1
|
Elgarten CW, Margolis EB, Kelly MS. The Microbiome and Pediatric Transplantation. J Pediatric Infect Dis Soc 2024; 13:S80-S89. [PMID: 38417089 PMCID: PMC10901476 DOI: 10.1093/jpids/piad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/25/2023] [Indexed: 03/01/2024]
Abstract
The microbial communities that inhabit our bodies have been increasingly linked to host physiology and pathophysiology. This microbiome, through its role in colonization resistance, influences the risk of infections after transplantation, including those caused by multidrug-resistant organisms. In addition, through both direct interactions with the host immune system and via the production of metabolites that impact local and systemic immunity, the microbiome plays an important role in the establishment of immune tolerance after transplantation, and conversely, in the development of graft-versus-host disease and graft rejection. This review offers a comprehensive overview of the evidence for the role of the microbiome in hematopoietic cell and solid organ transplant complications, drivers of microbiome shift during transplantation, and the potential of microbiome-based therapies to improve pediatric transplantation outcomes.
Collapse
Affiliation(s)
- Caitlin W Elgarten
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elisa B Margolis
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Matthew S Kelly
- Departments of Pediatrics and Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
2
|
Ilie OD, Duta R, Nita IB, Dobrin I, Gurzu IL, Girleanu I, Huiban L, Muzica C, Ciobica A, Popescu R, Cianga P, Stanciu C, Cimpoesu D, Trifan A. A Comprehensive Overview of the Past, Current, and Future Randomized Controlled Trials in Hepatic Encephalopathy. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2143. [PMID: 38138246 PMCID: PMC10744451 DOI: 10.3390/medicina59122143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Background: Hepatic encephalopathy (HE) caused by cirrhosis has severe consequences on an individual's lifespan, leading to long-term liver complications and potentially life-threatening outcomes. Despite recent interest in this condition, the effectiveness of secondary prophylaxis involving rixafimin, lactulose, or L-ornithine L-aspartate (LOLA) may be hindered by the unique microbial profiles each patient possesses. Methods: Thus, in this manuscript, we aimed to search, identify, and gather all randomized controlled trials (RCTs) published between 2000-2023 (November) in four major academic databases such as PubMed, ISI Web of Science, Scopus, and ScienceDirect by using a controlled terminology and web strings that reunite six main keywords. We complementarily retrieved data on the ongoing RCTs. Results: Regardless of the relatively high number of results displayed (n = 75), 46.66% (n = 35) were initially deemed eligible after the first evaluation phase after removing duplicates, n = 40 (53.34%). At the second assessment stage, we eliminated 11.42% (n = 4) studies, of which n = 22 finally met the eligibility criteria to be included in the main body of the manuscript. In terms of RCTs, otherwise found in distinct stages of development, n = 3 target FMT and n = 1 probiotics. Conclusions: Although we benefit from the necessary information and technology to design novel strategies for microbiota, only probiotics and synbiotics have been extensively studied in the last decade compared to FMT.
Collapse
Affiliation(s)
- Ovidiu-Dumitru Ilie
- Gastroenterology Group, CENEMED Platform for Interdisciplinary Research, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
| | - Raluca Duta
- Gastroenterology Group, CENEMED Platform for Interdisciplinary Research, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
| | - Ilinca-Bianca Nita
- Department of Medicine III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
| | - Irina Dobrin
- Department of Medicine III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Institute of Psychiatry “Socola”, Bucium Street No. 36, 700282 Iasi, Romania
| | - Irina-Luciana Gurzu
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
| | - Irina Girleanu
- Department of Gastroenterology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Emergency Clinical Hospital, Independence Avenue No. 1, 700111 Iasi, Romania
| | - Laura Huiban
- Department of Gastroenterology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Emergency Clinical Hospital, Independence Avenue No. 1, 700111 Iasi, Romania
| | - Cristina Muzica
- Department of Gastroenterology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Emergency Clinical Hospital, Independence Avenue No. 1, 700111 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue No. 20A, 700505 Iasi, Romania
- Centre of Biomedical Research, Romanian Academy, Carol I Avenue No. 8, 700506 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei No. 54, Sector 5, 050094 Bucharest, Romania
- Preclinical Department, “Apollonia” University, Păcurari Street No. 11, 700511 Iasi, Romania
| | - Roxana Popescu
- Department of Medical Genetics, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Department of Medical Genetics, “Saint Mary” Emergency Children’s Hospital, Vasile Lupu Street No. 62, 700309 Iasi, Romania
| | - Petru Cianga
- Department of Immunology, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
| | - Carol Stanciu
- Centre of Biomedical Research, Romanian Academy, Carol I Avenue No. 8, 700506 Iasi, Romania
| | - Diana Cimpoesu
- Gastroenterology Group, CENEMED Platform for Interdisciplinary Research, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Department of Emergency Medicine, “St. Spiridon” County Emergency Clinical Hospital, Independence Avenue No. 1, 700111 Iasi, Romania
| | - Anca Trifan
- Department of Gastroenterology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Emergency Clinical Hospital, Independence Avenue No. 1, 700111 Iasi, Romania
- Centre of Biomedical Research, Romanian Academy, Carol I Avenue No. 8, 700506 Iasi, Romania
| |
Collapse
|
3
|
Gavzy SJ, Kensiski A, Lee ZL, Mongodin EF, Ma B, Bromberg JS. Bifidobacterium mechanisms of immune modulation and tolerance. Gut Microbes 2023; 15:2291164. [PMID: 38055306 PMCID: PMC10730214 DOI: 10.1080/19490976.2023.2291164] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
Bifidobacterium is a widely distributed commensal bacterial genus that displays beneficial pro-homeostatic and anti-inflammatory immunomodulatory properties. Depletion or absence of Bifidobacterium in humans and model organisms is associated with autoimmune responses and impaired immune homeostasis. At the cellular level, Bifidobacterium upregulates suppressive regulatory T cells, maintains intestinal barrier function, modulates dendritic cell and macrophage activity, and dampens intestinal Th2 and Th17 programs. While there has been a large volume of literature characterizing the probiotic properties of various Bifidobacterial species, the likely multifactorial mechanisms underlying these effects remain elusive, in particular, its immune tolerogenic effect. However, recent work has shed light on Bifidobacterium surface structural polysaccharide and protein elements, as well as its metabolic products, as commensal mediators of immune homeostasis. This review aims to discuss several mechanisms Bifidobacterium utilizes for immune modulation as well as their indirect impact on the regulation of gut microbiome structure and function, from structural molecules to produced metabolites. These mechanisms are pertinent to an increasingly networked understanding of immune tolerance and homeostasis in health and disease.
Collapse
Affiliation(s)
- Samuel J Gavzy
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allison Kensiski
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachariah L Lee
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan S Bromberg
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Sucu S, Basarir KE, Mihaylov P, Balik E, Lee JTC, Fridell JA, Emamaullee JA, Ekser B. Impact of gut microbiota on liver transplantation. Am J Transplant 2023; 23:1485-1495. [PMID: 37277064 DOI: 10.1016/j.ajt.2023.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
The gut microbiota has been gaining attention due to its interactions with the human body and its role in pathophysiological processes. One of the main interactions is the "gut-liver axis," in which disruption of the gut mucosal barrier seen in portal hypertension and liver disease can influence liver allograft function over time. For example, in patients who are undergoing liver transplantation, preexisting dysbiosis, perioperative antibiotic use, surgical stress, and immunosuppressive use have each been associated with alterations in gut microbiota, potentially impacting overall morbidity and mortality. In this review, studies exploring gut microbiota changes in patients undergoing liver transplantation are reviewed, including both human and experimental animal studies. Common themes include an increase in Enterobacteriaceae and Enterococcaceae species and a decrease in Faecalibacterium prausnitzii and Bacteriodes, while a decrease in the overall diversity of gut microbiota after liver transplantation.
Collapse
Affiliation(s)
- Serkan Sucu
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Kerem E Basarir
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Plamen Mihaylov
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Emre Balik
- Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Jason T C Lee
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA; Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jonathan A Fridell
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Juliet A Emamaullee
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
5
|
Golchin A, Ranjbarvan P, Parviz S, Shokati A, Naderi R, Rasmi Y, Kiani S, Moradi F, Heidari F, Saltanatpour Z, Alizadeh A. The role of probiotics in tissue engineering and regenerative medicine. Regen Med 2023; 18:635-657. [PMID: 37492007 DOI: 10.2217/rme-2022-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) as an emerging field is a multidisciplinary science and combines basic sciences such as biomaterials science, biology, genetics and medical sciences to achieve functional TERM-based products to regenerate or replace damaged or diseased tissues or organs. Probiotics are useful microorganisms which have multiple effective functions on human health. They have some immunomodulatory and biocompatibility effects and improve wound healing. In this article, we describe the latest findings on probiotics and their pro-healing properties on various body systems that are useable in regenerative medicine. Therefore, this review presents a new perspective on the therapeutic potential of probiotics for TERM.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Parviz Ranjbarvan
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Shima Parviz
- Department of Tissue Engineering & Applied cell sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Amene Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Roya Naderi
- Neurophysiology Research center & Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Yousef Rasmi
- Cellular & Molecular Research Center & Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Samaneh Kiani
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, 48157-33971, Iran
| | - Faezeh Moradi
- Department of Tissue engineering, Medical Sciences Faculty, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - Fahimeh Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Zohreh Saltanatpour
- Pediatric Cell & Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Stem Cell & Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center & Department of Tissue Engineering & Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 35147-99422, Iran
| |
Collapse
|
6
|
Xu Z, Jiang N, Xiao Y, Yuan K, Wang Z. The role of gut microbiota in liver regeneration. Front Immunol 2022; 13:1003376. [PMID: 36389782 PMCID: PMC9647006 DOI: 10.3389/fimmu.2022.1003376] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
The liver has unique regeneration potential, which ensures the continuous dependence of the human body on hepatic functions. As the composition and function of gut microbiota has been gradually elucidated, the vital role of gut microbiota in liver regeneration through gut-liver axis has recently been accepted. In the process of liver regeneration, gut microbiota composition is changed. Moreover, gut microbiota can contribute to the regulation of the liver immune microenvironment, thereby modulating the release of inflammatory factors including IL-6, TNF-α, HGF, IFN-γ and TGF-β, which involve in different phases of liver regeneration. And previous research have demonstrated that through enterohepatic circulation, bile acids (BAs), lipopolysaccharide, short-chain fatty acids and other metabolites of gut microbiota associate with liver and may promote liver regeneration through various pathways. In this perspective, by summarizing gut microbiota-derived signaling pathways that promote liver regeneration, we unveil the role of gut microbiota in liver regeneration and provide feasible strategies to promote liver regeneration by altering gut microbiota composition.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Nan Jiang
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yuanyuan Xiao
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- *Correspondence: Zhen Wang, ; Kefei Yuan, ; Yuanyuan Xiao,
| | - Kefei Yuan
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- *Correspondence: Zhen Wang, ; Kefei Yuan, ; Yuanyuan Xiao,
| | - Zhen Wang
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- *Correspondence: Zhen Wang, ; Kefei Yuan, ; Yuanyuan Xiao,
| |
Collapse
|
7
|
Qin T, Fu J, Verkade HJ. The role of the gut microbiome in graft fibrosis after pediatric liver transplantation. Hum Genet 2021; 140:709-724. [PMID: 32920649 PMCID: PMC8052232 DOI: 10.1007/s00439-020-02221-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/29/2020] [Indexed: 12/18/2022]
Abstract
Liver transplantation (LT) is a life-saving option for children with end-stage liver disease. However, about 50% of patients develop graft fibrosis in 1 year after LT, with normal liver function. Graft fibrosis may progress to cirrhosis, resulting in graft dysfunction and ultimately the need for re-transplantation. Previous studies have identified various risk factors for the post-LT fibrogenesis, however, to date, neither of the factors seems to fully explain the cause of graft fibrosis. Recently, evidence has accumulated on the important role of the gut microbiome in outcomes after solid organ transplantation. As an altered microbiome is present in pediatric patients with end-stage liver diseases, we hypothesize that the persisting alterations in microbial composition or function contribute to the development of graft fibrosis, for example by bacteria translocation due to increased intestinal permeability, imbalanced bile acids metabolism, and/or decreased production of short-chain fatty acids (SCFAs). Subsequently, an immune response can be activated in the graft, together with the stimulation of fibrogenesis. Here we review current knowledge about the potential mechanisms by which alterations in microbial composition or function may lead to graft fibrosis in pediatric LT and we provide prospective views on the efficacy of gut microbiome manipulation as a therapeutic target to alleviate the graft fibrosis and to improve long-term survival after LT.
Collapse
Affiliation(s)
- Tian Qin
- Pediatric Gastroenterology/Hepatology, Section of Nutrition and Metabolism, Research Laboratory of Pediatrics, Department of Pediatrics, Beatrix Children's Hospital/University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Jingyuan Fu
- Pediatric Gastroenterology/Hepatology, Section of Nutrition and Metabolism, Research Laboratory of Pediatrics, Department of Pediatrics, Beatrix Children's Hospital/University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Henkjan J Verkade
- Pediatric Gastroenterology/Hepatology, Section of Nutrition and Metabolism, Research Laboratory of Pediatrics, Department of Pediatrics, Beatrix Children's Hospital/University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
8
|
Pirozzolo I, Li Z, Sepulveda M, Alegre ML. Influence of the microbiome on solid organ transplant survival. J Heart Lung Transplant 2021; 40:745-753. [PMID: 34030971 DOI: 10.1016/j.healun.2021.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022] Open
Abstract
The microbiome is an environmental factor in intricate symbiotic relationship with its hosts' immune system, potentially shaping anticancer immunity, autoimmunity, and transplant responses. The focus of this review is to discuss recent findings tying the microbiota to transplant outcomes and alloimmunity. The microbiota changes dynamically following transplantation, but whether these changes affect transplant outcomes can be difficult to parse out. New data reveal effects of the microbiota locally, as well as systemically, depending on the mucosal/epithelial surface colonized, the specific commensal communities present and the nature of microbial-derived molecules produced. These complex interactions result in the microbiota potentially impacting transplantation at different levels, including modulation of donor and/or recipient cells, alterations in the priming and/or effector phases of the alloimmune response, availability or metabolism of immunosuppressive drugs, transplant fate or post-transplant complications.
Collapse
Affiliation(s)
- Isabella Pirozzolo
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Zhipeng Li
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Martin Sepulveda
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, Illinois.
| |
Collapse
|
9
|
Recommendations and guidance on nutritional supplementation in the liver transplant setting. Transplantation 2021; 105:2528-2537. [PMID: 33724244 DOI: 10.1097/tp.0000000000003736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Malnutrition is a frequent complication in patients with cirrhosis and liver transplant (LT) candidates. It is highly related to sarcopenia, and their implications in morbidity and mortality go beyond the waiting list period throughout the post-LT. However, there are no specific interventions defined by guidelines, regarding the kind or the timing of the nutritional intervention to improve LT outcomes. Results from studies developed in the LT setting and evaluating their impact on the LT candidates or recipients are discussed in this review, and new research lines are presented.
Collapse
|
10
|
Micó-Carnero M, Rojano-Alfonso C, Álvarez-Mercado AI, Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Effects of Gut Metabolites and Microbiota in Healthy and Marginal Livers Submitted to Surgery. Int J Mol Sci 2020; 22:44. [PMID: 33375200 PMCID: PMC7793124 DOI: 10.3390/ijms22010044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
Microbiota is defined as the collection of microorganisms within the gastrointestinal ecosystem. These microbes are strongly implicated in the stimulation of immune responses. An unbalanced microbiota, termed dysbiosis, is related to the development of several liver diseases. The bidirectional relationship between the gut, its microbiota and the liver is referred to as the gut-liver axis. The translocation of bacterial products from the intestine to the liver induces inflammation in different cell types such as Kupffer cells, and a fibrotic response in hepatic stellate cells, resulting in deleterious effects on hepatocytes. Moreover, ischemia-reperfusion injury, a consequence of liver surgery, alters the microbiota profile, affecting inflammation, the immune response and even liver regeneration. Microbiota also seems to play an important role in post-operative outcomes (i.e., liver transplantation or liver resection). Nonetheless, studies to determine changes in the gut microbial populations produced during and after surgery, and affecting liver function and regeneration are scarce. In the present review we analyze and discuss the preclinical and clinical studies reported in the literature focused on the evaluation of alterations in microbiota and its products as well as their effects on post-operative outcomes in hepatic surgery.
Collapse
Affiliation(s)
- Marc Micó-Carnero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Carlos Rojano-Alfonso
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Ana Isabel Álvarez-Mercado
- Departamento de Bioquímica y Biología Molecular II, Escuela de Farmacia, Universidad de Granada, 18071 Granada, Spain;
- Institut of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory IDIBAPS, 03036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico;
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| |
Collapse
|
11
|
Cornide-Petronio ME, Álvarez-Mercado AI, Jiménez-Castro MB, Peralta C. Current Knowledge about the Effect of Nutritional Status, Supplemented Nutrition Diet, and Gut Microbiota on Hepatic Ischemia-Reperfusion and Regeneration in Liver Surgery. Nutrients 2020; 12:284. [PMID: 31973190 PMCID: PMC7071361 DOI: 10.3390/nu12020284] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury is an unresolved problem in liver resection and transplantation. The preexisting nutritional status related to the gut microbial profile might contribute to primary non-function after surgery. Clinical studies evaluating artificial nutrition in liver resection are limited. The optimal nutritional regimen to support regeneration has not yet been exactly defined. However, overnutrition and specific diet factors are crucial for the nonalcoholic or nonalcoholic steatohepatitis liver diseases. Gut-derived microbial products and the activation of innate immunity system and inflammatory response, leading to exacerbation of I/R injury or impaired regeneration after resection. This review summarizes the role of starvation, supplemented nutrition diet, nutritional status, and alterations in microbiota on hepatic I/R and regeneration. We discuss the most updated effects of nutritional interventions, their ability to alter microbiota, some of the controversies, and the suitability of these interventions as potential therapeutic strategies in hepatic resection and transplantation, overall highlighting the relevance of considering the extended criteria liver grafts in the translational liver surgery.
Collapse
Affiliation(s)
| | - Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Institute of Nutrition and Food Technology “José Mataix,” Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria ibs, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Mónica B. Jiménez-Castro
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.E.C.-P.); (M.B.J.-C.)
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.E.C.-P.); (M.B.J.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| |
Collapse
|
12
|
Kim HJ, Moon JH, Chung H, Shin JS, Kim B, Kim JM, Kim JS, Yoon IH, Min BH, Kang SJ, Kim YH, Jo K, Choi J, Chae H, Lee WW, Kim S, Park CG. Bioinformatic analysis of peripheral blood RNA-sequencing sensitively detects the cause of late graft loss following overt hyperglycemia in pig-to-nonhuman primate islet xenotransplantation. Sci Rep 2019; 9:18835. [PMID: 31827198 PMCID: PMC6906328 DOI: 10.1038/s41598-019-55417-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 11/12/2019] [Indexed: 01/19/2023] Open
Abstract
Clinical islet transplantation has recently been a promising treatment option for intractable type 1 diabetes patients. Although early graft loss has been well studied and controlled, the mechanisms of late graft loss largely remains obscure. Since long-term islet graft survival had not been achieved in islet xenotransplantation, it has been impossible to explore the mechanism of late islet graft loss. Fortunately, recent advances where consistent long-term survival (≥6 months) of adult porcine islet grafts was achieved in five independent, diabetic nonhuman primates (NHPs) enabled us to investigate on the late graft loss. Regardless of the conventional immune monitoring methods applied in the post-transplant period, the initiation of late graft loss could rarely be detected before the overt graft loss observed via uncontrolled blood glucose level. Thus, we retrospectively analyzed the gene expression profiles in 2 rhesus monkey recipients using peripheral blood RNA-sequencing (RNA-seq) data to find out the potential cause(s) of late graft loss. Bioinformatic analyses showed that highly relevant immunological pathways were activated in the animal which experienced late graft failure. Further connectivity analyses revealed that the activation of T cell signaling pathways was the most prominent, suggesting that T cell-mediated graft rejection could be the cause of the late-phase islet loss. Indeed, the porcine islets in the biopsied monkey liver samples were heavily infiltrated with CD3+ T cells. Furthermore, hypothesis test using a computational experiment reinforced our conclusion. Taken together, we suggest that bioinformatics analyses with peripheral blood RNA-seq could unveil the cause of insidious late islet graft loss.
Collapse
Affiliation(s)
- Hyun-Je Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Department of Dermatology and the Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ji Hwan Moon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Hyunwoo Chung
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Jun-Seop Shin
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Bongi Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jong-Min Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jung-Sik Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Il-Hee Yoon
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Byoung-Hoon Min
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seong-Jun Kang
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Yong-Hee Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kyuri Jo
- Department of Computer Engineering, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Joungmin Choi
- Division of Computer Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Heejoon Chae
- Division of Computer Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Won-Woo Lee
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea.
- Bioinformatics Institute, Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Computer Science & Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| |
Collapse
|
13
|
Chan S, Hawley CM, Campbell KL, Morrison M, Campbell SB, Isbel NM, Francis RS, Playford EG, Johnson DW. Transplant associated infections-The role of the gastrointestinal microbiota and potential therapeutic options. Nephrology (Carlton) 2019; 25:5-13. [PMID: 31587409 DOI: 10.1111/nep.13670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/26/2019] [Accepted: 09/14/2019] [Indexed: 02/06/2023]
Abstract
Infectious complications are common following kidney transplantation and rank in the top five causes of death in patients with allograft function. Over the last 5 years, there has been emerging evidence that changes in the gastrointestinal microbiota following kidney transplantation may play a key role in the pathogenesis of transplant-associated infections. Different factors have emerged which may disrupt the interaction between the gastrointestinal microbiota and the immune system, which may lead to infective complications in kidney transplant recipients. Over the last 5 years, there has been emerging evidence that changes in the gastrointestinal microbiota following kidney transplantation may play a key role in the pathogenesis of transplant-associated infections. This review will discuss the structure and function of the gastrointestinal microbiota, the changes that occur in the gastrointestinal microbiota following kidney transplantation and the factors underpinning these changes, how these changes may lead to transplant-associated infectious complications and potential treatments which may be instituted to mitigate this risk.
Collapse
Affiliation(s)
- Samuel Chan
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Australasian Kidney Trials Network, The University of Queensland, Brisbane, Queensland, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| | - Carmel M Hawley
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Australasian Kidney Trials Network, The University of Queensland, Brisbane, Queensland, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| | - Katrina L Campbell
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, Queensland, Australia.,Centre for Applied Health Economics, Menzies Research Institute, Griffith University, Brisbane, Queensland, Australia
| | - Mark Morrison
- The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Woolloongabba, Queensland, Australia
| | - Scott B Campbell
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Australasian Kidney Trials Network, The University of Queensland, Brisbane, Queensland, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| | - Nicole M Isbel
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Australasian Kidney Trials Network, The University of Queensland, Brisbane, Queensland, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| | - Ross S Francis
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Australasian Kidney Trials Network, The University of Queensland, Brisbane, Queensland, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| | - Elliot G Playford
- Infection Management Services, Department of Microbiology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - David W Johnson
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Australasian Kidney Trials Network, The University of Queensland, Brisbane, Queensland, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Ren G, Yuan X, Zhao X, Hao Q, Cao J, Wang Y, Gao Q, Dou J, Zeng Q. Characterization and evolution of intestine injury at the anhepatic phase in portal hypertensive rats. Exp Ther Med 2018; 16:4765-4771. [PMID: 30542431 DOI: 10.3892/etm.2018.6800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/02/2018] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to investigate the characteristics and progression of intestinal injury at the anhepatic phase in portal hypertensive rats. A total of 120 healthy male Wistar rats were purchased, with 15 rats in the normal control group and 105 rats were assigned to establish a prehepatic portal hypertension model. The 105 model rats were further divided into seven treatment groups following ischemia-reperfusion. Meanwhile, portal vein pressure, the area of lower esophageal mucosal vein, endotoxin levels in portal vein blood and the level of malondialdehyde (MDA) and superoxide dismutase (SOD) were measured. Morphology changes of the intestine were observed using optical microscopy and transmission electron microscopy. A portal hypertension rat model was successfully established. Furthermore, endotoxin, MDA and SOD level reached a peak at 12-24 h following reperfusion and then decreased gradually to normal levels at 1 week following reperfusion. However, cytological damage did not recover to preoperative level within 1 week. These findings suggest that intestinal injury was most severe within 12-24 h following ischemia-reperfusion and most indicators recovered to almost normal levels. Therefore, further study on the intestinal mucosal damage is required, with the aim to reduce the production of intestinal endotoxin.
Collapse
Affiliation(s)
- Guijun Ren
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Xiaoye Yuan
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Qingchun Hao
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Jinglin Cao
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yang Wang
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Qingjun Gao
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Jian Dou
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Qiang Zeng
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
15
|
Efficacy and Safety of Probiotics and Synbiotics in Liver Transplantation. Pharmacotherapy 2018; 38:758-768. [DOI: 10.1002/phar.2130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Abstract
PURPOSE OF REVIEW An imbalance between pathogenic and protective microbiota characterizes dysbiosis. Presence of dysbiosis may affect immunity, tolerance, or disease depending on a variety of conditions. In the transplant patient population, the need for immunosuppression and widespread use of prophylactic and therapeutic antimicrobial agents create new posttransplant microbiota communities that remain to be fully defined. RECENT FINDINGS Studies in mice have demonstrated significant bidirectional interactions between microbiota-derived products and host immune cells. The stimulation of regulatory T cell and T helper cell type 17 cells by specific products leads to maintenance of immune homeostasis versus activation of inflammation, respectively. Dysbiosis may lead to development of antigen cross-reactivity, which may affect alloreactivity. Certain immunologic sequelae of microbiota are pronounced in chronic kidney disease, because of uremia and renal metabolism of microbiota metabolites. Dietary modifications, probiotics, and fecal microbiota transplant have been investigated for alteration of microbiota in humans. SUMMARY Researchers have begun to identify dysbioses associated with clinical conditions, including chronic kidney disease, posttransplant infection, and rejection. This information will allow clinicians not only to select at-risk patients for early intervention, but also to develop therapies that restore the microbiota to a state of homeostasis or tolerance.
Collapse
|
17
|
Zhang J, Ren FG, Liu P, Zhang HK, Zhu HY, Feng Z, Zhang XF, Wang B, Liu XM, Zhang XG, Wu RQ, Lv Y. Characteristics of fecal microbial communities in patients with non-anastomotic biliary strictures after liver transplantation. World J Gastroenterol 2017; 23:8217-8226. [PMID: 29290658 PMCID: PMC5739928 DOI: 10.3748/wjg.v23.i46.8217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/13/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the possible relationship between fecal microbial communities and non-anastomotic stricture (NAS) after liver transplantation (LT). METHODS A total of 30 subjects including 10 patients with NAS, 10 patients with no complications after LT, and 10 non-LT healthy individuals were enrolled. Fecal microbial communities were assessed by the 16S rRNA gene sequencing technology. RESULTS Different from the uncomplicated and healthy groups, unbalanced fecal bacterium ratio existed in patients with NAS after LT. The results showed that NAS patients were associated with a decrease of Firmicutes and Bacteroidetes and an increase of Proteobacteria at the phylum level, with the proportion-ratio imbalance between potential pathogenic families including Enterococcaceae, Streptococcaceae, Enterobacteriaceae, Pseudomonadaceae and dominant families including Bacteroidaceae. CONCLUSION The compositional shifts of the increase of potential pathogenic bacteria as well as the decrease of dominant bacteria might contribute to the incidence of NAS.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Feng-Gang Ren
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Peng Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Hong-Ke Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Hao-Yang Zhu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Zhe Feng
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Xu-Feng Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Xue-Ming Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Xiao-Gang Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Rong-Qian Wu
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
18
|
Gut microbial balance and liver transplantation: alteration, management, and prediction. Front Med 2017; 12:123-129. [PMID: 29230676 DOI: 10.1007/s11684-017-0563-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
Abstract
Liver transplantation is a conventional treatment for terminal stage liver diseases. However, several complications still hinder the survival rate. Intestinal barrier destruction is widely observed among patients receiving liver transplant and suffering from ischemia-reperfusion or rejection injuries because of the relationship between the intestine and the liver, both in anatomy and function. Importantly, the resulting alteration of gut microbiota aggravates graft dysfunctions during the process. This article reviews the research progress for gut microbial alterations and liver transplantation. Especially, this work also evaluates research on the management of gut microbial alteration and the prediction of possible injuries utilizing microbial alteration during liver transplantation. In addition, we propose possible directions for research on gut microbial alteration during liver transplantation and offer a hypothesis on the utilization of microbial alteration in liver transplantation. The aim is not only to predict perioperative injuries but also to function as a method of treatment or even inhibit the rejection of liver transplantation.
Collapse
|
19
|
Grąt M, Wronka KM, Lewandowski Z, Grąt K, Krasnodębski M, Stypułkowski J, Hołówko W, Masior Ł, Kosińska I, Wasilewicz M, Raszeja-Wyszomirska J, Rejowski S, Bik E, Patkowski W, Krawczyk M. Effects of continuous use of probiotics before liver transplantation: A randomized, double-blind, placebo-controlled trial. Clin Nutr 2017; 36:1530-1539. [PMID: 28506447 DOI: 10.1016/j.clnu.2017.04.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/06/2017] [Accepted: 04/28/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Although there is increasing evidence for the benefits of probiotics in patients with liver diseases, data on the benefits of pre-LT administration of probiotics are lacking. The aim of this study was to evaluate the effects of continuous administration of probiotics before liver transplantation (LT) on pre- and post-transplant patient outcomes. METHODS In this randomized, double-blind, and placebo-controlled trial adult cirrhotic patients listed for LT received a 4-strain probiotic preparation or placebo daily from enrollment until LT. The primary outcome measures were postoperative mortality and infection rates. The secondary outcome measures were 5-day post-transplant aspartate and alanine aminotransferase activities, bilirubin concentration, and international normalized ratio; waiting-list mortality; pre-transplant Model for End-stage Liver Disease score and Child-Turcotte-Pugh class changes; and pre-transplant infections. RESULTS A total of 55 patients were randomized. The 90-day postoperative mortality rates were 0% and 4.3% in the probiotic and placebo groups, respectively (p > 0.99). Patients receiving probiotics had significantly reduced 30-day (4.8% versus 34.8%, p = 0.02) and 90-day (4.8% versus 47.8%, p = 0.002) infection rates, lower post-LT bilirubin concentration (p = 0.02), and more rapid decrease of aspartate (p = 0.03) and alanine (p = 0.03) aminotransferase activities. Probiotics did not have significant effects on other secondary outcome measures. CONCLUSIONS Although continuous administration of probiotics before LT does not appear to affect postoperative mortality, it effectively prevents postoperative infections and improves early biochemical parameters of allograft function. CLINICALTRIALS. GOV IDENTIFIER NCT01735591.
Collapse
Affiliation(s)
- Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland.
| | - Karolina M Wronka
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | | | - Karolina Grąt
- Second Department of Clinical Radiology, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Krasnodębski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Jan Stypułkowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Wacław Hołówko
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Łukasz Masior
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Irena Kosińska
- Department of Preventive Medicine and Hygiene, Medical University of Warsaw, Warsaw, Poland
| | - Michał Wasilewicz
- Hepatology and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Raszeja-Wyszomirska
- Hepatology and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Sławomir Rejowski
- Hepatology and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Emil Bik
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Waldemar Patkowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Marek Krawczyk
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Pascoe EL, Hauffe HC, Marchesi JR, Perkins SE. Network analysis of gut microbiota literature: an overview of the research landscape in non-human animal studies. ISME JOURNAL 2017; 11:2644-2651. [PMID: 28800135 DOI: 10.1038/ismej.2017.133] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/21/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022]
Abstract
A wealth of human studies have demonstrated the importance of gut microbiota to health. Research on non-human animal gut microbiota is now increasing, but what insight does it provide? We reviewed 650 publications from this burgeoning field (2009-2016) and determined that animals driving this research were predominantly 'domestic' (48.2%), followed by 'model' (37.5%), with least studies on 'wild' (14.3%) animals. Domestic studies largely experimentally perturbed microbiota (81.8%) and studied mammals (47.9%), often to improve animal productivity. Perturbation was also frequently applied to model animals (87.7%), mainly mammals (88.1%), for forward translation of outcomes to human health. In contrast, wild animals largely characterised natural, unperturbed microbiota (79.6%), particularly in pest or pathogen vectoring insects (42.5%). We used network analyses to compare the research foci of each animal group: 'diet' was the main focus in all three, but to different ends: to enhance animal production (domestic), to study non-infectious diseases (model), or to understand microbiota composition (wild). Network metrics quantified model animal studies as the most interdisciplinary, while wild animals incorporated the fewest disciplines. Overall, animal studies, especially model and domestic, cover a broad array of research. Wild animals, however, are the least investigated, but offer under-exploited opportunities to study 'real-life' microbiota.
Collapse
Affiliation(s)
- Emily L Pascoe
- Organisms and Environment Division, School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff University, Cardiff, UK.,Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Michele all' Adige (TN), Italy
| | - Heidi C Hauffe
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Michele all' Adige (TN), Italy
| | - Julian R Marchesi
- Organisms and Environment Division, School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff University, Cardiff, UK.,Centre for Digestive and Gut Health, Imperial College London, London, UK.,Department of Surgery and Cancer, Imperial College London, London, UK
| | - Sarah E Perkins
- Organisms and Environment Division, School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff University, Cardiff, UK.,Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Michele all' Adige (TN), Italy
| |
Collapse
|
21
|
Ardalan M, Vahed SZ. Gut microbiota and renal transplant outcome. Biomed Pharmacother 2017; 90:229-236. [DOI: 10.1016/j.biopha.2017.02.114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/26/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023] Open
|
22
|
Riella LV, Bagley J, Iacomini J, Alegre ML. Impact of environmental factors on alloimmunity and transplant fate. J Clin Invest 2017; 127:2482-2491. [PMID: 28481225 DOI: 10.1172/jci90596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although gene-environment interactions have been investigated for many years to understand people's susceptibility to autoimmune diseases or cancer, a role for environmental factors in modulating alloimmune responses and transplant outcomes is only now beginning to emerge. New data suggest that diet, hyperlipidemia, pollutants, commensal microbes, and pathogenic infections can all affect T cell activation, differentiation, and the kinetics of graft rejection. These observations reveal opportunities for novel therapeutic interventions to improve graft outcomes as well as for noninvasive biomarker discovery to predict or diagnose graft deterioration before it becomes irreversible. In this Review, we will focus on the impact of these environmental factors on immune function and, when known, on alloimmune function, as well as on transplant fate.
Collapse
Affiliation(s)
- Leonardo V Riella
- Schuster Family Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jessamyn Bagley
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Boston, Massachusetts, USA
| | - John Iacomini
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Boston, Massachusetts, USA
| | | |
Collapse
|
23
|
Doycheva I, Leise MD, Watt KD. The Intestinal Microbiome and the Liver Transplant Recipient: What We Know and What We Need to Know. Transplantation 2016; 100:61-8. [PMID: 26647107 DOI: 10.1097/tp.0000000000001008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intestinal microbiome and immune system are in close symbiotic relationship in health. Gut microbiota plays a role in many chronic liver diseases and cirrhosis. However, alterations in the gut microbiome after liver transplantation and the implications for liver transplant recipients are not well understood and rely mainly on experimental animal studies. Recent advances in molecular techniques have identified that increased intestinal permeability, decreased beneficial bacteria, and increased pathogenic species may play important roles in the early posttransplant period. The associations between microbiota perturbation and postliver transplant infections and acute rejection are evolving. The link with metabolic syndrome, obesity, and cardiac disease in the general population require translation into the transplant recipient. This review focuses on our current knowledge of the known and potential interaction of the microbiome in the liver transplant recipient. Future human studies focused on microbiota changes in liver transplant patients are warranted and expected.
Collapse
Affiliation(s)
- Iliana Doycheva
- 1 Division of Gastroenterology and Hepatology, Medical University, Sofia, Bulgaria. 2 Division of Gastroenterology and Hepatology, Mayo Clinic Transplant Center, Rochester, MN
| | | | | |
Collapse
|
24
|
Liu HX, Keane R, Sheng L, Wan YJY. Implications of microbiota and bile acid in liver injury and regeneration. J Hepatol 2015; 63:1502-10. [PMID: 26256437 PMCID: PMC4654653 DOI: 10.1016/j.jhep.2015.08.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/15/2015] [Accepted: 08/02/2015] [Indexed: 02/07/2023]
Abstract
Studies examining the mechanisms by which the liver incurs injury and then regenerates usually focus on factors and pathways directly within the liver, neglecting the signaling derived from the gut-liver axis. The intestinal content is rich in microorganisms as well as metabolites generated from both the host and colonizing bacteria. Through the gut-liver axis, this complex "soup" exerts an immense impact on liver integrity and function. This review article summarizes data published in the past 30 years demonstrating the signaling derived from the gut-liver axis in relation to liver injury and regeneration. Due to the intricate networks of implicated pathways as well as scarcity of available mechanistic data, it seems that nutrigenomic, metabolomics, and microbiota profiling approaches are warranted to provide a better understanding regarding the interplay and impact between nutrition, bacteria, and host response in influencing liver function and healing. Therefore elucidating the possible molecular mechanisms that link microbiota alteration to host physiological response and vice versa.
Collapse
Affiliation(s)
- Hui-Xin Liu
- Department of Medical Pathology and Laboratory Medicine, University of California, Sacramento, CA, USA
| | - Ryan Keane
- Department of Medical Pathology and Laboratory Medicine, University of California, Sacramento, CA, USA
| | - Lili Sheng
- Department of Medical Pathology and Laboratory Medicine, University of California, Sacramento, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Sacramento, CA, USA.
| |
Collapse
|
25
|
Wang W, Xu S, Ren Z, Jiang J, Zheng S. Gut microbiota and allogeneic transplantation. J Transl Med 2015; 13:275. [PMID: 26298517 PMCID: PMC4546814 DOI: 10.1186/s12967-015-0640-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/14/2015] [Indexed: 02/06/2023] Open
Abstract
The latest high-throughput sequencing technologies show that there are more than 1000 types of microbiota in the human gut. These microbes are not only important to maintain human health, but also closely related to the occurrence and development of various diseases. With the development of transplantation technologies, allogeneic transplantation has become an effective therapy for a variety of end-stage diseases. However, complications after transplantation still restrict its further development. Post-transplantation complications are closely associated with a host's immune system. There is also an interaction between a person's gut microbiota and immune system. Recently, animal and human studies have shown that gut microbial populations and diversity are altered after allogeneic transplantations, such as liver transplantation (LT), small bowel transplantation (SBT), kidney transplantation (KT) and hematopoietic stem cell transplantation (HTCT). Moreover, when complications, such as infection, rejection and graft versus host disease (GVHD) occur, gut microbial populations and diversity present a significant dysbiosis. Several animal and clinical studies have demonstrated that taking probiotics and prebiotics can effectively regulate gut microbiota and reduce the incidence of complications after transplantation. However, the role of intestinal decontamination in allogeneic transplantation is controversial. This paper reviews gut microbial status after transplantation and its relationship with complications. The role of intervention methods, including antibiotics, probiotics and prebiotics, in complications after transplantation are also discussed. Further research in this new field needs to determine the definite relationship between gut microbial dysbiosis and complications after transplantation. Additionally, further research examining gut microbial intervention methods to ameliorate complications after transplantation is warranted. A better understanding of the relationship between gut microbiota and complications after allogeneic transplantation may make gut microbiota as a therapeutic target in the future.
Collapse
Affiliation(s)
- Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Shaoyan Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Zhigang Ren
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Jianwen Jiang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
26
|
Abstract
This opinion statement discusses indications, efficacy and safety of probiotics in immunosuppressed patients. The best evidence available is for the prophylaxis of infections in patients after liver transplantation and for patients with liver cirrhosis. For other organ transplantations and for bone marrow transplantation the efficacy of probiotic interventions has not been proven yet, but in these patient groups safety is a concern. Also in critically ill patients, the data on efficacy are inconclusive and safety is a concern. In HIV patients and patients after major surgery, probiotic bacteria seem to be safe since there are no associations with increased risks of side effects.
Collapse
Affiliation(s)
- V Stadlbauer
- 1 Medical University of Graz, Department of Gastroenterology and Hematology, Auenbruggerplatz, 8010 Graz, Austria
| |
Collapse
|