1
|
Arshad Z, Shin KH, Hur J. Utilization and applications of stable isotope analysis for wastewater treatment systems: A review. ENVIRONMENTAL RESEARCH 2025; 264:120347. [PMID: 39528035 DOI: 10.1016/j.envres.2024.120347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Stable isotopic analysis (SIA), traditionally crucial in ecological and geochemical studies, has recently expanded its applications to include wastewater management among other fields. This method is instrumental in verifying natural attenuation processes and deepening understanding of operations within engineering systems, such as groundwater, drinking water, and wastewater treatment. This review explores recent advancements in SIA, emphasizing its significance and potential applications in wastewater treatment. We highlight how this analysis can trace various sources within wastewater treatment processes, elucidate the mechanisms responsible for organic matter and nutrient removal in biological treatments, and facilitate the analysis of microbial communities. The review discusses a wide range of isotopic analytical methods, from bulk analysis and compound-specific approaches, covering sample preparation and extraction techniques. We also examine advanced tools like gas chromatography - isotope ratio mass spectrometer (IRMS) and liquid chromatography-IRMS which enhance the accuracy of source identification and address the limitations of bulk analysis. Literature shows a positive correlation between δ15N assimilation in activated sludge and nitrogen removal performance in reactors. Additionally, the review assesses the role of SIA in identifying active microbes involved in the degradation of specific pollutants in biological wastewater treatment. Finally, we discuss current limitations of SIA in wastewater treatment and propose potential research directions to broaden its applicability.
Collapse
Affiliation(s)
- Zeshan Arshad
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Kyung-Hoon Shin
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, Gyeonggi-do, 15588, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
2
|
Steinberger Y, Doniger T, Applebaum I, Sherman C. Are Changes Occurring in Bacterial Taxa Community and Diversity with the Utilization of Different Substrates within SIR Measurements? Microorganisms 2024; 12:2034. [PMID: 39458343 PMCID: PMC11510085 DOI: 10.3390/microorganisms12102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
This research explores how the availability of substrates affects the regulation of soil microbial communities and the taxonomical composition of bacteria. The goal is to understand the impact of organic matter and substrate availability and quality on the diversity of soil bacteria. The study observed gradual changes in bacterial diversity in response to the addition of different substrate-induced respiration (SIR) substrates. Understanding the structure, dynamics, and functions of soil microbial communities is essential for assessing soil quality in sustainable agriculture. The preference for carbon sources among bacterial phyla is largely influenced by their life history and trophic strategies. Bacterial phyla like Proteobacteria, Bacteroidetes, and Actinobacteria, which thrive in nutrient-rich environments, preferentially utilize glucose. On the other hand, oligotrophic bacterial phyla such as Acidobacteria or Chloroflexi, which are found in lower numbers, have a lower ability to utilize labile C. The main difference between the two lies in their substrate utilization strategies. Understanding these distinct strategies is crucial for uncovering the bacterial functional traits involved in soil organic carbon turnover. Additionally, adding organic matter can promote the growth of copiotrophic bacteria, thus enhancing soil fertility.
Collapse
Affiliation(s)
- Yosef Steinberger
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (T.D.); (I.A.); (C.S.)
| | | | | | | |
Collapse
|
3
|
Rohrbach S, Gkoutselis G, Mauel A, Telli N, Senker J, Ho A, Rambold G, Horn MA. Setting new standards: Multiphasic analysis of microplastic mineralization by fungi. CHEMOSPHERE 2024; 349:141025. [PMID: 38142885 DOI: 10.1016/j.chemosphere.2023.141025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/25/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Plastic materials provide numerous benefits. However, properties such as durability and resistance to degradation that make plastic attractive for variable applications likewise foster accumulation in the environment. Fragmentation of plastics leads to the formation of potentially hazardous microplastic, of which a considerable amount derives from polystyrene. Here, we investigated the biodegradation of polystyrene by the tropical sooty mold fungus Capnodium coffeae in different experimental setups. Growth of C. coffeae was stimulated significantly when cultured in presence of plastic polymers rather than in its absence. Stable isotope tracing using 13C-enriched polystyrene particles combined with cavity ring-down spectroscopy showed that the fungus mineralized polystyrene traces. However, phospholipid fatty acid stable isotope probing indicated only marginal assimilation of polystyrene-13C by C. coffeae in liquid cultures. NMR spectroscopic analysis of residual styrene contents prior to and after incubation revealed negligible changes in concentration. Thus, this study suggests a plastiphilic life style of C. coffeae despite minor usage of plastic as a carbon source and the general capability of sooty mold fungi to stimulate polystyrene mineralization, and proposes new standards to identify and unambiguously demonstrate plastic degrading capabilities of microbes.
Collapse
Affiliation(s)
- Stephan Rohrbach
- Institute of Microbiology, Leibniz University Hannover, 30419 Hannover, Germany
| | | | - Anika Mauel
- Inorganic Chemistry III and Northern Bavarian NMR Centre University of Bayreuth, 95440 Bayreuth, Germany
| | - Nihal Telli
- Department of Mycology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Jürgen Senker
- Inorganic Chemistry III and Northern Bavarian NMR Centre University of Bayreuth, 95440 Bayreuth, Germany
| | - Adrian Ho
- Institute of Microbiology, Leibniz University Hannover, 30419 Hannover, Germany
| | - Gerhard Rambold
- Department of Mycology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Marcus A Horn
- Institute of Microbiology, Leibniz University Hannover, 30419 Hannover, Germany.
| |
Collapse
|
4
|
Hartmann M, Herzog C, Brunner I, Stierli B, Meyer F, Buchmann N, Frey B. Long-term mitigation of drought changes the functional potential and life-strategies of the forest soil microbiome involved in organic matter decomposition. Front Microbiol 2023; 14:1267270. [PMID: 37840720 PMCID: PMC10570739 DOI: 10.3389/fmicb.2023.1267270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Climate change can alter the flow of nutrients and energy through terrestrial ecosystems. Using an inverse climate change field experiment in the central European Alps, we explored how long-term irrigation of a naturally drought-stressed pine forest altered the metabolic potential of the soil microbiome and its ability to decompose lignocellulolytic compounds as a critical ecosystem function. Drought mitigation by a decade of irrigation stimulated profound changes in the functional capacity encoded in the soil microbiome, revealing alterations in carbon and nitrogen metabolism as well as regulatory processes protecting microorganisms from starvation and desiccation. Despite the structural and functional shifts from oligotrophic to copiotrophic microbial lifestyles under irrigation and the observation that different microbial taxa were involved in the degradation of cellulose and lignin as determined by a time-series stable-isotope probing incubation experiment with 13C-labeled substrates, degradation rates of these compounds were not affected by different water availabilities. These findings provide new insights into the impact of precipitation changes on the soil microbiome and associated ecosystem functioning in a drought-prone pine forest and will help to improve our understanding of alterations in biogeochemical cycling under a changing climate.
Collapse
Affiliation(s)
- Martin Hartmann
- Department of Environmental Systems Science, Sustainable Agroecosystems, Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Claude Herzog
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Grassland Sciences, Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Beat Stierli
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Folker Meyer
- Data Science, Institute for AI in Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Argonne National Laboratory, Argonne, IL, United States
- Computation Institute, University of Chicago, Chicago, IL, United States
- Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Nina Buchmann
- Department of Environmental Systems Science, Grassland Sciences, Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
5
|
Kim J, Hwangbo M, Shih CH, Chu KH. Advances and perspectives of using stable isotope probing (SIP)-based technologies in contaminant biodegradation. WATER RESEARCH X 2023; 20:100187. [PMID: 37671037 PMCID: PMC10477051 DOI: 10.1016/j.wroa.2023.100187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 09/07/2023]
Abstract
Stable isotope probing (SIP) is a powerful tool to study microbial community structure and function in both nature and engineered environments. Coupling with advanced genomics and other techniques, SIP studies have generated substantial information to allow researchers to draw a clearer picture of what is occurring in complex microbial ecosystems. This review provides an overview of the advances of SIP-based technologies over time, summarizes the status of SIP applications to contaminant biodegradation, provides critical perspectives on ecological interactions within the community, and important factors (controllable and non-controllable) to be considered in SIP experimental designs and data interpretation. Current trend and perspectives of adapting SIP techniques for environmental applications are also discussed.
Collapse
Affiliation(s)
- Jinha Kim
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
- School of Earth, Environmental and Marine Sciences, The University of Texas – Rio Grande Valley, Brownsville, TX, USA
| | - Chih-Hsuan Shih
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| |
Collapse
|
6
|
Vyshenska D, Sampara P, Singh K, Tomatsu A, Kauffman WB, Nuccio EE, Blazewicz SJ, Pett-Ridge J, Louie KB, Varghese N, Kellom M, Clum A, Riley R, Roux S, Eloe-Fadrosh EA, Ziels RM, Malmstrom RR. A standardized quantitative analysis strategy for stable isotope probing metagenomics. mSystems 2023; 8:e0128022. [PMID: 37377419 PMCID: PMC10469821 DOI: 10.1128/msystems.01280-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/19/2023] [Indexed: 06/29/2023] Open
Abstract
Stable isotope probing (SIP) facilitates culture-independent identification of active microbial populations within complex ecosystems through isotopic enrichment of nucleic acids. Many DNA-SIP studies rely on 16S rRNA gene sequences to identify active taxa, but connecting these sequences to specific bacterial genomes is often challenging. Here, we describe a standardized laboratory and analysis framework to quantify isotopic enrichment on a per-genome basis using shotgun metagenomics instead of 16S rRNA gene sequencing. To develop this framework, we explored various sample processing and analysis approaches using a designed microbiome where the identity of labeled genomes and their level of isotopic enrichment were experimentally controlled. With this ground truth dataset, we empirically assessed the accuracy of different analytical models for identifying active taxa and examined how sequencing depth impacts the detection of isotopically labeled genomes. We also demonstrate that using synthetic DNA internal standards to measure absolute genome abundances in SIP density fractions improves estimates of isotopic enrichment. In addition, our study illustrates the utility of internal standards to reveal anomalies in sample handling that could negatively impact SIP metagenomic analyses if left undetected. Finally, we present SIPmg, an R package to facilitate the estimation of absolute abundances and perform statistical analyses for identifying labeled genomes within SIP metagenomic data. This experimentally validated analysis framework strengthens the foundation of DNA-SIP metagenomics as a tool for accurately measuring the in situ activity of environmental microbial populations and assessing their genomic potential. IMPORTANCE Answering the questions, "who is eating what?" and "who is active?" within complex microbial communities is paramount for our ability to model, predict, and modulate microbiomes for improved human and planetary health. These questions can be pursued using stable isotope probing to track the incorporation of labeled compounds into cellular DNA during microbial growth. However, with traditional stable isotope methods, it is challenging to establish links between an active microorganism's taxonomic identity and genome composition while providing quantitative estimates of the microorganism's isotope incorporation rate. Here, we report an experimental and analytical workflow that lays the foundation for improved detection of metabolically active microorganisms and better quantitative estimates of genome-resolved isotope incorporation, which can be used to further refine ecosystem-scale models for carbon and nutrient fluxes within microbiomes.
Collapse
Affiliation(s)
- Dariia Vyshenska
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Pranav Sampara
- Department of Civil Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kanwar Singh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Andy Tomatsu
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - W. Berkeley Kauffman
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Erin E. Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Steven J. Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, California, USA
| | - Katherine B. Louie
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Neha Varghese
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Matthew Kellom
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Alicia Clum
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Robert Riley
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Emiley A. Eloe-Fadrosh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Ryan M. Ziels
- Department of Civil Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rex R. Malmstrom
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
7
|
Jameson E, Taubert M, Angel R, Coyotzi S, Chen Y, Eyice Ö, Schäfer H, Murrell JC, Neufeld JD, Dumont MG. DNA-, RNA-, and Protein-Based Stable-Isotope Probing for High-Throughput Biomarker Analysis of Active Microorganisms. Methods Mol Biol 2023; 2555:261-282. [PMID: 36306091 DOI: 10.1007/978-1-0716-2795-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Stable-isotope probing (SIP) enables researchers to target active populations within complex microbial communities, which is achieved by providing growth substrates enriched in heavy isotopes, usually in the form of 13C, 18O, or 15N. After growth on the substrate and subsequent extraction of microbial biomarkers, typically nucleic acids or proteins, the SIP technique is used for the recovery and analysis of isotope-labelled biomarkers from active microbial populations. In the years following the initial development of DNA- and RNA-based SIP, it was common practice to characterize labelled populations by targeted gene analysis. Such approaches usually involved fingerprint-based analyses or sequencing clone libraries containing 16S rRNA genes or functional marker gene amplicons. Although molecular fingerprinting remains a valuable approach for rapid confirmation of isotope labelling, recent advances in sequencing technology mean that it is possible to obtain affordable and comprehensive amplicon profiles, or even metagenomes and metatranscriptomes from SIP experiments. Not only can the abundance of microbial groups be inferred from metagenomes, but researchers can bin, assemble, and explore individual genomes to build hypotheses about the metabolic capabilities of labelled microorganisms. Analysis of labelled mRNA is a more recent advance that can provide independent metatranscriptome-based analysis of active microorganisms. The power of metatranscriptomics is that mRNA abundance often correlates closely with the corresponding activity of encoded enzymes, thus providing insight into microbial metabolism at the time of sampling. Together, these advances have improved the sensitivity of SIP methods and allowed using labelled substrates at environmentally relevant concentrations. Particularly as methods improve and costs continue to drop, we expect that the integration of SIP with multiple omics-based methods will become prevalent components of microbial ecology studies, leading to further breakthroughs in our understanding of novel microbial populations and elucidation of the metabolic function of complex microbial communities. In this chapter, we provide protocols for obtaining labelled DNA, RNA, and proteins that can be used for downstream omics-based analyses.
Collapse
Affiliation(s)
- Eleanor Jameson
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Martin Taubert
- Aquatic Geochemistry, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Roey Angel
- Soil & Water Research Infrastructure and Institute of Soil Biology, Biology Centre CAS, České Budějovice, Czechia
| | - Sara Coyotzi
- Department of Biology, University of Waterloo, Waterloo, Canada
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Özge Eyice
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Hendrik Schäfer
- School of Life Sciences, University of Warwick, Coventry, UK
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, Waterloo, Canada
| | - Marc G Dumont
- School of Biological Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
8
|
Dawson RA, Crombie AT, Jansen RS, Smith TJ, Nichol T, Murrell C. Peering down the sink: A review of isoprene metabolism by bacteria. Environ Microbiol 2022; 25:786-799. [PMID: 36567445 DOI: 10.1111/1462-2920.16325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Isoprene (2-methyl-1,3-butadiene) is emitted to the atmosphere each year in sufficient quantities to rival methane (>500 Tg C yr-1 ), primarily due to emission by trees and other plants. Chemical reactions of isoprene with other atmospheric compounds, such as hydroxyl radicals and inorganic nitrogen species (NOx ), have implications for global warming and local air quality, respectively. For many years, it has been estimated that soil-dwelling bacteria consume a significant amount of isoprene (~20 Tg C yr-1 ), but the mechanisms underlying the biological sink for isoprene have been poorly understood. Studies have indicated or confirmed the ability of diverse bacterial genera to degrade isoprene, whether by the canonical iso-type isoprene degradation pathway or through other less well-characterized mechanisms. Here, we review current knowledge of isoprene metabolism and highlight key areas for further research. In particular, examples of isoprene-degraders that do not utilize the isoprene monooxygenase have been identified in recent years. This has fascinating implications both for the mechanism of isoprene uptake by bacteria, and also for the ecology of isoprene-degraders in the environments.
Collapse
Affiliation(s)
- Robin A Dawson
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andrew T Crombie
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Robert S Jansen
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Thomas J Smith
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Tim Nichol
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
9
|
Kröber E, Mankowski A, Schäfer H. Microorganisms associated with Sporobolus anglicus, an invasive dimethylsulfoniopropionate producing salt marsh plant, are an unrecognized sink for dimethylsulfide. Front Microbiol 2022; 13:950460. [PMID: 36246216 PMCID: PMC9563715 DOI: 10.3389/fmicb.2022.950460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background Saltmarshes are hotspots of organosulfur compound cycling due to production of dimethylsulfoniopropionate (DMSP) by benthic microorganisms, macroalgae, and saltmarsh vegetation. Degradation of DMSP is a source of dimethylsulfide (DMS), an important precursor for formation of secondary organic aerosol. Microorganisms degrading DMS play a role in controlling the amount of DMS available for emission into the atmosphere. Previous work has implicated sediment microbial populations as a major sink for DMS. Here, we show that Sporobolus anglicus (previously known as Spartina anglica), a widely distributed saltmarsh plant, is colonized by DMS-degrading microorganisms. Methods Dimethylsulfide degradation potential was assessed by gas chromatography and 13C-DMS stable isotope probing, microbial community diversity and functional genetic potential in phyllosphere and rhizosphere samples was assessed by high-throughput sequencing of 16S rRNA gene amplicons, cloning and sequencing of methanethiol oxidase genes, and by metagenomic analysis of phyllosphere microbial communities. Results The DMS degradation potential of microbial communities recovered from phyllosphere and rhizosphere samples was similar. Active DMS-degraders were identified by 13C-DMS stable isotope probing and included populations related to Methylophaga and other Piscirickettsiaceae in rhizosphere samples. DMS-degraders in the phyllosphere included Xanthomonadaceae and Halothiobacillaceae. The diversity in sediment samples of the methanethiol oxidase (mtoX) gene, a marker for metabolism of methanethiol during DMS and DMSP degradation, was similar to previously detected saltmarsh mtoX, including those of Methylophaga and Methylococcaeae. Phyllosphere mtoX genes were distinct from sediment mtoX and did not include close relatives of cultivated bacteria. Microbial diversity in the phyllosphere of S. anglicus was distinct compared to those of model plants such as rice, soybean, clover and Arabidopsis and showed a dominance of Gammaproteobacteria rather than Alphaproteobacteria. Conclusion The potential for microbial DMS degradation in the phyllosphere and rhizosphere of Sporobolus anglicus suggest that DMS cycling in saltmarshes is more complex than previously recognised and calls for a more detailed assessment of how aboveground activities affect fluxes of DMS.
Collapse
Affiliation(s)
- Eileen Kröber
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Anna Mankowski
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Hendrik Schäfer
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
10
|
Polerecky L, Eichner M, Masuda T, Zavřel T, Rabouille S, Campbell DA, Halsey K. Calculation and Interpretation of Substrate Assimilation Rates in Microbial Cells Based on Isotopic Composition Data Obtained by nanoSIMS. Front Microbiol 2021; 12:621634. [PMID: 34917040 PMCID: PMC8670600 DOI: 10.3389/fmicb.2021.621634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Stable isotope probing (SIP) combined with nano-scale secondary ion mass spectrometry (nanoSIMS) is a powerful approach to quantify assimilation rates of elements such as C and N into individual microbial cells. Here, we use mathematical modeling to investigate how the derived rate estimates depend on the model used to describe substrate assimilation by a cell during a SIP incubation. We show that the most commonly used model, which is based on the simplifying assumptions of linearly increasing biomass of individual cells over time and no cell division, can yield underestimated assimilation rates when compared to rates derived from a model that accounts for cell division. This difference occurs because the isotopic labeling of a dividing cell increases more rapidly over time compared to a non-dividing cell and becomes more pronounced as the labeling increases above a threshold value that depends on the cell cycle stage of the measured cell. Based on the modeling results, we present formulae for estimating assimilation rates in cells and discuss their underlying assumptions, conditions of applicability, and implications for the interpretation of intercellular variability in assimilation rates derived from nanoSIMS data, including the impacts of storage inclusion metabolism. We offer the formulae as a Matlab script to facilitate rapid data evaluation by nanoSIMS users.
Collapse
Affiliation(s)
- Lubos Polerecky
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Meri Eichner
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Takako Masuda
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Tomáš Zavřel
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Sophie Rabouille
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-mer, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, Banyuls-sur-mer, France
| | | | - Kimberly Halsey
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
11
|
Zhang H, Lu Y, Li Y, Wang L, Zhang W, Wang L, Niu L, Jia Z. Bacterial contribution to 17β-estradiol mineralization in lake sediment as revealed by 13C-DNA stable isotope probing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117505. [PMID: 34126514 DOI: 10.1016/j.envpol.2021.117505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
The accumulation of estrogens in aquatic environments has drawn increasing public concern due to their adverse effects on aquatic ecosystems and human health. Bacteria play important roles in eliminating estrogens from the environment, but knowledge of the identity and functions of the microorganisms involved in metabolizing these steroid hormones in the natural microbial communities is lacking. Here, we added 13C-17β-estradiol (13C-E2) to sediments collected from Zhushan (ZS) Bay, Meiliang (ML) Bay, Gonghu (GH) Bay, and the central area (CA) of the Taihu Lake. The indigenous assimilators of E2 in the sediments were recognized using 13C-DNA stable isotope probing (DNA-SIP), and their effects on 13C-E2 mineralization were studied under aerobic condition. During the 30-day incubation period, ZS Bay had the highest cumulative percentage of 13C-E2 mineralization to 13CO2 (65.5%), while CA presented the lowest (51.4%). Based on DNA-SIP, we saw that Novosphingobium, Ralstonia, Pseudomonas, Sphingomonas, Nitrosomonas, and Alcaligenes were involved in E2-derived 13C assimilation for the entire incubation period. Acinetobacter, Flavobacterium, and Mycobacterium only assimilated 13C for the first half of the incubation. H16 was identified as an E2 assimilator for the first time in this study. In addition, the temporal changes in assimilator abundances during the incubation period indicated that these genera played dominant roles at different stages in the process of E2 biodegradation. The bacteria engaged in the assimilation of E2 in situ were identified, and the rate of increase in the relative abundance of assimilators was significantly (P < 0.05) and positively correlated with the E2 mineralization in sediments. This information enhances our knowledge of in situ E2 biodegradation and provides a potential resource that could be used to eliminate estrogens in sediments.
Collapse
Affiliation(s)
- Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yin Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Lei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| |
Collapse
|
12
|
Chen SC, Budhraja R, Adrian L, Calabrese F, Stryhanyuk H, Musat N, Richnow HH, Duan GL, Zhu YG, Musat F. Novel clades of soil biphenyl degraders revealed by integrating isotope probing, multi-omics, and single-cell analyses. ISME JOURNAL 2021; 15:3508-3521. [PMID: 34117322 PMCID: PMC8630052 DOI: 10.1038/s41396-021-01022-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 11/23/2022]
Abstract
Most microorganisms in the biosphere remain uncultured and poorly characterized. Although the surge in genome sequences has enabled insights into the genetic and metabolic properties of uncultured microorganisms, their physiology and ecological roles cannot be determined without direct probing of their activities in natural habitats. Here we employed an experimental framework coupling genome reconstruction and activity assays to characterize the largely uncultured microorganisms responsible for aerobic biodegradation of biphenyl as a proxy for a large class of environmental pollutants, polychlorinated biphenyls. We used 13C-labeled biphenyl in contaminated soils and traced the flow of pollutant-derived carbon into active cells using single-cell analyses and protein–stable isotope probing. The detection of 13C-enriched proteins linked biphenyl biodegradation to the uncultured Alphaproteobacteria clade UBA11222, which we found to host a distinctive biphenyl dioxygenase gene widely retrieved from contaminated environments. The same approach indicated the capacity of Azoarcus species to oxidize biphenyl and suggested similar metabolic abilities for species of Rugosibacter. Biphenyl oxidation would thus represent formerly unrecognized ecological functions of both genera. The quantitative role of these microorganisms in pollutant degradation was resolved using single-cell-based uptake measurements. Our strategy advances our understanding of microbially mediated biodegradation processes and has general application potential for elucidating the ecological roles of uncultured microorganisms in their natural habitats.
Collapse
Affiliation(s)
- Song-Can Chen
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Rohit Budhraja
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Lorenz Adrian
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - Federica Calabrese
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Gui-Lan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China. .,Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 361021, Xiamen, China.
| | - Florin Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany.
| |
Collapse
|
13
|
Sieradzki ET, Morando M, Fuhrman JA. Metagenomics and Quantitative Stable Isotope Probing Offer Insights into Metabolism of Polycyclic Aromatic Hydrocarbon Degraders in Chronically Polluted Seawater. mSystems 2021; 6:e00245-21. [PMID: 33975968 PMCID: PMC8125074 DOI: 10.1128/msystems.00245-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022] Open
Abstract
Bacterial biodegradation is a significant contributor to remineralization of polycyclic aromatic hydrocarbons (PAHs)-toxic and recalcitrant components of crude oil as well as by-products of partial combustion chronically introduced into seawater via atmospheric deposition. The Deepwater Horizon oil spill demonstrated the speed at which a seed PAH-degrading community maintained by chronic inputs responds to acute pollution. We investigated the diversity and functional potential of a similar seed community in the chronically polluted Port of Los Angeles (POLA), using stable isotope probing with naphthalene, deep-sequenced metagenomes, and carbon incorporation rate measurements at the port and in two sites in the San Pedro Channel. We demonstrate the ability of the community of degraders at the POLA to incorporate carbon from naphthalene, leading to a quick shift in microbial community composition to be dominated by the normally rare Colwellia and Cycloclasticus We show that metagenome-assembled genomes (MAGs) belonged to these naphthalene degraders by matching their 16S-rRNA gene with experimental stable isotope probing data. Surprisingly, we did not find a full PAH degradation pathway in those genomes, even when combining genes from the entire microbial community, leading us to hypothesize that promiscuous dehydrogenases replace canonical naphthalene degradation enzymes in this site. We compared metabolic pathways identified in 29 genomes whose abundance increased in the presence of naphthalene to generate genomic-based recommendations for future optimization of PAH bioremediation at the POLA, e.g., ammonium as opposed to urea, heme or hemoproteins as an iron source, and polar amino acids.IMPORTANCE Oil spills in the marine environment have a devastating effect on marine life and biogeochemical cycles through bioaccumulation of toxic hydrocarbons and oxygen depletion by hydrocarbon-degrading bacteria. Oil-degrading bacteria occur naturally in the ocean, especially where they are supported by chronic inputs of oil or other organic carbon sources, and have a significant role in degradation of oil spills. Polycyclic aromatic hydrocarbons are the most persistent and toxic component of crude oil. Therefore, the bacteria that can break those molecules down are of particular importance. We identified such bacteria at the Port of Los Angeles (POLA), one of the busiest ports worldwide, and characterized their metabolic capabilities. We propose chemical targets based on those analyses to stimulate the activity of these bacteria in case of an oil spill in the Port POLA.
Collapse
Affiliation(s)
- Ella T Sieradzki
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Michael Morando
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
14
|
Lerner H, Öztürk B, Dohrmann AB, Thomas J, Marchal K, De Mot R, Dehaen W, Tebbe CC, Springael D. DNA-SIP and repeated isolation corroborate Variovorax as a key organism in maintaining the genetic memory for linuron biodegradation in an agricultural soil. FEMS Microbiol Ecol 2021; 97:6204700. [PMID: 33784375 DOI: 10.1093/femsec/fiab051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/25/2021] [Indexed: 11/14/2022] Open
Abstract
The frequent exposure of agricultural soils to pesticides can lead to microbial adaptation, including the development of dedicated microbial populations that utilize the pesticide compound as a carbon and energy source. Soil from an agricultural field in Halen (Belgium) with a history of linuron exposure has been studied for its linuron-degrading bacterial populations at two time points over the past decade and Variovorax was appointed as a key linuron degrader. Like most studies on pesticide degradation, these studies relied on isolates that were retrieved through bias-prone enrichment procedures and therefore might not represent the in situ active pesticide-degrading populations. In this study, we revisited the Halen field and applied, in addition to enrichment-based isolation, DNA stable isotope probing (DNA-SIP), to identify in situ linuron-degrading bacteria in linuron-exposed soil microcosms. Linuron dissipation was unambiguously linked to Variovorax and its linuron catabolic genes and might involve the synergistic cooperation between two species. Additionally, two novel linuron-mineralizing Variovorax isolates were obtained with high 16S rRNA gene sequence similarity to strains isolated from the same field a decade earlier. The results confirm Variovorax as a prime in situ degrader of linuron in the studied agricultural field soil and corroborate the genus as key for maintaining the genetic memory of linuron degradation functionality in that field.
Collapse
Affiliation(s)
- Harry Lerner
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Başak Öztürk
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Anja B Dohrmann
- Thünen Institute of Biodiversity, Bundesallee 65, 388116 Braunschweig, Germany
| | - Joice Thomas
- Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics & Department of Information Technology, University of Ghent, iGent Toren, Technologiepark 126, B-9052 Ghent, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics, KU Leuven, B-3001 Leuven, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Christoph C Tebbe
- Thünen Institute of Biodiversity, Bundesallee 65, 388116 Braunschweig, Germany
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
15
|
Hetz SA, Horn MA. Burkholderiaceae Are Key Acetate Assimilators During Complete Denitrification in Acidic Cryoturbated Peat Circles of the Arctic Tundra. Front Microbiol 2021; 12:628269. [PMID: 33613495 PMCID: PMC7892595 DOI: 10.3389/fmicb.2021.628269] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/18/2021] [Indexed: 01/23/2023] Open
Abstract
Cryoturbated peat circles (pH 4) in the Eastern European Tundra harbor up to 2 mM pore water nitrate and emit the greenhouse gas N2O like heavily fertilized agricultural soils in temperate regions. The main process yielding N2O under oxygen limited conditions is denitrification, which is the sequential reduction of nitrate/nitrite to N2O and/or N2. N2O reduction to N2 is impaired by pH < 6 in classical model denitrifiers and many environments. Key microbes of peat circles are important but largely unknown catalysts for C- and N-cycling associated N2O fluxes. Thus, we hypothesized that the peat circle community includes hitherto unknown taxa and is essentially unable to efficiently perform complete denitrification, i.e., reduce N2O, due to a low in situ pH. 16S rRNA analysis indicated a diverse active community primarily composed of the bacterial class-level taxa Alphaproteobacteria, Acidimicrobiia, Acidobacteria, Verrucomicrobiae, and Bacteroidia, as well as archaeal Nitrososphaeria. Euryarchaeota were not detected. 13C2- and 12C2-acetate supplemented anoxic microcosms with endogenous nitrate and acetylene at an in situ near pH of 4 were used to assess acetate dependent carbon flow, denitrification and N2O production. Initial nitrate and acetate were consumed within 6 and 11 days, respectively, and primarily converted to CO2 and N2, suggesting complete acetate fueled denitrification at acidic pH. Stable isotope probing coupled to 16S rRNA analysis via Illumina MiSeq amplicon sequencing identified acetate consuming key players of the family Burkholderiaceae during complete denitrification correlating with Rhodanobacter spp. The archaeal community consisted primarily of ammonia-oxidizing Archaea of Nitrososphaeraceae, and was stable during the incubation. The collective data indicate that peat circles (i) host acid-tolerant denitrifiers capable of complete denitrification at pH 4-5.5, (ii) other parameters like carbon availability rather than pH are possible reasons for high N2O emissions in situ, and (iii) Burkholderiaceae are responsive key acetate assimilators co-occurring with Rhodanobacter sp. during denitrification, suggesting both organisms being associated with acid-tolerant denitrification in peat circles.
Collapse
Affiliation(s)
- Stefanie A Hetz
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| | - Marcus A Horn
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
16
|
Kumar Awasthi M, Ravindran B, Sarsaiya S, Chen H, Wainaina S, Singh E, Liu T, Kumar S, Pandey A, Singh L, Zhang Z. Metagenomics for taxonomy profiling: tools and approaches. Bioengineered 2020; 11:356-374. [PMID: 32149573 PMCID: PMC7161568 DOI: 10.1080/21655979.2020.1736238] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/25/2022] Open
Abstract
The study of metagenomics is an emerging field that identifies the total genetic materials in an organism along with the set of all genetic materials like deoxyribonucleic acid and ribose nucleic acid, which play a key role with the maintenance of cellular functions. The best part of this technology is that it gives more flexibility to environmental microbiologists to instantly pioneer the immense genetic variability of microbial communities. However, it is intensively complex to identify the suitable sequencing measures of any specific gene that can exclusively indicate the involvement of microbial metagenomes and be able to advance valuable results about these communities. This review provides an overview of the metagenomic advancement that has been advantageous for aggregation of more knowledge about specific genes, microbial communities and its metabolic pathways. More specific drawbacks of metagenomes technology mainly depend on sequence-based analysis. Therefore, this 'targeted based metagenomics' approach will give comprehensive knowledge about the ecological, evolutionary and functional sequence of significantly important genes that naturally exist in living beings either human, animal and microorganisms from distinctive ecosystems.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, China
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - B. Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, South Korea
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hongyu Chen
- Institute of Biology, Freie Universität Berlin Altensteinstr, Berlin, Germany
| | - Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Ekta Singh
- CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
17
|
Liu S, Baetge N, Comstock J, Opalk K, Parsons R, Halewood E, English CJ, Giovannoni S, Bolaños LM, Nelson CE, Vergin K, Carlson CA. Stable Isotope Probing Identifies Bacterioplankton Lineages Capable of Utilizing Dissolved Organic Matter Across a Range of Bioavailability. Front Microbiol 2020; 11:580397. [PMID: 33117322 PMCID: PMC7575717 DOI: 10.3389/fmicb.2020.580397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/03/2020] [Indexed: 01/04/2023] Open
Abstract
Bacterioplankton consume about half of the dissolved organic matter (DOM) produced by phytoplankton. DOM released from phytoplankton consists of a myriad of compounds that span a range of biological reactivity from labile to recalcitrant. Linking specific bacterioplankton lineages to the incorporation of DOM compounds into biomass is important to understand microbial niche partitioning. We conducted a series of DNA-stable isotope probing (SIP) experiments using 13C-labeled substrates of varying lability including amino acids, cyanobacteria lysate, and DOM from diatom and cyanobacteria isolates concentrated on solid phase extraction PPL columns (SPE-DOM). Amendments of substrates into Sargasso Sea bacterioplankton communities were conducted to explore microbial response and DNA-SIP was used to determine which lineages of Bacteria and Archaea were responsible for uptake and incorporation. Greater increases in bacterioplankton abundance and DOC removal were observed in incubations amended with cyanobacteria-derived lysate and amino acids compared to the SPE-DOM, suggesting that the latter retained proportionally more recalcitrant DOM compounds. DOM across a range of bioavailability was utilized by diverse prokaryotic taxa with copiotrophs becoming the most abundant 13C-incorporating taxa in the amino acid treatment and oligotrophs becoming the most abundant 13C-incorporating taxa in SPE-DOM treatments. The lineages that responded to SPE-DOM amendments were also prevalent in the mesopelagic of the Sargasso Sea, suggesting that PPL extraction of phytoplankton-derived DOM isolates compounds of ecological relevance to oligotrophic heterotrophic bacterioplankton. Our study indicates that DOM quality is an important factor controlling the diversity of the microbial community response, providing insights into the roles of different bacterioplankton in resource exploitation and efficiency of marine carbon cycling.
Collapse
Affiliation(s)
- Shuting Liu
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Nicholas Baetge
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jacqueline Comstock
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Keri Opalk
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Rachel Parsons
- Bermuda Institute of Ocean Sciences, Saint George, Bermuda
| | - Elisa Halewood
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Chance J English
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Stephen Giovannoni
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Luis M Bolaños
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Craig E Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Hawai'i Sea Grant, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Kevin Vergin
- Microbial DNA Analytics, Phoenix, OR, United States
| | - Craig A Carlson
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
18
|
Wright RJ, Erni-Cassola G, Zadjelovic V, Latva M, Christie-Oleza JA. Marine Plastic Debris: A New Surface for Microbial Colonization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11657-11672. [PMID: 32886491 DOI: 10.1021/acs.est.0c02305] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plastics become rapidly colonized by microbes when released into marine environments. This microbial community-the Plastisphere-has recently sparked a multitude of scientific inquiries and generated a breadth of knowledge, which we bring together in this review. Besides providing a better understanding of community composition and biofilm development in marine ecosystems, we critically discuss current research on plastic biodegradation and the identification of potentially pathogenic "hitchhikers" in the Plastisphere. The Plastisphere is at the interface between the plastic and its surrounding milieu, and thus drives every interaction that this synthetic material has with its environment, from ecotoxicity and new links in marine food webs to the fate of the plastics in the water column. We conclude that research so far has not shown Plastisphere communities to starkly differ from microbial communities on other inert surfaces, which is particularly true for mature biofilm assemblages. Furthermore, despite progress that has been made in this field, we recognize that it is time to take research on plastic-Plastisphere-environment interactions a step further by identifying present gaps in our knowledge and offering our perspective on key aspects to be addressed by future studies: (I) better physical characterization of marine biofilms, (II) inclusion of relevant controls, (III) study of different successional stages, (IV) use of environmentally relevant concentrations of biofouled microplastics, and (V) prioritization of gaining a mechanistic and functional understanding of Plastisphere communities.
Collapse
Affiliation(s)
- Robyn J Wright
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Gabriel Erni-Cassola
- Man-Society-Environment (MSE) program, University of Basel, Basel 4003, Switzerland
| | - Vinko Zadjelovic
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Mira Latva
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Joseph A Christie-Oleza
- University of the Balearic Islands, Palma 07122, Spain
- IMEDEA (CSIC-UIB), Esporles 07190, Spain
| |
Collapse
|
19
|
Insights into the effects of acetate on the community structure of Candidatus Accumulibacter in biological phosphorus removal system using DNA stable-isotope probing (DNA-SIP). Enzyme Microb Technol 2020; 139:109567. [DOI: 10.1016/j.enzmictec.2020.109567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/22/2022]
|
20
|
Lerner H, Öztürk B, Dohrmann AB, Thomas J, Marchal K, De Mot R, Dehaen W, Tebbe CC, Springael D. Culture-Independent Analysis of Linuron-Mineralizing Microbiota and Functions in on-Farm Biopurification Systems via DNA-Stable Isotope Probing: Comparison with Enrichment Culture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9387-9397. [PMID: 32569463 DOI: 10.1021/acs.est.0c02124] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Our understanding of the microorganisms involved in in situ biodegradation of xenobiotics, like pesticides, in natural and engineered environments is poor. On-farm biopurification systems (BPSs) treat farm-produced pesticide-contaminated wastewater to reduce surface water pollution. BPSs are a labor and cost-efficient technology but are still mainly operated as black box systems. We used DNA-stable isotope probing (DNA-SIP) and classical enrichment to be informed about the organisms responsible for in situ degradation of the phenylurea herbicide linuron in a BPS matrix. DNA-SIP identified Ramlibacter, Variovorax, and an unknown Comamonadaceae genus as the dominant linuron assimilators. While linuron-degrading Variovorax strains have been isolated repeatedly, Ramlibacter has never been associated before with linuron degradation. Genes and mobile genetic elements (MGEs) previously linked to linuron catabolism were enriched in the heavy DNA-SIP fractions, suggesting their involvement in in situ linuron assimilation. BPS material free cultivation of linuron degraders from the same BPS matrix resulted in a community dominated by Variovorax, while Ramlibacter was not observed. Our study provides evidence for the role of Variovorax in in situ linuron biodegradation in a BPS, alongside other organisms like Ramlibacter, and further shows that cultivation results in a biased representation of the in situ linuron-assimilating bacterial populations.
Collapse
Affiliation(s)
- Harry Lerner
- Division of Soil and Water Management, KU Leuven, B-3001 Heverlee-Leuven, Belgium
| | - Başak Öztürk
- Division of Soil and Water Management, KU Leuven, B-3001 Heverlee-Leuven, Belgium
| | - Anja B Dohrmann
- Thünen Institut für Biodiversität, 38116 Braunschweig, Germany
| | - Joice Thomas
- Molecular Design and Synthesis, KU Leuven, B-3001 Heverlee-Leuven, Belgium
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9000 Gent, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics, KU Leuven, B-3001 Heverlee-Leuven, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, KU Leuven, B-3001 Heverlee-Leuven, Belgium
| | | | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, B-3001 Heverlee-Leuven, Belgium
| |
Collapse
|
21
|
Twining CW, Taipale SJ, Ruess L, Bec A, Martin-Creuzburg D, Kainz MJ. Stable isotopes of fatty acids: current and future perspectives for advancing trophic ecology. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190641. [PMID: 32536315 PMCID: PMC7333957 DOI: 10.1098/rstb.2019.0641] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2020] [Indexed: 12/16/2022] Open
Abstract
To understand consumer dietary requirements and resource use across ecosystems, researchers have employed a variety of methods, including bulk stable isotope and fatty acid composition analyses. Compound-specific stable isotope analysis (CSIA) of fatty acids combines both of these tools into an even more powerful method with the capacity to broaden our understanding of food web ecology and nutritional dynamics. Here, we provide an overview of the potential that CSIA studies hold and their constraints. We first review the use of fatty acid CSIA in ecology at the natural abundance level as well as enriched physiological tracers, and highlight the unique insights that CSIA of fatty acids can provide. Next, we evaluate methodological best practices when generating and interpreting CSIA data. We then introduce three cutting-edge methods: hydrogen CSIA of fatty acids, and fatty acid isotopomer and isotopologue analyses, which are not yet widely used in ecological studies, but hold the potential to address some of the limitations of current techniques. Finally, we address future priorities in the field of CSIA including: generating more data across a wider range of taxa; lowering costs and increasing laboratory availability; working across disciplinary and methodological boundaries; and combining approaches to answer macroevolutionary questions. This article is part of the theme issue 'The next horizons for lipids as 'trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'.
Collapse
Affiliation(s)
- Cornelia W. Twining
- Limnological Institute, University of Konstanz, 78464 Konstanz, Germany
- Max Planck Institute for Animal Behavior, 78315 Radolfzell, Germany
| | - Sami J. Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Liliane Ruess
- Institute of Biology, Ecology Group, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Alexandre Bec
- University Clermont Auvergne, 63178 Clermont-Ferrand, France
| | | | | |
Collapse
|
22
|
Liu Y, Fang J, Jia Z, Chen S, Zhang L, Gao W. DNA stable-isotope probing reveals potential key players for microbial decomposition and degradation of diatom-derived marine particulate matter. Microbiologyopen 2020; 9:e1013. [PMID: 32166910 PMCID: PMC7221439 DOI: 10.1002/mbo3.1013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 11/06/2022] Open
Abstract
Microbially mediated decomposition of particulate organic carbon (POC) is a central component of the oceanic carbon cycle, controlling the flux of organic carbon from the surface ocean to the deep ocean. Yet, the specific microbial taxa responsible for POC decomposition and degradation in the deep ocean are still unknown. To target the active microbial lineages involved in these processes, 13 C-labeled particulate organic matter (POM) was used as a substrate to incubate particle-attached (PAM) and free-living microbial (FLM) assemblages from the epi- and bathypelagic zones of the New Britain Trench (NBT). By combining DNA stable-isotope probing and Illumina Miseq high-throughput sequencing of bacterial 16S rRNA gene, we identified 14 active bacterial taxonomic groups that implicated in the decomposition of 13 C-labeled POM at low and high pressures under the temperature of 15°C. Our results show that both PAM and FLM were able to decompose POC and assimilate the released DOC. However, similar bacterial taxa in both the PAM and FLM assemblages were involved in POC decomposition and DOC degradation, suggesting the decoupling between microbial lifestyles and ecological functions. Microbial decomposition of POC and degradation of DOC were accomplished primarily by particle-attached bacteria at atmospheric pressure and by free-living bacteria at high pressures. Overall, the POC degradation rates were higher at atmospheric pressure (0.1 MPa) than at high pressures (20 and 40 MPa) under 15°C. Our results provide direct evidence linking the specific particle-attached and free-living bacterial lineages to decomposition and degradation of diatomic detritus at low and high pressures and identified the potential mediators of POC fluxes in the epi- and bathypelagic zones.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI, USA
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Songze Chen
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Li Zhang
- State Key Laboratory of Geological Process and Mineral Resources, Faculty of Earth Sciences, China University of Geosciences, Wuhan, China
| | - Wei Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
23
|
Kaplan H, Ratering S, Felix-Henningsen P, Schnell S. Stability of in situ immobilization of trace metals with different amendments revealed by microbial 13C-labelled wheat root decomposition and efflux-mediated metal resistance of soil bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:1082-1089. [PMID: 31096323 DOI: 10.1016/j.scitotenv.2018.12.441] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/14/2018] [Accepted: 12/28/2018] [Indexed: 05/16/2023]
Abstract
The aim of the present study was to prove the long-term efficiency of the amendments zerovalent iron grit, zeolite, and Divergan® for trace metal remediation in heavily contaminated soils and to attain a recovery of microbial functionality and diversity by remediation. For immobilization of the trace metals the amendments zerovalent iron grit, natural zeolite, and Divergan® were used. Trace metal total and mobile contents were determined and bacterial communities were assessed after a SIP experiment with 13C-labelled wheat root by Ion-Torrent Sequencing targeting the bacterial 16S rRNA gene and two trace metal resistant genes for copper and cadmium (copA and czcA gene). The results show that the remediation effect of the three amendments is still stable after five years. The mobile trace metal contents were significantly (≤0.001) reduced in all treatments, except the Cu content in the zeolite treatment. A higher diversity in active metabolizing and growing soil bacteria was observed in remediated soils as compared to the non-remediated control, especially for the Divergan® treatment. The bacterial genera Kribbella, Glycomyces, Inquilinus, Nocardioides, and Lysobacter are the most significantly enriched genera in the 13C fractions of the treated samples. The occurrence of bacterial families, which could be identified carrying efflux-mediated metal resistance genes for Cd/Zn and Cu, were reduced in the remediated soils as compared to the non-remediated control. The most abundant bacterial family for the copA and the czcA gene is Xanthomonadaceae. The pH-value and the trace metal concentration could be identified as key drivers of bacterial community composition, and functions in trace metal contaminated soils and remediated soils.
Collapse
Affiliation(s)
- Hülya Kaplan
- Institute of Applied Microbiology, Research Centre for Biosystems, Land Use and Nutrition (IFZ), Justus Liebig University, 35392 Giessen, Germany; Institute of Soil Science and Soil Conservation, Research Centre for Biosystems, Land Use and Nutrition (IFZ), Justus Liebig University, 35392 Giessen, Germany.
| | - Stefan Ratering
- Institute of Applied Microbiology, Research Centre for Biosystems, Land Use and Nutrition (IFZ), Justus Liebig University, 35392 Giessen, Germany.
| | - Peter Felix-Henningsen
- Institute of Soil Science and Soil Conservation, Research Centre for Biosystems, Land Use and Nutrition (IFZ), Justus Liebig University, 35392 Giessen, Germany.
| | - Sylvia Schnell
- Institute of Applied Microbiology, Research Centre for Biosystems, Land Use and Nutrition (IFZ), Justus Liebig University, 35392 Giessen, Germany.
| |
Collapse
|
24
|
Identification and Characterization of a Dominant Sulfolane-Degrading Rhodoferax sp. via Stable Isotope Probing Combined with Metagenomics. Sci Rep 2019; 9:3121. [PMID: 30816276 PMCID: PMC6395730 DOI: 10.1038/s41598-019-40000-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/05/2019] [Indexed: 01/06/2023] Open
Abstract
Sulfolane is an industrial solvent and emerging organic contaminant affecting groundwater around the world, but little is known about microbes capable of biodegrading sulfolane or the pathways involved. We combined DNA-based stable isotope probing (SIP) with genome-resolved metagenomics to identify microorganisms associated with sulfolane biodegradation in a contaminated subarctic aquifer. In addition to 16S rRNA gene amplicon sequencing, we performed shotgun metagenomics on the 13C-labeled DNA to obtain functional and taxonomic information about the active sulfolane-degrading community. We identified the primary sulfolane degrader, comprising ~85% of the labeled community in the amplicon sequencing dataset, as closely related to Rhodoferax ferrireducens strain T118. We obtained a 99.8%-complete metagenome-assembled genome for this strain, allowing us to identify putative pathways of sulfolane biodegradation. Although the 4S dibenzothiophene desulfurization pathway has been proposed as an analog for sulfolane biodegradation, we found only a subset of the required genes, suggesting a novel pathway specific to sulfolane. DszA, the enzyme likely responsible for opening the sulfolane ring structure, was encoded on both the chromosome and a plasmid. This study demonstrates the power of integrating DNA-SIP with metagenomics to characterize emerging organic contaminant degraders without culture bias and expands the known taxonomic distribution of sulfolane biodegradation.
Collapse
|
25
|
Ghori NUH, Moreira-Grez B, Vuong P, Waite I, Morald T, Wise M, Whiteley AS. RNA Stable Isotope Probing (RNA-SIP). Methods Mol Biol 2019; 2046:31-44. [PMID: 31407294 DOI: 10.1007/978-1-4939-9721-3_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Stable isotope probing is a combined molecular and isotopic technique used to probe the identity and function of uncultivated microorganisms within environmental samples. Employing stable isotopes of common elements such as carbon and nitrogen, RNA-SIP exploits an increase in the buoyant density of RNA caused by the active metabolism and incorporation of heavier mass isotopes into the RNA after cellular utilization of labeled substrates pulsed into the community. Labeled RNAs are subsequently separated from unlabeled RNAs by density gradient centrifugation followed by identification of the RNAs by sequencing. Therefore, RNA stable isotope probing is a culture-independent technique that provides simultaneous information about microbiome community, composition and function. This chapter presents the detailed protocol for performing an RNA-SIP experiment, including the formation, ultracentrifugation, and fractional analyses of stable isotope-labeled RNAs extracted from environmental samples.
Collapse
Affiliation(s)
- Noor-Ul-Huda Ghori
- Molecular Microbial Ecology Group, The UWA School of Agriculture and Enviornment (SAgE), The University of Western Australia, Crawley, WA, Australia
| | - Benjamin Moreira-Grez
- Molecular Microbial Ecology Group, The UWA School of Agriculture and Enviornment (SAgE), The University of Western Australia, Crawley, WA, Australia
| | - Paton Vuong
- Molecular Microbial Ecology Group, The UWA School of Agriculture and Enviornment (SAgE), The University of Western Australia, Crawley, WA, Australia
| | - Ian Waite
- Molecular Microbial Ecology Group, The UWA School of Agriculture and Enviornment (SAgE), The University of Western Australia, Crawley, WA, Australia
| | - Tim Morald
- Molecular Microbial Ecology Group, The UWA School of Agriculture and Enviornment (SAgE), The University of Western Australia, Crawley, WA, Australia
| | - Michael Wise
- Department of Computer Science and Engineering, The University of Western Australia, Perth, WA, Australia
| | - Andrew S Whiteley
- Molecular Microbial Ecology Group, The UWA School of Agriculture and Enviornment (SAgE), The University of Western Australia, Crawley, WA, Australia. .,Faculty of Science, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
26
|
Abstract
Stable isotope probing combined with metaproteomics enables the detection and characterization of active key species in microbial populations under near-natural conditions, which greatly helps to understand the metabolic functions of complex microbial communities. This is achieved by providing growth substrates labeled with heavy isotopes such as 13C, which will be assimilated into microbial biomass. After subsequent extraction of proteins and proteolytic cleavage into peptides, the heavy isotope enrichment can be detected by high-resolution mass spectrometric analysis, and linked to the functional and taxonomic characterization of these biomarkers. Here we provide protocols for obtaining isotopically labeled proteins and for downstream SIP-metaproteomics analysis.
Collapse
Affiliation(s)
- Martin Taubert
- Faculty of Biological Sciences, Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
27
|
Majdi N, Hette-Tronquart N, Auclair E, Bec A, Chouvelon T, Cognie B, Danger M, Decottignies P, Dessier A, Desvilettes C, Dubois S, Dupuy C, Fritsch C, Gaucherel C, Hedde M, Jabot F, Lefebvre S, Marzloff MP, Pey B, Peyrard N, Powolny T, Sabbadin R, Thébault E, Perga ME. There's no harm in having too much: A comprehensive toolbox of methods in trophic ecology. FOOD WEBS 2018. [DOI: 10.1016/j.fooweb.2018.e00100] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Berry D, Loy A. Stable-Isotope Probing of Human and Animal Microbiome Function. Trends Microbiol 2018; 26:999-1007. [PMID: 30001854 PMCID: PMC6249988 DOI: 10.1016/j.tim.2018.06.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/10/2018] [Accepted: 06/20/2018] [Indexed: 12/30/2022]
Abstract
Humans and animals host diverse communities of microorganisms important to their physiology and health. Despite extensive sequencing-based characterization of host-associated microbiomes, there remains a dramatic lack of understanding of microbial functions. Stable-isotope probing (SIP) is a powerful strategy to elucidate the ecophysiology of microorganisms in complex host-associated microbiotas. Here, we suggest that SIP methodologies should be more frequently exploited as part of a holistic functional microbiomics approach. We provide examples of how SIP has been used to study host-associated microbes in vivo and ex vivo. We highlight recent developments in SIP technologies and discuss future directions that will facilitate deeper insights into the function of human and animal microbiomes.
Collapse
Affiliation(s)
- David Berry
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, University of Vienna, Althanstrasse 14, Vienna, Austria.
| | - Alexander Loy
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, University of Vienna, Althanstrasse 14, Vienna, Austria
| |
Collapse
|
29
|
Rare Biosphere Archaea Assimilate Acetate in Precambrian Terrestrial Subsurface at 2.2 km Depth. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8110418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The deep biosphere contains a large portion of the total microbial communities on Earth, but little is known about the carbon sources that support deep life. In this study, we used Stable Isotope Probing (SIP) and high throughput amplicon sequencing to identify the acetate assimilating microbial communities at 2260 m depth in the bedrock of Outokumpu, Finland. The long-term and short-term effects of acetate on the microbial communities were assessed by DNA-targeted SIP and RNA targeted cell activation. The microbial communities reacted within hours to the amended acetate. Archaeal taxa representing the rare biosphere at 2260 m depth were identified and linked to the cycling of acetate, and were shown to have an impact on the functions and activity of the microbial communities in general through small key carbon compounds. The major archaeal lineages identified to assimilate acetate and metabolites derived from the labelled acetate were Methanosarcina spp., Methanococcus spp., Methanolobus spp., and unclassified Methanosarcinaceae. These archaea have previously been detected in the Outokumpu deep subsurface as minor groups. Nevertheless, their involvement in the assimilation of acetate and secretion of metabolites derived from acetate indicated an important role in the supporting of the whole community in the deep subsurface, where carbon sources are limited.
Collapse
|
30
|
Jagtap PD, Viken KJ, Johnson J, McGowan T, Pendleton KM, Griffin TJ, Hunter RC, Rudney JD, Bhargava M. BAL Fluid Metaproteome in Acute Respiratory Failure. Am J Respir Cell Mol Biol 2018; 59:648-652. [PMID: 30382775 PMCID: PMC6236685 DOI: 10.1165/rcmb.2018-0068le] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
| | - Kevin J. Viken
- University of Minnesota Medical SchoolMinneapolis, Minnesota
| | - James Johnson
- University of Minnesota Supercomputing InstituteMinneapolis, Minnesotaand
| | - Thomas McGowan
- University of Minnesota Supercomputing InstituteMinneapolis, Minnesotaand
| | | | | | - Ryan C. Hunter
- University of Minnesota Medical SchoolMinneapolis, Minnesota
| | - Joel D. Rudney
- University of Minnesota School of DentistryMinneapolis, Minnesota
| | | |
Collapse
|
31
|
Stable Isotope and Metagenomic Profiling of a Methanogenic Naphthalene-Degrading Enrichment Culture. Microorganisms 2018; 6:microorganisms6030065. [PMID: 29996505 PMCID: PMC6164631 DOI: 10.3390/microorganisms6030065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/02/2018] [Accepted: 07/08/2018] [Indexed: 11/23/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAH) such as naphthalene are widespread, recalcitrant pollutants in anoxic and methanogenic environments. A mechanism catalyzing PAH activation under methanogenic conditions has yet to be discovered, and the microbial communities coordinating their metabolism are largely unknown. This is primarily due to the difficulty of cultivating PAH degraders, requiring lengthy incubations to yield sufficient biomass for biochemical analysis. Here, we sought to characterize a new methanogenic naphthalene-degrading enrichment culture using DNA-based stable isotope probing (SIP) and metagenomic analyses. 16S rRNA gene sequencing of fractionated DNA pinpointed an unclassified Clostridiaceae species as a putative naphthalene degrader after two months of SIP incubation. This finding was supported by metabolite and metagenomic evidence of genes predicted to encode for enzymes facilitating naphthalene carboxylic acid CoA-thioesterification and degradation of an unknown arylcarboxyl-CoA structure. Our findings also suggest a possible but unknown role for Desulfuromonadales in naphthalene degradation. This is the first reported functional evidence of PAH biodegradation by a methanogenic consortium, and we envision that this approach could be used to assess carbon flow through other slow growing enrichment cultures and environmental samples.
Collapse
|
32
|
Chisanga M, Muhamadali H, Ellis DI, Goodacre R. Surface-Enhanced Raman Scattering (SERS) in Microbiology: Illumination and Enhancement of the Microbial World. APPLIED SPECTROSCOPY 2018; 72:987-1000. [PMID: 29569946 DOI: 10.1177/0003702818764672] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The microbial world forms a huge family of organisms that exhibit the greatest phylogenetic diversity on Earth and thus colonize virtually our entire planet. Due to this diversity and subsequent complex interactions, the vast majority of microorganisms are involved in innumerable natural bioprocesses and contribute an absolutely vital role toward the maintenance of life on Earth, whilst a small minority cause various infectious diseases. The ever-increasing demand for environmental monitoring, sustainable ecosystems, food security, and improved healthcare systems drives the continuous search for inexpensive but reproducible, automated and portable techniques for detection of microbial isolates and understanding their interactions for clinical, environmental, and industrial applications and benefits. Surface-enhanced Raman scattering (SERS) is attracting significant attention for the accurate identification, discrimination and characterization and functional assessment of microbial cells at the single cell level. In this review, we briefly discuss the technological advances in Raman and Fourier transform infrared (FT-IR) instrumentation and their application for the analysis of clinically and industrially relevant microorganisms, biofilms, and biological warfare agents. In addition, we summarize the current trends and future prospects of integrating Raman/SERS-isotopic labeling and cell sorting technologies in parallel, to link genotype-to-phenotype in order to define community function of unculturable microbial cells in mixed microbial communities which possess admirable traits such as detoxification of pollutants and recycling of essential metals.
Collapse
Affiliation(s)
- Malama Chisanga
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, UK
| | - Howbeer Muhamadali
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, UK
| | - David I Ellis
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, UK
| | - Royston Goodacre
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, UK
| |
Collapse
|
33
|
Zhan Y, Liu W, Bao Y, Zhang J, Petropoulos E, Li Z, Lin X, Feng Y. Fertilization shapes a well-organized community of bacterial decomposers for accelerated paddy straw degradation. Sci Rep 2018; 8:7981. [PMID: 29789525 PMCID: PMC5964224 DOI: 10.1038/s41598-018-26375-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/02/2018] [Indexed: 11/09/2022] Open
Abstract
Straw, mainly dry stalks of crops, is an agricultural byproduct. Its incorporation to soils via microbial redistribution is an environment-friendly way to increase fertility. Fertilization influences soil microorganisms and straw degradation. However, our up to date knowledge on the responses of the straw decomposers to fertilization remains elusive. To this end, inoculated with paddy soils with 26-year applications of chemical fertilizers, organic amendments or controls without fertilization, microcosms were anoxically incubated with 13C-labelled rice straw amendment. DNA-based stable isotope probing and molecular ecological network analysis were conducted to unravel how straw degrading bacterial species shift in responses to fertilizations, as well as evaluate what their roles/links in the microbiome are. It was found that only a small percentage of the community ecotypes was participating into straw degradation under both fertilizations. Fertilization, especially with organic amendments decreased the predominance of Firmicutes- and Acidobacteria-like straw decomposers but increased those of the copiotrophs, such as β-Proteobacteria and Bacteroidetes due to increased soil fertility. For the same reason, fertilization shifted the hub species towards those of high degrading potential and created a more stable and efficient microbial consortium. These findings indicate that fertilization shapes a well-organized community of decomposers for accelerated straw degradation.
Collapse
Affiliation(s)
- Yushan Zhan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, P.R. China
| | - Wenjing Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, P.R. China
| | - Yuanyuan Bao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, P.R. China
| | - Jianwei Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, P.R. China
| | - Evangelos Petropoulos
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Zhongpei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, P.R. China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, P.R. China
| | - Youzhi Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, P.R. China.
| |
Collapse
|
34
|
Mamet SD, Ma B, Ulrich A, Schryer A, Siciliano SD. Who Is the Rock Miner and Who Is the Hunter? The Use of Heavy-Oxygen Labeled Phosphate (P 18O 4) to Differentiate between C and P Fluxes in a Benzene-Degrading Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1773-1786. [PMID: 29378402 DOI: 10.1021/acs.est.7b05773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phosphorus availability and cycling in microbial communities is a key determinant of bacterial activity. However, identifying organisms critical to P cycling in complex biodegrading consortia has proven elusive. Here we assess a new DNA stable isotope probing (SIP) technique using heavy oxygen-labeled phosphate (P18O4) and its effectiveness in pure cultures and a nitrate-reducing benzene-degrading consortium. First, we successfully labeled pure cultures of Gram-positive Micrococcus luteus and Gram-negative Bradyrhizobium elkanii and separated isotopically light and heavy DNA in pure cultures using centrifugal analyses. Second, using high-throughput amplicon sequencing of 16S rRNA genes to characterize active bacterial taxa (13C-labeled), we found taxa like Betaproteobacteria were key in denitrifying benzene degradation and that other degrading (nonhydrocarbon) inactive taxa (P18O4-labeled) like Staphylococcus and Corynebacterium may promote degradation through production of secondary metabolites (i.e., "helper" or "rock miner" bacteria). Overall, we successfully separated active and inactive taxa in contaminated soils, demonstrating the utility of P18O4-DNA SIP for identifying actively growing bacterial taxa. We also identified potential "miner" bacteria that choreograph hydrocarbon degradation by other microbes (i.e., the "hunters") without directly degrading contaminants themselves. Thus, while several taxa degrade benzene under denitrifying conditions, microbial benzene degradation may be enhanced by both direct degraders and miner bacteria.
Collapse
Affiliation(s)
- Steven D Mamet
- Department of Soil Science, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Bin Ma
- Department of Civil and Environmental Engineering, University of Alberta , Edmonton, Alberta T6G 1H9, Canada
| | - Ania Ulrich
- Department of Civil and Environmental Engineering, University of Alberta , Edmonton, Alberta T6G 1H9, Canada
| | - Aimée Schryer
- Department of Soil Science, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Steven D Siciliano
- Department of Soil Science, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A8, Canada
| |
Collapse
|
35
|
Chen SC, Duan GL, Ding K, Huang FY, Zhu YG. DNA stable-isotope probing identifies uncultivated members of Pseudonocardia associated with biodegradation of pyrene in agricultural soil. FEMS Microbiol Ecol 2018; 94:4862470. [DOI: 10.1093/femsec/fiy026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/14/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Song-Can Chen
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Gui-Lan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Kai Ding
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Fu-Yi Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| |
Collapse
|
36
|
Herrmann E, Young W, Reichert-Grimm V, Weis S, Riedel CU, Rosendale D, Stoklosinski H, Hunt M, Egert M. In Vivo Assessment of Resistant Starch Degradation by the Caecal Microbiota of Mice Using RNA-Based Stable Isotope Probing-A Proof-of-Principle Study. Nutrients 2018; 10:nu10020179. [PMID: 29415499 PMCID: PMC5852755 DOI: 10.3390/nu10020179] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/19/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023] Open
Abstract
Resistant starch (RS) is the digestion resistant fraction of complex polysaccharide starch. By reaching the large bowel, RS can function as a prebiotic carbohydrate, i.e., it can shape the structure and activity of bowel bacterial communities towards a profile that confers health benefits. However, knowledge about the fate of RS in complex intestinal communities and the microbial members involved in its degradation is limited. In this study, 16S ribosomal RNA (rRNA)-based stable isotope probing (RNA-SIP) was used to identify mouse bowel bacteria involved in the assimilation of RS or its derivatives directly in their natural gut habitat. Stable-isotope [U13C]-labeled native potato starch was administrated to mice, and caecal contents were collected before 0 h and 2 h and 4 h after administration. 'Heavy', isotope-labeled [13C]RNA species, presumably derived from bacteria that have metabolized the labeled starch, were separated from 'light', unlabeled [12C]RNA species by fractionation of isolated total RNA in isopycnic-density gradients. Inspection of different density gradients showed a continuous increase in 'heavy' 16S rRNA in caecal samples over the course of the experiment. Sequencing analyses of unlabeled and labeled 16S amplicons particularly suggested a group of unclassified Clostridiales, Dorea, and a few other taxa (Bacteroides, Turicibacter) to be most actively involved in starch assimilation in vivo. In addition, metabolic product analyses revealed that the predominant 13C-labeled short chain fatty acid (SCFA) in caecal contents produced from the [U13C] starch was butyrate. For the first time, this study provides insights into the metabolic transformation of RS by intestinal bacterial communities directly within a gut ecosystem, which will finally help to better understand its prebiotic potential and possible applications in human health.
Collapse
Affiliation(s)
- Elena Herrmann
- Institute of Precision Medicine, Faculty of Medical & Life Sciences, Furtwangen University, 78054 Villingen-Schwenningen, Germany; (E.H.); (S.W.)
- Institute of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany; (V.R.-G.); (C.U.R.)
| | - Wayne Young
- AgResearch Limited, Food Nutrition and Health Team, Grasslands Research Centre, Palmerston North 4474, New Zealand;
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition, National Science Challenge, University of Auckland, Auckland 1142, New Zealand
| | - Verena Reichert-Grimm
- Institute of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany; (V.R.-G.); (C.U.R.)
| | - Severin Weis
- Institute of Precision Medicine, Faculty of Medical & Life Sciences, Furtwangen University, 78054 Villingen-Schwenningen, Germany; (E.H.); (S.W.)
| | - Christian U. Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany; (V.R.-G.); (C.U.R.)
| | - Douglas Rosendale
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North 4474, New Zealand; (D.R.); (H.S.); (M.H.)
| | - Halina Stoklosinski
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North 4474, New Zealand; (D.R.); (H.S.); (M.H.)
| | - Martin Hunt
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North 4474, New Zealand; (D.R.); (H.S.); (M.H.)
| | - Markus Egert
- Institute of Precision Medicine, Faculty of Medical & Life Sciences, Furtwangen University, 78054 Villingen-Schwenningen, Germany; (E.H.); (S.W.)
- Correspondence: ; Tel.: +49-7720-307-4554
| |
Collapse
|
37
|
Jiang B, Jin N, Xing Y, Su Y, Zhang D. Unraveling uncultivable pesticide degraders via stable isotope probing (SIP). Crit Rev Biotechnol 2018; 38:1025-1048. [DOI: 10.1080/07388551.2018.1427697] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, PR China
| | - Naifu Jin
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, PR China
| | - Yuping Su
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, PR China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, PR China
- School of Environment, Tsinghua University, Beijing, PR China
| |
Collapse
|
38
|
Ziels RM, Sousa DZ, Stensel HD, Beck DAC. DNA-SIP based genome-centric metagenomics identifies key long-chain fatty acid-degrading populations in anaerobic digesters with different feeding frequencies. THE ISME JOURNAL 2018; 12:112-123. [PMID: 28895946 PMCID: PMC5737908 DOI: 10.1038/ismej.2017.143] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/22/2017] [Accepted: 07/22/2017] [Indexed: 12/14/2022]
Abstract
Fats, oils and greases (FOG) are energy-dense wastes that can be added to anaerobic digesters to substantially increase biomethane recovery via their conversion through long-chain fatty acids (LCFAs). However, a better understanding of the ecophysiology of syntrophic LCFA-degrading microbial communities in anaerobic digesters is needed to develop operating strategies that mitigate inhibitory LCFA accumulation from FOG. In this research, DNA stable isotope probing (SIP) was coupled with metagenomic sequencing for a genome-centric comparison of oleate (C18:1)-degrading populations in two anaerobic codigesters operated with either a pulse feeding or continuous-feeding strategy. The pulse-fed codigester microcosms converted oleate into methane at over 20% higher rates than the continuous-fed codigester microcosms. Differential coverage binning was demonstrated for the first time to recover population genome bins (GBs) from DNA-SIP metagenomes. About 70% of the 13C-enriched GBs were taxonomically assigned to the Syntrophomonas genus, thus substantiating the importance of Syntrophomonas species to LCFA degradation in anaerobic digesters. Phylogenetic comparisons of 13C-enriched GBs showed that phylogenetically distinct Syntrophomonas GBs were unique to each codigester. Overall, these results suggest that syntrophic populations in anaerobic digesters can have different adaptive capacities, and that selection for divergent populations may be achieved by adjusting reactor operating conditions to maximize biomethane recovery.
Collapse
Affiliation(s)
- Ryan M Ziels
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - H David Stensel
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - David A C Beck
- eScience Institute, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
39
|
Uksa M, Buegger F, Gschwendtner S, Lueders T, Kublik S, Kautz T, Athmann M, Köpke U, Munch JC, Schloter M, Fischer D. Bacteria utilizing plant-derived carbon in the rhizosphere of Triticum aestivum change in different depths of an arable soil. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:729-741. [PMID: 28892269 DOI: 10.1111/1758-2229.12588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Root exudates shape microbial communities at the plant-soil interface. Here we compared bacterial communities that utilize plant-derived carbon in the rhizosphere of wheat in different soil depths, including topsoil, as well as two subsoil layers up to 1 m depth. The experiment was performed in a greenhouse using soil monoliths with intact soil structure taken from an agricultural field. To identify bacteria utilizing plant-derived carbon, 13 C-CO2 labelling of plants was performed for two weeks at the EC50 stage, followed by isopycnic density gradient centrifugation of extracted DNA from the rhizosphere combined with 16S rRNA gene-based amplicon sequencing. Our findings suggest substantially different bacterial key players and interaction mechanisms between plants and bacteria utilizing plant-derived carbon in the rhizosphere of subsoils and topsoil. Among the three soil depths, clear differences were found in 13 C enrichment pattern across abundant operational taxonomic units (OTUs). Whereas, OTUs linked to Proteobacteria were enriched in 13 C mainly in the topsoil, in both subsoil layers OTUs related to Cohnella, Paenibacillus, Flavobacterium showed a clear 13 C signal, indicating an important, so far overseen role of Firmicutes and Bacteriodetes in the subsoil rhizosphere.
Collapse
Affiliation(s)
- Marie Uksa
- Research Unit for Comparative Microbiome Analysis, Department of Environmental Science, Helmholtz Zentrum München, D-85758 Oberschleissheim, Germany
- Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, D-70599 Stuttgart, Germany
| | - Franz Buegger
- Institute of Biochemical Plant Pathology, Department of Environmental Science, Helmholtz Zentrum München, D-85758 Oberschleissheim, Germany
| | - Silvia Gschwendtner
- Research Unit for Comparative Microbiome Analysis, Department of Environmental Science, Helmholtz Zentrum München, D-85758 Oberschleissheim, Germany
| | - Tillmann Lueders
- Institute for Groundwater Ecology, Department of Environmental Science, Helmholtz Zentrum München, D-85758 Oberschleissheim, Germany
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Department of Environmental Science, Helmholtz Zentrum München, D-85758 Oberschleissheim, Germany
| | - Timo Kautz
- Institute of Organic Agriculture, University of Bonn, D-53115 Bonn, Germany
| | - Miriam Athmann
- Institute of Organic Agriculture, University of Bonn, D-53115 Bonn, Germany
| | - Ulrich Köpke
- Institute of Organic Agriculture, University of Bonn, D-53115 Bonn, Germany
| | - Jean Charles Munch
- Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, D-70599 Stuttgart, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Department of Environmental Science, Helmholtz Zentrum München, D-85758 Oberschleissheim, Germany
- Chair for Soil Science, Research Department Ecology and Ecosystem Management, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
| | - Doreen Fischer
- Research Unit for Comparative Microbiome Analysis, Department of Environmental Science, Helmholtz Zentrum München, D-85758 Oberschleissheim, Germany
| |
Collapse
|
40
|
Singer E, Wagner M, Woyke T. Capturing the genetic makeup of the active microbiome in situ. THE ISME JOURNAL 2017; 11:1949-1963. [PMID: 28574490 PMCID: PMC5563950 DOI: 10.1038/ismej.2017.59] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/02/2017] [Accepted: 03/10/2017] [Indexed: 12/21/2022]
Abstract
More than any other technology, nucleic acid sequencing has enabled microbial ecology studies to be complemented with the data volumes necessary to capture the extent of microbial diversity and dynamics in a wide range of environments. In order to truly understand and predict environmental processes, however, the distinction between active, inactive and dead microbial cells is critical. Also, experimental designs need to be sensitive toward varying population complexity and activity, and temporal as well as spatial scales of process rates. There are a number of approaches, including single-cell techniques, which were designed to study in situ microbial activity and that have been successively coupled to nucleic acid sequencing. The exciting new discoveries regarding in situ microbial activity provide evidence that future microbial ecology studies will indispensably rely on techniques that specifically capture members of the microbiome active in the environment. Herein, we review those currently used activity-based approaches that can be directly linked to shotgun nucleic acid sequencing, evaluate their relevance to ecology studies, and discuss future directions.
Collapse
Affiliation(s)
- Esther Singer
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Michael Wagner
- University of Vienna, Department of Microbial Ecology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| |
Collapse
|
41
|
|
42
|
Herrmann E, Young W, Rosendale D, Conrad R, Riedel CU, Egert M. Determination of Resistant Starch Assimilating Bacteria in Fecal Samples of Mice by In vitro RNA-Based Stable Isotope Probing. Front Microbiol 2017; 8:1331. [PMID: 28790981 PMCID: PMC5522855 DOI: 10.3389/fmicb.2017.01331] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/30/2017] [Indexed: 01/01/2023] Open
Abstract
The impact of the intestinal microbiota on human health is becoming increasingly appreciated in recent years. In consequence, and fueled by major technological advances, the composition of the intestinal microbiota in health and disease has been intensively studied by high throughput sequencing approaches. Observations linking dysbiosis of the intestinal microbiota with a number of serious medical conditions including chronic inflammatory disorders and allergic diseases suggest that restoration of the composition and activity of the intestinal microbiota may be a treatment option at least for some of these diseases. One possibility to shape the intestinal microbiota is the administration of prebiotic carbohydrates such as resistant starch (RS). In the present study, we aim at establishing RNA-based stable isotope probing (RNA-SIP) to identify bacterial populations that are involved in the assimilation of RS using anaerobic in vitro fermentation of murine fecal material with stable [U13C] isotope-labeled potato starch. Total RNA from these incubations was extracted, processed by gradient ultracentrifugation and fractionated by density. 16S rRNA gene sequences were amplified from reverse transcribed RNA of high and low density fractions suspected to contain labeled and unlabeled RNA, respectively. Phylogenetic analysis of the obtained sequences revealed a distinct subset of the intestinal microbiota involved in starch metabolism. The results suggest Bacteroidetes, in particular genera affiliated with Prevotellaceae, as well as members of the Ruminococcacea family to be primary assimilators of resistant starch due to a significantly higher relative abundance in higher density fractions in RNA samples isolated after 2 h of incubation. Using high performance liquid chromatography coupled to isotope ratio mass spectrometry (HPLC-IRMS) analysis, some stable isotope label was recovered from acetate, propionate and butyrate. Here, we demonstrate the suitability of RNA-SIP to link specific groups of microorganisms with fermentation of a specific substrate. The application of RNA-SIP in future in vivo studies will help to better understand the mechanisms behind functionality of a prebiotic carbohydrate and its impact on an intestinal ecosystem with potential implications for human health.
Collapse
Affiliation(s)
- Elena Herrmann
- Faculty of Medical & Life Sciences, Institute of Precision Medicine, Furtwangen UniversityVillingen-Schwenningen, Germany
| | - Wayne Young
- AgResearch Ltd., Food Nutrition and Health Team, Grasslands Research CentrePalmerston North, New Zealand
| | - Douglas Rosendale
- The New Zealand Institute for Plant & Food Research Ltd.Palmerston North, New Zealand
| | - Ralf Conrad
- Department of Biogeochemistry, Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of UlmUlm, Germany
| | - Markus Egert
- Faculty of Medical & Life Sciences, Institute of Precision Medicine, Furtwangen UniversityVillingen-Schwenningen, Germany
| |
Collapse
|
43
|
Andriukonis E, Gorokhova E. Kinetic 15N-isotope effects on algal growth. Sci Rep 2017; 7:44181. [PMID: 28281640 PMCID: PMC5345060 DOI: 10.1038/srep44181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/06/2017] [Indexed: 12/25/2022] Open
Abstract
Stable isotope labeling is a standard technique for tracing material transfer in molecular, ecological and biogeochemical studies. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism metabolism and growth, which is not consistent with current theoretical and empirical knowledge on kinetic isotope effects. Here, we demonstrate profound changes in growth dynamics of the green alga Raphidocelis subcapitata grown in 15N-enriched media. With increasing 15N concentration (0.37 to 50 at%), the lag phase increased, whereas maximal growth rate and total yield decreased; moreover, there was a negative relationship between the growth and the lag phase across the treatments. The latter suggests that a trade-off between growth rate and the ability to adapt to the high 15N environment may exist. Remarkably, the lag-phase response at 3.5 at% 15N was the shortest and deviated from the overall trend, thus providing partial support to the recently proposed Isotopic Resonance hypothesis, which predicts that certain isotopic composition is particularly favorable for living organisms. These findings confirm the occurrence of KIE in isotopically enriched algae and underline the importance of considering these effects when using stable isotope labeling in field and experimental studies.
Collapse
Affiliation(s)
- Eivydas Andriukonis
- Faculty of Chemistry and Geosciences, Department of Physical Chemistry, Vilnius University, Vilnius, Lithuania
- Laboratory of Bio-Nanotechnology, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Elena Gorokhova
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
44
|
Liu S, Wawrik B, Liu Z. Different Bacterial Communities Involved in Peptide Decomposition between Normoxic and Hypoxic Coastal Waters. Front Microbiol 2017; 8:353. [PMID: 28326069 PMCID: PMC5339267 DOI: 10.3389/fmicb.2017.00353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/20/2017] [Indexed: 11/13/2022] Open
Abstract
Proteins and peptides are key components of the labile dissolved organic matter pool in marine environments. Knowing which types of bacteria metabolize peptides can inform the factors that govern peptide decomposition and further carbon and nitrogen remineralization in marine environments. A 13C-labeled tetrapeptide, alanine-valine-phenylalanine-alanine (AVFA), was added to both surface (normoxic) and bottom (hypoxic) seawater from a coastal station in the northern Gulf of Mexico for a 2-day incubation experiment, and bacteria that incorporated the peptide were identified using DNA stable isotope probing (SIP). The decomposition rate of AVFA in the bottom hypoxic seawater (0.018–0.035 μM h-1) was twice as fast as that in the surface normoxic seawater (0.011–0.017 μM h-1). SIP experiments indicated that incorporation of 13C was highest among the Flavobacteria, Sphingobacteria, Alphaproteobacteria, Acidimicrobiia, Verrucomicrobiae, Cyanobacteria, and Actinobacteria in surface waters. In contrast, highest 13C-enrichment was mainly observed in several Alphaproteobacteria (Thalassococcus, Rhodobacteraceae, Ruegeria) and Gammaproteobacteria genera (Colwellia, Balneatrix, Thalassomonas) in the bottom water. These data suggest that a more diverse group of both oligotrophic and copiotrophic bacteria may be involved in metabolizing labile organic matter such as peptides in normoxic coastal waters, and several copiotrophic genera belonging to Alphaproteobacteria and Gammaproteobacteria and known to be widely distributed may contribute to faster peptide decomposition in the hypoxic waters.
Collapse
Affiliation(s)
- Shuting Liu
- Marine Science Institute, The University of Texas at Austin, Port Aransas TX, USA
| | - Boris Wawrik
- Department of Microbiology and Plant Biology, The University of Oklahoma, Norman OK, USA
| | - Zhanfei Liu
- Marine Science Institute, The University of Texas at Austin, Port Aransas TX, USA
| |
Collapse
|
45
|
Benzene Degradation by a Variovorax Species within a Coal Tar-Contaminated Groundwater Microbial Community. Appl Environ Microbiol 2017; 83:AEM.02658-16. [PMID: 27913419 DOI: 10.1128/aem.02658-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/25/2016] [Indexed: 11/20/2022] Open
Abstract
Investigations of environmental microbial communities are crucial for the discovery of populations capable of degrading hazardous compounds and may lead to improved bioremediation strategies. The goal of this study was to identify microorganisms responsible for aerobic benzene degradation in coal tar-contaminated groundwater. Benzene degradation was monitored in laboratory incubations of well waters using gas chromatography mass spectrometry (GC-MS). Stable isotope probing (SIP) experiments using [13C]benzene enabled us to obtain 13C-labled community DNA. From this, 16S rRNA clone libraries identified Gammaproteobacteria and Betaproteobacteria as the active benzene-metabolizing microbial populations. Subsequent cultivation experiments yielded nine bacterial isolates that grew in the presence of benzene; five were confirmed in laboratory cultures to grow on benzene. The isolated benzene-degrading organisms were genotypically similar (>97% 16S rRNA gene nucleotide identities) to the organisms identified in SIP experiments. One isolate, Variovorax MAK3, was further investigated for the expression of a putative aromatic ring-hydroxylating dioxygenase (RHD) hypothesized to be involved in benzene degradation. Microcosm experiments using Variovorax MAK3 revealed a 10-fold increase in RHD (Vapar_5383) expression, establishing a link between this gene and benzene degradation. Furthermore, the addition of Variovorax MAK3 to microcosms prepared from site waters accelerated community benzene degradation and correspondingly increased RHD gene expression. In microcosms using uninoculated groundwater, quantitative (q)PCR assays (with 16S rRNA and RDH genes) showed that Variovorax was present and responsive to added benzene. These data demonstrate how the convergence of cultivation-dependent and -independent techniques can boost understandings of active populations and functional genes in complex benzene-degrading microbial communities. IMPORTANCE Benzene is a human carcinogen whose presence in contaminated groundwater drives environmental cleanup efforts. Although the aerobic biodegradation of benzene has long been established, knowledge of the identity of the microorganisms in complex naturally occurring microbial communities responsible for benzene biodegradation has evaded scientific inquiry for many decades. Here, we applied a molecular biology technique known as stable isotope probing (SIP) to the microbial communities residing in contaminated groundwater samples to identify the community members active in benzene biodegradation. We complemented this approach by isolating and growing in the laboratory a bacterium representative of the bacteria found using SIP. Further characterization of the isolated bacterium enabled us to track the expression of a key gene that attacks benzene both in pure cultures of the bacterium and in the naturally occurring groundwater microbial community. This work advances information regarding the documentation of microbial processes, especially the populations and genes that contribute to bioremediation.
Collapse
|
46
|
Application of GelGreen™ in Cesium Chloride Density Gradients for DNA-Stable Isotope Probing Experiments. PLoS One 2017; 12:e0169554. [PMID: 28056074 PMCID: PMC5215936 DOI: 10.1371/journal.pone.0169554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022] Open
Abstract
In this study, GelGreen™ was investigated as a replacement for SYBR® Safe to stain DNA in cesium chloride (CsCl) density gradients for DNA-stable isotope probing (SIP) experiments. Using environmental DNA, the usage of GelGreen™ was optimized for sensitivity compared to SYBR® Safe, its optimal concentration, detection limit for environmental DNA and its application in environmental DNA-SIP assay. Results showed that GelGreen™ was more sensitive than SYBR® Safe, while the optimal dosage (15X concentration) needed was approximately one-third of SYBR® Safe, suggesting that its sensitivity was three times more superior than SYBR® Safe. At these optimal parameters, the detection limit of GelGreen™-stained environmental DNA was as low as 0.2 μg, but the usage of 0.5 μg environmental DNA was recommended to produce a more consistent DNA band. In addition, a modified needle extraction procedure was developed to withdraw DNA effectively by fractionating CsCl density gradients into four or five fractions. The successful application of GelGreen™ staining with 13C-labeled DNA from enriched activated sludge suggests that this stain was an excellent alternative of SYBR® Safe in CsCl density gradients for DNA-SIP assays.
Collapse
|
47
|
Jameson E, Taubert M, Coyotzi S, Chen Y, Eyice Ö, Schäfer H, Murrell JC, Neufeld JD, Dumont MG. DNA-, RNA-, and Protein-Based Stable-Isotope Probing for High-Throughput Biomarker Analysis of Active Microorganisms. Methods Mol Biol 2017; 1539:57-74. [PMID: 27900684 DOI: 10.1007/978-1-4939-6691-2_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stable-isotope probing (SIP) enables researchers to target active populations within complex microbial communities, which is achieved by providing growth substrates enriched in heavy isotopes, usually in the form of 13C, 18O, or 15N. After growth on the substrate and subsequent extraction of microbial biomarkers, typically nucleic acids or proteins, the SIP technique is used for the recovery and analysis of isotope-labeled biomarkers from active microbial populations. In the years following the initial development of DNA- and RNA-based SIP, it was common practice to characterize labeled populations by targeted gene analysis. Such approaches usually involved fingerprint-based analyses or sequencing of clone libraries containing 16S rRNA genes or functional marker gene amplicons. Although molecular fingerprinting remains a valuable approach for rapid confirmation of isotope labeling, recent advances in sequencing technology mean that it is possible to obtain affordable and comprehensive amplicon profiles, metagenomes, or metatranscriptomes from SIP experiments. Not only can the abundance of microbial groups be inferred from metagenomes, but researchers can bin, assemble, and explore individual genomes to build hypotheses about the metabolic capabilities of labeled microorganisms. Analysis of labeled mRNA is a more recent advance that can provide independent metatranscriptome-based analysis of active microorganisms. The power of metatranscriptomics is that mRNA abundance often correlates closely with the corresponding activity of encoded enzymes, thus providing insight into microbial metabolism at the time of sampling. Together, these advances have improved the sensitivity of SIP methods and allow the use of labeled substrates at ecologically relevant concentrations. Particularly as methods improve and costs continue to drop, we expect that the integration of SIP with multiple omics-based methods will become prevalent components of microbial ecology studies, leading to further breakthroughs in our understanding of novel microbial populations and elucidation of the metabolic function of complex microbial communities. In this chapter we provide protocols for obtaining labeled DNA, RNA, and proteins that can be used for downstream omics-based analyses.
Collapse
Affiliation(s)
- Eleanor Jameson
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Martin Taubert
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Sara Coyotzi
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Özge Eyice
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Hendrik Schäfer
- School of Life Sciences, University of Warwick, Coventry, UK
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Marc G Dumont
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
48
|
Chisanga M, Muhamadali H, Kimber R, Goodacre R. Quantitative detection of isotopically enrichedE. colicells by SERS. Faraday Discuss 2017; 205:331-343. [DOI: 10.1039/c7fd00150a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It is clear that investigating how bacterial cells work by analysing their functional roles in microbial communities is very important in environmental, clinical and industrial microbiology. The benefits of linking genes to their respective functions include the reliable identification of the causative agents of various diseases, which would permit appropriate and timely treatment in healthcare systems. In industrial and municipal wastewater treatment and management, such knowledge may allow for the manipulation of microbial communities, such as through bioaugmentation, in order to improve the efficiency and effectiveness of bioremediation processes. Stable isotope probing coupled with identification techniques has emerged to be a potentially reliable tool for the discrimination, identification and characterization of bacteria at community and single cell levels, knowledge which can be utilized to link microbially mediated bioprocesses to phylogeny. Development of the surface-enhanced Raman scattering (SERS) technique offers an exciting alternative to the Raman and Fourier-transform infrared spectroscopic techniques in understanding the metabolic processes of microorganismsin situ. SERS employing Ag and Au nanoparticles can significantly enhance the Raman signal, making it an exciting candidate for the analysis of the cellular components of microorganisms. In this study,Escherichia colicells were cultivated in minimal medium containing different ratios of12C/13C glucose and/or14N/15N ammonium chloride as the only carbon and nitrogen sources respectively, with the overall final concentrations of these substrates being constant. After growth, theE. colicells were analyzed with SERS employing anin situsynthesis of Ag nanoparticles. This novel investigation of the SERS spectral data with multivariate chemometrics demonstrated clear clusters which could be correlated to the SERS spectral shifts of biomolecules from cells grown and hence labelled with13C and15N atoms. These shifts reflect the isotopic content of the bacteria and quantification of the isotope levels could be established using chemometrics based on partial least squares regression.
Collapse
Affiliation(s)
- Malama Chisanga
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | - Howbeer Muhamadali
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | - Richard Kimber
- School of Earth and Environmental Sciences
- Williamson Research Centre for Molecular Environmental Science
- University of Manchester
- Manchester
- UK
| | - Royston Goodacre
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| |
Collapse
|
49
|
Coyotzi S, Pratscher J, Murrell JC, Neufeld JD. Targeted metagenomics of active microbial populations with stable-isotope probing. Curr Opin Biotechnol 2016; 41:1-8. [DOI: 10.1016/j.copbio.2016.02.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/09/2016] [Accepted: 02/13/2016] [Indexed: 02/02/2023]
|
50
|
Herrmann E, Koch P, Riedel CU, Young W, Egert M. Effect of rotor type on the separation of isotope-labeled and unlabeled Escherichia coli RNA by isopycnic density ultracentrifugation. Can J Microbiol 2016; 63:83-87. [PMID: 27919161 DOI: 10.1139/cjm-2016-0483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Separation of differentially isotope-labeled bacterial RNA by isopycnic density gradient centrifugation is a critical step in RNA-based stable isotope probing analyses, which help to link the structure and function of complex microbial communities. Using isotope-labeled Escherichia coli RNA, we showed that an 8 mL near-vertical rotor performed better than a 2 mL fixed-angle rotor, thereby corroborating current recommendations. Neither increased concentrations of formamide nor urea in the medium improved the separation results using the fixed-angle rotor.
Collapse
Affiliation(s)
- Elena Herrmann
- a Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology & Hygiene Group, Furtwangen University, Campus Villingen-Schwenningen, Germany
| | - Patrick Koch
- a Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology & Hygiene Group, Furtwangen University, Campus Villingen-Schwenningen, Germany
| | - Christian U Riedel
- b Institute of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany
| | - Wayne Young
- c AgResearch Ltd., Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Markus Egert
- a Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology & Hygiene Group, Furtwangen University, Campus Villingen-Schwenningen, Germany
| |
Collapse
|