1
|
Mori-Bazzano L, Nguyen NHA, Sevcu A, Riha J, Fu T, Slaveykova VI, Ibelings BW. Plastic degradation in Lake Geneva: Influence of depth, seasonal shifts, and bacterial community dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 983:179615. [PMID: 40398166 DOI: 10.1016/j.scitotenv.2025.179615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/24/2025] [Accepted: 05/05/2025] [Indexed: 05/23/2025]
Abstract
Aquatic ecosystems suffer disproportionately from plastic pollution given that they integrate material from terrestrial watersheds. Most studies on microbial colonisation and degradation of plastics have focused on marine environments, leaving a knowledge gap for freshwaters. Our study explores the possible degradation and the role of bacterial community composition of plastics in Lake Geneva. We exposed polyethylene terephthalate (PET) and low-density polyethylene (LDPE) for 45 weeks to environmental lake gradients that change with depth and season. The substrates were suspended at 2 and 30 m depth, resulting in strikingly different environmental conditions for biofilm development, including light (PAR), temperature, and nutrient availability. We monitored the bacterial colonisation using 16S rRNA sequencing and assessed the abundance of the alkane hydrolase gene (alkB) to evaluate the potential ability of the biofilm to degrade PET and LDPE. Additionally, we analysed plastic surface modifications through spectroscopy, contact angle measurements and microscopy. We found that the PET surface showed no degradation after 45 weeks in the lake, at either depth. The LDPE surface at 2 m exhibited a decrease in hydrophobicity, but no evidence of oxidation or degradation was found. In contrast, the LDPE surface at 30 m displayed oxidation, a decrease in hydrophobicity, and porous cavities. In addition, we observed an increase in the alkane alkB gene abundance in the biofilm, with the development of plastic-degrading taxa in the community. Our results underline the complexity of plastic degradation in aquatic ecosystems; not only does the type of plastic have an effect, so do the spatio-temporal variable environmental lake conditions and the biofilm community. The multifactorial nature of these processes complicates predictions on the fate of plastics in the environment.
Collapse
Affiliation(s)
- Laureen Mori-Bazzano
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Nhung H A Nguyen
- Department of Applied Biology, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec, Czech Republic
| | - Alena Sevcu
- Department of Applied Biology, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec, Czech Republic
| | - Jakub Riha
- Department of Applied Biology, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec, Czech Republic
| | - Tingting Fu
- Department of Quantum Matter Physics, Laboratory of Advanced Technology, University of Geneva, Geneva, Switzerland
| | - Vera I Slaveykova
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Bastiaan W Ibelings
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Peng W, Wang X, Liu Q, Xiao Z, Li F, Ji N, Chen Z, He J, Wang J, Deng Z, Lin S, Liang R. The GntR/VanR transcription regulator AlkR represses AlkB2 monooxygenase expression and regulates n-alkane degradation in Pseudomonas aeruginosa SJTD-1. MLIFE 2025; 4:126-142. [PMID: 40313978 PMCID: PMC12042122 DOI: 10.1002/mlf2.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/17/2024] [Accepted: 12/21/2024] [Indexed: 05/03/2025]
Abstract
Transmembrane alkane monooxygenase (AlkB)-type monooxygenases, especially AlkB2 monooxygenases, are crucial for aerobic degradation of the medium-to-long-chain n-alkanes in hydrocarbon-utilizing microorganisms. In this study, we identified a GntR/VanR transcription regulator AlkR of Pseudomonas aeruginosa SJTD-1 involved in the negative regulation of AlkB2 and deciphered its nature of DNA binding and ligand release. The deletion of alkR enhanced the transcription levels of the alkB2 gene and the utilization efficiency of the medium-to-long-chain n-alkanes by strain SJTD-1. The dimer of AlkR recognizes and binds to a conserved palindromic motif in the promoter of the alkB2 gene, and structural symmetry is vital for DNA binding and transcription repression. The long-chain fatty acyl coenzyme A compounds can release AlkR and stimulate transcription of alkB2, reflecting the effect of alkane catabolic metabolites. Structural insights unveiled that the arginine residues and scaffold residues of AlkR are critical for DNA binding. Further bioinformatics analysis of AlkR revealed the widespread VanR-AlkB couples distributed in Pseudomonadaceae with high conservation in the sequences of functional genes and intergenic regions, highlighting a conserved regulatory pattern for n-alkane utilization across this family. These findings demonstrate the regulatory mechanism and structural basis of GntR/VanR transcription regulators in modulating n-alkane biodegradation and provide valuable insights in improving the bioremediation efficiency of hydrocarbon pollution.
Collapse
Affiliation(s)
- Wanli Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiuli Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Qinchen Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zhihong Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Fulin Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Nannan Ji
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zhuo Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jiaying He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Junhao Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
3
|
Reinhardt CR, Lee JA, Hendricks L, Green T, Kunczynski L, Roberts AJ, Miller N, Rafalin N, Kulik HJ, Pollock CJ, Austin RN. No Bridge between Us: EXAFS and Computations Confirm Two Distant Iron Ions Comprise the Active Site of Alkane Monooxygenase (AlkB). J Am Chem Soc 2025; 147:2432-2443. [PMID: 39772501 PMCID: PMC11753938 DOI: 10.1021/jacs.4c12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Alkane monooxygenase (AlkB) is the dominant enzyme that catalyzes the oxidation of liquid alkanes in the environment. Two recent structural models derived from cryo-electron microscopy (cryo-EM) reveal an unusual active site: a histidine-rich center that binds two iron ions without a bridging ligand. To ensure that potential photoreduction and radiation damage are not responsible for the absence of a bridging ligand in the cryo-EM structures, spectroscopic methods are needed. We present the results of extended X-ray absorption fine structure (EXAFS) experiments collected under conditions where photodamage was avoided. Careful data analysis reveals an active site structure consistent with the cryo-EM structures in which the two iron ions are ligated by nine histidines and separated by at least 5 Å. The EXAFS data were used to inform structural models for molecular dynamics (MD) simulations. The MD simulations corroborate EXAFS observations that neither of the two conserved carboxylate-containing residues (E281 and D190) near the active site are likely candidates for metal ion bridging. Mutagenesis experiments, spectroscopy, and additional MD simulations were used to further explore the role of these carboxylate residues. A variant in which a carboxylate containing residue (E281) was changed to a methyl residue (E281A) showed little change in pre-edge features, consistent with the observation that it is not essential for activity and hence unlikely to serve as a bridging ligand at any point in the catalytic cycle. D190 variants had substantially diminished activity, suggesting an important role in catalysis not yet fully understood.
Collapse
Affiliation(s)
- Clorice R. Reinhardt
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Juliet A. Lee
- Department of Chemistry, Barnard College, 3009 Broadway, NY 10027 USA
| | - Lauren Hendricks
- Department of Chemistry, Barnard College, 3009 Broadway, NY 10027 USA
| | - Tierani Green
- Department of Chemistry, Barnard College, 3009 Broadway, NY 10027 USA
| | - Lily Kunczynski
- Department of Chemistry, Barnard College, 3009 Broadway, NY 10027 USA
| | | | - Naomi Miller
- Department of Chemistry, Barnard College, 3009 Broadway, NY 10027 USA
| | - Noga Rafalin
- Department of Chemistry, Barnard College, 3009 Broadway, NY 10027 USA
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher J. Pollock
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, NY 14853, USA
| | - Rachel N Austin
- Department of Chemistry, Barnard College, 3009 Broadway, NY 10027 USA
| |
Collapse
|
4
|
Chang S, Gui Y, He X, Xue L. Transcriptome analysis of Acinetobacter calcoaceticus HX09 strain with outstanding crude-oil-degrading ability. Braz J Microbiol 2024; 55:2411-2422. [PMID: 38837015 PMCID: PMC11405614 DOI: 10.1007/s42770-024-01392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/15/2024] [Indexed: 06/06/2024] Open
Abstract
Microbial remediation plays a pivotal role in the elimination of petroleum pollutants, making it imperative to investigate the capabilities of microorganisms in degrading petroleum. The present study describes the isolation of a promising strain, Acinetobacter sp. HX09, from petroleum-contaminated water. GC-MS analysis revealed a remarkable removal efficiency for short and medium-chain alkanes, with a rate of approximately 64% after a 7-days incubation at 30 °C. Transcriptome analysis of HX09 exhibited a predominant upregulation in gene expression levels by the induce of crude oil. Notably, genes such as alkane 1-monooxygenase, dehydrogenases and fatty acid metabolic enzymes exhibited fold changes range from 3.16 to 1.3. Based on the alkB gene sequences in HX09, the Phyre2 algorithm generated a three-dimensional structure that exhibited similarity to segments of acyl coenzyme desaturases and acyl lipid desaturases. Furthermore, three biodegradation-related gene clusters were predicted in HX09 based on the reference genome sequence. These findings contribute to our understanding of the hydrocarbon-degrading mechanisms employed by Acinetobacter species and facilitate the development of effective remediation strategies for crude oil- polluted environments.
Collapse
Affiliation(s)
- Sijing Chang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China.
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China.
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China.
| | - Yanwen Gui
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Xiaoyan He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Lingui Xue
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| |
Collapse
|
5
|
Starevich VA, Madueño L, Festa S, Agnello AC, Cecotti M, Layún MF, Oneto ME, Del Panno MT, Morelli IS. Microbial community structure and metabolic profile of anthropized freshwater tributary channels from La Plata River, Argentina, to develop sustainable remediation strategies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:566. [PMID: 38775858 DOI: 10.1007/s10661-024-12713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/06/2024] [Indexed: 06/21/2024]
Abstract
Microbial communities from freshwater sediments are involved in biogeochemical cycles and they can be modified by physical and chemical changes in the environment. Linking the microbial community structure (MCS) with physicochemistry of freshwater courses allows a better understanding of its ecology and can be useful to assess the ecological impact generated by human activity. The MCS of tributary channels from La Plata River affected by oil refinery (C, D, and E) and one also by urban discharges (C) was studied. For this purpose, 16S rRNA metabarcoding analysis, in silico metagenome functional prediction, and the hydrocarbon degradation potential (in silico predictions of hydrocarbon-degrading genes and their quantification by qPCR) of the MCS were studied. Principal coordinate analysis revealed that the MCS was different between sites, and it was not structured by the hydrocarbon content. Site C showed physicochemical characteristics, bacterial taxa, and an in silico functional prediction related to fermentative/heterotrophic metabolism. Site D, despite having higher concentration of hydrocarbon, presented autotrophic, syntrophic, and methanogenic pathways commonly involved in natural processes in anoxic sediments. Site E showed and intermediate autotrophic/heterotrophic behavior. The hydrocarbon degradation potential showed no positive correlation between the hydrocarbon-degrading genes quantified and predicted. The results suggest that the hydrocarbon concentration in the sites was not enough selection pressure to structure the bacterial community composition. Understanding which is the variable that structures the bacterial community composition is essential for monitoring and designing of sustainable management strategies for contaminated freshwater ecosystems.
Collapse
Affiliation(s)
| | - L Madueño
- CINDEFI, UNLP-CONICET, Bs. As., La Plata, Argentina.
| | - S Festa
- CINDEFI, UNLP-CONICET, Bs. As., La Plata, Argentina
| | - A C Agnello
- CINDEFI, UNLP-CONICET, Bs. As., La Plata, Argentina
| | | | - M F Layún
- CINDEFI, UNLP-CONICET, Bs. As., La Plata, Argentina
| | | | | | - I S Morelli
- CINDEFI, UNLP-CONICET, Bs. As., La Plata, Argentina
- CIC-PBA, Bs. As., La Plata, Argentina
| |
Collapse
|
6
|
Mohammadi M, Bayat Z, Hassanshahian M, Mousavi M, Shekarchizadeh F. Microbial community response to biostimulation and bioaugmentation in crude oil-polluted sediments of the Persian Gulf. ENVIRONMENTAL RESEARCH 2024; 249:118197. [PMID: 38220081 DOI: 10.1016/j.envres.2024.118197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
The Persian Gulf is a transit point for a lot of crude oil at the international level. The purpose of this research is to compare two methods of biostimulation and bioaugmentation for degradation of sediments contaminated with crude oil in the Persian Gulf. In this research, six types of microcosms were designed (Sediments from Khark Island). Some indicators such as: the quantity of marine bacteria, enzyme activity (Catalase, Polyphenol oxidase, Dehydrogenase), biodiversity indices and the percentage of crude oil degradation were analyzed during different days (0, 20, 40, 60, 80, 100 and 120). The results of this research showed that the highest quantity of heterotrophic and crude oil-degrading bacteria was found in the sixth microcosm (SB). This microcosm represents a combination of two methods: bioaugmentation and biostimulation (3.9 × 106 CFU g-1). Following crude oil pollution, the activity of catalase and polyphenol oxidase increased and the dehydrogenase enzyme decreased. The bioaugmentation microcosm exhibited the highest activity of enzymes among all the microcosms studied. Predominant bacteria in each microcosm belonged to: Cellulosimicrobium, Shewanella, Alcanivorax and Cobetia. The highest degradation of crude oil is related to the Stimulation-Bioaugmentation microcosm (SB). The statistical results of this research proved that there is a significant relationship between the type of method chosen for biodegradation with the sampling time and the quantity of marine bacteria. The results of this research confirm that crude oil pollution in the Persian Gulf sediments can be reduced by choosing the proper bioremediation method.
Collapse
Affiliation(s)
- Mahasti Mohammadi
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Zeynab Bayat
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Hassanshahian
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Maryam Mousavi
- Departments of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Farnoosh Shekarchizadeh
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
7
|
Shi H, Gao W, Zheng Y, Yang L, Han B, Zhang Y, Zheng L. Distribution and abundance of oil-degrading bacteria in seawater of the Yellow Sea and Bohai Sea, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166038. [PMID: 37562632 DOI: 10.1016/j.scitotenv.2023.166038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Petroleum hydrocarbons are widespread in seawater. As an important sea area in northern China, the content and distribution of petroleum hydrocarbons in seawater need our attention because of the high toxicity and lasting polluting effects on the ecological environment of the Yellow Sea and Bohai Sea. In addition, there are few reports comparing the diversity of oil-degrading bacteria before and after enrichment. Therefore, we collected surface seawater from 10 sites in the Yellow Sea and Bohai Sea in the autumn of 2020 to study the distribution characteristics of total petroleum hydrocarbons (TPH) and the diversity of oil-degrading bacteria. The concentration of TPH was 81.65 μg/L-139.55 μg/L at ten sites in the Bohai Sea and the Yellow Sea, which conformed to the China Grade II water quality standard (GB3097-1997). Moreover, the pristine/phytane (PR/PH) value of most sites was close to 1, indicating that the area was obviously polluted by exogenous petroleum hydrocarbons. We found that oil-degrading bacteria in the seawater of the Yellow Sea and the Bohai Sea had a good degradation effect on C11-C14 short chain alkanes (degradation rate of 59.19-73.22 %) and C1-C4 phenanthrene (degradation rate of 48.19-60.74 %). In terms of the diversity of oil-degrading bacteria, Gammaproteobacteria and Alphaproteobacteria dominated the enriched bacterial communities. Notably, the relative abundance of Alcanivorax changed significantly before and after enrichment. We proposed that surface seawater in the Bohai Sea and Yellow Sea could form oil-degrading bacteria mainly composed of Alcanivorax, which had great potential for oil pollution remediation.
Collapse
Affiliation(s)
- Haolei Shi
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Wei Gao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Yunchao Zheng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Lin Yang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Bin Han
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yanchao Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Li Zheng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
8
|
Kang MJ, Kim HS, Zhang Y, Park K, Jo HY, Finneran KT, Kwon MJ. Potential natural attenuation of petroleum hydrocarbons in fuel contaminated soils: Focusing on anaerobic fuel biodegradation involving microbial Fe(III) reduction. CHEMOSPHERE 2023; 341:140134. [PMID: 37690548 DOI: 10.1016/j.chemosphere.2023.140134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Liquid fossil fuels, collectively known as total petroleum hydrocarbons (TPHs), are highly toxic and frequently leak into subsurface environments due to anthropogenic activities. As an in-situ biological remedial option for TPH contamination, aerobic TPH biodegradation is limited due to oxygen's low solubility in water, and because it is consumed quickly by aerobic bacteria. Thus, we investigated the potential of anaerobic TPH degradation by indigenous fermenting bacteria and Fe(III)-reducing bacteria. Twenty 6-10 m soil cores were collected from a closed military base subject to ongoing TPH contamination since the 1980s. Physicochemical and microbial properties were determined at 0.5-m intervals in each core. To assess the relationship between TPH degradation and microbial Fe(III) reduction, soil samples were grouped into high-TPH (>500 mg kg-1) and high-Fe(II) (>450 mg kg-1), high-TPH and low-Fe(II), low-TPH and high-Fe(II), and low-TPH and low-Fe(II) groups. Alpha diversity was significantly lower in high-TPH groups than in low-TPH groups, suggesting that high TPH concentrations exerted a strong selective pressure on bacterial communities. In the high-TPH and low-Fe(II) group, fermenting bacteria, including Microgenomatia and Chlamydiae, were more abundant, suggesting that TPH biodegradation occurred via fermentation. In the high-TPH and high-Fe(II) group, Fe(III)-reducing bacteria, including Geobacter and Zoogloea, were more abundant, suggesting that microbial Fe(III) reduction enhances TPH biodegradation. In contrast, the fermenting and/or Fe(III)-reducing bacteria were not statistically abundant in the low-TPH groups.
Collapse
Affiliation(s)
- Myeong-Jung Kang
- Department of Earth and Environmental Sciences, Korea University, Republic of Korea
| | - Han-Suk Kim
- Department of Earth and Environmental Sciences, Korea University, Republic of Korea
| | - Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Republic of Korea
| | - Kanghyun Park
- Department of Earth and Environmental Sciences, Korea University, Republic of Korea
| | - Ho Young Jo
- Department of Earth and Environmental Sciences, Korea University, Republic of Korea
| | - Kevin T Finneran
- Department of Environmental Engineering and Earth Sciences, Clemson University, United States
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Republic of Korea.
| |
Collapse
|
9
|
Long M, Tang S, Fan H, Gan Z, Xia H, Lu Y. Description and genomic characterization of Gallaecimonas kandeliae sp. nov., isolated from the sediments of mangrove plant Kandelia obovate. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01851-y. [PMID: 37358702 DOI: 10.1007/s10482-023-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/31/2023] [Indexed: 06/27/2023]
Abstract
The genus Gallaecimonas, proposed by Rodríguez-Blanco et al. (Int J Syst Evol Microbiol 60:504-509, 2010), is mainly isolated from marine environments. So far, only three species have been identified and characterized in this genus. In this study, a new Gallaecimonas strain named Q10T was isolated from the sediments of mangrove plant Kandelia obovate taken from Dapeng district, Shenzhen, China. Strain Q10T was a Gram-stain-negative, non-motile, strictly aerobic, rod-shaped bacterium, and grew with 0-8.0% (w/v) NaCl, at 10-45 °C and at pH 5.5-8.5. Phylogenetic analysis indicated that strain Q10T and the three Gallaecimonas species formed a clade in the tree, with 16S rRNA gene sequence similarities ranging from 96.0 to 97.0%. The major respiratory quinone is Q8. The polar lipids comprised aminolipid, aminophospholipid, diphosphatidylglycerol, glycolipid, phosphatidylethanolamine, phosphatidylglycerol, glycophospholipid and phospholipid. The predominant fatty acids are C16:0, C17:1ω8c, summed feature 3 (C16:1ω7c/C16:1ω6c), and iso-C16:0. The complete genome of strain Q10T is 3,836,841 bp with a G+C content of 62.6 mol%. The orthologous proteins analysis revealed 55 unique proteins in strain Q10T related to important biological processes, especially three frataxins related to iron-sulfur cluster assembly, which may play a pivotal role in environmental adaptability of this species. Based on polyphasic taxonomic data, strain Q10T is considered to represent a novel species within the genus Gallaecimonas, for which the name Gallaecimonas kandelia sp. nov. is proposed. The type strain is Q10T (=KCTC 92860T=MCCC 1K08421T). These results contribute to a better understanding of general features and taxonomy of the genus Gallaecimonas.
Collapse
Affiliation(s)
- Meng Long
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Shaoshuai Tang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Huimin Fan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Zhen Gan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Hongli Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Yishan Lu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
10
|
Nnadi MO, Bingle L, Thomas K. Bacterial community dynamics and associated genes in hydrocarbon contaminated soil during bioremediation using brewery spent grain. Access Microbiol 2023; 5:acmi000519.v3. [PMID: 37424545 PMCID: PMC10323799 DOI: 10.1099/acmi.0.000519.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/05/2023] [Indexed: 07/11/2023] Open
Abstract
Brewery spent grain (BSG) has previously been exploited in bioremediation. However, detailed knowledge of the associated bacterial community dynamics and changes in relevant metabolites and genes over time is limited. This study investigated the bioremediation of diesel contaminated soil amended with BSG. We observed complete degradation of three total petroleum hydrocarbon (TPH C10-C28) fractions in amended treatments as compared to one fraction in the unamended, natural attenuation treatments. The biodegradation rate constant (k) was higher in amended treatments (0.1021k) than in unamended (0.059k), and bacterial colony forming units increased significantly in amended treatments. The degradation compounds observed fitted into the elucidated diesel degradation pathways and quantitative PCR results showed that the gene copy numbers of all three associated degradation genes, alkB, catA and xylE, were significantly higher in amended treatments. High-throughput sequencing of 16S rRNA gene amplicons showed that amendment with BSG enriched autochthonous hydrocarbon degraders. Also, community shifts of the genera Acinetobacter and Pseudomonas correlated with the abundance of catabolic genes and degradation compounds observed. This study showed that these two genera are present in BSG and thus may be associated with the enhanced biodegradation observed in amended treatments. The results suggest that the combined evaluation of TPH, microbiological, metabolite and genetic analysis provides a useful holistic approach to assessing bioremediation.
Collapse
Affiliation(s)
- Mabel Owupele Nnadi
- Faculty of Health Sciences & Wellbeing, University of Sunderland, Chester Road, Sunderland SR1 3SD, UK
| | - Lewis Bingle
- Faculty of Health Sciences & Wellbeing, University of Sunderland, Chester Road, Sunderland SR1 3SD, UK
| | - Keith Thomas
- Brewlab, Unit One, West Quay Court, Sunderland SR5 2TE, UK
| |
Collapse
|
11
|
Guo X, Zhang J, Han L, Lee J, Williams SC, Forsberg A, Xu Y, Austin RN, Feng L. Structure and mechanism of the alkane-oxidizing enzyme AlkB. Nat Commun 2023; 14:2180. [PMID: 37069165 PMCID: PMC10110569 DOI: 10.1038/s41467-023-37869-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
Alkanes are the most energy-rich form of carbon and are widely dispersed in the environment. Their transformation by microbes represents a key step in the global carbon cycle. Alkane monooxygenase (AlkB), a membrane-spanning metalloenzyme, converts straight chain alkanes to alcohols in the first step of the microbially-mediated degradation of alkanes, thereby playing a critical role in the global cycling of carbon and the bioremediation of oil. AlkB biodiversity is attributed to its ability to oxidize alkanes of various chain lengths, while individual AlkBs target a relatively narrow range. Mechanisms of substrate selectivity and catalytic activity remain elusive. Here we report the cryo-EM structure of AlkB, which provides a distinct architecture for membrane enzymes. Our structure and functional studies reveal an unexpected diiron center configuration and identify molecular determinants for substrate selectivity. These findings provide insight into the catalytic mechanism of AlkB and shed light on its function in alkane-degrading microorganisms.
Collapse
Affiliation(s)
- Xue Guo
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jianxiu Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lei Han
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Juliet Lee
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shoshana C Williams
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Allison Forsberg
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90007, USA
| | - Yan Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
12
|
Abufalgha AA, Curson ARJ, Lea-Smith DJ, Pott RWM. The effect of Alcanivorax borkumensis SK2, a hydrocarbon-metabolising organism, on gas holdup in a 4-phase bubble column bioprocess. Bioprocess Biosyst Eng 2023; 46:635-644. [PMID: 36757455 DOI: 10.1007/s00449-023-02849-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/21/2023] [Indexed: 02/10/2023]
Abstract
To design bioprocesses utilising hydrocarbon-metabolising organisms (HMO) as biocatalysts, the effect of the organism on the hydrodynamics of bubble column reactor (BCR), such as gas holdup, needs to be investigated. Therefore, this study investigates the first use of an HMO, Alcanivorax borkumensis SK2, as a solid phase in the operation and hydrodynamics of a BCR. The study investigated the gas holdup in 3-phase and 4-phase systems in a BCR under ranges of superficial gas velocities (UG) from 1 to 3 cm/s, hydrocarbon (chain length C13-21) concentrations (HC) of 0, 5, and 10% v/v and microbial concentrations (MC) of 0, 0.35, 0.6 g/l. The results indicated that UG was the most significant parameter, as gas holdup increases linearly with increasing UG from 1 to 3 cm/s. Furthermore, the addition of hydrocarbons into the air-deionized water -SK2 system showed the highest increase in the gas holdup, particularly at high UG (above 2 cm/s). The solids (yeast, cornflour, and SK2) phases had differing effects on gas holdup, potentially due to the difference in surface activity. In this work, SK2 addition caused a reduction in the fluid surface tension in the bioprocess which therefore resulted in an increase in the gas holdup in BCR. This work builds upon previous investigations in optimising the hydrodynamics for bubble column hydrocarbon bioprocesses for the application of alkane bioactivation.
Collapse
Affiliation(s)
- Ayman A Abufalgha
- Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, 7600, South Africa.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,DST-NRF Centre of Excellence in Catalysis (C* Change), Rondebosch, South Africa
| | - Andrew R J Curson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,DST-NRF Centre of Excellence in Catalysis (C* Change), Rondebosch, South Africa
| | - David J Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,DST-NRF Centre of Excellence in Catalysis (C* Change), Rondebosch, South Africa
| | - Robert W M Pott
- Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, 7600, South Africa. .,DST-NRF Centre of Excellence in Catalysis (C* Change), Rondebosch, South Africa.
| |
Collapse
|
13
|
Sarfo MK, Gyasi SF, Kabo-Bah AT, Adu B, Mohktar Q, Appiah AS, Serfor-Armah Y. Isolation and characterization of crude-oil-dependent bacteria from the coast of Ghana using oxford nanopore sequencing. Heliyon 2023; 9:e13075. [PMID: 36785818 PMCID: PMC9918745 DOI: 10.1016/j.heliyon.2023.e13075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
The utilization and improper use of crude oil can have irreparable damage on the environment and human populations. This study sought to isolate hydrocarbon utilizing bacteria from 1% v/v pristine seawater and 1% v/v crude oil using enrichment culture techniques. Whole genome sequencing of DNA using the Oxford Nanopore sequencing technique with Fastq WIMP as the workflow at 3% abundance was undertaken. The results showed that the most abundant isolates identified using this technique at specific sampling sites were, Acinetobacter junii (51.9%), Alcanivarax pacificus (15.8%), Acinetobacter haemolyticus (21.6%), Pseudomonas aeruginosa (23.4%), Alcanivorax xenomutans (24.7%), Alcanivorax xenomutans (23.0%) Acinetobacter baumannii (40.0%) and Acinetobacter junii (14.2%). Cumulatively, the most abundant isolates in the 8 sampling sites were Acinetobacter junii (17.91%), Alcanivorax xenomutans (11.68%), Pseudomonas aeruginosa (7.68%), Escherichia coli (7.67%), Acinetobacter haemolyticus (3.40%), and Alkanivorax pacificus (3.10%). Spearman's rank correlation analysis to examine the strength of relationship between the physicochemical parameters and type of bacteria isolated, revealed that salinity (0.8046) and pH (0.7252) were the highest. Isolated bacteria from pristine seawater, especially Escherichia coli have shown their capacity for bioremediating oil spill pollution in oceanic environments in Ghana.
Collapse
Affiliation(s)
- Mark Kwasi Sarfo
- Regional Center for Energy and Environmental Sustainability, Department of Civil and Environmental Engineering, University of Energy and Natural Resources, Sunyani, Ghana,Corresponding author.
| | - Samuel Fosu Gyasi
- Department of Biological Science, University of Energy and Natural Resources, Sunyani, Ghana,Centre for Research in Applied Biology, University of Energy and Natural Resources, Sunyani, Ghana
| | - Amos Tiereyangn Kabo-Bah
- Regional Center for Energy and Environmental Sustainability, Department of Civil and Environmental Engineering, University of Energy and Natural Resources, Sunyani, Ghana
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University Of Ghana, Ghana
| | - Quaneeta Mohktar
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University Of Ghana, Ghana
| | - Andrew Sarkodie Appiah
- Biotechnology Center, Biotechnology and Nuclear Agricultural Research Institute, Ghana Atomic Energy Commission, Ghana
| | - Yaw Serfor-Armah
- School of Nuclear and Allied Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
14
|
Gunawan NR, Tessman M, Zhen D, Johnson L, Evans P, Clements SM, Pomeroy RS, Burkart MD, Simkovsky R, Mayfield SP. Biodegradation of renewable polyurethane foams in marine environments occurs through depolymerization by marine microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158761. [PMID: 36154974 DOI: 10.1016/j.scitotenv.2022.158761] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/18/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Accumulation of plastics in the Earth's oceans is causing widespread disruption to marine ecosystems. To help mitigate the environmental burden caused by non-degradable plastics, we have previously developed a commercially relevant polyurethane (PU) foam derived from renewable biological materials that can be depolymerized into its constituent monomers and consumed by microorganisms in soil or compost. Here we demonstrate that these same PU foams can be biodegraded by marine microorganisms in the ocean and by isolated marine microorganisms in an ex situ seawater environment. Using Fourier-transform infrared (FTIR) spectroscopy, we tracked molecular changes imparted by microbial breakdown of the PU polymers; and utilized scanning electron microscopy (SEM) to demonstrate the loss of physical structure associated with colonization of microorganisms on the PU foams. We subsequently enriched, isolated, and identified individual microorganisms, from six marine sites around San Diego, CA, that are capable of depolymerizing, metabolizing, and accumulating biomass using these PU foams as a sole carbon source. Analysis using SEM, FTIR, and gas chromatography-mass spectrometry (GCMS) confirmed that these microorganisms depolymerized the PU into its constitutive diols, diacids, and other PU fragments. SEM and FTIR results from isolated organismal biodegradation experiments exactly matched those from ex situ and ocean biodegradation samples, suggesting that these PU foam would undergo biodegradation in a natural ocean environment by enzymatic depolymerization of the PU foams and eventual uptake of the degradation products into biomass by marine microorganisms, should these foams unintentionally end up in the marine environment, as many plastics do.
Collapse
Affiliation(s)
| | | | - Daniel Zhen
- Algenesis Inc., 1238 Sea Village Dr., Cardiff, CA, USA
| | | | - Payton Evans
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Samantha M Clements
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Robert S Pomeroy
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | - Stephen P Mayfield
- Department of Molecular Biology, and California Center for Algae Biotechnology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
Bahadur A, Li T, Sajjad W, Nasir F, Zia MA, Wu M, Zhang G, Liu G, Chen T, Zhang W. Transcriptional and biochemical analyses of Planomicrobium strain AX6 from Qinghai-Tibetan Plateau, China, reveal hydrogen peroxide scavenging potential. BMC Microbiol 2022; 22:265. [PMID: 36335290 PMCID: PMC9636757 DOI: 10.1186/s12866-022-02677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The bacterial mechanisms responsible for hydrogen peroxide (H2O2) scavenging have been well-reported, yet little is known about how bacteria isolated from cold-environments respond to H2O2 stress. Therefore, we investigated the transcriptional profiling of the Planomicrobium strain AX6 strain isolated from the cold-desert ecosystem in the Qaidam Basin, Qinghai-Tibet Plateau, China, in response to H2O2 stress aiming to uncover the molecular mechanisms associated with H2O2 scavenging potential. METHODS We investigated the H2O2-scavenging potential of the bacterial Planomicrobium strain AX6 isolated from the cold-desert ecosystem in the Qaidam Basin, Qinghai-Tibet Plateau, China. Furthermore, we used high-throughput RNA-sequencing to unravel the molecular aspects associated with the H2O2 scavenging potential of the Planomicrobium strain AX6 isolate. RESULTS In total, 3,427 differentially expressed genes (DEGs) were identified in Planomicrobium strain AX6 isolate in response to 4 h of H2O2 (1.5 mM) exposure. Besides, Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology analyses revealed the down- and/or up-regulated pathways following H2O2 treatment. Our study not only identified the H2O2 scavenging capability of the strain nevertheless also a range of mechanisms to cope with the toxic effect of H2O2 through genes involved in oxidative stress response. Compared to control, several genes coding for antioxidant proteins, including glutathione peroxidase (GSH-Px), Coproporphyrinogen III oxidase, and superoxide dismutase (SOD), were relatively up-regulated in Planomicrobium strain AX6, when exposed to H2O2. CONCLUSIONS Overall, the results suggest that the up-regulated genes responsible for antioxidant defense pathways serve as essential regulatory mechanisms for removing H2O2 in Planomicrobium strain AX6. The DEGs identified here could provide a competitive advantage for the existence of Planomicrobium strain AX6 in H2O2-polluted environments.
Collapse
Affiliation(s)
- Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000, China
| | - Ting Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (CAS), Changchun, 130102, Jilin Province, China
| | - Muhammad Amir Zia
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Islamabad, Pakistan
| | - Minghui Wu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000, China.
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
16
|
Lyu L, He Y, Dong C, Li G, Wei G, Shao Z, Zhang S. Characterization of chlorinated paraffin-degrading bacteria from marine estuarine sediments. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129699. [PMID: 35963094 DOI: 10.1016/j.jhazmat.2022.129699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
This study explored chlorinated paraffin (CP)-degrading bacteria from the marine environment. Aequorivita, Denitromonas, Parvibaculum, Pseudomonas and Ignavibacterium were selected as the dominant genera after enrichment with chlorinated paraffin 52 (CP52) as the sole carbon source. Eight strains were identified as CP degraders, including Pseudomonas sp. NG6 and NF2, Erythrobacter sp. NG3, Castellaniella sp. NF6, Kordiimonas sp. NE3, Zunongwangia sp. NF12, Zunongwangia sp. NH1 and Chryseoglobus sp. NF13, and their degradation efficiencies ranged from 6.4% to 19.0%. In addition to Pseudomonas, the other six genera of bacteria were first reported to have the degradation ability of CPs. Bacterial categories, carbon-chain lengths and chlorination degrees were three crucial factors affecting the degradation efficiencies of CPs, with their influential ability of chlorinated degrees > bacterial categories > carbon-chain lengths. CP degradation can be performed by producing chlorinated alcohols, chlorinated olefins, dechlorinated alcohols and lower chlorinated CPs. This study will provide valuable information on CP biotransformation and targeted bacterial resources for studying the transformation processes of specific CPs in marine environments.
Collapse
Affiliation(s)
- Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yufei He
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Chunming Dong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Guizhen Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Guangshan Wei
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zongze Shao
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China; Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Xiamen 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
17
|
Carr CM, de Oliveira BFR, Jackson SA, Laport MS, Clarke DJ, Dobson ADW. Identification of BgP, a Cutinase-Like Polyesterase From a Deep-Sea Sponge-Derived Actinobacterium. Front Microbiol 2022; 13:888343. [PMID: 35495686 PMCID: PMC9039725 DOI: 10.3389/fmicb.2022.888343] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Many marine bacteria produce extracellular enzymes that degrade complex molecules to facilitate their growth in environmental conditions that are often harsh and low in nutrients. Marine bacteria, including those inhabiting sea sponges, have previously been reported to be a promising source of polyesterase enzymes, which have received recent attention due to their potential ability to degrade polyethylene terephthalate (PET) plastic. During the screening of 51 marine bacterial isolates for hydrolytic activities targeting ester and polyester substrates, a Brachybacterium ginsengisoli B129SM11 isolate from the deep-sea sponge Pheronema sp. was identified as a polyesterase producer. Sequence analysis of genomic DNA from strain B129SM11, coupled with a genome "mining" strategy, allowed the identification of potential polyesterases, using a custom database of enzymes that had previously been reported to hydrolyze PET or other synthetic polyesters. This resulted in the identification of a putative PET hydrolase gene, encoding a polyesterase-type enzyme which we named BgP that shared high overall similarity with three well-characterized PET hydrolases-LCC, TfCut2, and Cut190, all of which are key enzymes currently under investigation for the biological recycling of PET. In silico protein analyses and homology protein modeling offered structural and functional insights into BgP, and a detailed comparison with Cut190 revealed highly conserved features with implications for both catalysis and substrate binding. Polyesterase activity was confirmed using an agar-based polycaprolactone (PCL) clearing assay, following heterologous expression of BgP in Escherichia coli. This is the first report of a polyesterase being identified from a deep-sea sponge bacterium such as Brachybacterium ginsengisoli and provides further insights into marine-derived polyesterases, an important family of enzymes for PET plastic hydrolysis. Microorganisms living in association with sponges are likely to have increased exposure to plastics and microplastics given the wide-scale contamination of marine ecosystems with these plastics, and thus they may represent a worthwhile source of enzymes for use in new plastic waste management systems. This study adds to the growing knowledge of microbial polyesterases and endorses further exploration of marine host-associated microorganisms as a potentially valuable source of this family of enzymes for PET plastic hydrolysis.
Collapse
Affiliation(s)
- Clodagh M. Carr
- School of Microbiology, University College Cork, Cork, Ireland
- SSPC-SFI Research Centre for Pharmaceuticals, University College Cork, Cork, Ireland
| | - Bruno Francesco Rodrigues de Oliveira
- School of Microbiology, University College Cork, Cork, Ireland
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Stephen A. Jackson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David J. Clarke
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- SSPC-SFI Research Centre for Pharmaceuticals, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
18
|
Bagi A, Knapik K, Baussant T. Abundance and diversity of n-alkane and PAH-degrading bacteria and their functional genes - Potential for use in detection of marine oil pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152238. [PMID: 34896501 DOI: 10.1016/j.scitotenv.2021.152238] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Monitoring environmental status through molecular investigation of microorganisms in the marine environment is suggested as a potentially very effective method for biomonitoring, with great potential for automation. There are several hurdles to that approach with regards to primer design, variability across geographical locations, seasons, and type of environmental pollution. Here, qPCR analysis of genes involved in the initial activation of aliphatic and aromatic hydrocarbons were used in a laboratory setup mimicking realistic oil leakage at sea. Seawater incubation experiments were carried out under two different seasons with two different oil types. Degenerate primers targeting initial oxygenases (alkane 1-monooxygenase; alkB and aromatic-ring hydroxylating dioxygenase; ARHD) were employed in qPCR assays to quantify the abundance of genes essential for oil degradation. Shotgun metagenomics was used to map the overall community dynamics and the diversity of alkB and ARHD genes represented in the microbial community. The amplicons generated through the qPCR assays were sequenced to reveal the diversity of oil-degradation related genes captured by the degenerate primers. We identified a major mismatch between the taxonomic diversity of alkB and ARHD genes amplified by the degenerate primers and those identified through shotgun metagenomics. More specifically, the designed primers did not amplify the alkB genes of the two most abundant alkane degraders that bloomed in the experiments, Oceanobacter and Oleispira. The relative abundance of alkB sequences from shotgun metagenomics and 16S rRNA-based Oleispira-specific qPCR assay were better signals for oil in water than the tested qPCR alkB assay. The ARHD assay showed a good agreement with PAHs degradation despite covering only 25% of the top 100 ARHD genes and missing several abundant Cycloclasticus sequences that were present in the metagenome. We conclude that further improvement of the degenerate primer approach is needed to rely on the use of oxygenase-related qPCR assays for oil leakage detection.
Collapse
Affiliation(s)
- Andrea Bagi
- NORCE Norwegian Research Centre, Bergen, Norway.
| | | | | |
Collapse
|
19
|
Kadri T, Robert T, Rouissi T, Sebastian J, Magdouli S, Brar SK, Martel R, Lauzon JM. Column tests for evaluation of the enzymatic biodegradation capacity of hydrocarbons (C 10-C 50) contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117986. [PMID: 34523511 DOI: 10.1016/j.envpol.2021.117986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/12/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Though many studies pertaining to soil bioremediation have been performed to study the microbial kinetics in shake flasks, the process efficiency in column tests is seldom. In the present study, soil columns tests were carried out to study the biodegradation of soil contaminated with a high concentration of diesel (≈19.5 g/kg) petroleum hydrocarbons expressed as C10-C50. Experiments were done with crude enzymatic cocktail produced by the hydrocarbonoclastic bacterium, Alcanivorax borkumensis. A. borkumensis was grown on a media with 3% (v/v) motor oil as the sole carbon and energy source. The effects of the enzyme concentration, treatment time and oxidant on the bioremediation efficiency of C10-C50 were investigated. A batch test was also carried out in parallel to investigate the stability of the enzymes and the effect of the biosurfactants on the desorption and the bioconversion of C10-C50. Batch tests indicated that the biosurfactants significantly affected the desorption and alkane hydroxylase and lipase enzymes, maintained their catalytic activity during the 20-day test, with a half-life of 7.44 days and 8.84 days, respectively. The crude enzyme cocktail, with 40 U/mL of lipase and 10 U/mL of alkane hydroxylase, showed the highest conversion of 57.36% after 12 weeks of treatment with a degradation rate of 0.0218 day-1. The results show that the soil column tests can be used to optimize operating conditions for hydrocarbon degradation and to assess the performance of the overall bioremediation process.
Collapse
Affiliation(s)
- Tayssir Kadri
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Thomas Robert
- TechnoRem Inc., 4701, rue Louis-B.-Mayer, Laval, Québec, H7P 6G5, Canada
| | - Tarek Rouissi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Joseph Sebastian
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Sara Magdouli
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada; Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada; Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada.
| | - Richard Martel
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Jean-Marc Lauzon
- TechnoRem Inc., 4701, rue Louis-B.-Mayer, Laval, Québec, H7P 6G5, Canada
| |
Collapse
|
20
|
Zhang Y, Yang Q, Ling J, Zhang Y, Zhou W, Ahmad M, Lin X, Lin L, Peng Q, Dong J. The diversity of alkane-degrading bacterial communities in seagrass ecosystem of the South China Sea. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1799-1807. [PMID: 34264477 DOI: 10.1007/s10646-021-02450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Seagrass meadows are one of the most important marine ecosystems. Alkanes are the common hydrocarbon contaminants that can affect seagrass growth. In this study, a large spatial-scale investigation has been carried out on the alkane-degrading bacterial community structure in the rhizosphere and non-rhizosphere sediments of two seagrass species (Thalassia hemprichii and Halophila ovalis). AlkB gene was employed as a biomarker gene to study the alkane-degrading bacterial community structure. The results showed that the alpha diversity of the alkane-degrading bacterial community in T. hemprichii non-rhizosphere sediments was higher than that of its rhizosphere sediments. However, the alpha diversity of the alkane-degrading bacterial community in H. ovalis rhizosphere sediments was higher than that of its non-rhizosphere sediments in the open sea, but the result was contrast in the coast area. In addition, the alpha diversity of alkane-degrading bacterial communities in the coast area was higher than that of far away from the coast in the T. hemprichii rhizosphere and non-rhizosphere sediments. The phylogenetic analysis result revealed that the alkB sequences from the seagrass ecosystem were mainly affiliated with the class Alphaproteobacteria, and had the two novel lineages. Genus Agrobacterium was the most predominant alkane-degrading bacteria. These results contributed to disclose the geographical distribution pattern of alkane-degrading bacteria in the seagrass ecosystem of the South China Sea.
Collapse
Affiliation(s)
- Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Yanying Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Ocean School, Yantai University, Yantai, 264005, China
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Manzoor Ahmad
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangcheng Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyun Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuying Peng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, 572000, China.
| |
Collapse
|
21
|
Sengupta K, Pal S. A review on microbial diversity and genetic markers involved in methanogenic degradation of hydrocarbons: futuristic prospects of biofuel recovery from contaminated regions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40288-40307. [PMID: 33844144 DOI: 10.1007/s11356-021-13666-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Microbial activities within oil reservoirs have adversely impacted the world's majority of oil by lowering its quality, thereby increasing its recovery and refining cost. Moreover, conventional method of extraction leaves behind nearly two-thirds of the fossil fuels in the oil fields. This huge potential can be extracted if engineered methanogenic consortium is adapted to convert the hydrocarbons into natural gas. This process involves conversion of crude oil hydrocarbons into methanogenic substrates by syntrophic and fermentative bacteria, which are subsequently utilized by methanogens to produce methane. Microbial diversity of such environments supports the viability of this process. This review illuminates the potentials of abundant microbial groups such as Syntrophaceae, Anaerolineaceae, Clostridiales and Euryarchaeota in petroleum hydrocarbon-related environment, their genetic markers, biochemical process and omics-based bioengineering methods involved in methane generation. Increase in the copy numbers of catabolic genes during methanogenesis highlights the prospect of developing engineered biofuel recovery technology. Several lab-based methanogenic consortia from depleted petroleum reservoirs and microcosm studies so far would not be enough for field application without the advent of multi-omics-based technologies to trawl out the bottleneck parameters of the enhanced fuel recovery process. The adaptability of efficient consortium of versatile hydrocarbonoclastic and methanogenic microorganisms under environmental stress conditions is further needed to be investigated. The improved process might hold the potential of methane extraction from petroleum waste like oil tank and refinery sludge, oil field deposits, etc. What sounds as biodegradation could be a beginning of converting waste into wealth by recovery of stranded energy assets.
Collapse
Affiliation(s)
- Kriti Sengupta
- Bioenergy Group, Agharkar Research Institute, Pune, 411004, India
| | - Siddhartha Pal
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
22
|
Kalami R, Pourbabaee AA. Investigating the potential of bioremediation in aged oil-polluted hypersaline soils in the south oilfields of Iran. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:517. [PMID: 34309727 DOI: 10.1007/s10661-021-09304-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
To date, studies for bioremediation of oil-polluted hypersaline soils have been neglected or limited to specific spots. Hence, in this study, ten samples of oil field soils in the Khuzestan province of Iran were collected to evaluate bioremediation's feasibility. These samples were analyzed for their physicochemical properties as well as the most probable number of total and hydrocarbon-degrading bacteria. Thirty-nine hydrocarbon-degrading bacteria were isolated from these soils over a 1-month incubation in an MSM medium enriched with diesel oil as the sole source of carbon. As revealed by 16S-rRNA analysis, the identified strains belonged to the genera Ochrobactrum, Microbacterium, and Bacillus with a high frequency of Ochrobactrum species. Additionally, by using degenerate primers, the third group of alkB gene was detected in Ochrobactrum and Microbacterium isolates through the touchdown nested PCR method for the first time. Ochrobactrum species possessing the alkB gene showed the highest population, and therefore, the highest adaptation to harsh environmental conditions. Most isolates showed outstanding results in the ability to grow with crude and diesel oil and tolerate high salt percentages, biosurfactant production, and emulsification activity, which are considered the most effective factors in bioremediation of such environments. Considering the soil analysis, limiting factors in bioremediation like available phosphorous, and the abundance of bacteria with remediation traits in these soils, these extremely polluted environments can be refined.
Collapse
Affiliation(s)
- Reyhaneh Kalami
- Department of Soil Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Ahmad-Ali Pourbabaee
- Department of Soil Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
23
|
Thomas GE, Brant JL, Campo P, Clark DR, Coulon F, Gregson BH, McGenity TJ, McKew BA. Effects of Dispersants and Biosurfactants on Crude-Oil Biodegradation and Bacterial Community Succession. Microorganisms 2021; 9:microorganisms9061200. [PMID: 34206054 PMCID: PMC8229435 DOI: 10.3390/microorganisms9061200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
This study evaluated the effects of three commercial dispersants (Finasol OSR 52, Slickgone NS, Superdispersant 25) and three biosurfactants (rhamnolipid, trehalolipid, sophorolipid) in crude-oil seawater microcosms. We analysed the crucial early bacterial response (1 and 3 days). In contrast, most analyses miss this key period and instead focus on later time points after oil and dispersant addition. By focusing on the early stage, we show that dispersants and biosurfactants, which reduce the interfacial surface tension of oil and water, significantly increase the abundance of hydrocarbon-degrading bacteria, and the rate of hydrocarbon biodegradation, within 24 h. A succession of obligate hydrocarbonoclastic bacteria (OHCB), driven by metabolite niche partitioning, is demonstrated. Importantly, this succession has revealed how the OHCB Oleispira, hitherto considered to be a psychrophile, can dominate in the early stages of oil-spill response (1 and 3 days), outcompeting all other OHCB, at the relatively high temperature of 16 °C. Additionally, we demonstrate how some dispersants or biosurfactants can select for specific bacterial genera, especially the biosurfactant rhamnolipid, which appears to provide an advantageous compatibility with Pseudomonas, a genus in which some species synthesize rhamnolipid in the presence of hydrocarbons.
Collapse
Affiliation(s)
- Gareth E. Thomas
- School of Life Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK; (D.R.C.); (B.H.G.); (T.J.M.); (B.A.M.)
- Correspondence: ; Tel.: +44-1206-873333 (ext. 2918)
| | - Jan L. Brant
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK;
| | - Pablo Campo
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK; (P.C.); (F.C.)
| | - Dave R. Clark
- School of Life Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK; (D.R.C.); (B.H.G.); (T.J.M.); (B.A.M.)
- Institute for Analytics and Data Science, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK; (P.C.); (F.C.)
| | - Benjamin H. Gregson
- School of Life Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK; (D.R.C.); (B.H.G.); (T.J.M.); (B.A.M.)
| | - Terry J. McGenity
- School of Life Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK; (D.R.C.); (B.H.G.); (T.J.M.); (B.A.M.)
| | - Boyd A. McKew
- School of Life Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK; (D.R.C.); (B.H.G.); (T.J.M.); (B.A.M.)
| |
Collapse
|
24
|
Functional Gene Diversity of Selected Indigenous Hydrocarbon-Degrading Bacteria in Aged Crude Oil. Int J Microbiol 2020; 2020:2141209. [PMID: 32802067 PMCID: PMC7414327 DOI: 10.1155/2020/2141209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 06/02/2020] [Indexed: 12/05/2022] Open
Abstract
Crude oil pollution has consistently deteriorated all environmental compartments through the cycle of activities of the oil and gas industries. However, there is a growing need to identify microbes with catabolic potentials to degrade these pollutants. This research was conducted to identify bacteria with functional degradative genes. A crude oil-polluted soil sample was obtained from an aged spill site at Imo River, Ebubu, Komkom community, Nigeria. Bacteria isolates were obtained and screened for hydrocarbon degradation potential by turbidometry assay. Plasmid and chromosomal DNA of the potential degraders were further screened for the presence of selected catabolic genes (C230, Alma, Alkb, nahAC, and PAHRHD(GP)) and identified by molecular typing. Sixteen (16) out of the fifty (50) isolates obtained showed biodegradation activity in a liquid broth medium at varying levels. Bacillus cereus showed highest potential for this assay with an optical density of 2.450 @ 600 nm wavelength. Diverse catabolic genes resident in plasmids and chromosomes of the isolates and, in some cases, both plasmid and chromosomes of the same organism were observed. The C230 gene was resident in >50% of the microbial population tested, while other genes occurred in lower proportions with the least observed in nahAC and PAHRHD. These organisms can serve as potential bioremediation agents.
Collapse
|
25
|
Thomas GE, Cameron TC, Campo P, Clark DR, Coulon F, Gregson BH, Hepburn LJ, McGenity TJ, Miliou A, Whitby C, McKew BA. Bacterial Community Legacy Effects Following the Agia Zoni II Oil-Spill, Greece. Front Microbiol 2020; 11:1706. [PMID: 32765479 PMCID: PMC7379155 DOI: 10.3389/fmicb.2020.01706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023] Open
Abstract
In September 2017 the Agia Zoni II sank in the Saronic Gulf, Greece, releasing approximately 500 tonnes of heavy fuel oil, contaminating the Salamina and Athens coastlines. Effects of the spill, and remediation efforts, on sediment microbial communities were quantified over the following 7 months. Five days post-spill, the concentration of measured hydrocarbons within surface sediments of contaminated beaches was 1,093-3,773 μg g-1 dry sediment (91% alkanes and 9% polycyclic aromatic hydrocarbons), but measured hydrocarbons decreased rapidly after extensive clean-up operations. Bacterial genera known to contain oil-degrading species increased in abundance, including Alcanivorax, Cycloclasticus, Oleibacter, Oleiphilus, and Thalassolituus, and the species Marinobacter hydrocarbonoclasticus from approximately 0.02 to >32% (collectively) of the total bacterial community. Abundance of genera with known hydrocarbon-degraders then decreased 1 month after clean-up. However, a legacy effect was observed within the bacterial community, whereby Alcanivorax and Cycloclasticus persisted for several months after the oil spill in formerly contaminated sites. This study is the first to evaluate the effect of the Agia Zoni II oil-spill on microbial communities in an oligotrophic sea, where in situ oil-spill studies are rare. The results aid the advancement of post-spill monitoring models, which can predict the capability of environments to naturally attenuate oil.
Collapse
Affiliation(s)
- Gareth E. Thomas
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Tom C. Cameron
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Pablo Campo
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Dave R. Clark
- School of Life Sciences, University of Essex, Colchester, United Kingdom
- Institute for Analytics and Data Science, University of Essex, Wivenhoe Park, Essex, United Kingdom
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | | | - Leanne J. Hepburn
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Terry J. McGenity
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | | | - Corinne Whitby
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Boyd A. McKew
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
26
|
Knapik K, Bagi A, Krolicka A, Baussant T. Metatranscriptomic Analysis of Oil-Exposed Seawater Bacterial Communities Archived by an Environmental Sample Processor (ESP). Microorganisms 2020; 8:E744. [PMID: 32429288 PMCID: PMC7284936 DOI: 10.3390/microorganisms8050744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/17/2022] Open
Abstract
The use of natural marine bacteria as "oil sensors" for the detection of pollution events can be suggested as a novel way of monitoring oil occurrence at sea. Nucleic acid-based devices generically called genosensors are emerging as potentially promising tools for in situ detection of specific microbial marker genes suited for that purpose. Functional marker genes are particularly interesting as targets for oil-related genosensing but their identification remains a challenge. Here, seawater samples, collected in tanks with oil addition mimicking a realistic oil spill scenario, were filtered and archived by the Environmental Sample Processor (ESP), a fully robotized genosensor, and the samples were then used for post-retrieval metatranscriptomic analysis. After extraction, RNA from ESP-archived samples at start, Day 4 and Day 7 of the experiment was used for sequencing. Metatranscriptomics revealed that several KEGG pathways were significantly enriched in samples exposed to oil. However, these pathways were highly expressed also in the non-oil-exposed water samples, most likely as a result of the release of natural organic matter from decaying phytoplankton. Temporary peaks of aliphatic alcohol and aldehyde dehydrogenases and monoaromatic ring-degrading enzymes (e.g., ben, box, and dmp clusters) were observed on Day 4 in both control and oil-exposed and non-exposed tanks. Few alkane 1-monooxygenase genes were upregulated on oil, mostly transcribed by families Porticoccaceae and Rhodobacteraceae, together with aromatic ring-hydroxylating dioxygenases, mostly transcribed by Rhodobacteraceae. Few transcripts from obligate hydrocarbonoclastic genera of Alcanivorax, Oleispira and Cycloclasticus were significantly enriched in the oil-treated exposed tank in comparison to control the non-exposed tank, and these were mostly transporters and genes involved in nitrogen and phosphorous acquisition. This study highlights the importance of seasonality, i.e., phytoplankton occurrence and senescence leading to organic compound release which can be used preferentially by bacteria over oil compounds, delaying the latter process. As a result, such seasonal effect can reduce the sensitivity of genosensing tools employing bacterial functional genes to sense oil. A better understanding of the use of natural organic matter by bacteria involved in oil-biodegradation is needed to develop an array of functional markers enabling the rapid and specific in situ detection of anthropogenic pollution.
Collapse
Affiliation(s)
| | | | | | - Thierry Baussant
- NORCE Environment, NORCE Norwegian Research Centre AS, 4070 Randaberg, Norway; (K.K.); (A.B.); (A.K.)
| |
Collapse
|
27
|
Zhang B, Yang R, Zhang G, Liu Y, Zhang D, Zhang W, Chen T, Liu G. Characteristics of Planococcus antioxidans sp. nov., an antioxidant-producing strain isolated from the desert soil in the Qinghai-Tibetan Plateau. Microbiologyopen 2020; 9:1183-1196. [PMID: 32162498 PMCID: PMC7294307 DOI: 10.1002/mbo3.1028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 01/01/2023] Open
Abstract
Strain Y74T was an isolate from the sandy soil in the town of Huatugou, Qinghai-Tibet Plateau, China. An analysis of this strain's phenotypic, chemotaxonomic, and genomic characteristics established the relationship of the isolate with the genus Planococcus. Strain Y74T was able to grow between 4 and 42°C (with an optimum temperature of 28°C) at pH values of 6-8.5 and in 0%-7% (w/v) NaCl. The dominant quinones were MK-8 and MK-7. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, and an unknown phospholipid. The majority of the fatty acid content was anteiso-C15:0 (28.8%) followed by C16:1 ω7c alcohol (20.9%) and iso-C14:0 (13.4%). The 16S rRNA gene sequence similarity analysis demonstrated a stable branch formed by strain Y74T and Planococcus halotolerans SCU63T (99.66%). The digital DNA-DNA hybridization between these two strains was 57.2%. The G + C content in the DNA of Y74T was 44.5 mol%. In addition, the morphological, physiological, and chemotaxonomic pattern clearly differentiated the isolates from their known relatives. In conclusion, the strain Y74T (=JCM 32826T = CICC24461T ) represents a novel member of the genus Planococcus, for which the name Planococcus antioxidans sp. nov. is proposed. Strain Y74T was found to have potent antioxidant activity via its hydrogen peroxide tolerance and its 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity. The DPPH radical-scavenging activity was determined to be 40.2 ± 0.7%. The genomic analysis indicated that six peroxidases genes, one superoxide dismutase gene, and one dprA (DNA-protecting protein) are present in the genome of Y74T .
Collapse
Affiliation(s)
- Binglin Zhang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Ruiqi Yang
- College of Geography and Environmental Engineering, Lanzhou City University, Lanzhou, China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China.,Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Yang Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China.,Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Dongming Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China.,Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China.,Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
28
|
Planococcus lenghuensis sp. nov., an oil-degrading bacterium isolated from petroleum-contaminated soil. Antonie van Leeuwenhoek 2020; 113:839-850. [PMID: 32114684 DOI: 10.1007/s10482-020-01394-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/07/2020] [Indexed: 10/24/2022]
Abstract
A Gram-staining-positive and aerobic coccus with the ability to degrade petroleum bacterium, designated Y42T, was isolated from the Lenghu oil field located in the northern margin of the Qaidam Basin. Phylogenetic and signature nucleotides analyses revealed that strain Y42T belongs to the genus Planococcus. The multiple sequence alignments of 16S rRNA and housekeeping genes showed that strain Y42T formed a distinct lineage with the other Planococcus clade. The average nucleotide identity (ANI) and DNA-DNA hybridization values (DDH) between strain Y42T and the reference strains were 69.5-70.1 and 19.4-21.7%, respectively, which values were below the threshold for species delineation. The major fatty acids of strain Y42T were anteiso-C15:0. The respiratory quinone was MK-7 (71.8%) as the predominant menaquinone followed the MK-6 (28.2%) and the cell-wall hydrolysates contained LL-diaminopimelic acid. The polar lipid was composed of diphosphatidyl glycerol, phosphatidyl glycerol, phosphoglycolipid, aminophospholipid and four unidentified lipids. The peptidoglycan type was A4α (L-Lys-D-Glu). The strain Y42T possessed larger genome (approximately 4 MB) and revealed obvious differences for the abundance of the COG categories compared with the other Planococcus bacteria. Also, the strain Y42T also possessed more unique orthologous proteins. The structural characteristics of the strain Y42T genome provided a competitive advantage for better survival in petroleum-polluted environments. Combined with the 16S rRNA gene and genome sequence, phenotypic as well as chemotaxonomic characterisations, strain Y42T is considered to represent a novel species of the genus Planococcus, for which the name Planococcus lenghuensis sp. nov. be proposed. The type strain is Y42T (= CGMCC 1.15921T = JCM 32719T).
Collapse
|
29
|
Krolicka A, Boccadoro C, Nilsen MM, Demir-Hilton E, Birch J, Preston C, Scholin C, Baussant T. Identification of microbial key-indicators of oil contamination at sea through tracking of oil biotransformation: An Arctic field and laboratory study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133715. [PMID: 31470316 DOI: 10.1016/j.scitotenv.2019.133715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
In this paper, a molecular analytical approach for detecting hydrocarbonoclastic bacteria in water is suggested as a proxy measurement for tracking petroleum discharges in industrialized or pristine aquatic environments. This approach is tested for general application in cold marine regions (freezing to 5 °C). We used amplicon sequencing and qPCR to quantify 16S rRNA and GyrB genes from oleophilic bacteria in seawater samples from two different crude oil enrichments. The first experiment was conducted in a controlled environment using laboratory conditions and natural North Sea fjord seawater (NSC) at a constant temperature of 5 °C. The second was performed in the field with natural Arctic seawater (ARC) and outdoor temperature conditions from -7 °C to around 4 °C. Although the experimental conditions for NSC and ARC differed, the temporal changes in bacterial communities were comparable and reflected oil biotransformation processes. The common bacterial OTUs for NSC and ARC had the highest identity to Colwellia rossensis and Oleispira antarctica rRNA sequences and were enriched within a few days in both conditions. Other typical oil degrading bacteria such as Alcanivorax (n-alkane degrader) and Cycloclasticus (polycyclic aromatic hydrocarbons degrader) were rapidly enriched only in NSC conditions. Both the strong correlation between Oleispira SSU gene copies and oil concentration, and the specificity of the Oleispira assay suggest that this organism is a robust bioindicator for seawater contaminated by petroleum in cold water environments. Further optimization for automation of the Oleispira assay for in situ analysis with a genosensing device is underway. The assay for Colwellia quantification requires more specificity to fewer Colwellia OTUs and a well-established dose-response relationship before those taxa are used for oil tracking purposes.
Collapse
Affiliation(s)
- Adriana Krolicka
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway.
| | - Catherine Boccadoro
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway
| | - Mari Mæland Nilsen
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway
| | - Elif Demir-Hilton
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Jim Birch
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Christina Preston
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Chris Scholin
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Thierry Baussant
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway
| |
Collapse
|
30
|
García-Cruz NU, Valdivia-Rivera S, Narciso-Ortiz L, García-Maldonado JQ, Uribe-Flores MM, Aguirre-Macedo ML, Lizardi-Jiménez MA. Diesel uptake by an indigenous microbial consortium isolated from sediments of the Southern Gulf of Mexico: Emulsion characterisation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:849-855. [PMID: 31085470 DOI: 10.1016/j.envpol.2019.04.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/09/2019] [Accepted: 04/22/2019] [Indexed: 05/23/2023]
Abstract
In this study a microbial consortium, dominated by members of the genera Marinobacter and Alcanivorax (Gammaproteobacteria) isolated from marine sediments of Southern Gulf of Mexico, was assessed to grow in a bubble column bioreactor using 13 g L-1 of diesel (aliphatic and aromatic hydrocarbons mix including nonane and hexadecane) as the sole carbon source. The consortium was able to produce 3.3 g L-1 of biomass, measured as suspended solids. Microbial growth was detectable, even substrate depletion, after 8 days of cultivation. The emulsifier activity and its influence on the droplet size were also evaluated: it was observed that droplet diameter decreases as emulsifier activity increases. The bubble column bioreactor system proposed in this research could be used as a biotechnological process for the remediation of a contaminated body in important petrochemical regions, for example, Veracruz, México, where some points of sea and fresh-water bodies were analysed to find nonane and hexadecane in all sample water. It is important due to a lack of information, regarding hydrocarbon pollution in this port area, is filled.
Collapse
Affiliation(s)
- N U García-Cruz
- Centro de Investigación y de Estudios Avanzados-Mérida, Antigua carretera a Progreso Km 6, Cordemex, Loma Bonita Xcumpich, C.P. 97310, Mérida, Yucatán, Mexico
| | - S Valdivia-Rivera
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Unidad Sureste, Tableje Catastral 31264 Km 5.5, Carretera Sierra Papacal-Chuburna Puerto, Parque Científico Tecnológico de Yucatán, C.P. 97302, Mérida, Yucatán, Mexico
| | - L Narciso-Ortiz
- Instituto Tecnológico Superior de Tierra Blanca, Avenida Veracruz Sin Número Esquina Héroes de Puebla, Colonia Pemex, C.P. 95180, Tierra Blanca, Veracruz, Mexico
| | - J Q García-Maldonado
- CONACYT- Centro de Investigación y de Estudios Avanzados-Mérida, Antigua carretera a Progreso Km 6, Cordemex, Loma Bonita Xcumpich, C.P. 97310, Mérida, Yucatán, Mexico
| | - M M Uribe-Flores
- Centro de Investigación y de Estudios Avanzados-Mérida, Antigua carretera a Progreso Km 6, Cordemex, Loma Bonita Xcumpich, C.P. 97310, Mérida, Yucatán, Mexico
| | - M L Aguirre-Macedo
- Centro de Investigación y de Estudios Avanzados-Mérida, Antigua carretera a Progreso Km 6, Cordemex, Loma Bonita Xcumpich, C.P. 97310, Mérida, Yucatán, Mexico
| | - M A Lizardi-Jiménez
- CONACYT-Universidad Autónoma de San Luis Potosí, Sierra Leona 550, Lomas Segunda Sección, C.P. 78210, San Luis Potosí, Mexico.
| |
Collapse
|
31
|
SadrAzodi SM, Shavandi M, Amoozegar MA, Mehrnia MR. Biodegradation of long chain alkanes in halophilic conditions by Alcanivorax sp. strain Est-02 isolated from saline soil. 3 Biotech 2019; 9:141. [PMID: 30944788 DOI: 10.1007/s13205-019-1670-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 03/09/2019] [Indexed: 10/27/2022] Open
Abstract
In this study, through a multistep enrichment and isolation procedure, a halophilic bacterial strain was isolated from unpolluted saline soil, which was able to effectively and preferentially degrade long chain alkanes (especially tetracosane and octacosane). The strain was identified by 16S rRNA gene sequence as an Alcanivorax sp. The growth of strain Est-02 was optimized at the presence of tetracosane in different NaCl concentrations, temperatures, and pH. The consumption of different heavy alkanes was also investigated. Optimal culture conditions of the strain were determined to be as follows: 10% NaCl, temperature 25-35 °C and pH 7. Alcanivorax sp. strain Est-02 was able to use a wide range of aliphatic substrates ranging from C14 to C28 with clear tendency to utilize heavy chain hydrocarbons of C24 and C28. During growth on a mixture of alkanes (C14-C28), the strain consumed 60% and 65% of tetracosane and octacosane, respectively, while only about 40% of the lower chain alkanes were degraded. This unique ability of the strain Est-02 in efficient and selective biodegradation of long chain hydrocarbons could be further exploited for remediation of wax and heavy oil contaminated soils or upgrading of heavy crude oils. Comparison of the sequence of alkane hydroxylase gene (alkB) of strain Est-02 with previously reported sequences for Alcanivorax spp. and other hydrocarbon degraders, showed a remarkable phylogenetic distance between the sequence alkB of Est-02 and other alkane-degrading bacteria.
Collapse
|
32
|
Tachibana Y, Kageyama K, Suzuki M, Koshigumo H, Takeno H, Tachibana Y, Kasuya KI. Microbial composition and polymer hydrolytic activity of Japanese washed-rind cheeses. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Yang RQ, Zhang BL, Sun HL, Zhang GS, Li SW, Liu GX, Chen T, Li YS, Wu YN, An LZ, Zhang W, Wu XK. Nocardia mangyaensis sp. nov., a novel actinomycete isolated from crude-oil-contaminated soil. Int J Syst Evol Microbiol 2018; 69:397-403. [PMID: 30543508 DOI: 10.1099/ijsem.0.003159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A Gram-stain-positive, aerobic, non-motile and mycolic-acid-containing strain, designated Y48T, was isolated from soil contaminated by crude oil located in the northern margin of the Qaidam Basin. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Y48T belongs to the genus Nocardia and is closely related to N. cummidelens DSM 44490T (99.0 % similarity), N. soli DSM 44488T (99.0 %), N. lasii 3C-HV12T (98.9 %), N. salmonicida NBRC 13393T (98.6 %), N. ignorata NBRC 108230T (98.6 %) and N. coubleae NBRC 108252T (98.6 %). The average nucleotide identity and DNA-DNA hybridization values between strain Y48T and the reference strains were 75.9-84.5 and 27.5-29.0 %, respectively, values that were below the thresholds for species delineation. Chemotaxonomic analysis indicated that the major fatty acids of strain Y48T were C16 : 0, summed feature 3 (C16 : 1ω6c/C16 : 1ω7c), C18 : 1ω9c and C18 : 0 10-methyl (TBSA). The respiratory quinone was MK-8(H4, ω-cycl). The polar lipid profile was composed of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside, two glycolipids and three unidentified lipids. The cell-wall hydrolysates contained meso-diaminopimelic acid, with ribose, arabinose, glucose and galactose as whole-cell sugars. A combination of 16S rRNA gene sequence analysis, and phenotypic and chemotaxonomic characterizations demonstrated that strain Y48T represents a novel species of the genus Nocardia, for which the name Nocardia mangyaensis sp. nov. is proposed. The type strain is Y48T (=JCM 32795T=CGMCC 4.7494T).
Collapse
Affiliation(s)
- Rui-Qi Yang
- 1Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China.,2Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou 730000, PR China.,3University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Bing-Lin Zhang
- 1Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China.,2Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou 730000, PR China
| | - Hai-Li Sun
- 4School of Geography and Environmental Engineering, Lanzhou City University, Lanzhou 730070, PR China
| | - Gao-Sen Zhang
- 1Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China.,2Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou 730000, PR China
| | - Shi-Weng Li
- 2Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou 730000, PR China.,5School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Guang-Xiu Liu
- 1Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China.,2Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou 730000, PR China
| | - Tuo Chen
- 6State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China.,2Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou 730000, PR China
| | - Yun-Shi Li
- 1Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China.,2Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou 730000, PR China.,3University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Yong-Na Wu
- 1Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China.,2Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou 730000, PR China.,3University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Li-Zhe An
- 7School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Wei Zhang
- 1Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China.,2Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou 730000, PR China
| | - Xiu-Kun Wu
- 1Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China.,2Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou 730000, PR China
| |
Collapse
|
34
|
Khudur LS, Gleeson DB, Ryan MH, Shahsavari E, Haleyur N, Nugegoda D, Ball AS. Implications of co-contamination with aged heavy metals and total petroleum hydrocarbons on natural attenuation and ecotoxicity in Australian soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:94-102. [PMID: 30172128 DOI: 10.1016/j.envpol.2018.08.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/27/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
The bioremediation of historic industrial contaminated sites is a complex process. Co-contamination, often with lead which was commonly added to gasoline until 16 years ago is one of the biggest challenges affecting the clean-up of these sites. In this study, the effect of heavy metals, as co-contaminant, together with total petroleum hydrocarbons (TPH) is reported, in terms of remaining soil toxicity and the structure of the microbial communities. Contaminated soil samples from a relatively hot and dry climate in Western Australia were collected (n = 27). Analysis of soils showed the presence of both contaminants, TPHs and heavy metals. The Microtox test confirmed that their co-presence elevated the remaining ecotoxicity. Toxicity was correlated with the presence of lead, zinc and TPH (0.893, 0.599 and 0.488), respectively, assessed using Pearson Correlation coefficient factor. Next Generation Sequencing of soil bacterial 16S rRNA, revealed a lack of dominate genera; however, despite the variation in soil type, a few genera including Azospirillum spp. and Conexibacter were present in most soil samples (85% and 82% of all soils, respectively). Likewise, many genera of hydrocarbon-degrading bacteria were identified in all soil samples. Streptomyces spp. was presented in 93% of the samples with abundance between 7% and 40%. In contrast, Acinetobacter spp. was found in only one sample but was a dominant member of (45%) of the microbial community. In addition, some bacterial genera were correlated to the presence of the heavy metals, such as Geodermatophilus spp., Rhodovibrio spp. and Rubrobacter spp. which were correlated with copper, lead and zinc, respectively. This study concludes that TPH and heavy metal co-contamination significantly elevated the associated toxicity. This is an important consideration when carrying out risk assessment associated with natural attenuation. This study also improves knowledge about the dynamics of microbial communities in mixed contamination scenarios.
Collapse
Affiliation(s)
- Leadin S Khudur
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, 3083, Australia.
| | - Deirdre B Gleeson
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Megan H Ryan
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Esmaeil Shahsavari
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, 3083, Australia
| | - Nagalakshmi Haleyur
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, 3083, Australia
| | - Dayanthi Nugegoda
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, 3083, Australia
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, 3083, Australia
| |
Collapse
|
35
|
Ní Chadhain SM, Miller JL, Dustin JP, Trethewey JP, Jones SH, Launen LA. An assessment of the microbial community in an urban fringing tidal marsh with an emphasis on petroleum hydrocarbon degradative genes. MARINE POLLUTION BULLETIN 2018; 136:351-364. [PMID: 30509817 PMCID: PMC6281173 DOI: 10.1016/j.marpolbul.2018.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/26/2018] [Accepted: 09/02/2018] [Indexed: 06/09/2023]
Abstract
Small fringing marshes are ecologically important habitats often impacted by petroleum. We characterized the phylogenetic structure (16S rRNA) and petroleum hydrocarbon degrading alkane hydroxylase genes (alkB and CYP 153A1) in a sediment microbial community from a New Hampshire fringing marsh, using alkane-exposed dilution cultures to enrich for petroleum degrading bacteria. 16S rRNA and alkB analysis demonstrated that the initial sediment community was dominated by Betaproteobacteria (mainly Comamonadaceae) and Gammaproteobacteria (mainly Pseudomonas), while CYP 153A1 sequences predominantly matched Rhizobiales. 24 h of exposure to n-hexane, gasoline, dodecane, or dilution culture alone reduced functional and phylogenetic diversity, enriching for Gammaproteobacteria, especially Pseudomonas. Gammaproteobacteria continued to dominate for 10 days in the n-hexane and no alkane exposed samples, while dodecane and gasoline exposure selected for gram-positive bacteria. The data demonstrate that small fringing marshes in New England harbor petroleum-degrading bacteria, suggesting that petroleum degradation may be an important fringing marsh ecosystem function.
Collapse
Affiliation(s)
- Sinéad M Ní Chadhain
- Department of Biology, LSCB 217, University of South Alabama, 5871 USA Drive N., Mobile, AL 36688, USA
| | - Jarett L Miller
- Department of Biology, Keene State College, 246 Main St., Keene, NH 03435, USA
| | - John P Dustin
- Department of Biology, Keene State College, 246 Main St., Keene, NH 03435, USA
| | - Jeff P Trethewey
- Department of Biology, Keene State College, 246 Main St., Keene, NH 03435, USA
| | - Stephen H Jones
- Department of Natural Resources and the Environment, University of New Hampshire, 285 Rudman Hall, 46 College Rd., Durham, NH 03824, USA
| | - Loren A Launen
- Department of Biology, Keene State College, 246 Main St., Keene, NH 03435, USA.
| |
Collapse
|
36
|
Yang R, Liu G, Chen T, Zhang W, Zhang G, Chang S. The complete genomic sequence of a novel cold-adapted bacterium, Planococcus maritimus Y42, isolated from crude oil-contaminated soil. Stand Genomic Sci 2018; 13:23. [PMID: 30338026 PMCID: PMC6180392 DOI: 10.1186/s40793-018-0328-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/28/2018] [Indexed: 12/02/2022] Open
Abstract
Planococcus maritimus Y42, isolated from the petroleum-contaminated soil of the Qaidam Basin, can use crude oil as its sole source of carbon and energy at 20 °C. The genome of P. maritimus strain Y42 has been sequenced to provide information on its properties. Genomic analysis shows that the genome of strain Y42 contains one circular DNA chromosome with a size of 3,718,896 bp and a GC content of 48.8%, and three plasmids (329,482; 89,073; and 12,282 bp). Although the strain Y42 did not show a remarkably higher ability in degrading crude oil than other oil-degrading bacteria, the existence of strain Y42 played a significant role to reducing the overall environmental impact as an indigenous oil-degrading bacterium. In addition, genome annotation revealed that strain Y42 has many genes responsible for hydrocarbon degradation. Structural features of the genomes might provide a competitive edge for P. maritimus strain Y42 to survive in oil-polluted environments and be worthy of further study in oil degradation for the recovery of crude oil-polluted environments.
Collapse
Affiliation(s)
- Ruiqi Yang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000 Gansu Province China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049 China
| | - Guangxiu Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000 Gansu Province China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000 Gansu Province China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Wei Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000 Gansu Province China
| | - Gaosen Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000 Gansu Province China
| | - Sijing Chang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000 Gansu Province China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049 China
| |
Collapse
|
37
|
Kadri T, Magdouli S, Rouissi T, Brar SK, Daghrir R, Lauzon JM. Bench-scale production of enzymes from the hydrocarbonoclastic bacteria Alcanivorax borkumensis and biodegradation tests. J Biotechnol 2018; 283:105-114. [PMID: 30071247 DOI: 10.1016/j.jbiotec.2018.07.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 11/30/2022]
Abstract
This study investigates motor oil (3, 5, 7.5 and 10% (v v-1)) as a sole carbon source for the production of Alcanivorax borkumensis in shake flasks and a 5 L bench-scale fermenter in comparison to the standard media. Shake flask studies showed a significant and higher cell growth (p=0.000038), lipase (p = 0.006900) and alkane hydroxylase production (p = 0.000921) by Alcanivorax borkumensis when motor oil was used as the substrate. Based on Tukey post-hoc tests, 5% motor oil concentration was selected as the optimal substrate concentration. The 5 L fermenter experiments conducted using motor oil at 5% (v v-1) concentration, under controlled conditions exhibited significant and higher alkane hydroxylase and lipase activities (55.6 U mL-1 (p = 0.018418) and 208.30 U mL-1 (p = 0.020087), respectively) as compared with those of motor oil at 3% (v v-1) and n-hexadecane at 3% (v v-1) concentration which was used as control. Cell growth was significantly higher when motor oil (3 or 5%) was used as a substrate (p = 0.024705). Enzymatic degradation tested on two different polycyclic aromatic hydrocarbons (PAHs) contaminated groundwaters showed 37.4% removal after 5 days with a degradation rate of 196.6 ppb day-1 and 82.8% removal after 10 days with a degradation rate of 217.54 ppb day-1 for the 1st site and an almost complete biodegradation with 95% removal and 499.02 ppb day-1 removal rate after only 5 days for the 2nd site.
Collapse
Affiliation(s)
- Tayssir Kadri
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Sara Magdouli
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Tarek Rouissi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada.
| | - Rimeh Daghrir
- 696, avenue Sainte Croix, Montréal, Québec, H4L 3Y2, Canada
| | - Jean-Marc Lauzon
- TechnoRem Inc., 4701, rue Louis-B.-Mayer, Laval, Québec, H7P 6G5, Canada
| |
Collapse
|
38
|
Kadri T, Cuprys A, Rouissi T, Brar SK, Daghrir R, Lauzon JM. Nanoencapsulation and release study of enzymes from Alkanivorax borkumensis in chitosan-tripolyphosphate formulation. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Kadri T, Rouissi T, Magdouli S, Brar SK, Hegde K, Khiari Z, Daghrir R, Lauzon JM. Production and characterization of novel hydrocarbon degrading enzymes from Alcanivorax borkumensis. Int J Biol Macromol 2018; 112:230-240. [DOI: 10.1016/j.ijbiomac.2018.01.177] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 11/16/2022]
|
40
|
Park C, Park W. Survival and Energy Producing Strategies of Alkane Degraders Under Extreme Conditions and Their Biotechnological Potential. Front Microbiol 2018; 9:1081. [PMID: 29910779 PMCID: PMC5992423 DOI: 10.3389/fmicb.2018.01081] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/07/2018] [Indexed: 11/17/2022] Open
Abstract
Many petroleum-polluted areas are considered as extreme environments because of co-occurrence of low and high temperatures, high salt, and acidic and anaerobic conditions. Alkanes, which are major constituents of crude oils, can be degraded under extreme conditions, both aerobically and anaerobically by bacteria and archaea of different phyla. Alkane degraders possess exclusive metabolic pathways and survival strategies, which involve the use of protein and RNA chaperones, compatible solutes, biosurfactants, and exopolysaccharide production for self-protection during harsh environmental conditions such as oxidative and osmotic stress, and ionic nutrient-shortage. Recent findings suggest that the thermophilic sulfate-reducing archaeon Archaeoglobus fulgidus uses a novel alkylsuccinate synthase for long-chain alkane degradation, and the thermophilic Candidatus Syntrophoarchaeum butanivorans anaerobically oxidizes butane via alkyl-coenzyme M formation. In addition, gene expression data suggest that extremophiles produce energy via the glyoxylate shunt and the Pta-AckA pathway when grown on a diverse range of alkanes under stress conditions. Alkane degraders possess biotechnological potential for bioremediation because of their unusual characteristics. This review will provide genomic and molecular insights on alkane degraders under extreme conditions.
Collapse
Affiliation(s)
- Chulwoo Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
41
|
|
42
|
Aerobic degradation of crude oil by microorganisms in soils from four geographic regions of China. Sci Rep 2017; 7:14856. [PMID: 29093536 PMCID: PMC5665864 DOI: 10.1038/s41598-017-14032-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/05/2017] [Indexed: 11/13/2022] Open
Abstract
A microcosm experiment was conducted for 112 d by spiking petroleum hydrocarbons into soils from four regions of China. Molecular analyses of soils from microcosms revealed changes in taxonomic diversity and oil catabolic genes of microbial communities. Degradation of total petroleum hydrocarbons (TPHs) in Sand from the Bohai Sea (SS) and Northeast China (NE) exhibited greater microbial mineralization than those of the Dagang Oilfield (DG) and Xiamen (XM). High-throughput sequencing and denaturing gradient gel electrophoresis (DGGE) profiles demonstrated an obvious reconstruction of the bacterial community in all soils. The dominant phylum of the XM with clay soil texture was Firmicutes instead of Proteobacteria in others (DG, SS, and NE) with silty or sandy soil texture. Abundances of alkane monooxygenase gene AlkB increased by 10- to 1000-fold, relative to initial values, and were positively correlated with rates of degradation of TPHs and n-alkanes C13-C30. Abundances of naphthalene dioxygenase gene Nah were positively correlated with degradation of naphthalene and total tricyclic PAHs. Redundancy analysis (RDA) showed that abiotic process derived from geographical heterogeneity was the primary effect on bioremediation of soils contaminated with oil. The optimization of abiotic and biotic factors should be the focus of future bioremediation of oil contaminated soil.
Collapse
|
43
|
Chang S, Zhang G, Chen X, Long H, Wang Y, Chen T, Liu G. The complete genome sequence of the cold adapted crude-oil degrader: Pedobacter steynii DX4. Stand Genomic Sci 2017; 12:45. [PMID: 28770030 PMCID: PMC5531107 DOI: 10.1186/s40793-017-0249-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/29/2017] [Indexed: 11/26/2022] Open
Abstract
Pedobacter steynii DX4 was isolated from the soil of Tibetan Plateau and it can use crude oil as sole carbon and energy source at 15 °C. The genome of Pedobacter steynii DX4 has been sequenced and served as basis for analysis its metabolic mechanism. It is the first genome of crude oil degrading strain in Pedobacter genus. The 6.58 Mb genome has an average G + C content of 41.31% and encodes 5464 genes. In addition, annotation revealed that Pedobacter steynii DX4 has cold shock proteins, abundant response regulators for cell motility, and enzymes involved in energy conversion and fatty acid metabolism. The genomic characteristics could provide information for further study of oil-degrading microbes for recovery of crude oil polluted environment.
Collapse
Affiliation(s)
- Sijing Chang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049 China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000 China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000 China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Ximing Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000 China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Haozhi Long
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045 China
| | - Yilin Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045 China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000 China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000 China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| |
Collapse
|
44
|
Long H, Wang Y, Chang S, Liu G, Chen T, Huo G, Zhang W, Wu X, Tai X, Sun L, Zhang B. Diversity of crude oil-degrading bacteria and alkane hydroxylase (alkB) genes from the Qinghai-Tibet Plateau. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:116. [PMID: 28220441 DOI: 10.1007/s10661-017-5798-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
The aim of this study was to survey the response of the microbial community to crude oil and the diversity of alkane hydroxylase (alkB) genes in soil samples from the Qinghai-Tibet Plateau (QTP). The enrichment cultures and clone libraries were used. Finally, 53 isolates and 94 alkB sequences were obtained from 10 pristine soil samples after enrichment at 10 °C with crude oil as sole carbon source. The isolates fell into the phyla Proteobacteria, Actinobacteria, and Bacteroidetes, with the dominance of Pseudomonas and Acinetobacter. The composition of degraders was different from polar habitats where Acinetobacter sp. is not a predominant responder of alkane degradative microbial communities. Phylogenetic analysis showed that the alkB genes from isolates and enrichment communities formed eight clusters and mainly related with alkB genes of Pseudomonas, Rhodococcus, and Acinetobacter. The alkB gene diversity in the QTP was lower than marine environments and polar soil samples. In particular, a total of 10 isolates exhibiting vigorous growth with crude oil could detect no crude oil degradation-related gene sequences, such as alkB, P450, almA, ndoB, and xylE genes. The Shannon-Wiener index of the alkB clone libraries from the QTP ranged from 1.00 to 2.24 which is similar with polar pristine soil samples but lower than that of contaminated soils. These results indicated that the Pseudomonas, Acinetobacter, and Rhodococcus genera are the candidate for in situ bioremediation, and the environment of QTP may be still relatively uncontaminated by crude oil.
Collapse
Affiliation(s)
- Haozhi Long
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu, 730000, China
| | - Yilin Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Sijing Chang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu, 730000, China
- State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
| | - Guangxiu Liu
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China.
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu, 730000, China.
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu, 730000, China.
- State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China.
| | - Guanghua Huo
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Wei Zhang
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu, 730000, China
| | - Xiukun Wu
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu, 730000, China
| | - Xisheng Tai
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu, 730000, China
| | - Likun Sun
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu, 730000, China
| | - Baogui Zhang
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu, 730000, China
| |
Collapse
|
45
|
Draft Genome Sequence of Oil-Degrading Bacterium Gallaecimonas pentaromativorans Strain YA_1 from the Southwest Indian Ocean. GENOME ANNOUNCEMENTS 2016; 4:4/4/e00764-16. [PMID: 27491993 PMCID: PMC4974314 DOI: 10.1128/genomea.00764-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gallaecimonas pentaromativorans has been previously reported to be capable of degrading crude oil and diesel oil. G. pentaromativorans strain YA_1 was isolated from the southwest Indian Ocean and can degrade crude oil. This study reports the draft genome sequence of G. pentaromativorans, which can provide insights into the mechanisms of microbial oil biodegradation.
Collapse
|
46
|
Hentati D, Chebbi A, Loukil S, Kchaou S, Godon JJ, Sayadi S, Chamkha M. Biodegradation of fluoranthene by a newly isolated strain of Bacillus stratosphericus from Mediterranean seawater of the Sfax fishing harbour, Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15088-15100. [PMID: 27083911 DOI: 10.1007/s11356-016-6648-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
A physico-chemical characterization of seawater taken from the fishing harbour of Sfax, Tunisia, revealed a contamination by organic and inorganic micropollutants. An aerobic marine halotolerant Bacillus stratosphericus strain FLU5 was isolated after enrichment on fluoranthene, a persistent and toxic polycyclic aromatic hydrocarbon (PAH). GC-MS analyses showed that strain FLU5 was capable of degrading almost 45 % of fluoranthene (100 mg l(-1)), without yeast extract added, after 30 days of incubation at 30 g l(-1) NaCl and 37 °C. In addition, the isolate FLU5 showed a remarkable capacity to grow on a wide range of aliphatic, aromatic and complex hydrocarbons. This strain could also synthesize a biosurfactant which was capable of reducing the surface tension of the cell-free medium, during the growth on fluoranthene. The biodegradative abilities of PAHs are promising and can be used to perform the bioremediation strategies of seawaters and marine sediments contaminated by hydrocarbons.
Collapse
Affiliation(s)
- Dorra Hentati
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, LMI COSYS-Med, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia
| | - Alif Chebbi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, LMI COSYS-Med, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia
| | - Slim Loukil
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, LMI COSYS-Med, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia
| | - Sonia Kchaou
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, LMI COSYS-Med, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia
| | - Jean-Jacques Godon
- Laboratory INRA of Environmental Biotechnology, Avenue des Etangs, F-11100, Narbonne, France
| | - Sami Sayadi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, LMI COSYS-Med, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, LMI COSYS-Med, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
47
|
Liao X, Li B, Zou R, Dai Y, Xie S, Yuan B. Biodegradation of antibiotic ciprofloxacin: pathways, influential factors, and bacterial community structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7911-7918. [PMID: 26762935 DOI: 10.1007/s11356-016-6054-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Antibiotic ciprofloxacin is ubiquitous in the environment. However, little is known about ciprofloxacin dissipation by microbial community. The present study investigated the biodegradation potential of ciprofloxacin by mixed culture and the influential factors and depicted the structure of ciprofloxacin-degrading microbial community. Both the original microbiota from drinking water biofilter and the microbiota previously acclimated to high levels of ciprofloxacin could utilize ciprofloxacin as sole carbon and nitrogen sources, while the acclimated microbiota had a much stronger removal capacity. Temperature rise and the presence of carbon or nitrogen sources favored ciprofloxacin biodegradation. Many novel biotransformation products were identified, and four different metabolic pathways for ciprofloxacin were proposed. Bacterial community structure illustrated a profound shift with ciprofloxacin biodegradation. The ciprofloxacin-degrading bacterial community was mainly composed of classes Gammaproteobacteria, Bacteroidia, and Betaproteobacteria. Microorganisms from genera Pseudoxanthomonas, Stenotrophomonas, Phenylobacterium, and Leucobacter might have links with the dissipation of ciprofloxacin. This work can provide some new insights towards ciprofloxacin biodegradation.
Collapse
Affiliation(s)
- Xiaobin Liao
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China
| | - Bingxin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Rusen Zou
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China
| | - Yu Dai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| | - Baoling Yuan
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China.
| |
Collapse
|
48
|
Abstract
Crude oil has been part of the marine environment for millions of years, and microbes that use its rich source of energy and carbon are found in seawater, sediments, and shorelines from the tropics to the polar regions. Catastrophic oil spills stimulate these organisms to "bloom" in a reproducible fashion, and although oil does not provide bioavailable nitrogen, phosphorus or iron, there are enough of these nutrients in the sea that when dispersed oil droplets dilute to low concentrations these low levels are adequate for microbial growth. Most of the hydrocarbons in dispersed oil are degraded in aerobic marine waters with a half-life of days to months. In contrast, oil that reaches shorelines is likely to be too concentrated, have lower levels of nutrients, and have a far longer residence time in the environment. Oil that becomes entrained in anaerobic sediments is also likely to have a long residence time, although it too will eventually be biodegraded. Thus, data that encompass everything from the ecosystem to the molecular level are needed for understanding the complicated process of petroleum biodegradation in marine environments.
Collapse
Affiliation(s)
- Terry C Hazen
- Departments of Civil & Environmental Engineering, Microbiology, Earth & Planetary Sciences, Center for Environmental Biotechnology, Bredesen Center, Genome Science & Technology, Institute for Secure and Sustainable Environment, University of Tennessee , Knoxville, Tennessee 37996, United States and
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- ExxonMobil Biomed Sci Inc., Annandale, New Jersey 08801, United States
- Department of Civil and Environmental Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Roger C Prince
- Departments of Civil & Environmental Engineering, Microbiology, Earth & Planetary Sciences, Center for Environmental Biotechnology, Bredesen Center, Genome Science & Technology, Institute for Secure and Sustainable Environment, University of Tennessee , Knoxville, Tennessee 37996, United States and
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- ExxonMobil Biomed Sci Inc., Annandale, New Jersey 08801, United States
- Department of Civil and Environmental Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Nagissa Mahmoudi
- Departments of Civil & Environmental Engineering, Microbiology, Earth & Planetary Sciences, Center for Environmental Biotechnology, Bredesen Center, Genome Science & Technology, Institute for Secure and Sustainable Environment, University of Tennessee , Knoxville, Tennessee 37996, United States and
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- ExxonMobil Biomed Sci Inc., Annandale, New Jersey 08801, United States
- Department of Civil and Environmental Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| |
Collapse
|
49
|
Jiao S, Chen W, Wang E, Wang J, Liu Z, Li Y, Wei G. Microbial succession in response to pollutants in batch-enrichment culture. Sci Rep 2016; 6:21791. [PMID: 26905741 PMCID: PMC4764846 DOI: 10.1038/srep21791] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/01/2016] [Indexed: 11/29/2022] Open
Abstract
As a global problem, environmental pollution is an important factor to shape the microbial communities. The elucidation of the succession of microbial communities in response to pollutants is essential for developing bioremediation procedures. In the present study, ten batches of soil-enrichment subcultures were subjected to four treatments: phenanthrene, n-octadecane, phenanthrene + n-octadecane, or phenanthrene + n-octadecane + CdCl2. Forty pollutant-degrading consortia, corresponding to each batch of the four treatments were obtained. High-throughput sequencing of the 16S rRNA gene revealed that the diversity, richness and evenness of the consortia decreased throughout the subculturing procedure. The well-known hydrocarbon degraders Acinetobacter, Gordonia, Sphingobium, Sphingopyxis, and Castellaniella and several other genera, including Niabella and Naxibacter, were detected in the enriched consortia. The predominant microbes varied and the microbial community in the consortia gradually changed during the successive subculturing depending on the treatment, indicating that the pollutants influenced the microbial successions. Comparison of the networks in the treatments indicated that organic pollutants and CdCl2 affected the co-occurrence patterns in enriched consortia. In conclusion, single environmental factors, such as the addition of nutrients or selection pressure, can shape microbial communities and partially explain the extensive differences in microbial community structures among diverse environments.
Collapse
Affiliation(s)
- Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, P. R. China
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, P. R. China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 México, D.F., Mexico
| | - Junman Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, P. R. China
| | - Zhenshan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, P. R. China
| | - Yining Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, P. R. China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, P. R. China
| |
Collapse
|
50
|
Guibert LM, Loviso CL, Borglin S, Jansson JK, Dionisi HM, Lozada M. Diverse Bacterial Groups Contribute to the Alkane Degradation Potential of Chronically Polluted Subantarctic Coastal Sediments. MICROBIAL ECOLOGY 2016; 71:100-112. [PMID: 26547568 DOI: 10.1007/s00248-015-0698-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
We aimed to gain insight into the alkane degradation potential of microbial communities from chronically polluted sediments of a subantarctic coastal environment using a combination of metagenomic approaches. A total of 6178 sequences annotated as alkane-1-monooxygenases (EC 1.14.15.3) were retrieved from a shotgun metagenomic dataset that included two sites analyzed in triplicate. The majority of the sequences binned with AlkB described in Bacteroidetes (32 ± 13 %) or Proteobacteria (29 ± 7 %), although a large proportion remained unclassified at the phylum level. Operational taxonomic unit (OTU)-based analyses showed small differences in AlkB distribution among samples that could be correlated with alkane concentrations, as well as with site-specific variations in pH and salinity. A number of low-abundance OTUs, mostly affiliated with Actinobacterial sequences, were found to be only present in the most contaminated samples. On the other hand, the molecular screening of a large-insert metagenomic library of intertidal sediments from one of the sampling sites identified two genomic fragments containing novel alkB gene sequences, as well as various contiguous genes related to lipid metabolism. Both genomic fragments were affiliated with the phylum Planctomycetes, and one could be further assigned to the genus Rhodopirellula due to the presence of a partial sequence of the 23S ribosomal RNA (rRNA) gene. This work highlights the diversity of bacterial groups contributing to the alkane degradation potential and reveals patterns of functional diversity in relation with environmental stressors in a chronically polluted, high-latitude coastal environment. In addition, alkane biodegradation genes are described for the first time in members of Planctomycetes.
Collapse
Affiliation(s)
- Lilian M Guibert
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR, CENPAT-CONICET), Blvd. Brown 2915, U9120ACD, Puerto Madryn, Chubut Province, Argentina
| | - Claudia L Loviso
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR, CENPAT-CONICET), Blvd. Brown 2915, U9120ACD, Puerto Madryn, Chubut Province, Argentina
| | - Sharon Borglin
- Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Hebe M Dionisi
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR, CENPAT-CONICET), Blvd. Brown 2915, U9120ACD, Puerto Madryn, Chubut Province, Argentina
| | - Mariana Lozada
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR, CENPAT-CONICET), Blvd. Brown 2915, U9120ACD, Puerto Madryn, Chubut Province, Argentina.
| |
Collapse
|