1
|
Chen M, Takano C, Nakashima K, Gowthaman S, Kawasaki S. Exploration of ureolytic airborne bacteria for biocementation applications from different climate zones in Japan. Sci Rep 2025; 15:7536. [PMID: 40038431 PMCID: PMC11880324 DOI: 10.1038/s41598-025-92208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/26/2025] [Indexed: 03/06/2025] Open
Abstract
The present study investigated the ureolytic airborne bacteria for microbial induced carbonate precipitation (MICP) applications, seeking resilient strains in order to address the problems of bacterial survivability and adaptability in biocementation treatment and to contribute a robust approach that can effectively stabilize diverse soils. Since the airborne bacteria tend to survive in dynamic environments, they are believed to possess remarkable adaptability in harsh conditions, thus holding great potential for engineering applications. Samplings across diverse climatic zones revealed that approximately 10-20% of the isolates were ureolytic bacteria in each sampling site. A series of characterization tests were conducted on selected strains to study the temperature dependency of urease activity. The results revealed that many of these isolates are unique in many aspects. For instance, some trains of Glutamicibacter sp. were found to precipitate extra-large calcium carbonate crystals that could be beneficial in the cementation of coarse soils. This study stands out from previous research on standard ureolytic bacteria by focusing on the exploration of airborne bacteria. The findings demonstrate that a significant number of ureolytic airborne bacteria have great potential, suggesting that the air can serve as a bacterial isolation source for MICP applications.
Collapse
Affiliation(s)
- Meiqi Chen
- Laboratory of Biotechnology for Resources Engineering, Graduate School of Engineering, Hokkaido University, Sapporo, Japan.
| | - Chikara Takano
- Laboratory of Biotechnology for Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Kazunori Nakashima
- Laboratory of Biotechnology for Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Sivakumar Gowthaman
- Department of Engineering Technology, Faculty of Technology, University of Jaffna, Kilinochchi, Sri Lanka
| | - Satoru Kawasaki
- Laboratory of Biotechnology for Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Harnpicharnchai P, Siriarchawatana P, Mayteeworakoon S, Ingsrisawang L, Likhitrattanapisal S, Eurwilaichitr L, Ingsriswang S. Interplay of xenobiotic-degrading and antibiotic-resistant microorganisms among the microbiome found in the air, handrail, and floor of the subway station. ENVIRONMENTAL RESEARCH 2024; 247:118269. [PMID: 38246293 DOI: 10.1016/j.envres.2024.118269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Investigating the quality of the subway environment, especially regarding antibiotic resistance genes (ARGs) and xenobiotics, conveys ecological and health impacts. In this study, compositions and relations of microorganisms harboring ARGs and xenobiotic degradation and metabolism genes (XDGs) in the Sukhumvit subway station (MRT-SKV) in Bangkok was assessed by analyzing the taxonomic and genetic diversity of the microbiome in the air and on the surfaces of floor and handrail. The major bacteria in the MRT-SKV (including Moraxella, which was abundant in the bioaerosol and handrail samples, and Staphylococcus, which was abundant in the bioaerosol samples) were found to contain both ARGs and XDGs. The co-abundance correlation network revealed notable relationships among bacteria harboring antibiotic resistance genes (ARGs) and xenobiotic degradation genes (XDGs). Significant associations were observed between ARGs linked to glycopeptide and fluoroquinolone resistance and genes associated with benzoate, styrene, and atrazine degradation pathways, as well as between ARGs related to cephamycin, cephalosporin, and MLS resistance and XDGs associated with the cytochrome P450-dependent drug metabolism pathway. These correlations suggested that selective pressure exerted by certain xenobiotics and antibiotics can simultaneously affect both ARGs and XDGs in the environment and should favor correlations and co-survival among ARG- and XDG-containing bacteria in the environments. The correlations may occur via shared mechanisms of resistance to both xenobiotics and antibiotics. Finally, different correlation pairs were seen in different niches (air, handrail, floor) of the subway environment or different geolocations. Thus, the relationship between ARG and XDG pairs most likely depends on the unique characteristics of the niches and on the prominent types of xenobiotics and antibiotics in the subway environment. The results indicated that interactions and connections between microbial communities can impact how they function. These microorganisms can have profound effects on accumulation of xenobiotics and ARGs in the MRT-SKV.
Collapse
Affiliation(s)
- Piyanun Harnpicharnchai
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Paopit Siriarchawatana
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Sermsiri Mayteeworakoon
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Lily Ingsrisawang
- Department of Statistics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Somsak Likhitrattanapisal
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Lily Eurwilaichitr
- National Energy Technology Center, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Supawadee Ingsriswang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand.
| |
Collapse
|
3
|
Tizabi D, Hill RT. Micrococcus spp. as a promising source for drug discovery: A review. J Ind Microbiol Biotechnol 2023; 50:kuad017. [PMID: 37460166 PMCID: PMC10548855 DOI: 10.1093/jimb/kuad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/13/2023] [Indexed: 10/05/2023]
Abstract
Historically, bacteria of the phylum, Actinobacteria have been a very prominent source of bioactive compounds for drug discovery. Among the actinobacterial genera, Micrococcus has not generally been prioritized in the search for novel drugs. The bacteria in this genus are known to have very small genomes (generally < 3 Mb). Actinobacteria with small genomes seldom contain the well-characterized biosynthetic gene clusters such as those encoding polyketide synthases and nonribosomal peptide synthetases that current genome mining algorithms are optimized to detect. Nevertheless, there are many reports of substantial pharmaceutically relevant bioactivity of Micrococcus extracts. On the other hand, there are remarkably few descriptions of fully characterized and structurally elucidated bioactive compounds from Micrococcus spp. This review provides a comprehensive summary of the bioactivity of Micrococcus spp. that encompasses antibacterial, antifungal, cytotoxic, antioxidant, and anti-inflammatory activities. This review uncovers the considerable biosynthetic potential of this genus and highlights the need for a re-examination of these bioactive strains, with a particular emphasis on marine isolates, because of their potent bioactivity and high potential for encoding unique molecular scaffolds.
Collapse
Affiliation(s)
- Daniela Tizabi
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Russell T Hill
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| |
Collapse
|
4
|
The transmittable through stinging microbiota differs between honeybees and wasps: a potentially greater microbial risk of the wasp sting for humans. Int Microbiol 2023:10.1007/s10123-023-00332-6. [PMID: 36752864 PMCID: PMC10397125 DOI: 10.1007/s10123-023-00332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
The present research investigated whether accidental contact through stinging with honeybees, wasps, and hornets could represent a microbial hazard for humans. It has been previously suggested that such contact may transmit pathogens causing infections that could even be fatal for some susceptible individuals. Stinging simulation experiments were performed in the lab with live insects collected from the environment in Lemnos Island (north-eastern Greece), while different selective agar media targeting some clinically important bacteria (i.e., Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis/faecium, and Pseudomonas aeruginosa) were used as substrates for microbial recovery and identification. Results revealed none of the target pathogenic bacterial species in the honeybee samples, with bacilli, staphylococci, and micrococci dominating their surveyed microbiota. However, most of the suspect colonies isolated from wasps and hornets belonged to important hygienic indicators (i.e., enterococci, Proteus mirabilis, and coliforms), implying possible contact of these insects with fecal origin materials. To sum up, the microbiota that may be transmitted to humans through stinging appears to differ between honeybees and wasps/hornets, while the isolation from the latter samples of some other important opportunistic pathogens, such as Enterobacter spp. and Klebsiella spp., also known for multidrug resistance, could be an additional reason of concern.
Collapse
|
5
|
Abbas MN, Kausar S, Asma B, Ran W, Li J, Lin Z, Li T, Cui H. MicroRNAs reshape the immunity of insects in response to bacterial infection. Front Immunol 2023; 14:1176966. [PMID: 37153604 PMCID: PMC10161253 DOI: 10.3389/fimmu.2023.1176966] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
The interaction between bacteria and insects can significantly impact a wide range of different areas because bacteria and insects are widely distributed around the globe. The bacterial-insect interactions have the potential to directly affect human health since insects are vectors for disease transmission, and their interactions can also have economic consequences. In addition, they have been linked to high mortality rates in economically important insects, resulting in substantial economic losses. MicroRNAs (miRNAs) are types of non-coding RNAs involved in regulating gene expression post-transcriptionally. The length of miRNAs ranges from 19 to 22 nucleotides. MiRNAs, in addition to their ability to exhibit dynamic expression patterns, have a diverse range of targets. This enables them to govern various physiological activities in insects, like innate immune responses. Increasing evidence suggests that miRNAs have a crucial biological role in bacterial infection by influencing immune responses and other mechanisms for resistance. This review focuses on some of the most recent and exciting discoveries made in recent years, including the correlation between the dysregulation of miRNA expression in the context of bacterial infection and the progression of the infection. Furthermore, it describes how they profoundly impact the immune responses of the host by targeting the Toll, IMD, and JNK signaling pathways. It also emphasizes the biological function of miRNAs in regulating immune responses in insects. Finally, it also discusses current knowledge gaps about the function of miRNAs in insect immunity, in addition to areas that require more research in the future.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Saima Kausar
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Bibi Asma
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Wenhao Ran
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
| | - Jingui Li
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
| | - Zini Lin
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
| | - Tiejun Li
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
- *Correspondence: Tiejun Li, ; Hongjuan Cui,
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
- *Correspondence: Tiejun Li, ; Hongjuan Cui,
| |
Collapse
|
6
|
Morones-Esquivel MM, Núñez-Núñez CM, Hernández-Mendoza JL, Proal-Nájera JB. Bacterial Communities in Effluents Rich in Phenol and Their Potential in Bioremediation: Kinetic Modeling. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14222. [PMID: 36361104 PMCID: PMC9658233 DOI: 10.3390/ijerph192114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Phenol is used in the manufacturing process of phenolic resins from which residues remain that must be sent for confinement. For that reason, in this study, the wastewater of a resin factory was analyzed to isolate the bacteria present, identify them by molecular methods and finally evaluate their impact on bioremediation treatment. A total of 15 bacteria were isolated, of these, eight belong to the genus Bacillus spp. All bacteria were individually multiplied and inoculated in clusters in 15 L reactors which were carefully monitored for pH, electrical conductivity, chemical oxygen demand and temperature. The acquired data were analyzed using ANOVA with repeated measurements. The first test revealed that native bacterial communities reduce the phenol content by up to 20% and COD by 49%, which is significant with respect to the reactor not being inoculated with bacteria. Furthermore, when a mathematical model was applied to the reactors, it was shown that the bacteria require an adaptation time of approximately 100 h. A second test where the inoculation was interspersed with the addition of lime as a flocculant showed that, even though the reduction in phenol and COD was lower than in the previous test, the difference between treatments and control is statistically significant (α ≤ 0.05).
Collapse
Affiliation(s)
- Miriam M. Morones-Esquivel
- Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Río Papaloapan, Valle del Sur, Durango 34120, Mexico
| | - Cynthia M. Núñez-Núñez
- Ingeniería en Tecnología Ambiental, Universidad Politécnica de Durango, Carretera Durango-México km 9.5, Col. Dolores Hidalgo, Durango 34300, Mexico
| | - José L. Hernández-Mendoza
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro s/n, esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico
| | - José B. Proal-Nájera
- CIIDIR—Unidad Durango, Instituto Politécnico Nacional, Calle Sigma 119, Fracc. 20 de Noviembre II, Durango 34220, Mexico
| |
Collapse
|
7
|
Comparative Insights into the Antimicrobial, Antioxidant, and Nutritional Potential of the Solanum nigrum Complex. Processes (Basel) 2022. [DOI: 10.3390/pr10081455] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Solanum nigrum is a traditional medicinal plant renowned as a cure for many diseases due to the presence of bioactive compounds. The Solanum nigrum complex refers to a group of more than 30 closely related but morphologically distinct taxa. Five indigenous taxa of this complex were investigated for their medicinal potential by using methanolic extracts. The efficacy of each plant was different for each of the seven bacteria studied. On comparing the MIC values, S. americanum was found to be most potent against Bacillus licheniformis (34 µg/mL), S. chenopodioides against Escherichia coli (78 µg/mL), S. nigrum against Bacillus licheniformis (49 µg/mL) and Escherichia coli (49 µg/mL), S. retroflexum against Escherichia coli (30 µg/mL), and S. villosum against Proteus mirabilis (45 µg/mL). The extracts were also subjected to six antioxidant assays. Moderate scavenging activity was observed by all plants in the DPPH free radical assay, but S. chenopodioides was the most effective. The total phenolic contents of the five plants were comparable, but the gallic acid equivalents of S. americanum and S. nigrum were the highest (26.58 mg/100 g GAE). The highest Trolox equivalent antioxidant capacity was observed for S. retroflexum, with the ABTS assay giving a TEAC value of 33.88 mM/100 g of dry weight. Metal-chelating activity against Fe2+ was observed to be highest for S. chenopodioides (70.37%). The FRAP value of S. nigrum was the highest (8.5 mM FeSO4·7H2O) among all taxa. The lipid peroxidation trend was very similar for all five samples. The results suggest the specified medicinal use of different members of the Solanum nigrum complex, which will also have significant nutritional value.
Collapse
|
8
|
Barker DF. A synergistic arrangement of two unrelated IS elements facilitates adjacent deletion in Micrococcus luteus ATCC49732. FEMS Microbiol Lett 2022; 369:6646518. [DOI: 10.1093/femsle/fnac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Mutants of M. luteus strain ATCC49732 lacking the yellow pigment sarcinaxanthin were observed at an unexpectedly high frequency and the molecular basis was investigated. PCR probing revealed complete deletion of the crt biosynthetic operon in 11/14 mutants. Inverse PCR was used to identify a common breakpoint 35 kb downstream from crt precisely at the end of the right inverted repeat (IRR) of a partial ISMlu8 element that lies between two inversely oriented full-length ISMlu2. Three different breakpoints 5′ to crt were found with the sequence CTAG one bp 5′ to each novel junction. Analysis of 35 genomic sites with single ISMlu8 insertions showed that ISMlu8 transposase has high specificity for CTAG, implicating its key role in formation of the Δcrt deletions. No downstream deletion endpoints were observed at an immediately adjacent ISMlu8 with a nearly identical IRR in the same orientation and slightly closer to the crt operon, indicating that access of ISMlu8 transposase to the ISMlu2-flanked ISMlu8 IRR is greatly enhanced by the surrounding inverted repeat arrangement. The association of high frequency genomic rearrangement with this distinctive natural configuration of ISs from two different IS families offers a new insight into IS element evolutionary potential.
Collapse
Affiliation(s)
- David F Barker
- Department of Medical Laboratory Science, Bellarmine University , 2001 Newburg Road, Louisville, KY 40205 , USA
| |
Collapse
|
9
|
Microbiological Survey of 47 Permanent Makeup Inks Available in the United States. Microorganisms 2022; 10:microorganisms10040820. [PMID: 35456870 PMCID: PMC9031709 DOI: 10.3390/microorganisms10040820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
In two previous surveys, the U.S. Food and Drug Administration (FDA) identified microbial contamination in 53 of 112 (47%) unopened tattoo inks and tattoo-ink-related products (e.g., diluents) from 15 manufacturers in the U.S. In this study, we primarily focused our microbiological survey on permanent makeup (PMU) inks. We conducted a survey of 47 unopened PMU inks from nine manufacturers and a comparative species-centric co-occurrence network (SCN) analysis using the survey results. Aerobic plate count and enrichment culture methods using the FDA's Bacteriological Analytical Manual (BAM) Chapter 23 revealed that 9 (19%) inks out of 47, from five manufacturers, were contaminated with microorganisms. The level of microbial contamination was less than 250 CFU/g in eight inks and 980 CFU/g in one ink. We identified 26 bacteria that belong to nine genera and 21 species, including some clinically relevant species, such as Alloiococcus otitis, Dermacoccus nishinomiyaensis, Kocuria rosea, and Pasteurella canis. Among the identified microorganisms, the SCN analysis revealed dominance and a strong co-occurrence relation of spore-forming extreme environment survivors, Bacillus spp., with close phylogenetic/phenotypic relationships. These results provide practical insights into the possible microbial contamination factors and positive selection pressure of PMU inks.
Collapse
|
10
|
Borer B, Or D. Bacterial age distribution in soil - Generational gaps in adjacent hot and cold spots. PLoS Comput Biol 2022; 18:e1009857. [PMID: 35213536 PMCID: PMC8906644 DOI: 10.1371/journal.pcbi.1009857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 03/09/2022] [Accepted: 01/23/2022] [Indexed: 11/25/2022] Open
Abstract
Resource patchiness and aqueous phase fragmentation in soil may induce large differences local growth conditions at submillimeter scales. These are translated to vast differences in bacterial age from cells dividing every thirty minutes in close proximity to plant roots to very old cells experiencing negligible growth in adjacent nutrient poor patches. In this study, we link bacterial population demographics with localized soil and hydration conditions to predict emerging generation time distributions and estimate mean bacterial cell ages using mechanistic and heuristic models of bacterial life in soil. Results show heavy-tailed distributions of generation times that resemble a power law for certain conditions, suggesting that we may find bacterial cells of vastly different ages living side by side within small soil volumes. Our results imply that individual bacteria may exist concurrently with all of their ancestors, resulting in an archive of bacterial cells with traits that have been gained (and lost) throughout time-a feature unique to microbial life. This reservoir of bacterial strains and the potential for the reemergence of rare strains with specific functions may be critical for ecosystem stability and function.
Collapse
Affiliation(s)
| | - Dani Or
- ETH Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Bücher C, Burtscher J, Domig KJ. Propionic acid bacteria in the food industry: An update on essential traits and detection methods. Compr Rev Food Sci Food Saf 2021; 20:4299-4323. [PMID: 34355493 DOI: 10.1111/1541-4337.12804] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/19/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
Propionic acid bacteria (PAB) is an umbrella term for a group of bacteria with the ability to produce propionic acid. In the past, due to this common feature and other phenotypic similarities, genetically heterogeneous bacteria were considered as a single genus, Propionibacterium. Members of this genus ranged from "dairy propionibacteria," which are widely known for their role in eye and flavor formation in cheese production, to "cutaneous propionibacteria," which are primarily associated with human skin. In 2016, the introduction of two new genera based on genotypic data facilitated a clear separation of cutaneous (Cutibacterium spp.) from dairy PAB (Propionibacterium spp., Acidipropionibacterium spp.). In light of these taxonomic changes, but with particular emphasis on dairy PAB, this review describes the current state of knowledge about metabolic pathways and other characteristics such as antibiotic resistance and virulence factors. In addition, the relevance of dairy PAB for the food industry and cheese production in particular is highlighted. Furthermore, methods for cultivation, detection, and enumeration are reviewed, incorporating the current taxonomy as well as the potential for routine applications.
Collapse
Affiliation(s)
- Carola Bücher
- Competence Centre for Feed and Food Quality, Safety and Innovation (FFoQSI), Tulln, Austria
| | - Johanna Burtscher
- Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Konrad J Domig
- Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| |
Collapse
|
12
|
Draft Genome Sequences of Various Bacterial Phyla Isolated from the International Space Station. Microbiol Resour Announc 2021; 10:10/17/e00214-21. [PMID: 33927037 PMCID: PMC8086211 DOI: 10.1128/mra.00214-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Whole-genome sequences were generated from 96 bacterial strains of 14 species that were isolated from International Space Station surfaces during the Microbial Tracking 2 study. Continued characterization of this closed habitat's microbiome enables tracking of the spread and evolution of secondary pathogens, which is vital for astronaut health. Whole-genome sequences were generated from 96 bacterial strains of 14 species that were isolated from International Space Station surfaces during the Microbial Tracking 2 study. Continued characterization of this closed habitat's microbiome enables tracking of the spread and evolution of secondary pathogens, which is vital for astronaut health.
Collapse
|
13
|
Afouda P, Dubourg G, Raoult D. Archeomicrobiology applied to environmental samples. Microb Pathog 2020; 143:104140. [DOI: 10.1016/j.micpath.2020.104140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
|
14
|
Spisak W, Chlebicki A, Kaszczyszyn M, Szar M, Kozak J, Olma A. Three-electrode galvanic microcells as a new antimicrobial tool. Sci Rep 2020; 10:7341. [PMID: 32355301 PMCID: PMC7192930 DOI: 10.1038/s41598-020-64410-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/15/2020] [Indexed: 11/09/2022] Open
Abstract
This study presents the first research related to fungal and bacterial growth within electromagnetic fields generated by three-electrode galvanic cells, with PDA growth medium as an electrolyte. We used galvanic microcells constructed with copper, bismuth and zinc metal bars. The configuration of these electrodes was a fundamental agent in the creation of a maximum inhibition zone and in bismuth ion movement. Fungal strains, such as Aspergillus tubingensis and Rhodotorula mucilaginosa, and the bacterium Micrococcus luteus were used as model organisms.
Collapse
Affiliation(s)
- Wojciech Spisak
- Research & Development Centre ALCOR Ltd., Kępska 12, 45-130, Opole, Poland
| | - Andrzej Chlebicki
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Cracow, Poland
| | | | - Mateusz Szar
- Research & Development Centre ALCOR Ltd., Kępska 12, 45-130, Opole, Poland.
| | - Jarosław Kozak
- Research & Development Centre ALCOR Ltd., Kępska 12, 45-130, Opole, Poland
| | - Arletta Olma
- Research & Development Centre ALCOR Ltd., Kępska 12, 45-130, Opole, Poland
| |
Collapse
|
15
|
A Myanmar amber cockroach with protruding feces contains pollen and a rich microcenosis. Naturwissenschaften 2020; 107:13. [DOI: 10.1007/s00114-020-1669-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 01/14/2023]
|
16
|
Abstract
Introduction: Despite an extensive published literature, skepticism over the claim of original biochemicals including proteins preserved in the fossil record persists and the issue remains controversial. Workers using many different techniques including mass spectrometry, X-ray, electron microscopy and optical spectroscopic techniques, have attempted to verify proteinaceous or other biochemicals that appear endogenous to fossils found throughout the geologic column.Areas covered: This paper presents a review of the relevant literature published over the last 50 years. A comparative survey of the reported techniques used is also given.Expert opinion: Morphological and molecular investigations show that original biochemistry is geologically extensive, geographically global, and taxonomically wide-ranging. The survival of endogenous organics in fossils remains the subject of widespread and increasing research investigation.
Collapse
Affiliation(s)
- Brian Thomas
- Mass Spectrometry Group, Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Stephen Taylor
- Mass Spectrometry Group, Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| |
Collapse
|
17
|
Assessment of probiotic potentials of Lactobacillus plantarum CS and Micrococcus luteus CS from fermented milled corn-soybean waste-meal. SCIENTIFIC AFRICAN 2019. [DOI: 10.1016/j.sciaf.2019.e00183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
18
|
Complete Genome Sequence of Micrococcus luteus Strain SGAir0127, Isolated from Indoor Air Samples from Singapore. Microbiol Resour Announc 2019; 8:8/41/e00646-19. [PMID: 31601656 PMCID: PMC6787313 DOI: 10.1128/mra.00646-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Micrococcus luteus strain SGAir0127 was isolated from indoor air samples collected in Singapore. The assembly, based on single-molecule real-time sequencing reads, resulted in two contigs, one chromosomal contig with a length of 2.57 Mbp and one nonchromosomal contig of 8.68 kbp. The genome has a total of 2,564 genes. Micrococcus luteus strain SGAir0127 was isolated from indoor air samples collected in Singapore. The assembly, based on single-molecule real-time sequencing reads, resulted in two contigs, one chromosomal contig with a length of 2.57 Mbp and one nonchromosomal contig of 8.68 kbp. The genome has a total of 2,564 genes.
Collapse
|
19
|
Abstract
Longevity reflects the ability to maintain homeostatic conditions necessary for life as an organism ages. A long-lived organism must contend not only with environmental hazards but also with internal entropy and macromolecular damage that result in the loss of fitness during ageing, a phenomenon known as senescence. Although central to many of the core concepts in biology, ageing and longevity have primarily been investigated in sexually reproducing, multicellular organisms. However, growing evidence suggests that microorganisms undergo senescence, and can also exhibit extreme longevity. In this Review, we integrate theoretical and empirical insights to establish a unified perspective on senescence and longevity. We discuss the evolutionary origins, genetic mechanisms and functional consequences of microbial ageing. In addition to having biomedical implications, insights into microbial ageing shed light on the role of ageing in the origin of life and the upper limits to longevity.
Collapse
|
20
|
Blakeman JT, Morales-García AL, Mukherjee J, Gori K, Hayward AS, Lant NJ, Geoghegan M. Extracellular DNA Provides Structural Integrity to a Micrococcus luteus Biofilm. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6468-6475. [PMID: 30995049 DOI: 10.1021/acs.langmuir.9b00297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Force spectroscopy was used to show that extracellular DNA (eDNA) has a pre-eminent structural role in a biofilm. The adhesive behavior of extracellular polymeric substances to poly(ethylene terephthalate), a model hydrophobic surface, was measured in response to their degradation by hydrolytic enzymes known for their biofilm dispersion potential: DNaseI, protease, cellulase, and mannanase. Only treatment with DNaseI significantly decreased the adhesive force of the model bacterium Micrococcus luteus with the surface, and furthermore this treatment almost completely eliminated any components of the biofilm maintaining the adhesion, establishing a key structural role for eDNA.
Collapse
Affiliation(s)
- Jamie T Blakeman
- Department of Physics and Astronomy , The University of Sheffield , Hounsfield Road , Sheffield S3 7RH , U.K
| | - Ana L Morales-García
- Department of Physics and Astronomy , The University of Sheffield , Hounsfield Road , Sheffield S3 7RH , U.K
- Procter and Gamble Newcastle Innovation Centre , Longbenton, Newcastle upon Tyne NE12 9TS , U.K
| | - Joy Mukherjee
- Department of Chemical and Biological Engineering , The University of Sheffield , Mappin Street , Sheffield S1 3JD , U.K
| | - Klaus Gori
- Novozymes A/S , Krogshøjvej 36 , Bagsværd 2880 , Denmark
| | - Adam S Hayward
- Procter and Gamble Newcastle Innovation Centre , Longbenton, Newcastle upon Tyne NE12 9TS , U.K
| | - Neil J Lant
- Procter and Gamble Newcastle Innovation Centre , Longbenton, Newcastle upon Tyne NE12 9TS , U.K
| | - Mark Geoghegan
- Department of Physics and Astronomy , The University of Sheffield , Hounsfield Road , Sheffield S3 7RH , U.K
| |
Collapse
|
21
|
Application of next generation sequencing technology on contamination monitoring in microbiology laboratory. BIOSAFETY AND HEALTH 2019; 1:25-31. [PMID: 32501441 PMCID: PMC7148601 DOI: 10.1016/j.bsheal.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/07/2019] [Accepted: 02/21/2019] [Indexed: 12/25/2022] Open
Abstract
The surveillance and prevention of pathogenic microbiological contamination are the most important tasks of biosafety management in the lab. There is an urgent need to establish an effective and unbiased method to evaluate and monitor such contamination. This study aims to investigate the utility of next generation sequencing (NGS) method to detect possible contamination in the microbiology laboratory. Environmental samples were taken at multiple sites at the lab including the inner site of centrifuge rotor, the bench used for molecular biological tests, the benches of biosafety cabinets used for viral culture, clinical sample pre-treatment and nucleic acids extraction, by scrubbing the sites using sterile flocked swabs. The extracted total nucleic acids were used to construct the libraries for deep sequencing according to the protocol of Ion Torrent platform. At least 1G raw data was obtained for each sample. The reads of viruses and bacteria accounted for 0.01 ± 0.02%, and 77.76 ± 12.53% of total reads respectively. The viral sequences were likely to be derived from gene amplification products, the nucleic acids contaminated in fetal bovine serum. Reads from environmental microorganisms were also identified. Our results suggested that NGS method was capable of monitoring the nucleic acids contaminations from different sources in the lab, demonstrating its promising utility in monitoring and assessing the risk of potential laboratory contamination. The risk of contamination from reagents, remnant DNA and environment should be considered in data analysis and results interpretation.
Collapse
|
22
|
Nho S, Kim S, Kweon O, Howard P, Moon M, Sadrieh N, Cerniglia C. Microbiological survey of commercial tattoo and permanent makeup inks available in the United States. J Appl Microbiol 2018; 124:1294-1302. [DOI: 10.1111/jam.13713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Affiliation(s)
- S.W. Nho
- Division of Microbiology National Center for Toxicological Research US FDA Jefferson AR USA
| | - S.‐J. Kim
- Division of Microbiology National Center for Toxicological Research US FDA Jefferson AR USA
| | - O. Kweon
- Division of Microbiology National Center for Toxicological Research US FDA Jefferson AR USA
| | - P.C. Howard
- Office of Scientific Coordination National Center for Toxicological Research US FDA Jefferson AR USA
| | - M.S. Moon
- Office of Cosmetics and Colors Center for Food Safety and Applied Nutrition US FDA College Park MD USA
| | - N.K. Sadrieh
- Office of Cosmetics and Colors Center for Food Safety and Applied Nutrition US FDA College Park MD USA
| | - C.E. Cerniglia
- Division of Microbiology National Center for Toxicological Research US FDA Jefferson AR USA
| |
Collapse
|
23
|
Shoemaker WR, Lennon JT. Evolution with a seed bank: The population genetic consequences of microbial dormancy. Evol Appl 2018; 11:60-75. [PMID: 29302272 PMCID: PMC5748526 DOI: 10.1111/eva.12557] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 09/08/2017] [Indexed: 12/31/2022] Open
Abstract
Dormancy is a bet‐hedging strategy that allows organisms to persist through conditions that are suboptimal for growth and reproduction by entering a reversible state of reduced metabolic activity. Dormancy allows a population to maintain a reservoir of genetic and phenotypic diversity (i.e., a seed bank) that can contribute to the long‐term survival of a population. This strategy can be potentially adaptive and has long been of interest to ecologists and evolutionary biologists. However, comparatively little is known about how dormancy influences the fundamental evolutionary forces of genetic drift, mutation, selection, recombination, and gene flow. Here, we investigate how seed banks affect the processes underpinning evolution by reviewing existing theory, implementing novel simulations, and determining how and when dormancy can influence evolution as a population genetic process. We extend our analysis to examine how seed banks can alter macroevolutionary processes, including rates of speciation and extinction. Through the lens of population genetic theory, we can understand the extent that seed banks influence the evolutionary dynamics of microorganisms as well as other taxa.
Collapse
Affiliation(s)
| | - Jay T Lennon
- Department of Biology Indiana University Bloomington IN USA
| |
Collapse
|
24
|
Gębarowska E, Pusz W, Kucińska J, Kita W. Comparative analysis of airborne bacteria and fungi in two salt mines in Poland. AEROBIOLOGIA 2017; 34:127-138. [PMID: 29773926 PMCID: PMC5945750 DOI: 10.1007/s10453-017-9502-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 11/07/2017] [Indexed: 05/24/2023]
Abstract
The aim of this work was to determine the genera or species composition and the number of colony forming units of airborne bacteria and fungi, respectively, in two salt mines in Poland "Wieliczka" (Lesser Poland) and "Polkowice-Sieroszowice" (Lower Silesia). Both of them are working environments characterized by extreme conditions, and additionally "Wieliczka," officially placed on the UNESCO World Heritage Sites' list, plays a role of tourist attraction. There are also some curative chambers located in this mine. Air samples were taken once in December 2015, between 6:00 a.m. and 9:00 a.m. There were nine measurement points located about 200 m underground in "Wieliczka" and six measurement points located in the working shafts about 400 m underground in "Polkowice-Sieroszowice." The total volume of each air sample was 150 L. Air samples, collected in individual measurement points of both salt mines, were inoculated on two microbiological media: potato dextrose agar and tryptic soy agar using the impact method. We identified 10 and 3 fungal genera in the "Wieliczka" Salt Mine and in "Polkowice-Sieroszowice," respectively. The most common were fungi of the Penicillium genus. In both mines, the Gram-positive bacteria of genus Micrococcus were detected most frequently. Among identified microorganisms, there were neither pathogenic fungi nor bacteria. The most prevalent microorganisms detected in indoor air were Gram-positive cocci, which constituted up to 80% of airborne microflora. Our results showed that microorganisms recorded in the air samples are not a threat to workers, tourists or patients. Neither pathogens nor potentially pathogenic microorganisms, listed as BSL-2, BSL-3 or BSL-4, were detected. The microbes identified during our analysis commonly occur in such environments as the soil, water and air. Some of the detected bacteria are component of natural microflora of human skin and mucous membranes, and they can cause only opportunistic infections in individuals depending on their health condition.
Collapse
Affiliation(s)
- Elżbieta Gębarowska
- Division of Agricultural Microbiology, Department of Plant Protection, Wrocław University of Environmental and Life Sciences, Grunwaldzka Str. 53, 50-357 Wrocław, Poland
| | - Wojciech Pusz
- Division of Phytopathology and Mycology, Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, Grunwaldzki Sq. 24a, 50-363 Wrocław, Poland
| | - Jolanta Kucińska
- Division of Agricultural Microbiology, Department of Plant Protection, Wrocław University of Environmental and Life Sciences, Grunwaldzka Str. 53, 50-357 Wrocław, Poland
| | - Włodzimierz Kita
- Division of Phytopathology and Mycology, Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, Grunwaldzki Sq. 24a, 50-363 Wrocław, Poland
| |
Collapse
|
25
|
Horká M, Šlais K, Šalplachta J, Růžička F. Preparative isoelectric focusing of microorganisms in cellulose-based separation medium and subsequent analysis by CIEF and MALDI-TOF MS. Anal Chim Acta 2017; 990:185-193. [DOI: 10.1016/j.aca.2017.08.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 02/01/2023]
|
26
|
A Proteomic Signature of Dormancy in the Actinobacterium Micrococcus luteus. J Bacteriol 2017; 199:JB.00206-17. [PMID: 28484042 DOI: 10.1128/jb.00206-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/24/2017] [Indexed: 12/13/2022] Open
Abstract
Dormancy is a protective state in which diverse bacteria, including Mycobacterium tuberculosis, Staphylococcus aureus, Treponema pallidum (syphilis), and Borrelia burgdorferi (Lyme disease), curtail metabolic activity to survive external stresses, including antibiotics. Evidence suggests dormancy consists of a continuum of interrelated states, including viable but nonculturable (VBNC) and persistence states. VBNC and persistence contribute to antibiotic tolerance, reemergence from latent infections, and even quorum sensing and biofilm formation. Previous studies indicate that the protein mechanisms regulating persistence and VBNC states are not well understood. We have queried the VBNC state of Micrococcus luteus NCTC 2665 (MI-2665) by quantitative proteomics combining gel electrophoresis, high-performance liquid chromatography, and tandem mass spectrometry to elucidate some of these mechanisms. MI-2665 is a nonpathogenic actinobacterium containing a small (2.5-Mb), high-GC-content genome which exhibits a well-defined VBNC state induced by nutrient deprivation. The MI-2665 VBNC state demonstrated a loss of protein diversity accompanied by increased levels of 18 proteins that are conserved across actinobacteria, 14 of which have not been previously identified in VNBC. These proteins implicate an anaplerotic strategy in the transition to VBNC, including changes in the glyoxylate shunt, redox and amino acid metabolism, and ribosomal regulatory processes. Our data suggest that MI-2665 is a viable model for dissecting the protein mechanisms underlying the VBNC stress response and provide the first protein-level signature of this state. We expect that this protein signature will enable future studies deciphering the protein mechanisms of dormancy and identify novel therapeutic strategies effective against antibiotic-tolerant bacterial infections.IMPORTANCE Dormancy is a protective state enabling bacteria to survive antibiotics, starvation, and the immune system. Dormancy is comprised of different states, including persistent and viable but nonculturable (VBNC) states that contribute to the spread of bacterial infections. Therefore, it is imperative to identify how bacteria utilize these different dormancy states to survive antibiotic treatment. The objective of our research is to eliminate dormancy as a route to antibiotic tolerance by understanding the proteins that control dormancy in Micrococcus luteus NCTC 2665. This bacterium has unique advantages for studying dormancy, including a small genome and a well-defined and reproducible VBNC state. Our experiments implicate four previously identified and 14 novel proteins upregulated in VBNC that may regulate this critical survival mechanism.
Collapse
|
27
|
Çoban EP, Fırıncı R, Biyik H, Günay ME. Unsymmetrically substituted imidazolium salts: synthesis, characterization and antimicrobial activity. BRAZ J PHARM SCI 2017. [DOI: 10.1590/s2175-97902017000115075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Brouchkov A, Griva G, Fursova O, Fursova N, Ignatov S, Pogorelko G. Is the ancient permafrost bacteria able to keep DNA stable? J Genet 2016; 95:1003-1007. [PMID: 27994201 DOI: 10.1007/s12041-016-0708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Anatoli Brouchkov
- Faculty of Geology, Lomonosov Moscow State University, GSP-1, 1 Leninskiye Gory, Moscow 119991, Russia.
| | | | | | | | | | | |
Collapse
|
29
|
Zhao Y, Park HD, Park JH, Zhang F, Chen C, Li X, Zhao D, Zhao F. Effect of different salinity adaptation on the performance and microbial community in a sequencing batch reactor. BIORESOURCE TECHNOLOGY 2016; 216:808-16. [PMID: 27318158 DOI: 10.1016/j.biortech.2016.06.032] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 05/12/2023]
Abstract
The performance and microbial community profiles in a sequencing batch reactor (SBR) treating saline wastewater were studied over 300days from 0wt% to 3.0wt% salinity. The experimental results indicated that the activated sludge had high sensitivity to salinity variations in terms of pollutants removal and sedimentation. At 2.0wt% salinity, the system retained a good performance, and 95% removal rate of chemical oxygen demand (COD), biochemical oxygen demand (BOD), NH4(+)-N and total phosphorus (TP) could be achieved. Operation before addition salinity revealed the optimal performance and the most microbial diversity indicated by 16S rRNA gene clone library. Sequence analyses illustrated that Candidate_division_TM7 (TM7) was predominant at 2.0 wt% salinity; however, Actinobacteria was more abundant at 3.0wt% salinity.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- School of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Jeong-Hoon Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Fushuang Zhang
- School of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Chen Chen
- School of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Xiangkun Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Zhao
- School of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fangbo Zhao
- School of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
30
|
Santiago-Rodriguez TM, Fornaciari G, Luciani S, Dowd SE, Toranzos GA, Marota I, Cano RJ. Taxonomic and predicted metabolic profiles of the human gut microbiome in pre-Columbian mummies. FEMS Microbiol Ecol 2016; 92:fiw182. [PMID: 27559027 DOI: 10.1093/femsec/fiw182] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2016] [Indexed: 11/15/2022] Open
Abstract
Characterization of naturally mummified human gut remains could potentially provide insights into the preservation and evolution of commensal and pathogenic microorganisms, and metabolic profiles. We characterized the gut microbiome of two pre-Columbian Andean mummies dating to the 10-15th centuries using 16S rRNA gene high-throughput sequencing and metagenomics, and compared them to a previously characterized gut microbiome of an 11th century AD pre-Columbian Andean mummy. Our previous study showed that the Clostridiales represented the majority of the bacterial communities in the mummified gut remains, but that other microbial communities were also preserved during the process of natural mummification, as shown with the metagenomics analyses. The gut microbiome of the other two mummies were mainly comprised by Clostridiales or Bacillales, as demonstrated with 16S rRNA gene amplicon sequencing, many of which are facultative anaerobes, possibly consistent with the process of natural mummification requiring low oxygen levels. Metagenome analyses showed the presence of other microbial groups that were positively or negatively correlated with specific metabolic profiles. The presence of sequences similar to both Trypanosoma cruzi and Leishmania donovani could suggest that these pathogens were prevalent in pre-Columbian individuals. Taxonomic and functional profiling of mummified human gut remains will aid in the understanding of the microbial ecology of the process of natural mummification.
Collapse
Affiliation(s)
- Tasha M Santiago-Rodriguez
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA Department of Biology, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Gino Fornaciari
- Department of Translational Research on New Technologies in Medicine and Surgery, Division of Paleopathology, University of Pisa, Pisa 56126, Italy Center for Anthropological, Paleopathological and Historical Studies of the Sardinian and Mediterranean Populations, Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| | - Stefania Luciani
- Laboratory of Molecular Archaeo-Anthropology/ancient DNA, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy
| | - Scot E Dowd
- Molecular Research LP (MR DNA), Shallowater, Texas 79363, USA
| | - Gary A Toranzos
- Department of Biology, University of Puerto Rico, Julio Garcia Diaz Building, San Juan 00931, Puerto Rico
| | - Isolina Marota
- Laboratory of Molecular Archaeo-Anthropology/ancient DNA, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy
| | - Raul J Cano
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA Department of Biology, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
31
|
Rivera-Perez JI, Santiago-Rodriguez TM, Toranzos GA. Paleomicrobiology: a Snapshot of Ancient Microbes and Approaches to Forensic Microbiology. Microbiol Spectr 2016; 4:10.1128/microbiolspec.EMF-0006-2015. [PMID: 27726770 PMCID: PMC5287379 DOI: 10.1128/microbiolspec.emf-0006-2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 01/14/2023] Open
Abstract
Paleomicrobiology, or the study of ancient microorganisms, has raised both fascination and skepticism for many years. While paleomicrobiology is not a recent field, the application of emerging techniques, such as DNA sequencing, is proving essential and has provided novel information regarding the evolution of viruses, antibiotic resistance, saprophytes, and pathogens, as well as ancient health and disease status, cultural customs, ethnic diets, and historical events. In this review, we highlight the importance of studying ancient microbial DNA, its contributions to current knowledge, and the role that forensic paleomicrobiology has played in deciphering historical enigmas. We also discuss the emerging techniques used to study the microbial composition of ancient samples as well as major concerns that accompany ancient DNA analyses.
Collapse
|
32
|
Aburjaile F, Madec MN, Parayre S, Miyoshi A, Azevedo V, Le Loir Y, Falentin H. The long-term survival of Propionibacterium freudenreichii
in a context of nutrient shortage. J Appl Microbiol 2016; 120:432-40. [DOI: 10.1111/jam.13000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/15/2015] [Accepted: 11/03/2015] [Indexed: 11/27/2022]
Affiliation(s)
- F.F. Aburjaile
- Department of General Biology; Federal University of Minas Gerais; Belo Horizonte Minas Gerais Brazil
- INRA; UMR 1253; Science et Technologie du Lait et de l'Oeuf; Rennes France
- AGROCAMPUS OUEST; UMR1253; UMR Science et Technologie du Lait et de l'Oeuf; Rennes France
| | - M.-N. Madec
- INRA; UMR 1253; Science et Technologie du Lait et de l'Oeuf; Rennes France
- AGROCAMPUS OUEST; UMR1253; UMR Science et Technologie du Lait et de l'Oeuf; Rennes France
| | - S. Parayre
- INRA; UMR 1253; Science et Technologie du Lait et de l'Oeuf; Rennes France
- AGROCAMPUS OUEST; UMR1253; UMR Science et Technologie du Lait et de l'Oeuf; Rennes France
| | - A. Miyoshi
- Department of General Biology; Federal University of Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - V. Azevedo
- Department of General Biology; Federal University of Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - Y. Le Loir
- INRA; UMR 1253; Science et Technologie du Lait et de l'Oeuf; Rennes France
- AGROCAMPUS OUEST; UMR1253; UMR Science et Technologie du Lait et de l'Oeuf; Rennes France
| | - H. Falentin
- INRA; UMR 1253; Science et Technologie du Lait et de l'Oeuf; Rennes France
- AGROCAMPUS OUEST; UMR1253; UMR Science et Technologie du Lait et de l'Oeuf; Rennes France
| |
Collapse
|
33
|
Jaakkola ST, Pfeiffer F, Ravantti JJ, Guo Q, Liu Y, Chen X, Ma H, Yang C, Oksanen HM, Bamford DH. The complete genome of a viable archaeum isolated from 123-million-year-old rock salt. Environ Microbiol 2016; 18:565-79. [DOI: 10.1111/1462-2920.13130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/02/2015] [Accepted: 03/15/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Salla T. Jaakkola
- Department of Biosciences; Institute of Biotechnology; University of Helsinki; Helsinki Finland
| | - Friedhelm Pfeiffer
- Department of Membrane Biochemistry; Max Planck Institute of Biochemistry; München Germany
| | - Janne J. Ravantti
- Department of Biosciences; Institute of Biotechnology; University of Helsinki; Helsinki Finland
| | - Qinggong Guo
- State Key Laboratory of Virology; College of Life Sciences; Wuhan University; Wuhan China
| | - Ying Liu
- State Key Laboratory of Virology; College of Life Sciences; Wuhan University; Wuhan China
| | - Xiangdong Chen
- State Key Laboratory of Virology; College of Life Sciences; Wuhan University; Wuhan China
| | - Hongling Ma
- State Key Laboratory of Geomechanics and Geotechnical Engineering; Institute of Rock and Soil Mechanics; The Chinese Academy of Science; Wuhan China
| | - Chunhe Yang
- State Key Laboratory of Geomechanics and Geotechnical Engineering; Institute of Rock and Soil Mechanics; The Chinese Academy of Science; Wuhan China
| | - Hanna M. Oksanen
- Department of Biosciences; Institute of Biotechnology; University of Helsinki; Helsinki Finland
| | - Dennis H. Bamford
- Department of Biosciences; Institute of Biotechnology; University of Helsinki; Helsinki Finland
| |
Collapse
|
34
|
Santiago-Rodriguez TM, Fornaciari G, Luciani S, Dowd SE, Toranzos GA, Marota I, Cano RJ. Gut Microbiome of an 11th Century A.D. Pre-Columbian Andean Mummy. PLoS One 2015; 10:e0138135. [PMID: 26422376 PMCID: PMC4589460 DOI: 10.1371/journal.pone.0138135] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/25/2015] [Indexed: 01/30/2023] Open
Abstract
The process of natural mummification is a rare and unique process from which little is known about the resulting microbial community structure. In the present study, we characterized the microbiome of paleofeces, and ascending, transverse and descending colon of an 11th century A.D. pre-Columbian Andean mummy by 16S rRNA gene high-throughput sequencing and metagenomics. Firmicutes were the most abundant bacterial group, with Clostridium spp. comprising up to 96.2% of the mummified gut, while Turicibacter spp. represented 89.2% of the bacteria identified in the paleofeces. Microbiome profile of the paleofeces was unique when compared to previously characterized coprolites that did not undergo natural mummification. We identified DNA sequences homologous to Clostridium botulinum, Trypanosoma cruzi and human papillomaviruses (HPVs). Unexpectedly, putative antibiotic-resistance genes including beta-lactamases, penicillin-binding proteins, resistance to fosfomycin, chloramphenicol, aminoglycosides, macrolides, sulfa, quinolones, tetracycline and vancomycin, and multi-drug transporters, were also identified. The presence of putative antibiotic-resistance genes suggests that resistance may not necessarily be associated with a selective pressure of antibiotics or contact with European cultures. Identification of pathogens and antibiotic-resistance genes in ancient human specimens will aid in the understanding of the evolution of pathogens as a way to treat and prevent diseases caused by bacteria, microbial eukaryotes and viruses.
Collapse
Affiliation(s)
| | - Gino Fornaciari
- Department of Translational Research on New Technologies in Medicine and Surgery, Division of Paleopathology, University of Pisa, Pisa, Italy
- Center for Anthropological, Paleopathological and Historical Studies of the Sardinian and Mediterranean Populations, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Stefania Luciani
- Laboratory of Molecular Archaeo-Anthropology/ancient DNA, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Scot E. Dowd
- Molecular Research LP (MR DNA), Shallowater, Texas, United States of America
| | | | - Isolina Marota
- Laboratory of Molecular Archaeo-Anthropology/ancient DNA, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Raul J. Cano
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA, United States of America
- * E-mail:
| |
Collapse
|
35
|
Hwang GB, Heo KJ, Yun JH, Lee JE, Lee HJ, Nho CW, Bae GN, Jung JH. Antimicrobial Air Filters Using Natural Euscaphis japonica Nanoparticles. PLoS One 2015; 10:e0126481. [PMID: 25974109 PMCID: PMC4431859 DOI: 10.1371/journal.pone.0126481] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/03/2015] [Indexed: 11/19/2022] Open
Abstract
Controlling bioaerosols has become more important with increasing participation in indoor activities. Treatments using natural-product nanomaterials are a promising technique because of their relatively low toxicity compared to inorganic nanomaterials such as silver nanoparticles or carbon nanotubes. In this study, antimicrobial filters were fabricated from natural Euscaphis japonica nanoparticles, which were produced by nebulizing E. japonica extract. The coated filters were assessed in terms of pressure drop, antimicrobial activity, filtration efficiency, major chemical components, and cytotoxicity. Pressure drop and antimicrobial activity increased as a function of nanoparticle deposition time (590, 855, and 1150 µg/cm2(filter) at 3-, 6-, and 9-min depositions, respectively). In filter tests, the antimicrobial efficacy was greater against Staphylococcus epidermidis than Micrococcus luteus; ~61, ~73, and ~82% of M. luteus cells were inactivated on filters that had been coated for 3, 6, and 9 min, respectively, while the corresponding values were ~78, ~88, and ~94% with S. epidermidis. Although statistically significant differences in filtration performance were not observed between samples as a function of deposition time, the average filtration efficacy was slightly higher for S. epidermidis aerosols (~97%) than for M. luteus aerosols (~95%). High-performance liquid chromatography (HPLC) and electrospray ionization-tandem mass spectrometry (ESI/MS) analyses confirmed that the major chemical compounds in the E. japonica extract were 1(ß)-O-galloyl pedunculagin, quercetin-3-O-glucuronide, and kaempferol-3-O-glucoside. In vitro cytotoxicity and disk diffusion tests showed that E. japonica nanoparticles were less toxic and exhibited stronger antimicrobial activity toward some bacterial strains than a reference soluble nickel compound, which is classified as a human carcinogen. This study provides valuable information for the development of a bioaerosol control system that is environmental friendly and suitable for use in indoor environments.
Collapse
Affiliation(s)
- Gi Byoung Hwang
- Center For Environment, Health, and Welfare Research, Department of Energy and Environmental Engineering, Korea University of Science and Technology (UST), Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, Republic of Korea
- Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London, United Kingdom
| | - Ki Joon Heo
- Center For Environment, Health, and Welfare Research, Department of Energy and Environmental Engineering, Korea University of Science and Technology (UST), Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, Republic of Korea
- Aerosol and Bioengineering Laboratory, College of Engineering, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Ji Ho Yun
- Functional Food Center, Korea Institute of Science and Technology (KIST Gangneung Institute), Gangneung, Gangwon-do, Republic of Korea
| | - Jung Eun Lee
- Han-River Environment Research Center, National Institute of Environmental Research (NIER), Yangseo-myeon, Yangpyeong-gun, Gyeonggi-do, Republic of Korea
| | - Hee Ju Lee
- Functional Food Center, Korea Institute of Science and Technology (KIST Gangneung Institute), Gangneung, Gangwon-do, Republic of Korea
| | - Chu Won Nho
- Functional Food Center, Korea Institute of Science and Technology (KIST Gangneung Institute), Gangneung, Gangwon-do, Republic of Korea
| | - Gwi- Nam Bae
- Center For Environment, Health, and Welfare Research, Department of Energy and Environmental Engineering, Korea University of Science and Technology (UST), Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, Republic of Korea
| | - Jae Hee Jung
- Center For Environment, Health, and Welfare Research, Department of Energy and Environmental Engineering, Korea University of Science and Technology (UST), Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, Republic of Korea
| |
Collapse
|
36
|
Schwieterman EW, Cockell CS, Meadows VS. Nonphotosynthetic pigments as potential biosignatures. ASTROBIOLOGY 2015; 15:341-61. [PMID: 25941875 PMCID: PMC4442567 DOI: 10.1089/ast.2014.1178] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Previous work on possible surface reflectance biosignatures for Earth-like planets has typically focused on analogues to spectral features produced by photosynthetic organisms on Earth, such as the vegetation red edge. Although oxygenic photosynthesis, facilitated by pigments evolved to capture photons, is the dominant metabolism on our planet, pigmentation has evolved for multiple purposes to adapt organisms to their environment. We present an interdisciplinary study of the diversity and detectability of nonphotosynthetic pigments as biosignatures, which includes a description of environments that host nonphotosynthetic biologically pigmented surfaces, and a lab-based experimental analysis of the spectral and broadband color diversity of pigmented organisms on Earth. We test the utility of broadband color to distinguish between Earth-like planets with significant coverage of nonphotosynthetic pigments and those with photosynthetic or nonbiological surfaces, using both 1-D and 3-D spectral models. We demonstrate that, given sufficient surface coverage, nonphotosynthetic pigments could significantly impact the disk-averaged spectrum of a planet. However, we find that due to the possible diversity of organisms and environments, and the confounding effects of the atmosphere and clouds, determination of substantial coverage by biologically produced pigments would be difficult with broadband colors alone and would likely require spectrally resolved data.
Collapse
Affiliation(s)
- Edward W. Schwieterman
- University of Washington Astronomy Department, Seattle, Washington, USA
- NAI Virtual Planetary Laboratory, Seattle, Washington, USA
- University of Washington Astrobiology Program, Seattle, Washington, USA
| | - Charles S. Cockell
- University of Edinburgh School of Physics and Astronomy, Edinburgh, UK
- UK Centre for Astrobiology, Edinburgh, UK
| | - Victoria S. Meadows
- University of Washington Astronomy Department, Seattle, Washington, USA
- NAI Virtual Planetary Laboratory, Seattle, Washington, USA
- University of Washington Astrobiology Program, Seattle, Washington, USA
| |
Collapse
|
37
|
Investigation of the internal bacterial flora of Eurygaster integriceps (Hemiptera: Scutelleridae) and pathogenicity of the flora members. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0445-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Babahan I, Eyduran F, Coban EP, Orhan N, Kazar D, Biyik H. Spectroscopic and biological approach of Ni(II), Cu(II) and Co(II) complexes of 4-methoxy/ethoxybenzaldehyde thiosemicarbazone glyoxime. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 121:205-215. [PMID: 24239764 DOI: 10.1016/j.saa.2013.10.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/06/2013] [Accepted: 10/08/2013] [Indexed: 06/02/2023]
Abstract
Two novel vicinal dioxime ligands containing (4-methoxybenzaldehyde thiosemicarbazone glyoxime (L(1)H2) or 4-ethoxybenzaldehyde thiosemicarbazone glyoxime (L(2)H2)) thiosemicarbazone units were synthesized and characterized using (1)H NMR, (13)C NMR, HMQC, MS, infrared and, UV-VIS. spectroscopy, elemental analysis, and magnetic susceptibility measurements. Mononuclear nickel(II), copper(II) and cobalt(II) complexes with a metal:ligand ratio of 1:2 for L(1)H2 and L(2)H2 were also synthesized. The effect of pH and solvent on the absorption spectra of both ligands and complexes was determined. IR spectra show that the ligands act in a bidentate manner and coordinates N4 donor groups of the ligands to Ni(II), Cu(II) and Co(II) ions. The detection of H-bonding (O-H⋯O) in the [M(LH)2] metal complexes by IR spectra supported the square-planar MN4 coordination of mononuclear complexes. The antimicrobial activities of compounds L(1)H2, L(2)H2, and their Ni(II), Cu(II) and Co(II) complexes were evaluated using the disc diffusion method against 12 bacteria and 4 yeasts. The minimal inhibitory concentrations (MICs) against 7 bacteria and 3 yeasts were also determined. Among the test compounds attempted, L(1)H2, [Ni(L1H)2], [Cu(L1H)2], L2H2, [Ni(L2H)2] and [Cu(L2H)2] showed some activities against certain Gram-positive bacteria and some of the yeasts tested.
Collapse
Affiliation(s)
- Ilknur Babahan
- Adnan Menderes University, Faculty of Science and Art, Department of Chemistry, 09010 Aydin, Turkey.
| | - Fatih Eyduran
- Adnan Menderes University, Faculty of Science and Art, Department of Chemistry, 09010 Aydin, Turkey.
| | - Esin Poyrazoglu Coban
- Adnan Menderes University, Faculty of Science and Art, Department of Biology, 09010 Aydin, Turkey
| | - Nil Orhan
- Adnan Menderes University, Faculty of Science and Art, Department of Chemistry, 09010 Aydin, Turkey
| | - Didem Kazar
- Adnan Menderes University, Faculty of Science and Art, Department of Chemistry, 09010 Aydin, Turkey
| | - Halil Biyik
- Adnan Menderes University, Faculty of Science and Art, Department of Biology, 09010 Aydin, Turkey
| |
Collapse
|
39
|
Santiago-Rodriguez TM, Patrício AR, Rivera JI, Coradin M, Gonzalez A, Tirado G, Cano RJ, Toranzos GA. luxS in bacteria isolated from 25- to 40-million-year-old amber. FEMS Microbiol Lett 2013; 350:117-24. [PMID: 24102660 DOI: 10.1111/1574-6968.12275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 12/31/2022] Open
Abstract
Interspecies bacterial communication is mediated by autoinducer-2, whose synthesis depends on luxS. Due to the apparent universality of luxS (present in more than 40 bacterial species), it may have an ancient origin; however, no direct evidence is currently available. We amplified luxS in bacteria isolated from 25- to 40-million-year-old amber. The phylogenies and molecular clocks of luxS and the 16S rRNA gene from ancient and extant bacteria were determined as well. Luminescence assays using Vibrio harveyi BB170 aimed to determine the activity of luxS. While the phylogeny of luxS was very similar to that of extant Bacillus spp., amber isolates exhibited unique 16S rRNA gene phylogenies. This suggests that luxS may have been acquired by horizontal transfer millions of years ago. Molecular clocks of luxS suggest slow evolutionary rates, similar to those of the 16S rRNA gene and consistent with a conserved gene. Dendograms of the 16S rRNA gene and luxS show two separate clusters for the extant and ancient bacteria, confirming the uniqueness of the latter group.
Collapse
Affiliation(s)
- Tasha M Santiago-Rodriguez
- Environmental Microbiology Laboratory, Department of Biology, University of Puerto Rico, Rico, San Juan, Puerto Rico; Department of Pathology, University of California, San Diego, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Whole-Genome Sequencing of Micrococcus luteus Strain Modasa, of Indian Origin. GENOME ANNOUNCEMENTS 2013; 1:e0007613. [PMID: 23516205 PMCID: PMC3593314 DOI: 10.1128/genomea.00076-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hydrocarbon-degrading bacterium Micrococcus luteus strain Modasa was isolated from contaminated soil from Modasa, North Gujarat, India. Whole-genome sequencing and analysis provide an insight into the potentially important genes responsible for bioremediation.
Collapse
|
41
|
Dib JR, Liebl W, Wagenknecht M, Farías ME, Meinhardt F. Extrachromosomal genetic elements in Micrococcus. Appl Microbiol Biotechnol 2012; 97:63-75. [PMID: 23138713 DOI: 10.1007/s00253-012-4539-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/22/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
Micrococci are Gram-positive G + C-rich, nonmotile, nonspore-forming actinomycetous bacteria. Micrococcus comprises ten members, with Micrococcus luteus being the type species. Representatives of the genus play important roles in the biodegradation of xenobiotics, bioremediation processes, production of biotechnologically important enzymes or bioactive compounds, as test strains in biological assays for lysozyme and antibiotics, and as infective agents in immunocompromised humans. The first description of plasmids dates back approximately 28 years, when several extrachromosomal elements ranging in size from 1.5 to 30.2 kb were found in Micrococcus luteus. Up to the present, a number of circular plasmids conferring antibiotic resistance, the ability to degrade aromatic compounds, and osmotolerance are known, as well as cryptic elements with unidentified functions. Here, we review the Micrococcus extrachromosomal traits reported thus far including phages and the only quite recently described large linear extrachromosomal genetic elements, termed linear plasmids, which range in size from 75 kb (pJD12) to 110 kb (pLMA1) and which confer putative advantageous capabilities, such as antibiotic or heavy metal resistances (inferred from sequence analyses and curing experiments). The role of the extrachromosomal elements for the frequently proven ecological and biotechnological versatility of the genus will be addressed as well as their potential for the development and use as genetic tools.
Collapse
Affiliation(s)
- Julián Rafael Dib
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CONICET, Av. Belgrano y Pje. Caseros, 4000, Tucumán, Argentina
| | | | | | | | | |
Collapse
|
42
|
Kao CC, Chiang CK, Huang JW. Micrococcus species-related peritonitis in patients receiving peritoneal dialysis. Int Urol Nephrol 2012; 46:261-4. [DOI: 10.1007/s11255-012-0302-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/15/2012] [Indexed: 10/27/2022]
|
43
|
Sánchez B, Sánchez-Muñoz M, Muñoz-Vicente M, Cobas G, Portela R, Suárez S, González AE, Rodríguez N, Amils R. Photocatalytic elimination of indoor air biological and chemical pollution in realistic conditions. CHEMOSPHERE 2012; 87:625-630. [PMID: 22349060 DOI: 10.1016/j.chemosphere.2012.01.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 05/31/2023]
Abstract
The photocatalytic elimination of microorganisms from indoor air in realistic conditions and the feasibility of simultaneous elimination of chemical contaminants have been studied at laboratory scale. Transparent polymeric monoliths have been coated with sol-gel TiO(2) films and used as photocatalyst to treat real indoor air in a laboratory-scale single-step annular photocatalytic reactor. The analytical techniques used to characterize the air quality and analyze the results of the photocatalytic tests were: colony counting, microscopy and PCR with subsequent sequencing for microbial quantification and identification; automated thermal desorption coupled to gas chromatography with mass spectrometry detection for chemical analysis. The first experiments performed proved that photocatalysis based on UVA-irradiated TiO(2) for the reduction of the concentration of bacteria in the air could compete with the conventional photolytic treatment with UVC radiation, more expensive and hazardous. Simultaneously to the disinfection, the concentration of volatile organic compounds was greatly reduced, which adds value to this technology for real applications. The fungal colony number was not apparently modified.
Collapse
Affiliation(s)
- Benigno Sánchez
- CIEMAT, Photocatalytic Treatment of Pollutants in Air, Avda. Complutense, 40, Ed42, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Puyen ZM, Villagrasa E, Maldonado J, Esteve I, Solé A. Viability and Biomass of Micrococcus luteus DE2008 at Different Salinity Concentrations Determined by Specific Fluorochromes and CLSM-Image Analysis. Curr Microbiol 2011; 64:75-80. [DOI: 10.1007/s00284-011-0033-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/12/2011] [Indexed: 11/29/2022]
|
45
|
Hart KM, Szpak MT, Mahaney WC, Dohm JM, Jordan SF, Frazer AR, Allen CCR, Kelleher BP. A bacterial enrichment study and overview of the extractable lipids from paleosols in the Dry Valleys, Antarctica: implications for future Mars reconnaissance. ASTROBIOLOGY 2011; 11:303-321. [PMID: 21545270 DOI: 10.1089/ast.2010.0583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The Dry Valleys of Antarctica are one of the coldest and driest environments on Earth with paleosols in selected areas that date to the emplacement of tills by warm-based ice during the Early Miocene. Cited as an analogue to the martian surface, the ability of the Antarctic environment to support microbial life-forms is a matter of special interest, particularly with the upcoming NASA/ESA 2018 ExoMars mission. Lipid biomarkers were extracted and analyzed by gas chromatography--mass spectrometry to assess sources of organic carbon and evaluate the contribution of microbial species to the organic matter of the paleosols. Paleosol samples from the ice-free Dry Valleys were also subsampled and cultivated in a growth medium from which DNA was extracted with the explicit purpose of the positive identification of bacteria. Several species of bacteria were grown in solution and the genus identified. A similar match of the data to sequenced DNA showed that Alphaproteobacteria, Gammaproteobacteria, Bacteriodetes, and Actinobacteridae species were cultivated. The results confirm the presence of bacteria within some paleosols, but no assumptions have been made with regard to in situ activity at present. These results underscore the need not only to further investigate Dry Valley cryosols but also to develop reconnaissance strategies to determine whether such likely Earth-like environments on the Red Planet also contain life.
Collapse
Affiliation(s)
- Kris M Hart
- School of Chemical Sciences, Dublin City University, Dublin, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Microbial contamination of orthodontic buccal tubes from manufacturers. Int J Mol Sci 2010; 11:3349-56. [PMID: 20957099 PMCID: PMC2956099 DOI: 10.3390/ijms11093349] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 08/19/2010] [Accepted: 09/10/2010] [Indexed: 01/29/2023] Open
Abstract
This study aimed to test the sterility of new unused orthodontic buccal tubes received from manufacturers. Four different types of buccal tubes were used straight from the manufactures package without any additional sterilizing step. Of these buccal tubes tested, three genera of bacteria, implicated as opportunistic pathogens, namely Micrococcus luteus, Staphylococcus haemolyticus and Acinetobacter calcoaceticus were recovered from these buccal tubes. Our data showing microbial contamination on buccal tubes highlights the need of sterilization before clinical use. We also suggest that manufacturers should list the sterility state of orthodontic buccal tubes on their packaging or instructions stating the need for sterilization.
Collapse
|
48
|
Mauclaire L, Egli M. Effect of simulated microgravity on growth and production of exopolymeric substances ofMicrococcus luteusspace and earth isolates. ACTA ACUST UNITED AC 2010; 59:350-6. [DOI: 10.1111/j.1574-695x.2010.00683.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Panieri G, Lugli S, Manzi V, Roveri M, Schreiber BC, Palinska KA. Ribosomal RNA gene fragments from fossilized cyanobacteria identified in primary gypsum from the late Miocene, Italy. GEOBIOLOGY 2010; 8:101-111. [PMID: 20059556 DOI: 10.1111/j.1472-4669.2009.00230.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Earth scientists have searched for signs of microscopic life in ancient samples of permafrost, ice, deep-sea sediments, amber, salt and chert. Until now, evidence of cyanobacteria has not been reported in any studies of ancient DNA older than a few thousand years. Here, we investigate morphologically, biochemically and genetically primary evaporites deposited in situ during the late Miocene (Messinian) Salinity Crisis from the north-eastern Apennines of Italy. The evaporites contain fossilized bacterial structures having identical morphological forms as modern microbes. We successfully extracted and amplified genetic material belonging to ancient cyanobacteria from gypsum crystals dating back to 5.910-5.816 Ma, when the Mediterranean became a giant hypersaline brine pool. This finding represents the oldest ancient cyanobacterial DNA to date. Our clone library and its phylogenetic comparison with present cyanobacterial populations point to a marine origin for the depositional basin. This investigation opens the possibility of including fossil cyanobacterial DNA into the palaeo-reconstruction of various environments and could also be used to quantify the ecological importance of cyanobacteria through geological time. These genetic markers serve as biosignatures providing important clues about ancient life and begin a new discussion concerning the debate on the origin of late Miocene evaporites in the Mediterranean.
Collapse
Affiliation(s)
- G Panieri
- Dipartimento di Scienze della Terra e Geologico-Ambientali, Università degli Studi di Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
50
|
Maldonado J, Diestra E, Huang L, Domènech AM, Villagrasa E, Puyen ZM, Duran R, Esteve I, Solé A. Isolation and identification of a bacterium with high tolerance to lead and copper from a marine microbial mat in Spain. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0019-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|