1
|
Farouk NI, Sabry SM, Elhosainy AM, El-Meleigy MA. Adaptation strategies in haloalkaliphilic fungi: Aspergillus salinarum, cladosporium sphaerospermum, and penicillium camemberti. BMC Microbiol 2025; 25:160. [PMID: 40119261 PMCID: PMC11929314 DOI: 10.1186/s12866-025-03848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/25/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Extremophilic fungi thrive in extreme environments, revealing life's origins and enhancing biodiversity while offering insights into evolutionary biology. This study investigates the adaptation mechanisms of haloalkaliphilic fungi Aspergillus salinarum, Cladosporium sphaerospermum, and Penicillium camemberti, isolated from Egyptian soils, adapted to life under extreme conditions of high salt (15%) and alkaline pH (10). These properties make them interesting for fundamental research and the exploration of biotechnological potential. RESULTS These fungi exhibited increased levels of soluble proteins and lipids in cell-free extracts under stress conditions. Enzyme activities, specifically peroxidase and tyrosinase, were significantly induced, with maximum induction varying by species and incubation time. Significant amounts of organic acids, including citric, oxalic, and butyric acids, were detected in higher quantities under extreme conditions, with total organic acid content increasing by up to 2.97%. The culture filtrates demonstrated enhanced antimicrobial activity against various Gram-positive and Gram-negative bacteria, Bacillus Subtilis (ATCC 6633); Staphylococcus aureus (ATCC 6538); Escherichia coli (ATCC 8739); Pseudomonas aeruginosa (ATCC 90274); yeast, Candida albicans, but not against Aspergillus niger. CONCLUSIONS These findings highlight the potential industrial applications of these fungi in biotechnology and pharmaceuticals due to their biochemical responses and antimicrobial properties.
Collapse
Affiliation(s)
- Noura I Farouk
- Botany and Microbiology Department, Faculty of Science (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| | - Shadia M Sabry
- Botany and Microbiology Department, Faculty of Science (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt.
| | - Asmaa M Elhosainy
- Botany and Microbiology Department, Faculty of Science (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| | - Magda A El-Meleigy
- Botany and Microbiology Department, Faculty of Science (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| |
Collapse
|
2
|
Yang T, Chavez MS, Niman CM, Xu S, El-Naggar MY. Long-distance electron transport in multicellular freshwater cable bacteria. eLife 2024; 12:RP91097. [PMID: 39207443 PMCID: PMC11361709 DOI: 10.7554/elife.91097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Filamentous multicellular cable bacteria perform centimeter-scale electron transport in a process that couples oxidation of an electron donor (sulfide) in deeper sediment to the reduction of an electron acceptor (oxygen or nitrate) near the surface. While this electric metabolism is prevalent in both marine and freshwater sediments, detailed electronic measurements of the conductivity previously focused on the marine cable bacteria (Candidatus Electrothrix), rather than freshwater cable bacteria, which form a separate genus (Candidatus Electronema) and contribute essential geochemical roles in freshwater sediments. Here, we characterize the electron transport characteristics of Ca. Electronema cable bacteria from Southern California freshwater sediments. Current-voltage measurements of intact cable filaments bridging interdigitated electrodes confirmed their persistent conductivity under a controlled atmosphere and the variable sensitivity of this conduction to air exposure. Electrostatic and conductive atomic force microscopies mapped out the characteristics of the cell envelope's nanofiber network, implicating it as the conductive pathway in a manner consistent with previous findings in marine cable bacteria. Four-probe measurements of microelectrodes addressing intact cables demonstrated nanoampere currents up to 200 μm lengths at modest driving voltages, allowing us to quantify the nanofiber conductivity at 0.1 S/cm for freshwater cable bacteria filaments under our measurement conditions. Such a high conductivity can support the remarkable sulfide-to-oxygen electrical currents mediated by cable bacteria in sediments. These measurements expand the knowledgebase of long-distance electron transport to the freshwater niche while shedding light on the underlying conductive network of cable bacteria.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Physics and Astronomy, University of Southern CaliforniaLos AngelesUnited States
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern CaliforniaLos AngelesUnited States
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern CaliforniaLos AngelesUnited States
| | - Shuai Xu
- Department of Physics and Astronomy, University of Southern CaliforniaLos AngelesUnited States
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern CaliforniaLos AngelesUnited States
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern CaliforniaLos AngelesUnited States
- Department of Chemistry, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
3
|
Characterization of archaeal and bacterial communities thriving in methane-seeping on-land mud volcanoes, Niigata, Japan. Int Microbiol 2022; 26:191-204. [PMID: 36329310 DOI: 10.1007/s10123-022-00288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 09/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Submarine mud volcanoes (MVs) have attracted significant interest in the scientific community for obtaining clues on the subsurface biosphere. On-land MVs, which are much less focused in this context, are equally important, and they may even provide insights also for astrobiology of extraterrestrial mud volcanism. Hereby, we characterized microbial communities of two active methane-seeping on-land MVs, Murono and Kamou, in central Japan. 16S rRNA gene profiling of those sites recovered the dominant archaeal sequences affiliated with methanogens. Anaerobic methanotrophs (ANME), with the subgroups ANME-1b and ANME-3, were recovered only from the Murono site albeit a greatly reduced relative abundance in the community compared to those of typical submarine MVs. The bacterial sequences affiliated to Caldatribacteriota JS1 were recovered from both sites; on the other hand, sulfate-reducing bacteria (SRB) of Desulfobulbaceae was recovered only from the Murono site. The major difference of on-land MVs from submarine MVs is that the high concentrations of sulfate are not always introduced to the subsurface from above. In addition, the XRD analysis of Murono shows the absence of sulfate-, sulfur-related mineral. Therefore, we hypothesize one scenario of ANME-1b and ANME-3 thriving at the depth of the Murono site independently from SRB, which is similar to the situations reported in some other methane-seeping sites with a sulfate-depleted condition. We note that previous investigations speculate that the erupted materials from Murono and Kamou originate from the Miocene marine strata. The fact that SRB (Desulfobulbaceae) capable of associating with ANME-3 was recovered from the Murono site presents an alternative scenario: the old sea-related juvenile water somehow worked as the source of additional sulfur-related components for the SRB-ANME syntrophic consortium forming at a deeper zone of the site. However, the reason for the differences between Murono and Kamou is still unknown, and this requires further investigation.
Collapse
|
4
|
Compte-Port S, Fillol M, Gich F, Borrego CM. Metabolic versatility of freshwater sedimentary archaea feeding on different organic carbon sources. PLoS One 2020; 15:e0231238. [PMID: 32267873 PMCID: PMC7141681 DOI: 10.1371/journal.pone.0231238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
Members of the phylum Bathyarchaeota and the class Thermoplasmata are widespread in marine and freshwater sediments where they have been recognized as key players in the carbon cycle. Here, we tested the responsiveness of archaeal communities on settled plant debris and sediment from a karstic lake to different organic carbon amendments (amino acids, plant-derived carbohydrates, and aromatics) using a lab-scale microcosm. Changes in the composition and abundance of sediment and biofilm archaeal communities in both DNA and RNA fractions were assessed by 16S rRNA gene amplicon sequencing and qPCR, respectively, after 7 and 30 days of incubation. Archaeal communities showed compositional changes in terms of alpha and beta diversity in relation to the type of carbon source (amino acids vs. plant-derived compounds), the nucleic acid fraction (DNA vs. RNA), and the incubation time (7 vs. 30 days). Distinct groups within the Bathyarchaeota (Bathy-15 and Bathy-6) and the Thermoplasmata (MBG-D) differently reacted to carbon supplements as deduced from the analysis of RNA libraries. Whereas Bathyarchaeota in biofilms showed a long-term positive response to humic acids, their counterparts in the sediment were mainly stimulated by the addition of tryptophan, suggesting the presence of different subpopulations in both habitats. Overall, our work presents an in vitro assessment of the versatility of archaea inhabiting freshwater sediments towards organic carbon and introduces settled leaf litter as a new habitat for the Bathyarchaeota and the Thermoplasmata.
Collapse
Affiliation(s)
- Sergi Compte-Port
- Water Quality and Microbial Diversity, Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Mireia Fillol
- Water Quality and Microbial Diversity, Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Frederic Gich
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Carles M. Borrego
- Water Quality and Microbial Diversity, Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Spain
- * E-mail:
| |
Collapse
|
5
|
Chen J, He Y, Wang J, Huang M, Guo C. Dynamics of nitrogen transformation and bacterial community with different aeration depths in malodorous river. World J Microbiol Biotechnol 2019; 35:196. [DOI: 10.1007/s11274-019-2773-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 11/21/2019] [Indexed: 11/28/2022]
|
6
|
Utami YD, Kuwahara H, Igai K, Murakami T, Sugaya K, Morikawa T, Nagura Y, Yuki M, Deevong P, Inoue T, Kihara K, Lo N, Yamada A, Ohkuma M, Hongoh Y. Genome analyses of uncultured TG2/ZB3 bacteria in 'Margulisbacteria' specifically attached to ectosymbiotic spirochetes of protists in the termite gut. THE ISME JOURNAL 2019; 13:455-467. [PMID: 30287885 PMCID: PMC6331581 DOI: 10.1038/s41396-018-0297-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 11/09/2022]
Abstract
We investigated the phylogenetic diversity, localisation and metabolism of an uncultured bacterial clade, Termite Group 2 (TG2), or ZB3, in the termite gut, which belongs to the candidate phylum 'Margulisbacteria'. We performed 16S rRNA amplicon sequencing analysis and detected TG2/ZB3 sequences in 40 out of 72 termite and cockroach species, which exclusively constituted a monophyletic cluster in the TG2/ZB3 clade. Fluorescence in situ hybridisation analysis in lower termites revealed that these bacteria are specifically attached to ectosymbiotic spirochetes of oxymonad gut protists. Draft genomes of four TG2/ZB3 phylotypes from a small number of bacterial cells were reconstructed, and functional genome analysis suggested that these bacteria hydrolyse and ferment cellulose/cellobiose to H2, CO2, acetate and ethanol. We also assembled a draft genome for a partner Treponema spirochete and found that it encoded genes for reductive acetogenesis from H2 and CO2. We hypothesise that the TG2/ZB3 bacteria we report here are commensal or mutualistic symbionts of the spirochetes, exploiting the spirochetes as H2 sinks. For these bacteria, we propose a novel genus, 'Candidatus Termititenax', which represents a hitherto uncharacterised class-level clade in 'Margulisbacteria'. Our findings add another layer, i.e., cellular association between bacteria, to the multi-layered symbiotic system in the termite gut.
Collapse
Affiliation(s)
- Yuniar Devi Utami
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Hirokazu Kuwahara
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Katsura Igai
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Takumi Murakami
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Kaito Sugaya
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Takahiro Morikawa
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Yuichi Nagura
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Masahiro Yuki
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Pinsurang Deevong
- Department of Microbiology, Kasetsart University, Bangkok, 10900, Thailand
| | - Tetsushi Inoue
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Kumiko Kihara
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Akinori Yamada
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Yuichi Hongoh
- Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan.
| |
Collapse
|
7
|
Sollai M, Villanueva L, Hopmans EC, Reichart G, Sinninghe Damsté JS. A combined lipidomic and 16S rRNA gene amplicon sequencing approach reveals archaeal sources of intact polar lipids in the stratified Black Sea water column. GEOBIOLOGY 2019; 17:91-109. [PMID: 30281902 PMCID: PMC6586073 DOI: 10.1111/gbi.12316] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/02/2018] [Accepted: 08/21/2018] [Indexed: 05/25/2023]
Abstract
Archaea are important players in marine biogeochemical cycles, and their membrane lipids are useful biomarkers in environmental and geobiological studies. However, many archaeal groups remain uncultured and their lipid composition unknown. Here, we aim to expand the knowledge on archaeal lipid biomarkers and determine the potential sources of those lipids in the water column of the euxinic Black Sea. The archaeal community was evaluated by 16S rRNA gene amplicon sequencing and by quantitative PCR. The archaeal intact polar lipids (IPLs) were investigated by ultra-high-pressure liquid chromatography coupled to high-resolution mass spectrometry. Our study revealed both a complex archaeal community and large changes with water depth in the IPL assemblages. In the oxic/upper suboxic waters (<105 m), the archaeal community was dominated by marine group (MG) I Thaumarchaeota, coinciding with a higher relative abundance of hexose phosphohexose crenarchaeol, a known marker for Thaumarchaeota. In the suboxic waters (80-110 m), MGI Nitrosopumilus sp. dominated and produced predominantly monohexose glycerol dibiphytanyl glycerol tetraethers (GDGTs) and hydroxy-GDGTs. Two clades of MGII Euryarchaeota were present in the oxic and upper suboxic zones in much lower abundances, preventing the detection of their specific IPLs. In the deep sulfidic waters (>110 m), archaea belonging to the DPANN Woesearchaeota, Bathyarchaeota, and ANME-1b clades dominated. Correlation analyses suggest that the IPLs GDGT-0, GDGT-1, and GDGT-2 with two phosphatidylglycerol (PG) head groups and archaeol with a PG, phosphatidylethanolamine, and phosphatidylserine head groups were produced by ANME-1b archaea. Bathyarchaeota represented 55% of the archaea in the deeper part of the euxinic zone and likely produces archaeol with phospho-dihexose and hexose-glucuronic acid head groups.
Collapse
Affiliation(s)
- Martina Sollai
- Departments of Marine Microbiology and Biogeochemistry and Ocean SystemsNIOZ Royal Netherlands Institute for Sea Researchand Utrecht UniversityDen BurgThe Netherlands
| | - Laura Villanueva
- Departments of Marine Microbiology and Biogeochemistry and Ocean SystemsNIOZ Royal Netherlands Institute for Sea Researchand Utrecht UniversityDen BurgThe Netherlands
| | - Ellen C. Hopmans
- Departments of Marine Microbiology and Biogeochemistry and Ocean SystemsNIOZ Royal Netherlands Institute for Sea Researchand Utrecht UniversityDen BurgThe Netherlands
| | - Gert‐Jan Reichart
- Departments of Marine Microbiology and Biogeochemistry and Ocean SystemsNIOZ Royal Netherlands Institute for Sea Researchand Utrecht UniversityDen BurgThe Netherlands
- Department of Earth SciencesFaculty of GeosciencesUniversity of UtrechtUtrechtThe Netherlands
| | - Jaap S. Sinninghe Damsté
- Departments of Marine Microbiology and Biogeochemistry and Ocean SystemsNIOZ Royal Netherlands Institute for Sea Researchand Utrecht UniversityDen BurgThe Netherlands
- Department of Earth SciencesFaculty of GeosciencesUniversity of UtrechtUtrechtThe Netherlands
| |
Collapse
|
8
|
Eissler Y, Gálvez MJ, Dorador C, Hengst M, Molina V. Active microbiome structure and its association with environmental factors and viruses at different aquatic sites of a high-altitude wetland. Microbiologyopen 2018; 8:e00667. [PMID: 30062777 PMCID: PMC6436485 DOI: 10.1002/mbo3.667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/04/2018] [Accepted: 04/21/2018] [Indexed: 01/23/2023] Open
Abstract
Salar de Huasco is a high‐altitude wetland characterized by a highly diverse microbial life adapted to extreme climatic and environmental conditions. Our study aims to determine active microbial community structure changes within different aquatic sites and its relationship with environmental factors and viruses as potential drivers of diversification in different aquatic areas of this ecosystem. In this study, bacteria and archaea composition (16S rRNA subunit pyrolibraries) and picoplankton and viral abundance were determined at ponds, springs and lagoon sites of the wetland during wet and dry seasons (February and July 2012, respectively). In general, mixosaline waters (1,400–51,000 μS/cm) usually found in ponds and lagoon presented higher picoplanktonic abundances compared to freshwater (<800 μS/cm) spring sites, ranging from 1.07 × 105 to 1.83 × 107 cells/ml. Viral abundance and viral to picoplankton ratio (VPR) also presented greater values at ponds compared to spring sites, reaching up to 4.78 × 108 viruses‐like particles and up to 351 for VPR. In general, ponds hold a higher microbial diversity and complexity associated also with the presence of microbial mats compared with water sources or lagoon (Shannon index H′ 2.6–3.9 vs. <2.0). A greater richness of archaea was also detected in ponds characterized by functional groups such as known methanogens and ammonia oxidizers, and uncultured groups. In total, our results indicate that among the different aquatic sites of the wetland, ponds presented a great microbial community diversification associated to a higher top‐down control by viruses which may influence nutrient and greenhouse gases cycling.
Collapse
Affiliation(s)
- Yoanna Eissler
- Facultad de Ciencias, Centro de Investigación y Gestión de Recursos Naturales, Instituto de Química y Bioquímica, Universidad de Valparaíso, Valparaíso, Chile
| | - María-Jesús Gálvez
- Programa de Biodiversidad and Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Observatorio de Ecología Microbiana, Universidad de Playa Ancha, Valparaíso, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile.,Centre for Biotechnology and Bioengineering, Santiago, Chile
| | - Martha Hengst
- Centre for Biotechnology and Bioengineering, Santiago, Chile.,Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Verónica Molina
- Programa de Biodiversidad and Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Observatorio de Ecología Microbiana, Universidad de Playa Ancha, Valparaíso, Chile
| |
Collapse
|
9
|
Selvarajan R, Sibanda T, Venkatachalam S, Kamika I, Nel WAJ. Industrial wastewaters harbor a unique diversity of bacterial communities revealed by high-throughput amplicon analysis. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1349-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Estimating Population Turnover Rates by Relative Quantification Methods Reveals Microbial Dynamics in Marine Sediment. Appl Environ Microbiol 2017; 84:AEM.01443-17. [PMID: 29054869 DOI: 10.1128/aem.01443-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/09/2017] [Indexed: 11/20/2022] Open
Abstract
The difficulty involved in quantifying biogeochemically significant microbes in marine sediments limits our ability to assess interspecific interactions, population turnover times, and niches of uncultured taxa. We incubated surface sediments from Cape Lookout Bight, North Carolina, USA, anoxically at 21°C for 122 days. Sulfate decreased until day 68, after which methane increased, with hydrogen concentrations consistent with the predicted values of an electron donor exerting thermodynamic control. We measured turnover times using two relative quantification methods, quantitative PCR (qPCR) and the product of 16S gene read abundance and total cell abundance (FRAxC, which stands for "fraction of read abundance times cells"), to estimate the population turnover rates of uncultured clades. Most 16S rRNA reads were from deeply branching uncultured groups, and ∼98% of 16S rRNA genes did not abruptly shift in relative abundance when sulfate reduction gave way to methanogenesis. Uncultured Methanomicrobiales and Methanosarcinales increased at the onset of methanogenesis with population turnover times estimated from qPCR at 9.7 ± 3.9 and 12.6 ± 4.1 days, respectively. These were consistent with FRAxC turnover times of 9.4 ± 5.8 and 9.2 ± 3.5 days, respectively. Uncultured Syntrophaceae, which are possibly fermentative syntrophs of methanogens, and uncultured Kazan-3A-21 archaea also increased at the onset of methanogenesis, with FRAxC turnover times of 14.7 ± 6.9 and 10.6 ± 3.6 days. Kazan-3A-21 may therefore either perform methanogenesis or form a fermentative syntrophy with methanogens. Three genera of sulfate-reducing bacteria, Desulfovibrio, Desulfobacter, and Desulfobacterium, increased in the first 19 days before declining rapidly during sulfate reduction. We conclude that population turnover times on the order of days can be measured robustly in organic-rich marine sediment, and the transition from sulfate-reducing to methanogenic conditions stimulates growth only in a few clades directly involved in methanogenesis, rather than in the whole microbial community.IMPORTANCE Many microbes cannot be isolated in pure culture to determine their preferential growth conditions and predict their response to changing environmental conditions. We created a microcosm of marine sediments that allowed us to simulate a diagenetic profile using a temporal analog for depth. This allowed for the observation of the microbial community population dynamics caused by the natural shift from sulfate reduction to methanogenesis. Our research provides evidence for the population dynamics of uncultured microbes as well as the application of a novel method of turnover rate analysis for individual taxa within a mixed incubation, FRAxC, which stands for "fraction of read abundance times cells," which was verified by quantitative PCR. This allows for the calculation of population turnover times for microbes in a natural setting and the identification of uncultured clades involved in geochemical processes.
Collapse
|
11
|
Compte-Port S, Subirats J, Fillol M, Sànchez-Melsió A, Marcé R, Rivas-Ruiz P, Rosell-Melé A, Borrego CM. Abundance and Co-Distribution of Widespread Marine Archaeal Lineages in Surface Sediments of Freshwater Water Bodies across the Iberian Peninsula. MICROBIAL ECOLOGY 2017; 74:776-787. [PMID: 28508926 DOI: 10.1007/s00248-017-0989-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/23/2017] [Indexed: 06/07/2023]
Abstract
Archaea inhabiting marine and freshwater sediments have a relevant role in organic carbon mineralization, affecting carbon fluxes at a global scale. Despite current evidences suggesting that freshwater sediments largely contribute to this process, few large-scale surveys have been addressed to uncover archaeal diversity and abundance in freshwater sedimentary habitats. In this work, we quantified and high-throughput sequenced the archaeal 16S rRNA gene from surficial sediments collected in 21 inland waterbodies across the Iberian Peninsula differing in typology and trophic status. Whereas methanogenic groups were dominant in most of the studied systems, especially in organic-rich sediments, archaea affiliated to widespread marine lineages (the Bathyarchaeota and the Thermoplasmata) were also ubiquitous and particularly abundant in euxinic sediments. In these systems, Bathyarchaeota communities were dominated by subgroups Bathyarchaeota-6 (87.95 ± 12.71%) and Bathyarchaeota-15 (8.17 ± 9.2%) whereas communities of Thermoplasmata were mainly composed of members of the order Thermoplasmatales. Our results also indicate that Archaea accounted for a minor fraction of sedimentary prokaryotes despite remarkable exceptions in reservoirs and some stratified lakes. Copy numbers of archaeal and bathyarchaeotal 16S rRNA genes were significantly different when compared according to system type (i.e., lakes, ponds, and reservoirs), but no differences were obtained when compared according to their trophic status (from oligotrophy to eutrophy). Interestingly, we obtained significant correlations between the abundance of reads (Spearman r = 0.5, p = 0.021) and OTU richness (Spearman r = 0.677, p < 0.001) of Bathyarchaeota and Thermoplasmata across systems, reinforcing the hypothesis of a potential syntrophic interaction between members of both lineages.
Collapse
Affiliation(s)
- Sergi Compte-Port
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Jèssica Subirats
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Mireia Fillol
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Alexandre Sànchez-Melsió
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Rafael Marcé
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Pedro Rivas-Ruiz
- Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Antoni Rosell-Melé
- Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain.
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, 17003, Girona, Spain.
| |
Collapse
|
12
|
Molina-Santiago C, Udaondo Z, Cordero BF, Ramos JL. Interspecies cross-talk between co-cultured Pseudomonas putida and Escherichia coli. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:441-448. [PMID: 28585781 DOI: 10.1111/1758-2229.12553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 06/07/2023]
Abstract
Pseudomonas putida and Escherichia coli are ubiquitous microorganisms that can be isolated from soil rhizosphere, the surface of vegetables, fresh waters and wastewaters - environments in which they likely co-exist. Despite this, the potential interactions between these microbes have not been studied in detail. To analyse these interactions, we carried out RNA-seq transcriptomic analysis of these microbes as monocultures and as co-cultures. Our results show that co-culture of these microbes significantly alters transcriptional profiles. The most dramatic transcriptional changes in both microorganisms were involved in central carbon metabolism, as well as adhesion to surfaces and the activation of drug efflux pumps. We also found that acetate production was one of the mechanisms used by E. coli K-12 MG1655 in response to the presence of P. putida DOT-T1E.
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| | - Zulema Udaondo
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| | - Baldo F Cordero
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| | - Juan L Ramos
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| |
Collapse
|
13
|
Bao YJ, Xu Z, Li Y, Yao Z, Sun J, Song H. High-throughput metagenomic analysis of petroleum-contaminated soil microbiome reveals the versatility in xenobiotic aromatics metabolism. J Environ Sci (China) 2017; 56:25-35. [PMID: 28571861 DOI: 10.1016/j.jes.2016.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/29/2016] [Accepted: 08/19/2016] [Indexed: 05/25/2023]
Abstract
The soil with petroleum contamination is one of the most studied soil ecosystems due to its rich microorganisms for hydrocarbon degradation and broad applications in bioremediation. However, our understanding of the genomic properties and functional traits of the soil microbiome is limited. In this study, we used high-throughput metagenomic sequencing to comprehensively study the microbial community from petroleum-contaminated soils near Tianjin Dagang oilfield in eastern China. The analysis reveals that the soil metagenome is characterized by high level of community diversity and metabolic versatility. The metageome community is predominated by γ-Proteobacteria and α-Proteobacteria, which are key players for petroleum hydrocarbon degradation. The functional study demonstrates over-represented enzyme groups and pathways involved in degradation of a broad set of xenobiotic aromatic compounds, including toluene, xylene, chlorobenzoate, aminobenzoate, DDT, methylnaphthalene, and bisphenol. A composite metabolic network is proposed for the identified pathways, thus consolidating our identification of the pathways. The overall data demonstrated the great potential of the studied soil microbiome in the xenobiotic aromatics degradation. The results not only establish a rich reservoir for novel enzyme discovery but also provide putative applications in bioremediation.
Collapse
Affiliation(s)
- Yun-Juan Bao
- National Engineering Laboratory for Industrial Enzymes, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Zixiang Xu
- National Engineering Laboratory for Industrial Enzymes, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yang Li
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hui Song
- National Engineering Laboratory for Industrial Enzymes, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
14
|
Sharrar AM, Flood BE, Bailey JV, Jones DS, Biddanda BA, Ruberg SA, Marcus DN, Dick GJ. Novel Large Sulfur Bacteria in the Metagenomes of Groundwater-Fed Chemosynthetic Microbial Mats in the Lake Huron Basin. Front Microbiol 2017; 8:791. [PMID: 28533768 PMCID: PMC5421297 DOI: 10.3389/fmicb.2017.00791] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 04/18/2017] [Indexed: 11/25/2022] Open
Abstract
Little is known about large sulfur bacteria (LSB) that inhabit sulfidic groundwater seeps in large lakes. To examine how geochemically relevant microbial metabolisms are partitioned among community members, we conducted metagenomic analysis of a chemosynthetic microbial mat in the Isolated Sinkhole, which is in a deep, aphotic environment of Lake Huron. For comparison, we also analyzed a white mat in an artesian fountain that is fed by groundwater similar to Isolated Sinkhole, but that sits in shallow water and is exposed to sunlight. De novo assembly and binning of metagenomic data from these two communities yielded near complete genomes and revealed representatives of two families of LSB. The Isolated Sinkhole community was dominated by novel members of the Beggiatoaceae that are phylogenetically intermediate between known freshwater and marine groups. Several of these Beggiatoaceae had 16S rRNA genes that contained introns previously observed only in marine taxa. The Alpena fountain was dominated by populations closely related to Thiothrix lacustris and an SM1 euryarchaeon known to live symbiotically with Thiothrix spp. The SM1 genomic bin contained evidence of H2-based lithoautotrophy. Genomic bins of both the Thiothrix and Beggiatoaceae contained genes for sulfur oxidation via the rDsr pathway, H2 oxidation via Ni-Fe hydrogenases, and the use of O2 and nitrate as electron acceptors. Mats at both sites also contained Deltaproteobacteria with genes for dissimilatory sulfate reduction (sat, apr, and dsr) and hydrogen oxidation (Ni-Fe hydrogenases). Overall, the microbial mats at the two sites held low-diversity microbial communities, displayed evidence of coupled sulfur cycling, and did not differ largely in their metabolic potentials, despite the environmental differences. These results show that groundwater-fed communities in an artesian fountain and in submerged sinkholes of Lake Huron are a rich source of novel LSB, associated heterotrophic and sulfate-reducing bacteria, and archaea.
Collapse
Affiliation(s)
- Allison M Sharrar
- Department of Earth and Environmental Sciences, University of Michigan, Ann ArborMI, USA
| | - Beverly E Flood
- Department of Earth Sciences, University of Minnesota, MinneapolisMN, USA
| | - Jake V Bailey
- Department of Earth Sciences, University of Minnesota, MinneapolisMN, USA
| | - Daniel S Jones
- Department of Earth Sciences, University of Minnesota, MinneapolisMN, USA.,BioTechnology Institute, University of Minnesota, MinneapolisMN, USA
| | - Bopaiah A Biddanda
- Annis Water Resources Institute, Grand Valley State University, MuskegonMI, USA
| | - Steven A Ruberg
- NOAA-Great Lakes Environmental Research Laboratory, Ann ArborMI, USA
| | - Daniel N Marcus
- Department of Earth and Environmental Sciences, University of Michigan, Ann ArborMI, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann ArborMI, USA
| |
Collapse
|
15
|
Lu XM, Chen C, Zheng TL. Metagenomic Insights into Effects of Chemical Pollutants on Microbial Community Composition and Function in Estuarine Sediments Receiving Polluted River Water. MICROBIAL ECOLOGY 2017; 73:791-800. [PMID: 27744476 DOI: 10.1007/s00248-016-0868-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/23/2016] [Indexed: 06/06/2023]
Abstract
Pyrosequencing and metagenomic profiling were used to assess the phylogenetic and functional characteristics of microbial communities residing in sediments collected from the estuaries of Rivers Oujiang (OS) and Jiaojiang (JS) in the western region of the East China Sea. Another sediment sample was obtained from near the shore far from estuaries, used for contrast (CS). Characterization of estuary sediment bacterial communities showed that toxic chemicals potentially reduced the natural variability in microbial communities, while they increased the microbial metabolic enzymes and pathways. Polycyclic aromatic hydrocarbons (PAHs) and nitrobenzene were negatively correlated with the bacterial community variation. The dominant class in the sediments was Gammaproteobacteria. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) enzyme profiles, dominant enzymes were found in estuarine sediments, which increased greatly, such as 2-oxoglutarate synthase, acetolactate synthase, inorganic diphosphatase, and aconitate hydratase. In KEGG pathway profiles, most of the pathways were also dominated by specific metabolism in these sediments and showed a marked increase, for instance alanine, aspartate, and glutamate metabolism, carbon fixation pathways in prokaryotes, and aminoacyl-tRNA biosynthesis. The estuarine sediment bacterial diversity varied with the polluted river water inputs. In the estuary receiving river water from the more seriously polluted River Oujiang, the sediment bacterial community function was more severely affected.
Collapse
Affiliation(s)
- Xiao-Ming Lu
- Institute for Eco-Environmental Sciences, Wenzhou Vocational College of Science & Technology, Wenzhou, 325006, People's Republic of China.
| | - Chang Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Tian-Ling Zheng
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, People's Republic of China
| |
Collapse
|
16
|
Stagars MH, Mishra S, Treude T, Amann R, Knittel K. Microbial Community Response to Simulated Petroleum Seepage in Caspian Sea Sediments. Front Microbiol 2017; 8:764. [PMID: 28503173 PMCID: PMC5409227 DOI: 10.3389/fmicb.2017.00764] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 04/12/2017] [Indexed: 11/17/2022] Open
Abstract
Anaerobic microbial hydrocarbon degradation is a major biogeochemical process at marine seeps. Here we studied the response of the microbial community to petroleum seepage simulated for 190 days in a sediment core from the Caspian Sea using a sediment-oil-flow-through (SOFT) system. Untreated (without simulated petroleum seepage) and SOFT sediment microbial communities shared 43% bacterial genus-level 16S rRNA-based operational taxonomic units (OTU0.945) but shared only 23% archaeal OTU0.945. The community differed significantly between sediment layers. The detection of fourfold higher deltaproteobacterial cell numbers in SOFT than in untreated sediment at depths characterized by highest sulfate reduction rates and strongest decrease of gaseous and mid-chain alkane concentrations indicated a specific response of hydrocarbon-degrading Deltaproteobacteria. Based on an increase in specific CARD-FISH cell numbers, we suggest the following groups of sulfate-reducing bacteria to be likely responsible for the observed decrease in aliphatic and aromatic hydrocarbon concentration in SOFT sediments: clade SCA1 for propane and butane degradation, clade LCA2 for mid- to long-chain alkane degradation, clade Cyhx for cycloalkanes, pentane and hexane degradation, and relatives of Desulfobacula for toluene degradation. Highest numbers of archaea of the genus Methanosarcina were found in the methanogenic zone of the SOFT core where we detected preferential degradation of long-chain hydrocarbons. Sequencing of masD, a marker gene for alkane degradation encoding (1-methylalkyl)succinate synthase, revealed a low diversity in SOFT sediment with two abundant species-level MasD OTU0.96.
Collapse
Affiliation(s)
- Marion H Stagars
- Department of Molecular Ecology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Sonakshi Mishra
- Department of Marine Biogeochemistry, GEOMAR - Helmholtz Centre for Ocean Research KielKiel, Germany
| | - Tina Treude
- Department of Marine Biogeochemistry, GEOMAR - Helmholtz Centre for Ocean Research KielKiel, Germany.,Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, Los AngelesCA, USA.,Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los AngelesCA, USA
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Katrin Knittel
- Department of Molecular Ecology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| |
Collapse
|
17
|
Wong HL, Visscher PT, White RA, Smith DL, Patterson MM, Burns BP. Dynamics of archaea at fine spatial scales in Shark Bay mat microbiomes. Sci Rep 2017; 7:46160. [PMID: 28397816 PMCID: PMC5387419 DOI: 10.1038/srep46160] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/09/2017] [Indexed: 01/07/2023] Open
Abstract
The role of archaea in microbial mats is poorly understood. Delineating the spatial distribution of archaea with mat depth will enable resolution of putative niches in these systems. In the present study, high throughput amplicon sequencing was undertaken in conjunction with analysis of key biogeochemical properties of two mats (smooth and pustular) from Shark Bay, Australia. One-way analysis of similarity tests indicated the archaeal community structures of smooth and pustular mats were significantly different (global R = 1, p = 0.1%). Smooth mats possessed higher archaeal diversity, dominated by Parvarchaeota. The methanogenic community in smooth mats was dominated by hydrogenotrophic Methanomicrobiales, as well as methylotrophic Methanosarcinales, Methanococcales, Methanobacteriales and Methanomassiliicoccaceae. Pustular mats were enriched with Halobacteria and Parvarchaeota. Key metabolisms (bacterial and archaeal) were measured, and the rates of oxygen production/consumption and sulfate reduction were up to four times higher in smooth than in pustular mats. Methane production peaked in the oxic layers and was up to seven-fold higher in smooth than pustular mats. The finding of an abundance of anaerobic methanogens enriched at the surface where oxygen levels were highest, coupled with peak methane production in the oxic zone, suggests putative surface anoxic niches in these microbial mats.
Collapse
Affiliation(s)
- Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia.,Australian Centre for Astrobiology, University of New South Wales Sydney, Australia
| | - Pieter T Visscher
- Department of Marine Sciences, University of Connecticut, USA.,Australian Centre for Astrobiology, University of New South Wales Sydney, Australia
| | - Richard Allen White
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Daniela-Lee Smith
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | | | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia.,Australian Centre for Astrobiology, University of New South Wales Sydney, Australia
| |
Collapse
|
18
|
Wurzbacher C, Fuchs A, Attermeyer K, Frindte K, Grossart HP, Hupfer M, Casper P, Monaghan MT. Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment. MICROBIOME 2017; 5:41. [PMID: 28388930 PMCID: PMC5385010 DOI: 10.1186/s40168-017-0255-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 03/15/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Lake sediments harbor diverse microbial communities that cycle carbon and nutrients while being constantly colonized and potentially buried by organic matter sinking from the water column. The interaction of activity and burial remained largely unexplored in aquatic sediments. We aimed to relate taxonomic composition to sediment biogeochemical parameters, test whether community turnover with depth resulted from taxonomic replacement or from richness effects, and to provide a basic model for the vertical community structure in sediments. METHODS We analyzed four replicate sediment cores taken from 30-m depth in oligo-mesotrophic Lake Stechlin in northern Germany. Each 30-cm core spanned ca. 170 years of sediment accumulation according to 137Cs dating and was sectioned into layers 1-4 cm thick. We examined a full suite of biogeochemical parameters and used DNA metabarcoding to examine community composition of microbial Archaea, Bacteria, and Eukaryota. RESULTS Community β-diversity indicated nearly complete turnover within the uppermost 30 cm. We observed a pronounced shift from Eukaryota- and Bacteria-dominated upper layers (<5 cm) to Bacteria-dominated intermediate layers (5-14 cm) and to deep layers (>14 cm) dominated by enigmatic Archaea that typically occur in deep-sea sediments. Taxonomic replacement was the prevalent mechanism in structuring the community composition and was linked to parameters indicative of microbial activity (e.g., CO2 and CH4 concentration, bacterial protein production). Richness loss played a lesser role but was linked to conservative parameters (e.g., C, N, P) indicative of past conditions. CONCLUSIONS By including all three domains, we were able to directly link the exponential decay of eukaryotes with the active sediment microbial community. The dominance of Archaea in deeper layers confirms earlier findings from marine systems and establishes freshwater sediments as a potential low-energy environment, similar to deep sea sediments. We propose a general model of sediment structure and function based on microbial characteristics and burial processes. An upper "replacement horizon" is dominated by rapid taxonomic turnover with depth, high microbial activity, and biotic interactions. A lower "depauperate horizon" is characterized by low taxonomic richness, more stable "low-energy" conditions, and a dominance of enigmatic Archaea.
Collapse
Affiliation(s)
- Christian Wurzbacher
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin, 12587 Germany
- Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Str. 6-8, Berlin, 14195 Germany
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 100, Göteborg, Sweden
| | - Andrea Fuchs
- Carl-von-Ossietzky University Oldenburg, Ammerländer Heerstraße 114-118, Oldenburg, 26129 Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, Stechlin, 16775 Germany
| | - Katrin Attermeyer
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, Stechlin, 16775 Germany
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18d, Uppsala, 75236 Sweden
| | - Katharina Frindte
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, Stechlin, 16775 Germany
- Institute of Crop Science and Resource Conservation – Molecular Biology of the Rhizosphere, Nussallee 13, Bonn, 53115 Germany
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, Stechlin, 16775 Germany
- Institute for Biochemistry and Biology, Potsdam University, Maulbeerallee 2, Potsdam, 14469 Germany
| | - Michael Hupfer
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin, 12587 Germany
| | - Peter Casper
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, Stechlin, 16775 Germany
| | - Michael T. Monaghan
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin, 12587 Germany
- Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Str. 6-8, Berlin, 14195 Germany
| |
Collapse
|
19
|
Freshwater bacteria release methane as a byproduct of phosphorus acquisition. Appl Environ Microbiol 2016; 82:6994-7003. [PMID: 27694233 DOI: 10.1128/aem.02399-16] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Freshwater lakes emit large amounts of methane, some of which is produced in oxic surface waters. Two potential pathways for aerobic methane production exist: methanogenesis in oxygenated water, which has been observed in some lakes, or demethylation of small organic molecules. Although methane is produced via demethylation in oxic marine environments, this mechanism of methane release has not yet been demonstrated in freshwater systems. Genes related to the C-P lyase pathway, which cleaves C-P bonds in phosphonate compounds, were found in a metagenomic survey of the surface water of Lake Matano, which is chronically P-starved and methane-rich. We demonstrate that four bacterial isolates from Lake Matano obtain P from methylphosphonate and release methane, and that this activity is repressed by phosphate. We further demonstrate that expression of phnJ, which encodes the enzyme that releases methane, is higher in the presence of methylphosphonate and lower when both methylphosphonate and phosphate are added. This gene is also found in most of the metagenomic data sets from freshwater environments. These experiments link methylphosphonate degradation and methane production with gene expression and phosphate availability in freshwater organisms, and suggest that some of the excess methane in the Lake Matano surface water, and in other methane-rich lakes, may be produced by P-starved bacteria. IMPORTANCE Methane is an important greenhouse gas, and contributes substantially to global warming. Although freshwater environments are known to release methane into the atmosphere, estimates of the amount of methane emitted by freshwater lakes vary from 8 to 73 Tg per year. Methane emissions are difficult to predict in part because the source of the methane can vary: it is the end product of the energy-conserving pathway in methanogenic archaea, which predominantly live in anoxic sediments or waters, but have also been identified in some oxic freshwater environments. More recently, methane release from small organic molecules has been observed in oxic marine environments. Here we show that demethylation of methylphosphonate may also contribute to methane release from lakes, and that phosphate can repress this activity. Since lakes are typically phosphorus-limited, some methane release in these environments may be a byproduct of phosphorus metabolism, rather than carbon or energy metabolism. Methane emissions from lakes are currently predicted using primary production, eutrophication status, extent of anoxia, and the shape and size of the lake; to improve prediction of methane emissions, phosphorus availability and sources may also need to be included in these models.
Collapse
|
20
|
Medeiros JD, Cantão ME, Cesar DE, Nicolás MF, Diniz CG, Silva VL, Vasconcelos ATRD, Coelho CM. Comparative metagenome of a stream impacted by the urbanization phenomenon. Braz J Microbiol 2016; 47:835-845. [PMID: 27522532 PMCID: PMC5052392 DOI: 10.1016/j.bjm.2016.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 02/02/2016] [Indexed: 12/14/2022] Open
Abstract
Rivers and streams are important reservoirs of freshwater for human consumption. These ecosystems are threatened by increasing urbanization, because raw sewage discharged into them alters their nutrient content and may affect the composition of their microbial community. In the present study, we investigate the taxonomic and functional profile of the microbial community in an urban lotic environment. Samples of running water were collected at two points in the São Pedro stream: an upstream preserved and non-urbanized area, and a polluted urbanized area with discharged sewage. The metagenomic DNA was sequenced by pyrosequencing. Differences were observed in the community composition at the two sites. The non-urbanized area was overrepresented by genera of ubiquitous microbes that act in the maintenance of environments. In contrast, the urbanized metagenome was rich in genera pathogenic to humans. The functional profile indicated that the microbes act on the metabolism of methane, nitrogen and sulfur, especially in the urbanized area. It was also found that virulence/defense (antibiotic resistance and metal resistance) and stress response-related genes were disseminated in the urbanized environment. The structure of the microbial community was altered by uncontrolled anthropic interference, highlighting the selective pressure imposed by high loads of urban sewage discharged into freshwater environments.
Collapse
Affiliation(s)
- Julliane Dutra Medeiros
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, MG, Brazil.
| | | | | | | | - Cláudio Galuppo Diniz
- Universidade Federal de Juiz de Fora, Instituto de Ciências Biológicas, Juiz de Fora, MG, Brazil
| | - Vânia Lúcia Silva
- Universidade Federal de Juiz de Fora, Instituto de Ciências Biológicas, Juiz de Fora, MG, Brazil
| | | | - Cíntia Marques Coelho
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, MG, Brazil
| |
Collapse
|
21
|
Kurilkina MI, Zakharova YR, Galachyants YP, Petrova DP, Bukin YS, Domysheva VM, Blinov VV, Likhoshway YV. Bacterial community composition in the water column of the deepest freshwater Lake Baikal as determined by next-generation sequencing. FEMS Microbiol Ecol 2016; 92:fiw094. [PMID: 27162182 DOI: 10.1093/femsec/fiw094] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2016] [Indexed: 01/01/2023] Open
Abstract
The composition of bacterial communities in Lake Baikal in different hydrological periods and at different depths (down to 1515 m) has been analyzed using pyrosequencing of the 16S rRNA gene V3 variable region. Most of the resulting 34 562 reads of the Bacteria domain have clustered into 1693 operational taxonomic units (OTUs) classified with the phyla Proteobacteria, Actinobacteria, Chloroflexi, Bacteroidetes, Firmicutes, Acidobacteria and Cyanobacteria. It has been found that their composition at the family level and relative contributions to bacterial communities distributed over the water column vary depending on hydrological period. The number of OTUs and the parameters of taxonomic richness (ACE, Chao1 indices) and diversity (Shannon and inverse Simpson index) reach the highest values in water layers. The composition of bacterial communities in these layers remains relatively constant, whereas that in surface layers differs between hydrological seasons. The dynamics of physicochemical conditions over the water column and their relative constancy in deep layers are decisive factors in shaping the pattern of bacterial communities in Lake Baikal.
Collapse
Affiliation(s)
- Maria I Kurilkina
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Yulia R Zakharova
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Yuri P Galachyants
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Darya P Petrova
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Yuri S Bukin
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Valentina M Domysheva
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Vadim V Blinov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Yelena V Likhoshway
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
22
|
Findlay AJ. Microbial impact on polysulfide dynamics in the environment. FEMS Microbiol Lett 2016; 363:fnw103. [DOI: 10.1093/femsle/fnw103] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 11/12/2022] Open
|
23
|
Liu Y, Priscu JC, Xiong J, Conrad R, Vick-Majors T, Chu H, Hou J. Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau. FEMS Microbiol Ecol 2016; 92:fiw033. [DOI: 10.1093/femsec/fiw033] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2016] [Indexed: 11/13/2022] Open
|
24
|
Temporal-spatial variation of bacterial diversity in estuary sediments in the south of Zhejiang Province, China. Appl Microbiol Biotechnol 2015; 100:2817-28. [PMID: 26572519 DOI: 10.1007/s00253-015-7103-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/11/2015] [Accepted: 10/14/2015] [Indexed: 10/24/2022]
Abstract
The winter and summer microbial community structure in sediment samples obtained from the estuaries of the wastewater-polluted River Ou (DO and XO), River Feiyun (DF and XF), and River Ao (DA and XA) in the south of Zhejiang Province in China was determined using 454 pyrosequencing. Sediment samples (DD and XD) were also correspondingly collected near the shore far from the estuaries for comparison. For the above sediments, 294,870 effective sequences were obtained to do the bacterial diversity and abundance determination. In total, 1924, 1517, 2071, 1956, 1995, 1800, 2261, and 2097 operational taxonomic units were obtained at 3 % distance cutoff in the DO, XO, DF, XF, DA, XA, DD, and XD sediments, respectively. Bacterial phylotype richness in DD was higher than the other sediments, and XO had the least richness. The most dominant class in the DA, DD, DF, DO, and XA sediments is Gammaproteobacteria. Deltaproteobacteria is the most dominant one in XD, XO, and XF. Circa 14.4 % sequences in XD were found to be affiliated with the Flavobacteriales order. Characterization of the estuarine sediment bacterial communities indicated that chemical pollution has the potential to decrease the natural variability that exists among estuary ecosystems. However, chemical pollutants did not cause clear bio-homogenization in these estuaries.
Collapse
|
25
|
Siniscalchi LAB, Vale IC, Dell'Isola J, Chernicharo CA, Calabria Araujo J. Enrichment and activity of methanotrophic microorganisms from municipal wastewater sludge. ENVIRONMENTAL TECHNOLOGY 2015; 36:1563-1575. [PMID: 25495866 DOI: 10.1080/09593330.2014.997298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, methanotrophic microorganisms were enriched from a municipal wastewater sludge taken from an Upflow Anaerobic Sludge Blanket reactor. The enrichment was performed in a sequencing batch reactor (SBR) with an autotrophic medium containing nitrite and nitrate. The microbial community composition of the inoculum and of the enrichment culture after 100 days of SBR operation was investigated and compared with the help of data obtained from 454 pyrosequencing analyses. The nitrite and nitrate removal efficiencies were 68% and 53%, respectively, probably due to heterotrophic denitrification. Archaeal cells of the anaerobic methanotrophic Archaic (ANME)-I and ANME-II groups were detected by polymerase chain reaction throughout the whole cultivation period. Pyrosequencing analysis showed that community composition was different among the two samples analysed. The dominant phyla found in the inoculum were Synergistestes, Firmicutes and Euryarchaeota, while Planctomycetes, Verrucomicrobia, Chloroflexi and Proteobacteria prevailed in the enriched biomass. The cultivation conditions decreased Methanobacterium abundance from 8% to 1%, and enriched for methanotrophic bacteria such as Methylocaldum, Methylocistis and Methylosinus. Sequences of Methylocaldum sp. accounted for 2.5% of the total reads. The presence and high predominance of Verrucomicrobia in the enriched biomass suggested that other unknown methanotrophic species related to that phylum might also have occurred in the reactor. Anaerobic methane oxidation activity was measured for both samples, and showed that the activity of the enrichment culture was nearly three times higher than the activity of the inoculum. Taken together, these results showed that the inoculum type and cultivation conditions were properly suited for methanotrophic enrichment.
Collapse
Affiliation(s)
- Luciene Alves Batista Siniscalchi
- a Department of Sanitary and Environmental Engineering , Universidade Federal de Minas Gerais (UFMG) , Av. Antonio Carlos, 6627, Belo Horizonte , MG 31270-901 , Brazil
| | | | | | | | | |
Collapse
|
26
|
Fillol M, Sànchez-Melsió A, Gich F, M. Borrego C. Diversity of Miscellaneous Crenarchaeotic Group archaea in freshwater karstic lakes and their segregation between planktonic and sediment habitats. FEMS Microbiol Ecol 2015; 91:fiv020. [DOI: 10.1093/femsec/fiv020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2015] [Indexed: 02/06/2023] Open
|
27
|
Methanogenic archaea diversity in hyporheic sediments of a small lowland stream. Anaerobe 2014; 32:24-31. [PMID: 25460192 DOI: 10.1016/j.anaerobe.2014.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/14/2014] [Accepted: 11/16/2014] [Indexed: 11/23/2022]
Abstract
Abundance and diversity of methanogenic archaea were studied at five localities along a longitudinal profile of a Sitka stream (Czech Republic). Samples of hyporheic sediments were collected from two sediment depths (0-25 cm and 25-50 cm) by freeze-core method. Methanogen community was analyzed by fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and sequencing method. The proportion of methanogens to the DAPI-stained cells varied among all localities and depths with an average value 2.08 × 10(5) per g of dry sediment with the range from 0.37 to 4.96 × 10(5) cells per g of dry sediment. A total of 73 bands were detected at 19 different positions on the DGGE gel and the highest methanogen diversity was found at the downstream located sites. There was no relationship between methanogen diversity and sediment depth. Cluster analysis of DGGE image showed three main clusters consisting of localities that differed in the number and similarity of the DGGE bands. Sequencing analysis of representative DGGE bands revealed phylotypes affiliated with members belonging to the orders Methanosarcinales, Methanomicrobiales and Methanocellales. The knowledge about occurrence and diversity of methanogenic archaea in freshwater ecosystems are essential for methane dynamics in river sediments and can contribute to the understanding of global warming process.
Collapse
|
28
|
Lu XM, Lu PZ. Effects of farmhouse hotel and paper mill effluents on bacterial community structures in sediment and surface water of Nanxi River, China. MICROBIAL ECOLOGY 2014; 68:773-784. [PMID: 25008983 DOI: 10.1007/s00248-014-0456-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/25/2014] [Indexed: 06/03/2023]
Abstract
The pyrosequencing technique was used to evaluate bacterial community structures in sediment and surface water samples taken from Nanxi River receiving effluents from a paper mill and a farmhouse hotel, respectively. For each sample, 4,610 effective bacterial sequences were selected and used to do the analysis of diversity and abundance, respectively. Bacterial phylotype richness in the sediment sample without effluent input was higher than the other samples, and the surface water sample with addition of effluent from the paper mill contained the least richness. Effluents from both the paper mill and farmhouse hotel have a potential to reduce the bacterial diversity and abundance in the sediment and surface water, especially it is more significant in the sediment. The effect of the paper mill effluent on the sediment and surface water bacterial communities was more serious than that of the farmhouse hotel effluent. Characterization of microbial community structures in the sediment and surface water from two tributaries of the downstream river indicated that various effluents from the paper mill and farmhouse hotel have the similar potential to decrease the natural variability in riverine microbial ecosystems.
Collapse
Affiliation(s)
- Xiao-Ming Lu
- Institute for Eco-Environmental Sciences, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China,
| | | |
Collapse
|
29
|
Diversity, abundance, and spatial distribution of riverine microbial communities response to effluents from swine farm versus farmhouse restaurant. Appl Microbiol Biotechnol 2014; 98:7597-608. [DOI: 10.1007/s00253-014-5772-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/06/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
|
30
|
Lu XM, Lu PZ. Characterization of bacterial communities in sediments receiving various wastewater effluents with high-throughput sequencing analysis. MICROBIAL ECOLOGY 2014; 67:612-623. [PMID: 24477925 DOI: 10.1007/s00248-014-0370-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 01/13/2014] [Indexed: 06/03/2023]
Abstract
454 Pyrosequencing was applied to examine bacterial communities in sediment samples collected from a river receiving effluent discharge from rural domestic sewage (RDS) and various factories, including a tannery (TNS), clothing plant (CTS), and button factory (BTS), respectively. For each sample, 4,510 effective sequences were selected and utilized to do the bacterial diversity and abundance analysis, respectively. In total, 1,288, 2,036, 1,800, and 2,150 operational taxonomic units were obtained at 3% distance cutoff in TNS, CTS, BTS, and RDS, respectively. Bacterial phylotype richness in RDS was higher than the other samples, and TNS had the least richness. The most predominant class in the TNS, CTS, and BTS samples is Betaproteobacteria. Cyanobacteria (no_rank) is the most predominant one in the RDS sample. Circa 31% sequences in TNS were affiliated with the Rhodocyclales order. In the four samples, Aeromonas, Arcobacter, Clostridium, Legionella, Leptospira, Mycobacterium, Pseudomonas, and Treponema genera containing pathogenic bacteria were detected. Characterization of bacterial communities in sediments from various downstream branches indicated that distinct wastewater effluents have similar potential to reduce the natural variability in river ecosystems and contribute to the river biotic homogenization.
Collapse
Affiliation(s)
- Xiao-Ming Lu
- Institute for Eco-environmental Sciences, Wenzhou Vocational College of Science & Technology, Wenzhou, 325006, People's Republic of China,
| | | |
Collapse
|
31
|
Jan C, Petersen JM, Werner J, Teeling H, Huang S, Glöckner FO, Golyshina OV, Dubilier N, Golyshin PN, Jebbar M, Cambon-Bonavita MA. The gill chamber epibiosis of deep-sea shrimp Rimicaris exoculata: an in-depth metagenomic investigation and discovery of Zetaproteobacteria. Environ Microbiol 2014; 16:2723-38. [PMID: 24447589 DOI: 10.1111/1462-2920.12406] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 01/14/2014] [Indexed: 11/29/2022]
Abstract
The gill chamber of deep-sea hydrothermal vent shrimp Rimicaris exoculata hosts a dense community of epibiotic bacteria dominated by filamentous Epsilonproteobacteria and Gammaproteobacteria. Using metagenomics on shrimp from the Rainbow hydrothermal vent field, we showed that both epibiont groups have the potential to grow autotrophically and oxidize reduced sulfur compounds or hydrogen with oxygen or nitrate. For carbon fixation, the Epsilonproteobacteria use the reductive tricarboxylic acid cycle, whereas the Gammaproteobacteria use the Calvin-Benson-Bassham cycle. Only the epsilonproteobacterial epibionts had the genes necessary for producing ammonium. This ability likely minimizes direct competition between epibionts and also broadens the spectrum of environmental conditions that the shrimp may successfully inhabit. We identified genes likely to be involved in shrimp-epibiont interactions, as well as genes for nutritional and detoxification processes that might benefit the host. Shrimp epibionts at Rainbow are often coated with iron oxyhydroxides, whose origin is intensely debated. We identified 16S rRNA sequences and functional genes affiliated with iron-oxidizing Zetaproteobacteria, which indicates that biological iron oxidation might play a role in forming these deposits. Fluorescence in situ hybridizations confirmed the presence of active Zetaproteobacteria in the R. exoculata gill chamber, thus providing the first evidence for a Zetaproteobacteria-invertebrate association.
Collapse
Affiliation(s)
- Cyrielle Jan
- UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM), Université de Bretagne Occidentale, Plouzané, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schneider D, Arp G, Reimer A, Reitner J, Daniel R. Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati atoll, Central Pacific. PLoS One 2013; 8:e66662. [PMID: 23762495 PMCID: PMC3677903 DOI: 10.1371/journal.pone.0066662] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/08/2013] [Indexed: 02/01/2023] Open
Abstract
On the Kiritimati atoll, several lakes exhibit microbial mat-formation under different hydrochemical conditions. Some of these lakes trigger microbialite formation such as Lake 21, which is an evaporitic, hypersaline lake (salinity of approximately 170‰). Lake 21 is completely covered with a thick multilayered microbial mat. This mat is associated with the formation of decimeter-thick highly porous microbialites, which are composed of aragonite and gypsum crystals. We assessed the bacterial and archaeal community composition and its alteration along the vertical stratification by large-scale analysis of 16S rRNA gene sequences of the nine different mat layers. The surface layers are dominated by aerobic, phototrophic, and halotolerant microbes. The bacterial community of these layers harbored Cyanobacteria (Halothece cluster), which were accompanied with known phototrophic members of the Bacteroidetes and Alphaproteobacteria. In deeper anaerobic layers more diverse communities than in the upper layers were present. The deeper layers were dominated by Spirochaetes, sulfate-reducing bacteria (Deltaproteobacteria), Chloroflexi (Anaerolineae and Caldilineae), purple non-sulfur bacteria (Alphaproteobacteria), purple sulfur bacteria (Chromatiales), anaerobic Bacteroidetes (Marinilabiacae), Nitrospirae (OPB95), Planctomycetes and several candidate divisions. The archaeal community, including numerous uncultured taxonomic lineages, generally changed from Euryarchaeota (mainly Halobacteria and Thermoplasmata) to uncultured members of the Thaumarchaeota (mainly Marine Benthic Group B) with increasing depth.
Collapse
Affiliation(s)
- Dominik Schneider
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Gernot Arp
- Geoscience Centre, Georg-August University Göttingen, Göttingen, Germany
| | - Andreas Reimer
- Geoscience Centre, Georg-August University Göttingen, Göttingen, Germany
| | - Joachim Reitner
- Geoscience Centre, Georg-August University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
33
|
Defining the functional potential and active community members of a sediment microbial community in a high-arctic hypersaline subzero spring. Appl Environ Microbiol 2013; 79:3637-48. [PMID: 23563939 DOI: 10.1128/aem.00153-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Lost Hammer (LH) Spring is the coldest and saltiest terrestrial spring discovered to date and is characterized by perennial discharges at subzero temperatures (-5°C), hypersalinity (salinity, 24%), and reducing (≈-165 mV), microoxic, and oligotrophic conditions. It is rich in sulfates (10.0%, wt/wt), dissolved H2S/sulfides (up to 25 ppm), ammonia (≈381 μM), and methane (11.1 g day(-1)). To determine its total functional and genetic potential and to identify its active microbial components, we performed metagenomic analyses of the LH Spring outlet microbial community and pyrosequencing analyses of the cDNA of its 16S rRNA genes. Reads related to Cyanobacteria (19.7%), Bacteroidetes (13.3%), and Proteobacteria (6.6%) represented the dominant phyla identified among the classified sequences. Reconstruction of the enzyme pathways responsible for bacterial nitrification/denitrification/ammonification and sulfate reduction appeared nearly complete in the metagenomic data set. In the cDNA profile of the LH Spring active community, ammonia oxidizers (Thaumarchaeota), denitrifiers (Pseudomonas spp.), sulfate reducers (Desulfobulbus spp.), and other sulfur oxidizers (Thermoprotei) were present, highlighting their involvement in nitrogen and sulfur cycling. Stress response genes for adapting to cold, osmotic stress, and oxidative stress were also abundant in the metagenome. Comparison of the composition of the functional community of the LH Spring to metagenomes from other saline/subzero environments revealed a close association between the LH Spring and another Canadian high-Arctic permafrost environment, particularly in genes related to sulfur metabolism and dormancy. Overall, this study provides insights into the metabolic potential and the active microbial populations that exist in this hypersaline cryoenvironment and contributes to our understanding of microbial ecology in extreme environments.
Collapse
|
34
|
Li SG, Zhou XW, Li PF, Han K, Li W, Li ZF, Wu ZH, Li YZ. The existence and diversity of myxobacteria in lake mud - a previously unexplored myxobacteria habitat. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:587-595. [PMID: 23760929 DOI: 10.1111/j.1758-2229.2012.00373.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/22/2012] [Indexed: 06/02/2023]
Abstract
Myxobacteria are widely distributed in soil and oceanic sediment with a phylogeographic separation at high levels of classification. However, it is unclear whether freshwater environments, from which there has been no isolation report of myxobacteria since 1981, are habitats for myxobacteria. In this study, we investigated the presence of myxobacteria in lake mud using a two-step strategy. First, we constructed two universal bacterial libraries from the V3-V4 (V34) and V6-V8 (V678) hypervariable regions of 16S rRNA gene sequences. High-throughput 454 pyrosequencing revealed that myxobacteria were one of the major bacterial groups in the lake mud. They accounted for 5.77% of the total sequences and 7.52% of the total operational taxonomic units (OTUs) at a phylogenetic distance of 0.03. The community composition and taxonomic structure of the mud myxobacterial community were further analysed using myxobacteria-enriched libraries targeting the V34 and V678 regions, which were amplified with Cystobacterineae- and Sorangineae-specific primer pairs respectively. Phylogenetic analysis showed that the limnetic myxobacteria exhibited closer relationships to their soil than their marine relatives, but there were also exclusive taxa of limnetic myxobacteria detected. These results, together with a survey on available GenBank data, indicate that lake mud is a primary habitat for myxobacteria.
Collapse
Affiliation(s)
- Shu-Guang Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
RNA-based assessment of diversity and composition of active archaeal communities in the German Bight. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2012; 2012:695826. [PMID: 23197941 PMCID: PMC3502831 DOI: 10.1155/2012/695826] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/02/2012] [Indexed: 02/01/2023]
Abstract
Archaea play an important role in various biogeochemical cycles. They are known extremophiles inhabiting environments such as thermal springs or hydrothermal vents. Recent studies have revealed a significant abundance of Archaea in moderate environments, for example, temperate sea water. Nevertheless, the composition and ecosystem function of these marine archaeal communities is largely unknown. To assess diversity and composition of active archaeal communities in the German Bight, seven marine water samples were taken and studied by RNA-based analysis of ribosomal 16S rRNA. For this purpose, total RNA was extracted from the samples and converted to cDNA. Archaeal community structures were investigated by pyrosequencing-based analysis of 16S rRNA amplicons generated from cDNA. To our knowledge, this is the first study combining next-generation sequencing and metatranscriptomics to study archaeal communities in marine habitats. The pyrosequencing-derived dataset comprised 62,045 archaeal 16S rRNA sequences. We identified Halobacteria as the predominant archaeal group across all samples with increased abundance in algal blooms. Thermoplasmatales (Euryarchaeota) and the Marine Group I (Thaumarchaeota) were identified in minor abundances. It is indicated that archaeal community patterns were influenced by environmental conditions.
Collapse
|
36
|
García-Salamanca A, Molina-Henares MA, van Dillewijn P, Solano J, Pizarro-Tobías P, Roca A, Duque E, Ramos JL. Bacterial diversity in the rhizosphere of maize and the surrounding carbonate-rich bulk soil. Microb Biotechnol 2012; 6:36-44. [PMID: 22883414 PMCID: PMC3815383 DOI: 10.1111/j.1751-7915.2012.00358.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/02/2012] [Accepted: 07/10/2012] [Indexed: 11/28/2022] Open
Abstract
Maize represents one of the main cultivar for food and energy and crop yields are influenced by soil physicochemical and climatic conditions. To study how maize plants influence soil microbes we have examined microbial communities that colonize maize plants grown in carbonate-rich soil (pH 8.5) using culture-independent, PCR-based methods. We observed a low proportion of unclassified bacteria in this soil whether it was planted or unplanted. Our results indicate that a higher complexity of the bacterial community is present in bulk soil with microbes from nine phyla, while in the rhizosphere microbes from only six phyla were found. The predominant microbes in bulk soil were bacteria of the phyla Acidobacteria, Bacteroidetes and Proteobacteria, while Gammaproteobacteria of the genera Pseudomonas and Lysobacter were the predominant in the rhizosphere. As Gammaproteobacteria respond chemotactically to exudates and are efficient in the utilization of plants exudate products, microbial communities associated to the rhizosphere seem to be plant-driven. It should be noted that Gammaproteobacteria made available inorganic nutrients to the plants favouring plant growth and then the benefit of the interaction is common.
Collapse
Affiliation(s)
- Adela García-Salamanca
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|