1
|
Liu G, Tian N, Chen L, Xie S, Hu J, Jin Q, Shao C, Huang M, Su Q, Huang J, Liu Z, Liu S. Transcriptomic Analysis of the Negative Effect of Epigallocatechin-3-Gallate from Tea Plant ( Camellia sinensis) on Agrobacterium-Mediated Transformation Efficiency. Curr Issues Mol Biol 2025; 47:178. [PMID: 40136432 PMCID: PMC11941606 DOI: 10.3390/cimb47030178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Agrobacterium-mediated transformation is a widely used method for plant genetic modification. However, its efficiency in tea plants is notably low, and the underlying molecular mechanisms remain unclear, hindering advancements in the molecular breeding and biology of tea plants. In this study, tobacco was utilized as a model to investigate the effects of various concentrations of epigallocatechin-3-gallate (EGCG) on Agrobacterium transformation efficiency. The results demonstrated that at an EGCG concentration of 0.4 mg/mL, Agrobacterium nearly lost its ability to transform tobacco. Additionally, malondialdehyde content in Agrobacterium was measured before and after EGCG treatment. The findings indicated that EGCG treatment led to an increase in malondialdehyde content. Transcriptome sequencing analysis revealed that differentially expressed genes (DEGs) involved in Agrobacterium flagellar synthesis and secretion systems were down-regulated under EGCG stress. Furthermore, flgE, virB4, and virB6 were identified as hub genes through weighted gene co-expression network analysis (WGCNA). These results elucidate the dynamic mechanisms by which EGCG affects Agrobacterium at both the physicochemical and molecular levels, providing a theoretical basis for optimizing genetic transformation in tea plants.
Collapse
Affiliation(s)
- Guizhi Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Na Tian
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Lan Chen
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Siyi Xie
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Jinyu Hu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Qifang Jin
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Chenyu Shao
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Mengdi Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Qin Su
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Jianan Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Shuoqian Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Gonzalez DM, Dariolli R, Moyett J, Song S, Shewale B, Bliley J, Clarke D, Ma'ayan A, Rentschler S, Feinberg A, Sobie E, Dubois NC. Transient Notch Activation Converts Pluripotent Stem Cell-Derived Cardiomyocytes Towards a Purkinje Fiber Fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614353. [PMID: 39386729 PMCID: PMC11463678 DOI: 10.1101/2024.09.22.614353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cardiac Purkinje fibers form the most distal part of the ventricular conduction system. They coordinate contraction and play a key role in ventricular arrhythmias. While many cardiac cell types can be generated from human pluripotent stem cells, methods to generate Purkinje fiber cells remain limited, hampering our understanding of Purkinje fiber biology and conduction system defects. To identify signaling pathways involved in Purkinje fiber formation, we analyzed single cell data from murine embryonic hearts and compared Purkinje fiber cells to trabecular cardiomyocytes. This identified several genes, processes, and signaling pathways putatively involved in cardiac conduction, including Notch signaling. We next tested whether Notch activation could convert human pluripotent stem cell-derived cardiomyocytes to Purkinje fiber cells. Following Notch activation, cardiomyocytes adopted an elongated morphology and displayed altered electrophysiological properties including increases in conduction velocity, spike slope, and action potential duration, all characteristic features of Purkinje fiber cells. RNA-sequencing demonstrated that Notch-activated cardiomyocytes undergo a sequential transcriptome shift, which included upregulation of key Purkinje fiber marker genes involved in fast conduction such as SCN5A, HCN4 and ID2, and downregulation of genes involved in contractile maturation. Correspondingly, we demonstrate that Notch-induced cardiomyocytes have decreased contractile force in bioengineered tissues compared to control cardiomyocytes. We next modified existing in silico models of human pluripotent stem cell-derived cardiomyocytes using our transcriptomic data and modeled the effect of several anti-arrhythmogenic drugs on action potential and calcium transient waveforms. Our models predicted that Purkinje fiber cells respond more strongly to dofetilide and amiodarone, while cardiomyocytes are more sensitive to treatment with nifedipine. We validated these findings in vitro, demonstrating that our new cell-specific in vitro model can be utilized to better understand human Purkinje fiber physiology and its relevance to disease.
Collapse
Affiliation(s)
- David M Gonzalez
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Mount Sinai, New York, NY 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rafael Dariolli
- Department of Pharmacology and Systems Biology, Mount Sinai Center for Bioinformatics, Department of Artificial Intelligence and Human Health, Mount Sinai, New York, NY 10029, USA
| | - Julia Moyett
- Duke University School of Medicine, Durham, NC 27710
| | - Stephanie Song
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Mount Sinai, New York, NY 10029, USA
| | - Bhavana Shewale
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Mount Sinai, New York, NY 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Daniel Clarke
- Department of Pharmacology and Systems Biology, Mount Sinai Center for Bioinformatics, Department of Artificial Intelligence and Human Health, Mount Sinai, New York, NY 10029, USA
| | - Avi Ma'ayan
- Department of Pharmacology and Systems Biology, Mount Sinai Center for Bioinformatics, Department of Artificial Intelligence and Human Health, Mount Sinai, New York, NY 10029, USA
| | - Stacey Rentschler
- Washington University School of Medicine in St. Louis, Missouri MO 63110
| | | | - Eric Sobie
- Department of Pharmacology and Systems Biology, Mount Sinai Center for Bioinformatics, Department of Artificial Intelligence and Human Health, Mount Sinai, New York, NY 10029, USA
| | - Nicole C Dubois
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY 10029, USA
- Cardiovascular Research Institute, Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
3
|
Jang J, Bentsen M, Kim YJ, Kim E, Garg V, Cai CL, Looso M, Li D. Endocardial HDAC3 is required for myocardial trabeculation. Nat Commun 2024; 15:4166. [PMID: 38755146 PMCID: PMC11099086 DOI: 10.1038/s41467-024-48362-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Failure of proper ventricular trabeculation is often associated with congenital heart disease. Support from endocardial cells, including the secretion of extracellular matrix and growth factors is critical for trabeculation. However, it is poorly understood how the secretion of extracellular matrix and growth factors is initiated and regulated by endocardial cells. We find that genetic knockout of histone deacetylase 3 in the endocardium in mice results in early embryo lethality and ventricular hypotrabeculation. Single cell RNA sequencing identifies significant downregulation of extracellular matrix components in histone deacetylase 3 knockout endocardial cells. Secretome from cultured histone deacetylase 3 knockout mouse cardiac endothelial cells lacks transforming growth factor ß3 and shows significantly reduced capacity in stimulating cultured cardiomyocyte proliferation, which is remarkably rescued by transforming growth factor ß3 supplementation. Mechanistically, we identify that histone deacetylase 3 knockout induces transforming growth factor ß3 expression through repressing microRNA-129-5p. Our findings provide insights into the pathogenesis of congenital heart disease and conceptual strategies to promote myocardial regeneration.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43215, USA
| | - Mette Bentsen
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Ye Jun Kim
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Erick Kim
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43215, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43215, USA
| | - Chen-Leng Cai
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46201, USA
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Deqiang Li
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43215, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43215, USA.
| |
Collapse
|
4
|
Jang J, Accornero F, Li D. Epigenetic determinants and non-myocardial signaling pathways contributing to heart growth and regeneration. Pharmacol Ther 2024; 257:108638. [PMID: 38548089 PMCID: PMC11931646 DOI: 10.1016/j.pharmthera.2024.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Congenital heart disease is the most common birth defect worldwide. Defective cardiac myogenesis is either a major presentation or associated with many types of congenital heart disease. Non-myocardial tissues, including endocardium and epicardium, function as a supporting hub for myocardial growth and maturation during heart development. Recent research findings suggest an emerging role of epigenetics in nonmyocytes supporting myocardial development. Understanding how growth signaling pathways in non-myocardial tissues are regulated by epigenetic factors will likely identify new disease mechanisms for congenital heart diseases and shed lights for novel therapeutic strategies for heart regeneration.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| | - Federica Accornero
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Deqiang Li
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| |
Collapse
|
5
|
Wu J, Wei H, Wei Y, Deng T, Wang Y, Qiu Y, Zhang Y. Spatiotemporal Synergism in Osteomyelitis Treatment with Photoactivated Core-Shell Zinc Oxide/Silver Sulfide Heterogeneous Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11194-11205. [PMID: 38391151 DOI: 10.1021/acsami.3c16546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Osteomyelitis is primarily caused by bacterial infections, and treatment requires precise sequential therapy, including antibacterial therapy in the early stages and bone defect reconstruction in later stages. We aimed to synthesize core-shell-structured zinc oxide/silver sulfide heterogeneous nanoparticles (ZnO/Ag2S NPs) using wet chemical methods. Using density functional theory and ultraviolet photoelectron spectroscopy, we showed that the optimized band structure endowed ZnO/Ag2S NPs with photodynamic properties under near-infrared (NIR) irradiation. Moreover, ZnO/Ag2S NPs exhibited a distinguished and stable photothermal performance within the same wavelength range. With single-wavelength irradiation, ZnO/Ag2S NPs achieved a bifunctional antibacterial effect during the acute stage of osteomyelitis. Antibacterial action was confirmed through colony-forming unit (CFU) counting assays, scanning electronic microscopy (SEM) observations, live-dead staining, growth curves, and quantitative real-time polymerase chain reaction (qPCR) assays. The Ag2S coating on the NPs realized the sustained release of zinc ions, thereby controlling the zinc ion concentration. Alkaline phosphatase (ALP) staining, alizarin red S (ARS) staining, and qPCR assays confirmed that the ZnO/Ag2S NPs exhibited good osteogenic effects in vitro. These effects were verified in an in vivo mouse femur model during chronic stages using micro-computed tomography (micro-CT) and histological analysis. This study provides a novel biocompatible core-shell nanomaterial for the two-phase treatment of osteomyelitis, contributing to versatile nanotherapies for infections and inflammation.
Collapse
Affiliation(s)
- Jingwen Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine, Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| | - Hongjiang Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine, Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| | - Yan Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine, Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| | - Tian Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine, Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| | - Yulan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine, Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| | - Yun Qiu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine, Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine, Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430071, People's Republic of China
- Medical Research Institute School of Medicine, Wuhan University, Wuhan, Hubei 430071, People's Republic of China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| |
Collapse
|
6
|
Jang J, Bentsen M, Kim YJ, Kim E, Garg V, Cai CL, Looso M, Li D. Endocardial HDAC3 is required for myocardial trabeculation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.12.536668. [PMID: 37886504 PMCID: PMC10602027 DOI: 10.1101/2023.04.12.536668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
BACKGROUND Trabeculation, a key process in early heart development, is the formation of myocardial trabecular meshwork. The failure of trabeculation often leads to embryonic lethality. Support from endocardial cells, including the secretion of extracellular matrix (ECM) and growth factors is critical for trabeculation; however, it is unknown how the secretion of ECM and growth factors is initiated and regulated by endocardial cells. METHODS Various cellular and mouse models in conjunction with biochemical and molecular tools were employed to study the role of histone deacetylase 3 (HDAC3) in the developing endocardium. RESULTS We found that genetic deletion of Hdac3 in endocardial cells in mice resulted in early embryo lethality presenting as a hypotrabeculation cardiac phenotype. Single cell RNA sequencing identified several ECM components including collagens that were significantly downregulated in Hdac3 knockout (KO) endocardial cells. When cultured with supernatant from Hdac3 KO mouse cardiac endothelial cells (MCECs), wild-type mouse embryonic cardiomyocytes showed decreased proliferation, suggesting that growth signaling from Hdac3 KO MCECs is disrupted. Subsequent transcriptomic analysis revealed that transforming growth factor β3 (TGFβ3) was significantly downregulated in Hdac3 KO MCECs and Hdac3 cardiac endothelial KO hearts. Mechanistically, we identified that microRNA (miR)-129-5p was significantly upregulated in Hdac3 KO MCECs and Hdac3 cardiac endothelial KO hearts. Overexpression of miR-129-5p repressed Tgfβ3 expression in wild-type MCECs, whereas knockdown of miR-129-5p restored Tgfβ3 expression in Hdac3 KO MCECs. CONCLUSION Our findings reveal a critical signaling pathway in which endocardial HDAC3 promotes trabecular myocardium growth by stimulating TGFβ signaling through repressing miR-129-5p, providing novel insights into the etiology of congenital heart disease and conceptual strategies to promote myocardial regeneration.
Collapse
|
7
|
Predoi D, Iconaru SL, Ciobanu CS, Raita MS, Ghegoiu L, Trusca R, Badea ML, Cimpeanu C. Studies of the Tarragon Essential Oil Effects on the Characteristics of Doped Hydroxyapatite/Chitosan Biocomposites. Polymers (Basel) 2023; 15:polym15081908. [PMID: 37112055 PMCID: PMC10142985 DOI: 10.3390/polym15081908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Due to the emergence of antibiotic-resistant pathogens, the need to find new, efficient antimicrobial agents is rapidly increasing. Therefore, in this study, we report the development of new biocomposites based on zinc-doped hydroxyapatite/chitosan enriched with essential oil of Artemisia dracunculus L. with good antimicrobial activity. Techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR) were used in order to evaluate their physico-chemical properties. Our studies revealed that biocomposite materials with nanometric dimension and homogeneous composition could be obtained through an economic and cost-effective synthesis method. The biological assays demonstrated that ZnHA (zinc-doped hydroxyapatite), ZnHACh (zinc-doped hydroxyapatite/chitosan) and ZnHAChT (zinc-doped hydroxyapatite/chitosan enriched with essential oil of Artemisia dracunculus L.) did not exhibit a toxic effect on the cell viability and proliferation of the primary osteoblast culture (hFOB 1.19). Moreover, the cytotoxic assay also highlighted that the cell morphology of the hFOB 1.19 was not altered in the presence of ZnHA, ZnHACh or ZnHAChT. Furthermore, the in vitro antimicrobial studies emphasized that the samples exhibited strong antimicrobial properties against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923 and Candida albicans ATCC 10231 microbial strains. These results are encouraging for the following development of new composite materials with enhanced biological properties that could promote the osteogenic process of bone healing and also exhibit good antimicrobial properties.
Collapse
Affiliation(s)
- Daniela Predoi
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania
| | - Simona Liliana Iconaru
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania
| | - Carmen Steluta Ciobanu
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania
| | - Mariana Stefania Raita
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, District 5, 050097 Bucharest, Romania
| | - Liliana Ghegoiu
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania
| | - Roxana Trusca
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Monica Luminita Badea
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Carmen Cimpeanu
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, 011464 Bucharest, Romania
| |
Collapse
|
8
|
Abstract
Zinc is structurally and functionally essential for more than 300 enzymes and 2000 transcription factors in human body. Intracellular labile zinc is the metabolically effective zinc and tiny changes in its concentrations significantly affect the intracellular signaling and enzymatic responses. Zinc is crucial for the embrionic and fetal development of heart. Therefore, it is shown to be related with a variety of congenital heart defects. It is involved in epithelial-to-mesenchymal transformation including endocardial cushion development, which is necessary for atrioventricular septation as well as the morphogenesis of heart valves. In atherosclerosis, monocyte endothelial adhesion, and diapedesis, activation and transformation into macrophages and forming foam cells by the ingestion of oxidized LDL are monocyte related steps which need zinc. Intracellular zinc increases intracellular calcium through a variety of pathways and furthermore, zinc itself can work as a second messenger as calcium. These demonstrate the significance of intracellular zinc in heart failure and arterial hypertension. However, extracellular zinc has an opposite effect by blocking calcium channels, explaining decreased serum zinc levels, contrary to the increased cardiomyocyte and erythrocyte zinc levels in hypertensive subjects. These and other data in the literature demonstrate that zinc has important roles in healthy and diseased cardiovascular system but zinc-cardiovascular system relationship is so complex that, it has not been explained in all means. In this article, we try to review some of the available knowledge about this complex relationship.
Collapse
Affiliation(s)
- Serhan Ozyildirim
- Department of Cardiology, Cardiology Institute, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | | |
Collapse
|
9
|
Wang L, Lin L, Qi H, Chen J, Grossfeld P. Endothelial Loss of ETS1 Impairs Coronary Vascular Development and Leads to Ventricular Non-Compaction. Circ Res 2022; 131:371-387. [PMID: 35894043 PMCID: PMC9624262 DOI: 10.1161/circresaha.121.319955] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
RATIONALE Jacobsen syndrome is a rare chromosomal disorder caused by deletions in the long arm of human chromosome 11, resulting in multiple developmental defects including congenital heart defects. Combined studies in humans and genetically engineered mice implicate that loss of ETS1 (E26 transformation specific 1) is the cause of congenital heart defects in Jacobsen syndrome, but the underlying molecular and cellular mechanisms are unknown. OBJECTIVE To determine the role of ETS1 in heart development, specifically its roles in coronary endothelium and endocardium and the mechanisms by which loss of ETS1 causes coronary vascular defects and ventricular noncompaction. METHODS AND RESULTS ETS1 global and endothelial-specific knockout mice were used. Phenotypic assessments, RNA sequencing, and chromatin immunoprecipitation analysis were performed together with expression analysis, immunofluorescence and RNAscope in situ hybridization to uncover phenotypic and transcriptomic changes in response to loss of ETS1. Loss of ETS1 in endothelial cells causes ventricular noncompaction, reproducing the phenotype arising from global deletion of ETS1. Endothelial-specific deletion of ETS1 decreased the levels of Alk1 (activin receptor-like kinase 1), Cldn5 (claudin 5), Sox18 (SRY-box transcription factor 18), Robo4 (roundabout guidance receptor 4), Esm1 (endothelial cell specific molecule 1) and Kdr (kinase insert domain receptor), 6 important angiogenesis-relevant genes in endothelial cells, causing a coronary vasculature developmental defect in association with decreased compact zone cardiomyocyte proliferation. Downregulation of ALK1 expression in endocardium due to the loss of ETS1, along with the upregulation of TGF (transforming growth factor)-β1 and TGF-β3, occurred with increased TGFBR2/TGFBR1/SMAD2 signaling and increased extracellular matrix expression in the trabecular layer, in association with increased trabecular cardiomyocyte proliferation. CONCLUSIONS These results demonstrate the importance of endothelial and endocardial ETS1 in cardiac development. Delineation of the gene regulatory network involving ETS1 in heart development will enhance our understanding of the molecular mechanisms underlying ventricular and coronary vascular developmental defects and will lead to improved approaches for the treatment of patients with congenital heart disease.
Collapse
Affiliation(s)
- Lu Wang
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Lizhu Lin
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Hui Qi
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Paul Grossfeld
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
- Division of Cardiology, Rady Children’s Hospital San Diego, San Diego, CA, USA
| |
Collapse
|
10
|
McCauley N, Lawless L, Basra M, DePadova N, Loyola XA, Zhou H, Ko G, Zhang K, Xie L. In ovo exposure to cadmium causes right ventricle hyperplasia due to cell proliferation of cardiomyocytes. Toxicol Lett 2022; 366:1-6. [PMID: 35753640 PMCID: PMC10042311 DOI: 10.1016/j.toxlet.2022.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/03/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
Cadmium (Cd) is an environmental and occupational pollutant inhaled through smoking or ingested through contaminated food. Yet, little is known about its teratogenicity. In this study, the effects of Cd on embryonic heart development were investigated by exposing Cd to chicken embryos in ovo. Fertilized eggs were treated with Cd at Hamburger-Hamilton Stage (HH)16 and collected at HH35 for histological evaluation of the heart. Cd treatment of 100 μM at HH16 increased embryo mortality at HH35. Specific structural heart defects were not observed in any Cd treatment group, but the relative myocardial tissue area of the right ventricle was increased with Cd exposure. When the HH31 hearts were stained with p-H3S10, the right ventricle had an increased number of cells undergoing proliferation, which was associated with upregulation of Cdk1, Cdk6, CycA, CycD, and CycE detected by qPCR. These findings suggest that Cd exposure from HH16 upregulates proliferation genes and drives overgrowth of the right ventricle. These results grant further attention to Cd teratogenicity on embryonic heart development. Such morphological changes in the heart can potentially affect cardiac function and increase the risk for future cardiovascular diseases, such as heart failure.
Collapse
Affiliation(s)
- Naomi McCauley
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America
| | - Lauren Lawless
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America
| | - Mahi Basra
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America
| | - Nicole DePadova
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America
| | - Xochilt Albiter Loyola
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America
| | - Huijuan Zhou
- Department of Statistics, Texas A&M University, College Station, TX, United States of America
| | - Gladys Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States of America
| | - Ke Zhang
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America; Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX, United States of America.
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX, United States of America.
| |
Collapse
|
11
|
Interplay between Zn2+ Homeostasis and Mitochondrial Functions in Cardiovascular Diseases and Heart Ageing. Int J Mol Sci 2022; 23:ijms23136890. [PMID: 35805904 PMCID: PMC9266371 DOI: 10.3390/ijms23136890] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Zinc plays an important role in cardiomyocytes, where it exists in bound and histochemically reactive labile Zn2+ forms. Although Zn2+ concentration is under tight control through several Zn2+-transporters, its concentration and intracellular distribution may vary during normal cardiac function and pathological conditions, when the protein levels and efficacy of Zn2+ transporters can lead to zinc re-distribution among organelles in cardiomyocytes. Such dysregulation of cellular Zn2+ homeostasis leads to mitochondrial and ER stresses, and interrupts normal ER/mitochondria cross-talk and mitophagy, which subsequently, result in increased ROS production and dysregulated metabolic function. Besides cardiac structural and functional defects, insufficient Zn2+ supply was associated with heart development abnormalities, induction and progression of cardiovascular diseases, resulting in accelerated cardiac ageing. In the present review, we summarize the recently identified connections between cellular and mitochondrial Zn2+ homeostasis, ER stress and mitophagy in heart development, excitation–contraction coupling, heart failure and ischemia/reperfusion injury. Additionally, we discuss the role of Zn2+ in accelerated heart ageing and ageing-associated rise of mitochondrial ROS and cardiomyocyte dysfunction.
Collapse
|
12
|
The Oxidative Balance Orchestrates the Main Keystones of the Functional Activity of Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7714542. [PMID: 35047109 PMCID: PMC8763515 DOI: 10.1155/2022/7714542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/03/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
This review is aimed at providing an overview of the key hallmarks of cardiomyocytes in physiological and pathological conditions. The main feature of cardiac tissue is the force generation through contraction. This process requires a conspicuous energy demand and therefore an active metabolism. The cardiac tissue is rich of mitochondria, the powerhouses in cells. These organelles, producing ATP, are also the main sources of ROS whose altered handling can cause their accumulation and therefore triggers detrimental effects on mitochondria themselves and other cell components thus leading to apoptosis and cardiac diseases. This review highlights the metabolic aspects of cardiomyocytes and wanders through the main systems of these cells: (a) the unique structural organization (such as different protein complexes represented by contractile, regulatory, and structural proteins); (b) the homeostasis of intracellular Ca2+ that represents a crucial ion for cardiac functions and E-C coupling; and (c) the balance of Zn2+, an ion with a crucial impact on the cardiovascular system. Although each system seems to be independent and finely controlled, the contractile proteins, intracellular Ca2+ homeostasis, and intracellular Zn2+ signals are strongly linked to each other by the intracellular ROS management in a fascinating way to form a "functional tetrad" which ensures the proper functioning of the myocardium. Nevertheless, if ROS balance is not properly handled, one or more of these components could be altered resulting in deleterious effects leading to an unbalance of this "tetrad" and promoting cardiovascular diseases. In conclusion, this "functional tetrad" is proposed as a complex network that communicates continuously in the cardiomyocytes and can drive the switch from physiological to pathological conditions in the heart.
Collapse
|
13
|
Mendes Garrido Abregú F, Caniffi C, Arranz CT, Tomat AL. Impact of Zinc Deficiency During Prenatal and/or Postnatal Life on Cardiovascular and Metabolic Diseases: Experimental and Clinical Evidence. Adv Nutr 2022; 13:833-845. [PMID: 35167660 PMCID: PMC9156367 DOI: 10.1093/advances/nmac012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/13/2021] [Accepted: 02/11/2022] [Indexed: 12/24/2022] Open
Abstract
This review summarizes the latest findings, from animal models and clinical studies, regarding the cardiovascular and metabolic consequences in adult life of zinc deficiency (ZD) during prenatal and early postnatal life. The effect of zinc supplementation (ZS) and new insights about sex differences in the phenotype and severity of cardiovascular and metabolic alterations are also discussed. Zinc has antioxidant, anti-inflammatory, and antiapoptotic properties and regulates the activity of enzymes involved in regulation of the metabolic, cardiovascular, and renal systems. Maternal ZD is associated with intrauterine growth restriction and low birth weight (LBW). Breast-fed preterm infants are at risk of ZD due to lower zinc uptake during fetal life and reduced gut absorption capacity. ZS is most likely to increase growth in preterm infants and survival in LBW infants in countries where ZD is prevalent. Studies performed in rats revealed that moderate ZD during prenatal and/or early postnatal growth is a risk factor for the development of hypertension, cardiovascular and renal alterations, obesity, and diabetes in adult life. An adequate zinc diet during postweaning life does not always prevent the cardiovascular and metabolic alterations induced by zinc restriction during fetal and lactation periods. Male rats are more susceptible to this injury than females, and some of the mechanisms involved include: 1) alterations in organogenesis, 2) activation of oxidative, apoptotic, and inflammatory processes, 3) dysfunction of nitric oxide and renin-angiotensin-aldosterone systems, 4) changes in glucose and lipid metabolism, and 5) adipose tissue dysfunction. Safeguarding body zinc requirements during pregnancy, lactation, and growth periods could become a new target in the prevention and treatment of cardiovascular and metabolic disorders. Further research is needed to elucidate the efficacy of ZS during early stages of growth to prevent the development of these diseases later in life.
Collapse
Affiliation(s)
- Facundo Mendes Garrido Abregú
- Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina,CONICET, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Caniffi
- Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina,CONICET, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cristina T Arranz
- Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina,CONICET, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
14
|
Abstract
Since the discovery of manifest Zn deficiency in 1961, the increasing number of studies demonstrated the association between altered Zn status and multiple diseases. In this chapter, we provide a review of the most recent advances on the role of Zn in health and disease (2010-20), with a special focus on the role of Zn in neurodegenerative and neurodevelopmental disorders, diabetes and obesity, male and female reproduction, as well as COVID-19. In parallel with the revealed tight association between ASD risk and severity and Zn status, the particular mechanisms linking Zn2+ and ASD pathogenesis like modulation of synaptic plasticity through ProSAP/Shank scaffold, neurotransmitter metabolism, and gut microbiota, have been elucidated. The increasing body of data indicate the potential involvement of Zn2+ metabolism in neurodegeneration. Systemic Zn levels in Alzheimer's and Parkinson's disease were found to be reduced, whereas its sequestration in brain may result in modulation of amyloid β and α-synuclein processing with subsequent toxic effects. Zn2+ was shown to possess adipotropic effects through the role of zinc transporters, zinc finger proteins, and Zn-α2-glycoprotein in adipose tissue physiology, underlying its particular role in pathogenesis of obesity and diabetes mellitus type 2. Recent findings also contribute to further understanding of the role of Zn2+ in spermatogenesis and sperm functioning, as well as oocyte development and fertilization. Finally, Zn2+ was shown to be the potential adjuvant therapy in management of novel coronavirus infection (COVID-19), underlining the perspectives of zinc in management of old and new threats.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia.
| |
Collapse
|
15
|
Neumann J, Boknik P, Kirchhefer U, Gergs U. The role of PP5 and PP2C in cardiac health and disease. Cell Signal 2021; 85:110035. [PMID: 33964402 DOI: 10.1016/j.cellsig.2021.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Protein phosphatases are important, for example, as functional antagonists of β-adrenergic stimulation of the mammalian heart. While β-adrenergic stimulations increase the phosphorylation state of regulatory proteins and therefore force of contraction in the heart, these phosphorylations are reversed and thus force is reduced by the activity of protein phosphatases. In this context the role of PP5 and PP2C is starting to unravel. They do not belong to the same family of phosphatases with regard to sequence homology, many similarities with regard to location, activation by lipids and putative substrates have been worked out over the years. We also suggest which pathways for regulation of PP5 and/or PP2C described in other tissues and not yet in the heart might be useful to look for in cardiac tissue. Both phosphatases might play a role in signal transduction of sarcolemmal receptors in the heart. Expression of PP5 and PP2C can be increased by extracellular stimuli in the heart. Because PP5 is overexpressed in failing animal and human hearts, and because overexpression of PP5 or PP2C leads to cardiac hypertrophy and KO of PP5 leads to cardiac hypotrophy, one might argue for a role of PP5 and PP2C in heart failure. Because PP5 and PP2C can reduce, at least in vitro, the phosphorylation state of proteins thought to be relevant for cardiac arrhythmias, a role of these phosphatases for cardiac arrhythmias is also probable. Thus, PP5 and PP2C might be druggable targets to treat important cardiac diseases like heart failure, cardiac hypertrophy and cardiac arrhythmias.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| |
Collapse
|
16
|
Zhang X, Wang C, Zhao D, Chen X, Zhang C, Zheng J, Liu X. Zinc deficiency induces abnormal development of the myocardium by promoting SENP5 overexpression. PLoS One 2020; 15:e0242606. [PMID: 33211757 PMCID: PMC7676719 DOI: 10.1371/journal.pone.0242606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/05/2020] [Indexed: 01/09/2023] Open
Abstract
Gestational zinc deficiency is a cause of congenital heart disease in the fetus, and sentrin/small ubiquitin-like modifier (SUMO)-specific proteases (SENPs) as deSUMOylation enzymes play a crucial role in the development of cardiac structures. However, current studies of the regulation and function of SENP in zinc-deficient status during heart development remain limited. In this study, SUMO1 modification was found to gradually decrease during heart development, and the level of SENP5 exhibited a similar trend to SUMO1 conjugation. In addition, zinc deficiency resulted in cardiac dysplasia, increased cell apoptosis, decreased cell viability, and differentiation inhibition of hiPSC-CMs. In order to investigate the function of SENP5 in zinc deficiency, hiPSC-CMs were transfected with SENP5 small interfering RNA. The negative effects of zinc lacking conditions were reversed with depletion of SENP5. It was confirmed that zinc deficiency induced abnormal differentiation of hiPSCs and increased apoptosis of hiPSC-CMs by promoting SENP5 overexpression, which led to cardiac dysplasia. Thus, it was concluded that SENP5 regulates the SUMO1 deconjugation during heart development and zinc deficiency may reduce conjugated SUMO by promoting SENP5 overexpression, which induces abnormal development of the myocardium.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Neonatology, Tianjin Medical University, Tianjin, P.R. China
| | - Cuancuan Wang
- Department of Cardiology, Tianjin Fifth Central Hospital, Tianjin, P.R. China
| | - Dan Zhao
- Department of Neonatology, The Second Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Xuhong Chen
- Department of Obstetrics and Gynecology, Tianjin Fifth Central Hospital, Tianjin, P.R. China
| | - Chunyan Zhang
- Department of Pharmacy, Tianjin Binhai New Area Hospital of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Jun Zheng
- Department of Neonatology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, P.R. China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, P.R. China
| |
Collapse
|
17
|
Li Y, Yang Y, Qing Y, Li R, Tang X, Guo D, Qin Y. Enhancing ZnO-NP Antibacterial and Osteogenesis Properties in Orthopedic Applications: A Review. Int J Nanomedicine 2020; 15:6247-6262. [PMID: 32903812 PMCID: PMC7445529 DOI: 10.2147/ijn.s262876] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
Prosthesis-associated infections and aseptic loosening are major causes of implant failure. There is an urgent need to improve the antibacterial ability and osseointegration of orthopedic implants. Zinc oxide nanoparticles (ZnO-NPs) are a common type of zinc-containing metal oxide nanoparticles that have been widely studied in many fields, such as food packaging, pollution treatment, and biomedicine. The ZnO-NPs have low toxicity and good biological functions, as well as antibacterial, anticancer, and osteogenic capabilities. Furthermore, ZnO-NPs can be easily obtained through various methods. Among them, green preparation methods can improve the bioactivity of ZnO-NPs and strengthen their potential application in the biological field. This review discusses the antibacterial abilities of ZnO-NPs, including mechanisms and influencing factors. The toxicity and shortcomings of anticancer applications are summarized. Furthermore, osteogenic mechanisms and synergy with other materials are introduced. Green preparation methods are also briefly reviewed.
Collapse
Affiliation(s)
- Yuehong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yue Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yun’an Qing
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Ruiyan Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiongfeng Tang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Deming Guo
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yanguo Qin
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
18
|
Zinc Homeostasis in Bone: Zinc Transporters and Bone Diseases. Int J Mol Sci 2020; 21:ijms21041236. [PMID: 32059605 PMCID: PMC7072862 DOI: 10.3390/ijms21041236] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Zinc is an essential micronutrient that plays critical roles in numerous physiological processes, including bone homeostasis. The majority of zinc in the human body is stored in bone. Zinc is not only a component of bone but also an essential cofactor of many proteins involved in microstructural stability and bone remodeling. There are two types of membrane zinc transporter proteins identified in mammals: the Zrt- and Irt-like protein (ZIP) family and the zinc transporter (ZnT) family. They regulate the influx and efflux of zinc, accounting for the transport of zinc through cellular and intracellular membranes to maintain zinc homeostasis in the cytoplasm and in intracellular compartments, respectively. Abnormal function of certain zinc transporters is associated with an imbalance of bone homeostasis, which may contribute to human bone diseases. Here, we summarize the regulatory roles of zinc transporters in different cell types and the mechanisms underlying related pathological changes involved in bone diseases. We also present perspectives for further studies on bone homeostasis-regulating zinc transporters.
Collapse
|