - Lennart Dencker
- Department of Pharmaceutical Biosciences, Uppsala University, Box 594, SE-751 24 Uppsala, Sweden
| | - Kim Kultima
- Department of Pharmaceutical Biosciences, Uppsala University, Box 594, SE-751 24 Uppsala, Sweden
| | - Birger Scholz
- Department of Pharmaceutical Biosciences, Uppsala University, Box 594, SE-751 24 Uppsala, Sweden
| |
Collapse
|
50
|
Abstract
Differences between males and females in the optimal phenotype that is favoured by selection can be resolved by the evolution of differential gene expression in the two sexes. Microarray experiments have shown that such sex-biased gene expression is widespread across organisms and genomes. Sex-biased genes show unusually rapid sequence evolution, are often labile in their pattern of expression, and are non-randomly distributed in the genome. Here we discuss the characteristics and expression of sex-biased genes, and the selective forces that shape this previously unappreciated source of phenotypic diversity. Sex-biased gene expression has implications beyond just evolutionary biology, including for medical genetics.
Collapse
Affiliation(s)
- Hans Ellegren
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden.
| | | |
Collapse
|