1
|
Montiel-Mora JR, Lizano-Fallas V, Méndez-Rivera M, Marín-González A, Cambronero-Heinrichs JC, Rodríguez-Rodríguez CE. Individual and mixture effect of selected high-hazard pharmaceuticals on aquatic primary producers. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-025-02885-w. [PMID: 40287884 DOI: 10.1007/s10646-025-02885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/06/2025] [Indexed: 04/29/2025]
Abstract
The extensive use of pharmaceuticals has led to their occurrence in surface waters due to insufficient treatment processes for their removal. Their environmental impact remains largely unexplored for certain trophic levels, particularly plants and algae. Pharmaceuticals often occur in mixtures with other pollutants, highlighting the need for comprehensive toxicological assessments that evaluate their combined interactions. This study evaluated the acute toxicity of four high-hazard pharmaceuticals -diphenhydramine, fluoxetine, ketoprofen, and trimethoprim- and their binary mixtures, on the green microalgae Raphidocelis subcapitata and the aquatic macrophyte Lemna gibba. For individual compounds, R. subcapitata growth rate was inhibited in all cases, with fluoxetine, ketoprofen and diphenhydramine exhibiting moderate toxicity (EC50 = 0.34, 0.14, and 4.88 mg/L, respectively), while trimethoprim showed low toxicity (EC50 = 332.35 mg/L). Similar trends were observed in L. gibba, except for diphenhydramine, which also showed low toxicity (EC50 = 26.57 mg/L). Binary mixtures demonstrated a synergistic interaction towards the microalgae in the presence of ketoprofen, except ketoprofen-trimethoprim combination (antagonism, p < 0.0001). In contrast, most interactions in L. gibba exhibited antagonism, except ketoprofen-fluoxetine (synergism, p = 0.0042). Differences were observed between the two model organisms for individual compounds and mixtures. No correlation was found between L. gibba experimental data and QSAR predictions derived from R. subcapitata. Our results highlight the need for: i. further studies including mixtures of relevant pharmaceuticals; ii. caution in the use of predictive models or extrapolation between taxa; and iii. the inclusion of fluoxetine and ketoprofen as priority compounds in future risk assessments.
Collapse
Affiliation(s)
- José R Montiel-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, Costa Rica
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, Montes de Oca, San José, Costa Rica
| | - Verónica Lizano-Fallas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, Costa Rica
| | - Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, Costa Rica
| | | | - Juan Carlos Cambronero-Heinrichs
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, Costa Rica
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, Legnaro (PD), Italy
- Centro Nacional De Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, Costa Rica.
| |
Collapse
|
2
|
Németh Z, Svigruha R, Ács A, Farkas A, Tapolczai K, Elekes K, Fodor I, Pirger Z. Developmental, behavioral, and biochemical effects of chronic exposure to sublethal concentrations of organic UV-filter compounds on a freshwater model species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107134. [PMID: 39488149 DOI: 10.1016/j.aquatox.2024.107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
The prevalence of organic/chemical UV-filter compounds in aquatic ecosystems represents a growing environmental issue. The long-term toxicity risks of many UV-filters at environmentally relevant concentrations to aquatic biota are still less studied, especially in the case of invertebrates. This study was designed to evaluate the chronic toxicity of avobenzone (AVO), octocrylene (OCTO), and octinoxate (OCTI), three UV-filters which frequently occur in the aquatic environment, to the water flea (Daphnia magna) at an environmentally relevant concentration of 200 ng l-1 in a 21-day exposure. Potential alterations in the growth, reproduction, and heart rate were continuously monitored during the treatments. Filtration rate, swimming, and the state of the antioxidant- and metabolic functions were evaluated at the end of exposures. Avobenzone significantly increased the reproductive output, heart rate, and filtration rate, while evoked a significant decrease of swimming behavior, and inhibited the activity of catalase (CAT) and glutathione S-transferase (GST) enzymes. The body size, reproduction, heart rate, and superoxide dismutase (SOD) activity were significantly increased whereas the activity of GST and CAT was significantly reduced by OCTO. OCTI significantly increased reproduction, heart rate, CAT and SOD activity but significantly decreased the swimming behavior. Our results confirmed that chronic exposure to organic UV-filters even at environmentally relevant concentrations affect basic physiological traits and cellular defense pathways in D. magna. Highlighting, our observations revealed previously unknown physiological changes (e.g., altered heart rate, filtration rate, SOD activity) caused by the investigated UV-filter compounds. Future research is to be aimed at investigating the mixture effects of these compounds and at the understanding of the potential cellular and molecular mechanisms underlying the changes induced.
Collapse
Affiliation(s)
- Zoltán Németh
- Doctoral School of Environmental Sciences, Eötvös Loránd University, Budapest, Hungary; Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Réka Svigruha
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - András Ács
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Anna Farkas
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Kálmán Tapolczai
- National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; Aquatic Botany and Microbial Ecology Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Károly Elekes
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - István Fodor
- National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; Aquatic Botany and Microbial Ecology Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary.
| |
Collapse
|
3
|
Montiel-Mora JR, Méndez-Rivera M, Ramírez-Morales D, Cambronero-Heinrichs JC, Rodríguez-Rodríguez CE. Toxicity of selected pharmaceuticals and their mixtures to the aquatic indicators Daphnia magna and Aliivibrio fischeri. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1047-1061. [PMID: 39264549 DOI: 10.1007/s10646-024-02798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2024] [Indexed: 09/13/2024]
Abstract
Despite the benefits derived from the use of pharmaceuticals, these compounds are currently considered contaminants of emerging concern because of their presence and persistence in the environment. This study aimed to determine the toxicity of 27 pharmaceuticals and the interaction effects of binary mixtures of selected compounds towards two model organisms: the microcrustacean Daphnia magna and the bacterium Aliivibrio fischeri (Microtox test). Six compounds, namely polymyxin B, polymyxin E, fluoxetine, diphenhydramine, clenbuterol and ketoprofen exhibited moderate toxicity towards D. magna. Additionally, three compounds (cefotaxime, polymyxin B, polymyxin E) also showed a moderate toxic effect on A. fischeri. The comparison of such results with model estimations showed inaccuracy in the predicted data, highlighting the relevance of experimental ecotoxicological assays. The assayed mixtures contained four selected drugs of high-hazard according to their reported concentrations in wastewater and surface water (diphenhydramine, trimethoprim, ketoprofen, and fluoxetine); data revealed interactions only in the fluoxetine-containing mixtures for D. magna, while all mixtures showed interactions (mostly synergistic) for Microtox. Chronic effects on the reproduction of D. magna were observed after exposure to fluoxetine and diphenhydramine, although higher sensitivity was determined for the latter, while the mixture of these compounds (which showed acute synergy in both models) also affected the reproduction patterns. Nonetheless, all the effects described at the acute or chronic level (for individual compounds or mixtures) were determined at concentrations higher than commonly reported at environmental levels. This work provides valuable ecotoxicological information for the risk assessment of pharmaceuticals and their mixtures in the environment.
Collapse
Affiliation(s)
- José R Montiel-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica
| | - Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica
| | - Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica
| | - Juan Carlos Cambronero-Heinrichs
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, Legnaro, PD, 35020, Italy
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica.
| |
Collapse
|
4
|
Hafez T, Villate F, Ortiz-Zarragoitia M. Reduced Survival and Disruption of Female Reproductive Output in Two Copepod Species ( Acartia clausi and A. tonsa) Exposed to the Model Endocrine Disruptor 17α-Ethinylestradiol. TOXICS 2023; 11:toxics11050405. [PMID: 37235221 DOI: 10.3390/toxics11050405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023]
Abstract
Estuaries are heavily impacted by pollutants from different sources such as urban sewage, industrial waste and agricultural runoff. Endocrine-disrupting chemicals (EDCs) are very concerning pollutants to estuarine wildlife, but little is known about their impact on microscopic biota such as zooplankton. The aim of this work was to investigate the effects of a model EDC, the 17α-ethinylestradiol (EE2), on two copepod species inhabiting the Basque coast (Southeastern Bay of Biscay) estuaries: Acartia clausi (autochthonous neritic species) and Acartia tonsa (non-indigenous brackish species). Female copepods were collected at population maximum time (spring for A. clausi and summer for A. tonsa) and exposed individually to 5 ng/L (low), 5 µg/L (medium) and 500 µg/L EE2 (high) doses, from environmental concentrations found in sewage effluents to toxicological concentrations. After 24 h exposure, the survival rate of experimental individuals was checked and the lethal concentration LC50 was calculated. The number of egg-producing females and the amount of egg laying and egg hatching were recorded. The integrated biomarker index (IBR) was calculated to integrate the overall effects of EE2 exposure. Both species had reduced survival rates at 500 µg/L, and the LC50 was lower in A. tonsa (158 µg/L) compared to A. clausi (398 µg/L). The number of eggs laid was significantly reduced in A. clausi at EE2 medium and high doses, while a reduction in the number of eggs in A. tonsa was observed only at the high dose. However, no significant differences were detected in the egg hatching success of exposed A. clausi and A. tonsa. IBR index showed that EE2 had the most detrimental effects on A. tonsa and A. clausi females at the 500 µg/L dose. In conclusion, after 24 h of exposure, EE2 reduced female copepod survival and disrupted reproductive output, but only at high non-environmentally relevant concentrations.
Collapse
Affiliation(s)
- Tamer Hafez
- CBET+ Research Group, Department of Zoology and Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, 48620 Plentzia, Basque Country, Spain
| | - Fernando Villate
- MarEsPlank Research Group, Department of Plant Biology and Ecology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, 48620 Plentzia, Basque Country, Spain
| | - Maren Ortiz-Zarragoitia
- CBET+ Research Group, Department of Zoology and Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, 48620 Plentzia, Basque Country, Spain
| |
Collapse
|
5
|
Svigruha R, Prikler B, Farkas A, Ács A, Fodor I, Tapolczai K, Schmidt J, Bordós G, Háhn J, Harkai P, Kaszab E, Szoboszlay S, Pirger Z. Presence, variation, and potential ecological impact of microplastics in the largest shallow lake of Central Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163537. [PMID: 37075990 DOI: 10.1016/j.scitotenv.2023.163537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
The presence of microplastics (MPs) in the global ecosystem has generated a rapidly growing concern worldwide. Although their presence in the marine environment has been well-studied, much less data are available on their abundance in freshwaters. MPs alone and in combination with different chemicals has been shown to cause acute and chronic effects on algae and aquatic invertebrate and vertebrate species at different biological levels. However, the combined ecotoxicological effects of MPs with different chemicals on aquatic organisms are still understudied in many species and the reported data are often controversial. In the present study, we investigated, for the first time, the presence of MPs in Lake Balaton, which is the largest shallow lake of Central Europe and an important summer holiday destination. Moreover, we exposed neonates of the well-established ecotoxicological model organism Daphnia magna to different MPs (polystyrene [3 μm] or polyethylene [≤ 100 μm]) alone and in combination with three progestogen compounds (progesterone, drospirenone, levonorgestrel) at an environmentally relevant concentration (10 ng L-1) for 21 days. The presence of 7 polymer types of MPs in the size range of 50-100 μm was detected in Lake Balaton. Similarly to the global trends, polypropylene and polyethylene MPs were the most common types of polymer. The calculated polymer-independent average particle number was 5.5 particles m-3 (size range: 50 μm - 100 μm) which represents the values detected in other European lakes. Our ecotoxicological experiments confirmed that MPs and progestogens can affect D. magna at the behavioral (body size and reproduction) and biochemical (detoxification-related enzyme activity) levels. The joint effects were negligible. The presence of MPs may lead to reduced fitness in the aquatic biota in freshwaters such as Lake Balaton, however, the potential threat of MPs as vectors for progestogens may be limited.
Collapse
Affiliation(s)
- Réka Svigruha
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary
| | - Bence Prikler
- Eurofins-Wessling Hungary Ltd, 1045 Budapest, Hungary; Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Anna Farkas
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary
| | - András Ács
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary
| | - István Fodor
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary
| | - Kálmán Tapolczai
- Aquatic Botany and Microbial Ecology Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary
| | - János Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Gábor Bordós
- Eurofins-Wessling Hungary Ltd, 1045 Budapest, Hungary
| | - Judit Háhn
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Péter Harkai
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Edit Kaszab
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Sándor Szoboszlay
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary.
| |
Collapse
|
6
|
Moreira DG, Aires A, de Lourdes Pereira M, Oliveira M. Levels and effects of antidepressant drugs to aquatic organisms. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109322. [PMID: 35272041 DOI: 10.1016/j.cbpc.2022.109322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/18/2022] [Accepted: 02/27/2022] [Indexed: 11/21/2022]
Abstract
The use of antidepressants has been increasing globally, resulting in their presence in the aquatic environment, mainly by municipal wastewaters. This fact has aroused concern in the scientific community since these biologically active compounds can affect non-target organisms that have physiological systems regulated by these pharmaceuticals. However, the current knowledge on the toxicological effects of antidepressants on aquatic ecosystems is limited. Considering the increasing consumption pattern, quantification studies and toxicity studies, the present work aimed to review the available literature, published in the last seven years, addressing levels of antidepressants and their metabolites in rivers, surface waters, tap water, and wastewater treatment plants, as well, the effects reported in fish and invertebrates. Overall, the available laboratory studies showed that antidepressants can act at different levels of biological organisation, with detrimental effects at the individual level (e.g., survival, growth, and morphology, behaviour, and reproduction). However, the effects of prolonged exposures to environmentally relevant concentrations of these substances, a more realistic scenario, are unknown. Based on short-term studies, the long-term effects of pharmaceuticals at environmentally relevant concentrations (alone and in the presence of other environmental contaminants) should be studied.
Collapse
Affiliation(s)
| | - Ana Aires
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria de Lourdes Pereira
- CICECO - Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel Oliveira
- Centre for Marine and Environmental Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Svigruha R, Fodor I, Győri J, Schmidt J, Padisák J, Pirger Z. Effects of chronic sublethal progestogen exposure on development, reproduction, and detoxification system of water flea, Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147113. [PMID: 33892323 DOI: 10.1016/j.scitotenv.2021.147113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
The presence of sex steroid hormones in aquatic ecosystems is of rapidly growing concern worldwide since they can affect the different non-target species including cladocerans. Although data are available on the effects of estrogens on the well-established ecotoxicological model organism Daphnia magna, the molecular or behavioural alterations induced by environmentally relevant concentrations (from a few ng L-1 to a few hundred ng L-1 in average) of progestogens have not been investigated on this species. In the present study, we exposed neonates of D. magna to relevant equi-concentrations (1, 10, 100, 500 ng L-1) of mixtures of four progestogens (progesterone, drospirenone, gestodene, levonorgestrel) in short-term (6 days) and long-term (21 days) experiments. Significant alterations were observed at the molecular, cellular, and individual levels. During the short-term exposure, all of the mixtures increased the gene expression of glutathione S-transferase (GST) detoxification enzyme, moreover, the activity of GST was also significantly increased at the concentrations of 10, 100, and 500 ng L-1. In long-term exposure, the number of days until production of the first eggs was reduced at the 10 ng L-1 concentration compared to control, furthermore, the maximum egg number per individual increased at the concentrations of 1 and 10 ng L-1. Based on the authors' best knowledge, this is the first study to investigate the effects of progestogens in mixtures and at environmentally relevant concentrations on D. magna. Our findings contribute to the understanding of the possible physiological effects of human progestogens. Future research should be aimed at understanding the potential mechanisms (e.g., perception) underlying the changes induced by progestogens.
Collapse
Affiliation(s)
- Réka Svigruha
- Research Group of Limnology, Centre of Natural Sciences, University of Pannonia, 8200 Veszprém, Hungary; NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary; Ecophysiology and Environmental Toxicology, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary
| | - István Fodor
- NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary; Ecophysiology and Environmental Toxicology, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary
| | - János Győri
- Ecophysiology and Environmental Toxicology, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary
| | - János Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Judit Padisák
- Research Group of Limnology, Centre of Natural Sciences, University of Pannonia, 8200 Veszprém, Hungary
| | - Zsolt Pirger
- NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary; Ecophysiology and Environmental Toxicology, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary.
| |
Collapse
|
8
|
Rodrigues S, Silva AM, Antunes SC. Assessment of 17α-ethinylestradiol effects in Daphnia magna: life-history traits, biochemical and genotoxic parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23160-23173. [PMID: 33442804 DOI: 10.1007/s11356-020-12323-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
The occurrence of pharmaceuticals in aquatic ecosystems and the need to study them have increased over the years since they enter continuously the environment. Besides, these compounds are not intended for applications with environmental purposes, and therefore, little is known about their ecological effects, particularly in non-target organisms, as invertebrate species. Inside these substances, endocrine disrupting compounds (EDCs) have recently come into the limelight, due to environmental concentrations and consequently their detrimental effects on different organisms. 17α-ethinylestradiol (EE2) has been detected in the aquatic environment in various locations around the globe since it is the main synthetic hormone used as a female oral contraceptive and is also applied in veterinary medicine and animal production. The present study was intended to assess the chronic effects of EE2, in the non-target organism as Daphnia magna. Thus, to analyze the individual and subindividual impact, this aquatic organism was chronically exposed (21 days) to 0.00 (control group), 0.10, 1.00, 10.0, and 100 μg/L of EE2. Results here obtained demonstrated that D. magna exposed to the EE2 concentrations had significant effects in individual (life-history) and sub-individual (biochemical levels) parameters. Alterations as anticipation in the age at first reproduction, a decrease of the growth rate, oxidative stress, and lipid peroxidation were detected, as well as genotoxic damage. Therefore, it was possible to infer that EE2 can disrupt several metabolic pathways and physiological functions of D. magna, since EE2 demonstrated ecotoxicity, at environmentally relevant concentrations. This work reinforces the importance of examining the effects of more relevant exposures (more prolonged and with ecologically pertinent concentrations) of potential endocrine disruptors like EE2, to the freshwater organisms and ecosystem.
Collapse
Affiliation(s)
- Sara Rodrigues
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal.
| | - Ana Marta Silva
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Sara Cristina Antunes
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| |
Collapse
|
9
|
de Souza RC, Godoy AA, Kummrow F, Dos Santos TL, Brandão CJ, Pinto E. Occurrence of caffeine, fluoxetine, bezafibrate and levothyroxine in surface freshwater of São Paulo State (Brazil) and risk assessment for aquatic life protection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20751-20761. [PMID: 33410054 DOI: 10.1007/s11356-020-11799-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The prioritization of active pharmaceutical ingredients (APIs) for monitoring programmes and/or environmental risk assessment (ERA) purposes is based on several criteria, including environmental occurrence data. However, data on API occurrence in Brazilian surface freshwaters are still scarce. The Brazilian Unified Health System (SUS) provides several medicines free-of-charge, including medications that have bezafibrate, fluoxetine and levothyroxine as the API. Thus, our objective was to investigate the occurrence of bezafibrate, fluoxetine and levothyroxine in samples collected at sampling sites included in the surface freshwater monitoring program of the São Paulo State Environmental Agency (CETESB); caffeine was also included in the analysis because it is commonly used as an anthropogenic marker of aquatic environment contamination. Monitoring results showed that levothyroxine was not found in any of the analysed samples. Caffeine was ubiquitous in the analysed samples, thus indicating anthropic contamination in the studied water bodies. Caffeine and bezafibrate presented risk quotient (RQ) < 1 for all the sampling sites and periods evaluated in this study. For fluoxetine, RQs > 1 were found in all water samples in which this API was found, indicating a potential risk for freshwater pelagic biota. Thus, fluoxetine should be regulated in São Paulo State in order to protect the aquatic biota. Additional occurrence studies in other Brazilian states are still needed to evaluate if fluoxetine is a nationwide pollutant.
Collapse
Affiliation(s)
- Raquel Cardoso de Souza
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
| | - Aline Andrade Godoy
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
- Science and Technology Institute, Federal University of Alfenas (Unifal-MG), Rodovia José Aurélio Vilela, 11999, Poços de Caldas, MG, 37715-400, Brazil
| | - Fábio Kummrow
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (Unifesp), Rua São Nicolau, 210, Diadema, SP, 09972-270, Brazil.
| | - Thyago Leandro Dos Santos
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
| | - Carlos Jesus Brandão
- Environmental Company of State of São Paulo (CETESB), Av. Professor Frederico Hermann Júnior, 345, Alto de Pinheiros, São Paulo, SP, 05459-900, Brazil
| | - Ernani Pinto
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
10
|
From Laboratory Tests to the Ecoremedial System: The Importance of Microorganisms in the Recovery of PPCPs-Disturbed Ecosystems. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The presence of a wide variety of emerging pollutants in natural water resources is an important global water quality challenge. Pharmaceuticals and personal care products (PPCPs) are known as emerging contaminants, widely used by modern society. This objective ensures availability and sustainable management of water and sanitation for all, according to the 2030 Agenda. Wastewater treatment plants (WWTP) do not always mitigate the presence of these emerging contaminants in effluents discharged into the environment, although the removal efficiency of WWTP varies based on the techniques used. This main subject is framed within a broader environmental paradigm, such as the transition to a circular economy. The research and innovation within the WWTP will play a key role in improving the water resource management and its surrounding industrial and natural ecosystems. Even though bioremediation is a green technology, its integration into the bio-economy strategy, which improves the quality of the environment, is surprisingly rare if we compare to other corrective techniques (physical and chemical). This work carries out a bibliographic review, since the beginning of the 21st century, on the biological remediation of some PPCPs, focusing on organisms (or their by-products) used at the scale of laboratory or scale-up. PPCPs have been selected on the basics of their occurrence in water resources. The data reveal that, despite the advantages that are associated with bioremediation, it is not the first option in the case of the recovery of systems contaminated with PPCPs. The results also show that fungi and bacteria are the most frequently studied microorganisms, with the latter being more easily implanted in complex biotechnological systems (78% of bacterial manuscripts vs. 40% fungi). A total of 52 works has been published while using microalgae and only in 7% of them, these organisms were used on a large scale. Special emphasis is made on the advantages that are provided by biotechnological systems in series, as well as on the need for eco-toxicological control that is associated with any process of recovery of contaminated systems.
Collapse
|
11
|
Byeon E, Park JC, Hagiwara A, Han J, Lee JS. Two antidepressants fluoxetine and sertraline cause growth retardation and oxidative stress in the marine rotifer Brachionus koreanus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105337. [PMID: 31739108 DOI: 10.1016/j.aquatox.2019.105337] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/09/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
To understand effects of two widely used antidepressant on the antioxidant defense mechanism in the marine rotifer Brachionus koreanus, we assessed acute toxicity and measured population growth, reactive oxygen species (ROS) levels, glutathione (GSH) levels, and antioxidant enzymatic activities (GST, GR, and SOD) in response to fluoxetine hydrochloride (FLX) and sertraline hydrochloride (SER). The no observed effect concentration-24 h of fluoxetine and sertraline were 1000 μg/L and 450 μg/L, respectively, whereas the median lethal concentration (LC50)-24 h of fluoxetine and sertraline were 1560 μg/L and 507 μg/L, respectively. Both fluoxetine and sertraline caused significant reduction (P < 0.05) in the population growth rate indicating that both antidepressants have a potential adverse effect on life cycle parameters of B. koreanus. The intracellular ROS level and GSH level were significantly modulated (P < 0.05) in response to fluoxetine and sertraline. In addition, antioxidant enzymatic activities have shown significant modulation (P < 0.05) in response to FLX and SER in B. koreanus. Furthermore, transcriptional profiles of antioxidant genes (GSTs, SODs, and GR) have shown modulation in response to FLX compared to SER-exposed B. koreanus. Our results indicate that fluoxetine and sertraline induce oxidative stress, leading to reduction in the population density and modulation of antioxidant defense mechanism in the marine rotifer B. koreanus.
Collapse
Affiliation(s)
- Eunjin Byeon
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Atsushi Hagiwara
- Institute of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
12
|
da Silva AQ, de Souza Abessa DM. Toxicity of three emerging contaminants to non-target marine organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18354-18364. [PMID: 31044378 DOI: 10.1007/s11356-019-05151-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Coastal areas are continually impacted by anthropic activities because they shelter large urban conglomerates. Urban effluents directly or indirectly end up reaching the marine environment, releasing a large number of pollutants which include the so-called contaminants of emerging concern (CECs), since the conventional treatment plants are not effective in removing these compounds from the effluents. These substances include hormones, pharmaceuticals and personal care products, nanoparticles, biocides, among others. The aim of this study was to evaluate the toxicity of the 17α-ethinylestradiol (EE2), acetylsalicylic acid (ASA), and bisphenol-A (BPA) to two marine crustaceans and one echinoderm, evaluating the following parameters: survival (Artemia sp. and Mysidopsis juniae), embryo-larval development (Echinometra lucunter). The LC50 values calculated in the acute toxicity tests showed that the compounds were more toxic to M. juniae than to the Artemia sp. Among the three contaminants, EE2 was the most toxic (LC50-48h = 18.4 ± 2.7 mg L-1 to Artemia sp.; LC50-96h = 0.36 ± 0.07 mg L-1 to M. juniae). The three tested compounds affected significantly the embryonic development of the sea urchin in all tested concentrations, including ecologically relevant concentrations, indicating the potential risk that these contaminants may present to the marine biota.
Collapse
Affiliation(s)
- Allyson Q da Silva
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará, Av. da Abolição, 3207, Bairro Meireles, Fortaleza, Ceará, CEP 60165-081, Brazil.
| | - Denis Moledo de Souza Abessa
- Núcleo de Estudos em Poluição e Ecotoxicologia Aquática (NEPEA), Campus Experimental do Litoral Paulista (UNESP), Praça Infante Dom Henrique s/n, Parque Bitaru, São Vicente, SP, 11330-90, Brazil.
| |
Collapse
|
13
|
Kovacevic V, Simpson AJ, Simpson MJ. The concentration of dissolved organic matter impacts the metabolic response in Daphnia magna exposed to 17α-ethynylestradiol and perfluorooctane sulfonate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:468-478. [PMID: 30553925 DOI: 10.1016/j.ecoenv.2018.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
The pharmaceutical 17α-ethynylestradiol (EE2) and the industrial chemical perfluorooctane sulfonate (PFOS) are organic contaminants frequently detected in freshwater environments. It is hypothesized that hydrophobic organic contaminants can sorb to dissolved organic matter (DOM) and this may reduce the toxicity of these contaminants by reducing the contaminants' bioavailability. To investigate this hypothesis, 1H nuclear magnetic resonance (NMR)-based metabolomics was used to determine how the metabolome of Daphnia magna changes when a range of DOM concentrations are added during EE2 and PFOS exposure experiments. D. magna were exposed for 48 h to sub-lethal concentrations of 1 mg/L EE2 or 30 mg/L PFOS in the presence of 0, 1, 2, 3 and 4 mg dissolved organic carbon (DOC)/L. EE2 exposure resulted in increased amino acids and decreased glucose in D. magna. All DOM concentrations were able to lessen these metabolite disturbances from EE2 exposure, likely due to reductions in the bioavailability of EE2 through interactions with DOM. Exposure to PFOS resulted in decreased amino acids, and the presence of 1 mg DOC/L did not alter this metabolic response. However, PFOS exposure with the higher DOM concentrations resulted in a different pattern of metabolite changes which may be due to combined impacts of PFOS and DOM on the metabolome or due to an increase in PFOS bioavailability and uptake in D. magna. These results suggest that the concentration of DOM influences the sensitive biochemical changes in organisms that occur during acute sub-lethal exposure to organic contaminants.
Collapse
Affiliation(s)
- Vera Kovacevic
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - André J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4.
| |
Collapse
|
14
|
Nielsen ME, Roslev P. Behavioral responses and starvation survival of Daphnia magna exposed to fluoxetine and propranolol. CHEMOSPHERE 2018; 211:978-985. [PMID: 30119029 DOI: 10.1016/j.chemosphere.2018.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Fluoxetine and propranolol are neuroactive human pharmaceuticals that occur frequently as pollutants in surface waters. The potential effects of these pharmaceuticals on aquatic organisms have raised concern but many adverse effects are not well characterized for a broad range of concentrations and endpoints. In this study, 6 biological parameters in the freshwater Cladoceran Daphnia magna were compared for their responses to fluoxetine or propranolol exposure: mobility (dichotomous response), active swimming time, swimming distance, swimming velocity, swimming acceleration speed, and survival in the absence of food (starvation-survival). Changes in swimming behavior was quantified by video tracking followed by image analyses at six exposure concentrations between 100 ng/L and 10 mg/L. Active swimming time and swimming distance were the most responsive parameters among the behavioral traits. Sublethal exposure concentrations resulted in nonmonotonic responses and behavior profiling suggested that fluoxetine and propranolol stimulated swimming activity at 1-10 μg/L whereas lower (0.1-1 μg/L) and higher exposure concentrations (>100 μg/L) inhibited swimming activity. The ability to survive in the absence of food when exposed to fluoxetine or propranolol resulted in EC50 and EC10 values that were lower than for swimming behavior (EC50 of 0.79-0.99 mg/L; EC10 of 1.4-2.9 μg/L). Starvation-survival appeared to be a potentially simple and sensitive endpoint for adverse effects in D. magna at intermediate exposure concentrations. Nonmonotonic behavioral responses at low exposure concentrations and decreased ability to survive starvation should be considered in assessment of adverse effects of pharmaceuticals to freshwater invertebrates.
Collapse
Affiliation(s)
- Majken Elley Nielsen
- Section of Biology and Environmental Science, Aalborg University, Aalborg, Denmark
| | - Peter Roslev
- Section of Biology and Environmental Science, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
15
|
Varano V, Fabbri E, Pasteris A. Assessing the environmental hazard of individual and combined pharmaceuticals: acute and chronic toxicity of fluoxetine and propranolol in the crustacean Daphnia magna. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:711-728. [PMID: 28451857 DOI: 10.1007/s10646-017-1803-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
Pharmaceuticals are widespread emerging contaminants and, like all pollutants, are present in combination with others in the ecosystems. The aim of the present work was to evaluate the toxic response of the crustacean Daphnia magna exposed to individual and combined pharmaceuticals. Fluoxetine, a selective serotonin re-uptake inhibitor widely prescribed as antidepressant, and propranolol, a non-selective β-adrenergic receptor-blocking agent used to treat hypertension, were tested. Several experimental trials of an acute immobilization test and a chronic reproduction test were performed. Single chemicals were first tested separately. Toxicity of binary mixtures was then assessed using a fixed ratio experimental design. Five concentrations and 5 percentages of each substance in the mixture (0, 25, 50, 75, and 100%) were tested. The MIXTOX model was applied to analyze the experimental results. This tool is a stepwise statistical procedure that evaluates if and how observed data deviate from a reference model, either concentration addition (CA) or independent action (IA), and provides significance testing for synergism, antagonism, or more complex interactions. Acute EC50 values ranged from 6.4 to 7.8 mg/L for propranolol and from 6.4 to 9.1 mg/L for fluoxetine. Chronic EC50 values ranged from 0.59 to 1.00 mg/L for propranolol and from 0.23 to 0.24 mg/L for fluoxetine. Results showed a significant antagonism between chemicals in both the acute and the chronic mixture tests when CA was adopted as the reference model, while absence of interactive effects when IA was used.
Collapse
Affiliation(s)
- Valentina Varano
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, via Sant'Alberto 163,, Ravenna, 48123, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, via Sant'Alberto 163,, Ravenna, 48123, Italy
| | - Andrea Pasteris
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, via Sant'Alberto 163,, Ravenna, 48123, Italy.
| |
Collapse
|
16
|
Robert A, Monsinjon T, Delbecque JP, Olivier S, Poret A, Foll FL, Durand F, Knigge T. Neuroendocrine disruption in the shore crab Carcinus maenas: Effects of serotonin and fluoxetine on chh- and mih-gene expression, glycaemia and ecdysteroid levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:192-204. [PMID: 27060239 DOI: 10.1016/j.aquatox.2016.03.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
Serotonin, a highly conserved neurotransmitter, controls many biological functions in vertebrates, but also in invertebrates. Selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine, are commonly used in human medication to ease depression by affecting serotonin levels. Their residues and metabolites can be detected in the aquatic environment and its biota. They may also alter serotonin levels in aquatic invertebrates, thereby perturbing physiological functions. To investigate whether such perturbations can indeed be expected, shore crabs (Carcinus maenas) were injected either with serotonin, fluoxetine or a combination of both. Dose-dependent effects of fluoxetine ranging from 250 to 750nM were investigated. Gene expression of crustacean hyperglycemic hormone (chh) as well as moult inhibiting hormone (mih) was assessed by RT-qPCR at 2h and 12h after injection. Glucose and ecdysteroid levels in the haemolymph were monitored in regular intervals until 12h. Serotonin led to a rapid increase of chh and mih expression. On the contrary, fluoxetine only affected chh and mih expression after several hours, but kept expression levels significantly elevated. Correspondingly, serotonin rapidly increased glycaemia, which returned to normal or below normal levels after 12h. Fluoxetine, however, resulted in a persistent low-level increase of glycaemia, notably during the period when negative feedback regulation reduced glycaemia in the serotonin treated animals. Ecdysteroid levels were significantly decreased by serotonin and fluoxetine, with the latter showing less pronounced and less rapid, but longer lasting effects. Impacts of fluoxetine on glycaemia and ecdysteroids were mostly observed at higher doses (500 and 750nM) and affected principally the response dynamics, but not the amplitude of glycaemia and ecdysteroid-levels. These results suggest that psychoactive drugs are able to disrupt neuroendocrine control in decapod crustaceans, as they interfere with the normal regulation of the serotonergic system.
Collapse
Affiliation(s)
- Alexandrine Robert
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Tiphaine Monsinjon
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Jean-Paul Delbecque
- University of Bordeaux, CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Avenue des Facultés, F-33405 Talence Cedex, France
| | - Stéphanie Olivier
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Agnès Poret
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Frank Le Foll
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Fabrice Durand
- Normandy University, UNIHAVRE, Faculty of Science and Technics, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Thomas Knigge
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France.
| |
Collapse
|
17
|
Cunha DLD, Silva SMCD, Bila DM, Oliveira JLDM, Sarcinelli PDN, Larentis AL. Regulamentação do estrogênio sintético 17α-etinilestradiol em matrizes aquáticas na Europa, Estados Unidos e Brasil. CAD SAUDE PUBLICA 2016; 32:e00056715. [DOI: 10.1590/0102-311x00056715] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/21/2015] [Indexed: 11/22/2022] Open
Abstract
O estrogênio sintético 17α-etinilestradiol, principal componente utilizado em formulações de contraceptivos orais, tem sido apontado como um dos principais compostos responsáveis por provocar efeitos adversos no sistema endócrino de várias espécies. O objetivo deste estudo foi analisar o estado da arte dos dispositivos legais e normativos referentes ao controle desse estrogênio sintético nas águas da Europa e dos Estados Unidos, e traçar um paralelo com a realidade brasileira. No geral, os países têm buscado ampliar a regulamentação e monitoramento de alguns micropoluentes emergentes que antes não eram objeto de atenção por parte dos dispositivos legais. A Europa está mais avançada no que tange à qualidade dos corpos hídricos, enquanto que nos Estados Unidos esta substância é alvo de regulamentação apenas para a água destinada ao consumo humano. No Brasil, ainda não há nenhum dispositivo legal ou normativo que aborde esse estrogênio, o que pode ser associado a uma baixa maturidade do sistema brasileiro quanto ao controle de poluentes hídricos.
Collapse
|