1
|
Shen D, Yu Q, Xing X, Ding H, Long Y, Hui C. Distribution and survival of pathogens from different waste components and bioaerosol traceability analysis in household garbage room. ENVIRONMENTAL RESEARCH 2024; 252:119016. [PMID: 38677405 DOI: 10.1016/j.envres.2024.119016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Household garbage rooms release abundant bioaerosols and are an important source of pathogens; however, information on the distribution and survival patterns of pathogens in different waste components is limited. In this study, a culture method and 16S rRNA high-throughput sequencing were used to determine bacterial communities, culturable pathogens, and human bacterial pathogens (HBPs). The results showed that abundant culturable bacteria were detected in all waste types, and a large number of S. aureus was detected on the surface of recyclable wastes, whereas S. aureus, total coliforms, Salmonella, Enterococcus, and hemolytic bacteria were detected in food waste and other waste. The activities of these detected pathogenic bacteria decreased after 24 h of storage but re-activated within one week. Factors affecting the emergence of pathogens varied with different waste components. Sequencing results showed that Pseudomonas, Acinetobacter, and Burkholderia were abundant in the waste samples, whereas Achromobacter, Exiguobacteriums, Bordetella, and Corynebacterium were the primary pathogens in the bioaerosol and wall attachment. The results of traceability analysis showed that bioaerosol microbes were mainly derived from raw kitchen waste (5.98%) and plastic and paper contaminated with food waste (19.93%) in garbage rooms. In addition, bioaerosols were the main source of microflora in the wall attachment, which possessed high HBP diversity and required more attention. These findings will help in understanding the microbial hazards in different waste components and provide guidance for the control and risk reduction of bioaerosols during waste management and recycling.
Collapse
Affiliation(s)
- Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-Ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Qiang Yu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-Ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xiaojing Xing
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-Ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Hening Ding
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-Ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-Ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Cai Hui
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-Ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
2
|
Alvarado-Gutiérrez ML, Ruiz-Ordaz N, Galíndez-Mayer J, Santoyo-Tepole F, García-Mena J, Nirmalkar K, Curiel-Quesada E. Dynamic and structural response of a multispecies biofilm to environmental perturbations induced by the continuous increase of benzimidazole fungicides in a permeable reactive biobarrier. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:329-344. [PMID: 38887762 PMCID: PMC11180048 DOI: 10.1007/s40201-024-00903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/21/2024] [Indexed: 06/20/2024]
Abstract
Purpose This work explores the dynamics of spatiotemporal changes in the taxonomic structure of biofilms and the degradation kinetics of three imidazole group compounds: carbendazim (CBZ), methyl thiophanate (MT), and benomyl (BN) by a multispecies microbial community attached to a fixed bed horizontal tubular reactor (HTR). This bioreactor mimics a permeable reactive biobarrier, which helps prevent the contamination of water bodies by pesticides in agricultural wastewater. Methods To rapidly quantify the microbial response to crescent loading rates of benzimidazole compounds, a gradient system was used to transiently raise the fungicide volumetric loading rates, measuring the structural and functional dynamics response of a microbial community in terms of the volumetric removal rates of the HTR entering pollutants. Results The loading rate gradient of benzimidazole compounds severely impacts the spatiotemporal taxonomic structure of the HTR biofilm-forming microbial community. Notable differences with the original structure in HTR stable conditions can be noted after three historical contingencies (CBZ, MT, and BN gradient loading rates). It was evidenced that the microbial community did not return to the composition prior to environmental disturbances; however, the functional similarity of microbial communities after steady state reestablishment was observed. Conclusions The usefulness of the method of gradual delivery of potentially toxic agents for a microbial community immobilized in a tubular biofilm reactor was shown since its functional and structural dynamics were quickly evaluated in response to fungicide composition and concentration changes. The rapid adjustment of the contaminants' removal rates indicates that even with changes in the taxonomic structure of a microbial community, its functional redundancy favors its adjustment to gradual environmental disturbances.
Collapse
Affiliation(s)
- María Luisa Alvarado-Gutiérrez
- Department of Biochemical Engineering, National School of Biological Sciences, Adolfo López Mateos Professional Unit, National Polytechnic Institute (Instituto Politécnico Nacional), México, México
| | - Nora Ruiz-Ordaz
- Department of Biochemical Engineering, National School of Biological Sciences, Adolfo López Mateos Professional Unit, National Polytechnic Institute (Instituto Politécnico Nacional), México, México
| | - Juvencio Galíndez-Mayer
- Department of Biochemical Engineering, National School of Biological Sciences, Adolfo López Mateos Professional Unit, National Polytechnic Institute (Instituto Politécnico Nacional), México, México
| | - Fortunata Santoyo-Tepole
- Spectroscopy Instrumentation Center, National School of Biological Sciences, Lázaro Cárdenas Professional Unit, National Polytechnic Institute (Instituto Politécnico Nacional), México, México
| | - Jaime García-Mena
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Instituto Politécnico Nacional), México, México
| | - Khemlal Nirmalkar
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Instituto Politécnico Nacional), México, México
- Present Address: Biodesign Center for Health Through Microbiomes, Arizona State University, Arizona, USA
| | - Everardo Curiel-Quesada
- Biochemistry Department. National School of Biological Sciences, Lázaro Cárdenas Professional Unit, National Polytechnic Institute (Instituto Politécnico Nacional), México, México
| |
Collapse
|
3
|
Silva-Aguilar FJ, García-Mena J, Murugesan S, Nirmalkar K, Cervantes-González E. Characterization of bacterial diversity and capacity to remove lead of a consortium from mining soil. Int Microbiol 2023; 26:705-722. [PMID: 36527575 DOI: 10.1007/s10123-022-00313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/07/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION At present, the presence of lead (Pb2+) continues to be a problem in water bodies due to its continuous use and high toxicity. The aim of this study was to investigate the bacterial diversity of a potential consortium used as a biosorbent for the removal of lead in an aqueous solution. METHODS The minimum inhibitory concentration and the mean lethal dose of the consortium were determined, and then the optimal variables of pH and temperature for the removal process were obtained. With the optimal conditions, the kinetic behavior was evaluated, and adjustments were made to different mathematical models. A Fourier transform infrared spectroscopy analysis was performed to determine the functional groups of the biomass participating in the removal process, and the diversity of the bacterial consortium was evaluated during Pb2+ removal by an Ion Torrent Personal Genome Machine System. RESULTS It was found that the intraparticle diffusion model was the one that described the adsorption kinetics showing a higher rate constant with a higher concentration of Pb2+, while the Langmuir model was that explained the isotherm at 35 °C, defining a maximum adsorption load for the consortium of 54 mg/g. In addition, it was found that Pb2+ modified the diversity and abundance of the bacterial consortium, detecting genera such as Pseudomonas, Enterobacter, Citrobacter, among others. CONCLUSIONS Thus, it can be concluded that the bacterial consortium from mining soil was a biosorbent with the ability to tolerate high concentrations of Pb2+ exposure. The population dynamics during adsorption showed enrichment of Proteobacteria phyla, with a wide range of bacterial families and genera capable of resisting and removing Pb2+ in solution.
Collapse
Affiliation(s)
- Felipe J Silva-Aguilar
- Departamento de Ingeniería Química, Universidad Autónoma de San Luis Potosí, Coordinación Académica Región Altiplano, San José de Las Trojes, Carretera a Cedral Km 5+600, Matehuala City, San Luis Potosí, México
| | - Jaime García-Mena
- Departamento de Genética Y Biología Molecular, Centro de Investigación Y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Zacatenco, Av. IPN 2508, Col. San Pedro Zacatenco, México City, 07360 D.F, México
| | - Selvasankar Murugesan
- Departamento de Genética Y Biología Molecular, Centro de Investigación Y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Zacatenco, Av. IPN 2508, Col. San Pedro Zacatenco, México City, 07360 D.F, México
- Research Department, Sidra Medicine, Doha, Qatar
| | - Khemlal Nirmalkar
- Departamento de Genética Y Biología Molecular, Centro de Investigación Y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Zacatenco, Av. IPN 2508, Col. San Pedro Zacatenco, México City, 07360 D.F, México
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, 85287, USA
| | - Elsa Cervantes-González
- Departamento de Ingeniería Química, Universidad Autónoma de San Luis Potosí, Coordinación Académica Región Altiplano, San José de Las Trojes, Carretera a Cedral Km 5+600, Matehuala City, San Luis Potosí, México.
| |
Collapse
|
4
|
Saddique Z, Imran M, Javaid A, Latif S, Kim TH, Janczarek M, Bilal M, Jesionowski T. Bio-fabricated bismuth-based materials for removal of emerging environmental contaminants from wastewater. ENVIRONMENTAL RESEARCH 2023; 229:115861. [PMID: 37062477 DOI: 10.1016/j.envres.2023.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/21/2023]
Abstract
Although rapid industrialization has made life easier for humans, several associated issues are emerging and harming the environment. Wastewater is regarded as one of the key problems of the 21st century due to its massive production every year and requires immediate attention from all stakeholders to protect the environment. Since the introduction of nanotechnology, bismuth-based nanomaterials have been used in variety of applications. Various techniques, such as hydrothermal, solvo-thermal and biosynthesis, have been reported for synthesizing these materials, etc. Among these, biosynthesis is eco-friendly, cost-effective, and less toxic than conventional chemical methods. The prime focuses of this review are to elaborate biosynthesis of bismuth-based nanomaterials via bio-synthetic agents such as plant, bacteria and fungi and their application in wastewater treatment as anti-pathogen/photocatalyst for pollutant degradation. Besides this, future perspectives have been presented for the upcoming research in this field, along with concluding remarks.
Collapse
Affiliation(s)
- Zohaib Saddique
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Lahore, 54000, Pakistan.
| | - Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Tak H Kim
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Marcin Janczarek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland.
| |
Collapse
|
5
|
Ginn O, Lowry S, Brown J. A systematic review of enteric pathogens and antibiotic resistance genes in outdoor urban aerosols. ENVIRONMENTAL RESEARCH 2022; 212:113097. [PMID: 35339466 DOI: 10.1016/j.envres.2022.113097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/10/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Aerosol transport of enteric microbiota including fecal pathogens and antimicrobial resistance genes (ARGs) has been documented in a range of settings but remains poorly understood outside indoor environments. We conducted a systematic review of the peer-reviewed literature to summarize evidence on specific enteric microbiota including enteric pathogens and ARGs that have been measured in aerosol samples in urban settings where the risks of outdoor exposure and antibiotic resistance (AR) spread may be highest. Following PRISMA guidelines, we conducted a key word search for articles published within the years 1990-2020 using relevant data sources. Two authors independently conducted the keyword searches of databases and conducted primary and secondary screenings before merging results. To be included, studies contained extractable data on enteric microbes and AR in outdoor aerosols regardless of source confirmation and reported on qualitative, quantitative, or viability data on enteric microbes or AR. Qualitative analyses and metric summaries revealed that enteric microbes and AR have been consistently reported in outdoor aerosols, generally via relative abundance measures, though gaps remain preventing full understanding of the role of the aeromicrobiological pathway in the fate and transport of enteric associated outdoor aerosols. We identified remaining gaps in the evidence base including a need for broad characterization of enteric pathogens in bioaerosols beyond bacterial genera, a need for greater sampling in locations of high enteric disease risk, and a need for quantitative estimation of microbial and nucleic acid densities that may be applied to fate and transport models and in quantitative microbial risk assessment.
Collapse
Affiliation(s)
- Olivia Ginn
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Sarah Lowry
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
| | - Joe Brown
- Deparment of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
6
|
Bello-Medina PC, Corona-Cervantes K, Zavala Torres NG, González A, Pérez-Morales M, González-Franco DA, Gómez A, García-Mena J, Díaz-Cintra S, Pacheco-López G. Chronic-Antibiotics Induced Gut Microbiota Dysbiosis Rescues Memory Impairment and Reduces β-Amyloid Aggregation in a Preclinical Alzheimer's Disease Model. Int J Mol Sci 2022; 23:8209. [PMID: 35897785 PMCID: PMC9331718 DOI: 10.3390/ijms23158209] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial pathology characterized by β-amyloid (Aβ) deposits, Tau hyperphosphorylation, neuroinflammatory response, and cognitive deficit. Changes in the bacterial gut microbiota (BGM) have been reported as a possible etiological factor of AD. We assessed in offspring (F1) 3xTg, the effect of BGM dysbiosisdysbiosis in mothers (F0) at gestation and F1 from lactation up to the age of 5 months on Aβ and Tau levels in the hippocampus, as well as on spatial memory at the early symptomatic stage of AD. We found that BGM dysbiosisdysbiosis with antibiotics (Abx) treatment in F0 was vertically transferred to their F1 3xTg mice, as observed on postnatal day (PD) 30 and 150. On PD150, we observed a delay in spatial memory impairment and Aβ deposits, but not in Tau and pTau protein in the hippocampus at the early symptomatic stage of AD. These effects are correlated with relative abundance of bacteria and alpha diversity, and are specific to bacterial consortia. Our results suggest that this specific BGM could reduce neuroinflammatory responses related to cerebral amyloidosis and cognitive deficit and activate metabolic pathways associated with the biosynthesis of triggering or protective molecules for AD.
Collapse
Affiliation(s)
- Paola C. Bello-Medina
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| | - Karina Corona-Cervantes
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Zacatenco, Mexico City 07360, Mexico; (K.C.-C.); (N.G.Z.T.)
| | - Norma Gabriela Zavala Torres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Zacatenco, Mexico City 07360, Mexico; (K.C.-C.); (N.G.Z.T.)
| | - Antonio González
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| | - Marcel Pérez-Morales
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| | - Diego A. González-Franco
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| | - Astrid Gómez
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Zacatenco, Mexico City 07360, Mexico; (K.C.-C.); (N.G.Z.T.)
| | - Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Gustavo Pacheco-López
- Biological and Health Sciences Division, Campus Lerma, Metropolitan Autonomus University (UAM), Lerma 52005, Mexico; (A.G.); (M.P.-M.); (D.A.G.-F.); (A.G.); (G.P.-L.)
| |
Collapse
|
7
|
González-Sánchez A, Reyes-Lagos JJ, Peña-Castillo MA, Nirmalkar K, García-Mena J, Pacheco-López G. Vaginal Microbiota Is Stable and Mainly Dominated by Lactobacillus at Third Trimester of Pregnancy and Active Childbirth: A Longitudinal Study of Ten Mexican Women. Curr Microbiol 2022; 79:230. [PMID: 35767085 DOI: 10.1007/s00284-022-02918-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
Abstract
In healthy women at reproductive age, the vaginal microbiota is mainly dominated by Lactobacillus bacteria during pregnancy and non-pregnancy stages. However, little is known about longitudinal changes within the vaginal microbiota composition from the third trimester of pregnancy to childbirth in healthy women. Thus, we conducted an exploratory longitudinal study of vaginal microbiota composition of 10 Mexican pregnant women, sampling from the same volunteer at two-time points: third trimester of pregnancy and active childbirth. Vaginal bacterial microbiota was characterized by V3-16S rDNA libraries by high-throughput sequencing and bioinformatics methods. Out of ten, vaginal microbiota from eight women was dominated by the Lactobacillus genus at both time points, whereas the other two women showed vaginal microbiota composition with high abundance of genera Gardnerella, Prevotella, and members of the Atopobiaceae family, without any preterm birth correlation. Importantly, we found no statistically significant differences in relative abundances, absolute reads count, alpha and beta diversity between the third trimester of pregnancy, and active childbirth time points. However, compared to the third trimester of pregnancy, we observed a trend with higher absolute reads counts for Gardnerella, Faecalibaculum, Ileibacterium, and Lactococcus genus at active childbirth and lower absolute reads count of Lactobacillus genus. Our results suggest that the vaginal microbiota composition is stable, and Lactobacillus genus is the dominant taxa in Mexican women's vagina at the third trimester of pregnancy and childbirth.
Collapse
Affiliation(s)
- Antonio González-Sánchez
- Biological and Health Sciences Division, Metropolitan Autonomous University (UAM), Campus Lerma, Lerma, Mexico
| | - José J Reyes-Lagos
- School of Medicine, Autonomous University of Mexico State (UAEMex), Toluca, Mexico
| | - Miguel A Peña-Castillo
- Basic Sciences and Engineering Division, Metropolitan Autonomous University (UAM), Campus Iztapalapa, Mexico City, Mexico
| | - Khemlal Nirmalkar
- Genetic and Molecular Biology Department, Center of Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Campus Zacatenco, Mexico City, Mexico
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Jaime García-Mena
- Genetic and Molecular Biology Department, Center of Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Campus Zacatenco, Mexico City, Mexico.
| | - Gustavo Pacheco-López
- Biological and Health Sciences Division, Metropolitan Autonomous University (UAM), Campus Lerma, Lerma, Mexico.
| |
Collapse
|
8
|
Hernández-Quiroz F, Murugesan S, Flores-Rivas C, Piña-Escobedo A, Juárez-Hernández JI, García-Espitia M, Chávez-Carbajal A, Nirmalkar K, García-Mena J. A high-throughput DNA sequencing study of fecal bacteria of seven Mexican horse breeds. Arch Microbiol 2022; 204:382. [PMID: 35687150 DOI: 10.1007/s00203-022-03009-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 11/02/2022]
Abstract
Horses are non-ruminant, herbivorous mammals, been used through history for various purposes, with a gut microbiota from cecum to the colon, possessing remarkable fermentative capacity. We studied the fecal microbiota of Azteca, Criollo, Frisian, Iberian, Pinto, Quarter and Spanish horse breeds living in Mexico by next-generation DNA sequencing of 16S rRNA gene libraries. Dominant phyla Firmicutes, Bacteroidetes, Proteobacteria, Spirochaetes, Fibrobacteres, Actinobacteria and Verrucomicrobia have different relative abundances among breeds, with contrasted alpha and beta diversities as well. Heatmap analysis revealed that Ruminococcaceae, Lachnospiraceae, Mogibacteriaceae families, and order Clostridiales are more abundant in Spanish, Azteca, Quarter and Criollo breeds. The LEfSe analysis displayed higher abundance of order Bacteroidales, family BS11, and genera Faecalibacterium, Comamonas, Collinsella, Acetobacter, and Treponema in Criollo, Azteca, Iberian, Spanish, Frisian, Pinto, and Quarter horse breeds. The conclusion is that dominant bacterial taxa, found in fecal samples of horse breeds living in Mexico, have different relative abundances.
Collapse
Affiliation(s)
- Fernando Hernández-Quiroz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, CDMX, 07360, Ciudad de México, Mexico
- Computer Science Department, University of Nebraska-Lincoln (UNL), Lincoln, NE, USA
| | - Selvasankar Murugesan
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, CDMX, 07360, Ciudad de México, Mexico
- Division of Translational Medicine, Research Department, Sidra Medicine, 26999, Doha, Qatar
| | - Cintia Flores-Rivas
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, CDMX, 07360, Ciudad de México, Mexico
| | - Alberto Piña-Escobedo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, CDMX, 07360, Ciudad de México, Mexico
| | - Josué Isaac Juárez-Hernández
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, CDMX, 07360, Ciudad de México, Mexico
| | - Matilde García-Espitia
- Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, CDMX, 07320, Ciudad de México, Mexico
| | - Alejandra Chávez-Carbajal
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, CDMX, 07360, Ciudad de México, Mexico
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Khemlal Nirmalkar
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, CDMX, 07360, Ciudad de México, Mexico
- Biodesign Center for Health through Microbiomes, Arizona State 16 University, Tempe, AZ, USA
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, CDMX, 07360, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Corona-Cervantes K, Parra-Carriedo A, Hernández-Quiroz F, Martínez-Castro N, Vélez-Ixta JM, Guajardo-López D, García-Mena J, Hernández-Guerrero C. Physical and Dietary Intervention with Opuntia ficus-indica (Nopal) in Women with Obesity Improves Health Condition through Gut Microbiota Adjustment. Nutrients 2022; 14:1008. [PMID: 35267983 PMCID: PMC8912383 DOI: 10.3390/nu14051008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a multifactorial disease resulting in excessive accumulation of fat. Worldwide, obesity is an important public health problem, affecting a large proportion of the world population. The tender cactus Opuntia ficus-indica, commonly known in Mexico as "nopal", is widely distributed in this country, Latin America, South Africa, and the Mediterranean area. Nopal cladodes are commonly marketed in different forms as fresh, frozen, or pre-cooked, and used as fresh green vegetable. The aim of this study was to evaluate the capability of nopal to improve the health condition of participants affected by obesity, in a physical and dietary intervention, through gut microbiota modification. These results were contrasted with the effect of nopal in the gut microbiota of normal weight participants. We describe the association among biochemical, anthropometric markers, and the gut microbiota diversity found in fecal samples of the obese and normal weight groups. The results presented in this work suggest that caloric restriction, addition of nopal to the diet and physical activity, promote changes in the gut microbiota in obese women, improving the host metabolism, as suggested by the correlation between some bacterial species with biochemical and anthropometrical parameters.
Collapse
Affiliation(s)
- Karina Corona-Cervantes
- Departamento de Genética y Biología Molecular, Cinvestav, Avenida IPN 2508, Ciudad de Mexico 07360, Mexico; (K.C.-C.); (F.H.-Q.); (J.M.V.-I.); (J.G.-M.)
| | - Alicia Parra-Carriedo
- Departamento de Salud, Universidad Iberoamericana, Ciudad de México, Paseo de la Reforma 880, Ciudad de Mexico 01219, Mexico; (A.P.-C.); (N.M.-C.); (D.G.-L.)
| | - Fernando Hernández-Quiroz
- Departamento de Genética y Biología Molecular, Cinvestav, Avenida IPN 2508, Ciudad de Mexico 07360, Mexico; (K.C.-C.); (F.H.-Q.); (J.M.V.-I.); (J.G.-M.)
| | - Noemí Martínez-Castro
- Departamento de Salud, Universidad Iberoamericana, Ciudad de México, Paseo de la Reforma 880, Ciudad de Mexico 01219, Mexico; (A.P.-C.); (N.M.-C.); (D.G.-L.)
| | - Juan Manuel Vélez-Ixta
- Departamento de Genética y Biología Molecular, Cinvestav, Avenida IPN 2508, Ciudad de Mexico 07360, Mexico; (K.C.-C.); (F.H.-Q.); (J.M.V.-I.); (J.G.-M.)
| | - Diana Guajardo-López
- Departamento de Salud, Universidad Iberoamericana, Ciudad de México, Paseo de la Reforma 880, Ciudad de Mexico 01219, Mexico; (A.P.-C.); (N.M.-C.); (D.G.-L.)
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Avenida IPN 2508, Ciudad de Mexico 07360, Mexico; (K.C.-C.); (F.H.-Q.); (J.M.V.-I.); (J.G.-M.)
| | - César Hernández-Guerrero
- Departamento de Salud, Universidad Iberoamericana, Ciudad de México, Paseo de la Reforma 880, Ciudad de Mexico 01219, Mexico; (A.P.-C.); (N.M.-C.); (D.G.-L.)
| |
Collapse
|
10
|
Han R, Yu C, Tang X, Yu S, Song M, Shen F, Fu P, Hu W, Du L, Wang X, Herrmann H, Wu Y. Release of inhalable particles and viable microbes to the air during packaging peeling: Emission profiles and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117338. [PMID: 34051562 DOI: 10.1016/j.envpol.2021.117338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Packaging is necessary for preserving and delivering products and has significant impacts on human health and the environment. Particle matter (PM) may be released from packages and transferred to the air during a typical peeling process, but little is known about this package-to-air migration route of particles. Here, we investigated the emission profiles of total and biological particles, and the horizontal and vertical dispersion abilities and community structure of viable microbes released from packaging to the air by peeling. The results revealed that a lot of inhalable particles and viable microbes were released from package to the air in different migration directions, and this migration can be regulated by several factors including package material, effective peeling area, peeling speed and angles, as well as the characteristics of the migrant itself. Dispersal of package-borne viable microbes provides direct evidence that viable microbes, including pathogens, can survive the aerosolization caused by peeling and be transferred to air over different distances while remaining alive. Based on the experimental data and visual proof in movies, we speculate that nonbiological particles are package fibers fractured and released to air by the external peeling force exerted on the package and that microbe dispersal is attributed to surface-borne microbe suspension by vibration caused by the peeling force. This investigation provides new information that aerosolized particles can deliver package-borne substances and viable microbes from packaging to the ambient environment, motivating further studies to characterize the health effects of such aerosolized particles and the geographic migration of microbes via packaging.
Collapse
Affiliation(s)
- Ruining Han
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Chenglin Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xuening Tang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Song Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Min Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Fangxia Shen
- School of Space and Environment, Beihang University, Beijing, 100083, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Lin Du
- Environmental Research Institute, Shandong University, Qingdao, 266237, China
| | - Xinfeng Wang
- Environmental Research Institute, Shandong University, Qingdao, 266237, China
| | - Hartmut Herrmann
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research, 04318, Leipzig, Germany
| | - Yan Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
11
|
Yu Y, Liang Z, Liao W, Ye Z, Li G, An T. Contributions of meat waste decomposition to the abundance and diversity of pathogens and antibiotic-resistance genes in the atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147128. [PMID: 34088047 DOI: 10.1016/j.scitotenv.2021.147128] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Airborne transmission of antibiotic-resistance genes (ARGs) in landfill and acquisition of antibiotic resistance by pathogenic bacteria are posing potential threat to human and environmental health. However, little is known about contribution of waste decomposition to airborne ARGs and pathogens during landfilling of household waste. Herein, the dynamic changes of microbial communities and ARGs were comparatively investigated in leachate and bioaerosol during the decomposition of chicken, fish, and pork wastes. Results found that chicken and pork decomposition could result in emitting high abundance of bioaerosol and pathogen, while fish fermentation will lead to high airborne microbial activity. The main pathogens were Bacilli, Burkholderia-Paraburkholderia and Mycobacterium in bioaerosols, but were Wohlfahrtiimonas, Peptoniphilus and Fusobacterium in leachate, suggesting that the ability of aerosolization of bacteria in leachate was independent of their abundance and diversity. Whereas, diversity and relative abundance of ARGs in leachate were significantly higher than bioaerosol. Moreover, the relative abundance of ARGs in leachate and bioaerosols was not completely relevant. The changes of pathogenic community contributed significantly to the prevalence of ARGs in bioaerosol and leachate. The results will define the contribution of household waste decomposition to airborne pathogen and ARG distribution and provide foundation for airborne bacterial exposure risk and control in landfill.
Collapse
Affiliation(s)
- Yun Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhishu Liang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, Department of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wen Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zikai Ye
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, Department of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, Department of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
12
|
Calderón-Ezquerro MDC, Serrano-Silva N, Brunner-Mendoza C. Aerobiological study of bacterial and fungal community composition in the atmosphere of Mexico City throughout an annual cycle. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116858. [PMID: 33740598 DOI: 10.1016/j.envpol.2021.116858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/26/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The atmosphere as a temporary habitat for airborne microbial communities is a valuable topic to explore, and it is through aerobiological studies that the diversity of biological particles and their release, emission, transport, deposition, and impact are assessed. Specific microorganisms are involved in meteorological processes, and phytosanitary and public health concerns. Airborne microbial composition is related to factors such as geographic region and weather conditions. In this study a metagenomic approach was used to determine the composition of bacterial and fungal communities in the air of two different land-use areas (urban area and semi-rural area), during dry and rainy seasons in Mexico City. Air sampling was carried out with a Hirst-type spore trap, collecting the samples simultaneously in both study areas. Forty-two bioaerosol samples were collected, and the DNA obtained was sequenced using Next-Generation Sequencing. The results indicated that the bacterial communities were represented mainly by the phyla Actinobacteria, Proteobacteria, Firmicutes, Bacteroidetes, Cyanobacteria, and the fungal communities by the phyla Ascomycota followed by Basidiomycota. The evident changes in microbial composition were related more to seasonality than to locality, since both UA and SRA showed a high degree of urbanization, despite some differences in land use. Continuous monitoring of atmospheric bioaerosols is essential to determine the influence of meteorological factors on the composition of the aerial microbiota.
Collapse
Affiliation(s)
- María Del Carmen Calderón-Ezquerro
- Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Coyoacán, Ciudad Universitaria, 04510, Mexico City, Mexico.
| | - Nancy Serrano-Silva
- Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Coyoacán, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Carolina Brunner-Mendoza
- Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Coyoacán, Ciudad Universitaria, 04510, Mexico City, Mexico; Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Circuito Exterior s/n, Coyoacán, Ciudad Universitaria, 04510, Mexico City, Mexico
| |
Collapse
|
13
|
Bello-Medina PC, Hernández-Quiroz F, Pérez-Morales M, González-Franco DA, Cruz-Pauseno G, García-Mena J, Díaz-Cintra S, Pacheco-López G. Spatial Memory and Gut Microbiota Alterations Are Already Present in Early Adulthood in a Pre-clinical Transgenic Model of Alzheimer's Disease. Front Neurosci 2021; 15:595583. [PMID: 33994914 PMCID: PMC8116633 DOI: 10.3389/fnins.2021.595583] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
The irreversible and progressive neurodegenerative Alzheimer's disease (AD) is characterized by cognitive decline, extracellular β-amyloid peptide accumulation, and tau neurofibrillary tangles in the cortex and hippocampus. The triple-transgenic (3xTg) mouse model of AD presents memory impairment in several behavioral paradigms and histopathological alterations from 6 to 16 months old. Additionally, it seems that dysbiotic gut microbiota is present in both mouse models and patients of AD at the cognitive symptomatic stage. The present study aimed to assess spatial learning, memory retention, and gut microbiota alterations in an early adult stage of the 3xTg-AD mice as well as to explore its sexual dimorphism. We evaluated motor activity, novel-object localization training, and retention test as well as collected fecal samples to characterize relative abundance, alpha- and beta-diversity, and linear discriminant analysis (LDA) effect size (LEfSe) analysis in gut microbiota in both female and male 3xTg-AD mice, and controls [non-transgenic mice (NoTg)], at 3 and 5 months old. We found spatial memory deficits in female and male 3xTg-AD but no alteration neither during training nor in motor activity. Importantly, already at 3 months old, we observed decreased relative abundances of Actinobacteria and TM7 in 3xTg-AD compared to NoTg mice, while the beta diversity of gut microbiota was different in female and male 3xTg-AD mice in comparison to NoTg. Our results suggest that gut microbiota modifications in 3xTg-AD mice anticipate and thus could be causally related to cognitive decline already at the early adult age of AD. We propose that microbiota alterations may be used as an early and non-invasive diagnostic biomarker of AD.
Collapse
Affiliation(s)
- Paola C. Bello-Medina
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| | - Fernando Hernández-Quiroz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional (IPN), Unidad Zacatenco, Ciudad de México, Mexico
| | - Marcel Pérez-Morales
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| | - Diego A. González-Franco
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| | - Guadalupe Cruz-Pauseno
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional (IPN), Unidad Zacatenco, Ciudad de México, Mexico
| | - Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Gustavo Pacheco-López
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Unidad Lerma, Lerma, Mexico
| |
Collapse
|
14
|
Banchi E, Ametrano CG, Tordoni E, Stanković D, Ongaro S, Tretiach M, Pallavicini A, Muggia L. Environmental DNA assessment of airborne plant and fungal seasonal diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140249. [PMID: 32806340 DOI: 10.1016/j.scitotenv.2020.140249] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/25/2020] [Accepted: 06/14/2020] [Indexed: 05/06/2023]
Abstract
Environmental DNA (eDNA) metabarcoding and metagenomics analyses can improve taxonomic resolution in biodiversity studies. Only recently, these techniques have been applied in aerobiology, to target bacteria, fungi and plants in airborne samples. Here, we present a nine-month aerobiological study applying eDNA metabarcoding in which we analyzed simultaneously airborne diversity and variation of fungi and plants across five locations in North and Central Italy. We correlated species composition with the ecological characteristics of the sites and the seasons. The most abundant taxa among all sites and seasons were the fungal genera Cladosporium, Alternaria, and Epicoccum and the plant genera Brassica, Corylus, Cupressus and Linum, the latter being much more variable among sites. PERMANOVA and indicator species analyses showed that the plant diversity from air samples is significantly correlated with seasons, while that of fungi varied according to the interaction between seasons and sites. The results consolidate the performance of a new eDNA metabarcoding pipeline for the simultaneous amplification and analysis of airborne plant and fungal particles. They also highlight the promising complementarity of this approach with more traditional biomonitoring frameworks and routine reports of air quality provided by environmental agencies.
Collapse
Affiliation(s)
- Elisa Banchi
- Department of Life Sciences, University of Trieste, via Giorgieri 10, I-34127 Trieste, Italy; National Institute of Oceanography and Applied Geophysics - OGS, via Piccard 54, I-34151 Trieste, Italy
| | - Claudio G Ametrano
- Department of Life Sciences, University of Trieste, via Giorgieri 10, I-34127 Trieste, Italy
| | - Enrico Tordoni
- Department of Life Sciences, University of Trieste, via Giorgieri 10, I-34127 Trieste, Italy
| | - David Stanković
- Department of Life Sciences, University of Trieste, via Giorgieri 10, I-34127 Trieste, Italy; Marine Biology Station, National Institute of Biology, Fornače 41, SLO-6330 Piran, Slovenia
| | - Silvia Ongaro
- Department of Life Sciences, University of Trieste, via Giorgieri 10, I-34127 Trieste, Italy
| | - Mauro Tretiach
- Department of Life Sciences, University of Trieste, via Giorgieri 10, I-34127 Trieste, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, via Giorgieri 10, I-34127 Trieste, Italy; National Institute of Oceanography and Applied Geophysics - OGS, via Piccard 54, I-34151 Trieste, Italy.
| | - Lucia Muggia
- Department of Life Sciences, University of Trieste, via Giorgieri 10, I-34127 Trieste, Italy.
| |
Collapse
|
15
|
Shobo CO, Alisoltani A, Abia ALK, Mtshali PS, Ismail A, Zishiri O, Horn JD, Brysiewicz P, Essack SY, Bester LA. Bacterial diversity and functional profile of microbial populations on surfaces in public hospital environments in South Africa: A high throughput metagenomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137360. [PMID: 32114226 DOI: 10.1016/j.scitotenv.2020.137360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
With the introduction of the One Health approach to global health advocated by the World Health Organization, the role of the environment as a reservoir and transmission route for diverse microorganisms is increasingly being recognised globally. This study investigated the diversity and functional profiles of bacterial communities using high-throughput metagenomics of the 16S rRNA gene in samples collected from environmental surfaces in different levels of healthcare in South Africa. A total of 150 samples were collected in three public hospitals [District (A), Regional (C) and Central (B)] from intensive care and paediatric wards. Military hospitals were excluded. Swabs were taken from mattresses, drip stands, ward telephones, patient files and sinks. A total of 7,996,346 reads were found, of which 7,319,569 were quality-filtered reads. Unique (and shared) microbial community structures were identified within the different hospital levels, locations and sample source. A total of 11 phyla, 29 classes, 50 orders, 105 families, 190 genera and 288 known species were identified. The primary phyla identified were Proteobacteria, Firmicutes and Actinobacteria. The dominant class identified was Gamma-proteobacteria, followed by Bacilli and Actinobacteria. Acinetobacter (16.08%), Citrobacter (13.64%), Staphylococcus (9.65%) and Corynebacterium (6.15%) were predominant genera. Although the functional profile analysis identified citrate cycle (TCA), signal transduction mechanisms, bisphenol degradation, tyrosine metabolism and transcription-factors as the dominant pathways, human disease functional classes, including involvement in antibiotic resistance, were significantly identified. The drip stands, patient files and ward telephones in all the wards of Hospitals A and C contained a higher number of human diseases functional classes. These findings highlight the potential of different hospital environments to serve as reservoirs and possible sources of bacterial pathogens; thus, the need for better monitoring and hygienic practices within the hospital environment.
Collapse
Affiliation(s)
- Christiana Omowunmi Shobo
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Arghavan Alisoltani
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Philip Senzo Mtshali
- Sequencing Core Facility, National Institute for Communicable Diseases, Division of National Health Laboratory Service, Sandringham, Johannesburg, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, Division of National Health Laboratory Service, Sandringham, Johannesburg, South Africa
| | - Oliver Zishiri
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Juliana Deidre Horn
- South Africa Military Health Service, Area Military Health Care, KwaZulu-Natal, Durban, South Africa
| | - Petra Brysiewicz
- Discipline of Nursing, School of Nursing & Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Sabiha Yusuf Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Linda Antoinette Bester
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
16
|
Hernández-Quiroz F, Nirmalkar K, Villalobos-Flores LE, Murugesan S, Cruz-Narváez Y, Rico-Arzate E, Hoyo-Vadillo C, Chavez-Carbajal A, Pizano-Zárate ML, García-Mena J. Influence of moderate beer consumption on human gut microbiota and its impact on fasting glucose and β-cell function. Alcohol 2020; 85:77-94. [PMID: 31201859 DOI: 10.1016/j.alcohol.2019.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
Beer is a beverage that has been consumed worldwide for thousands of years due to social, religious, and cultural reasons; it contains polyphenolic compounds as well as phenolic acids with a potential positive effect on human health. This study aimed to explore the impact of moderate beer consumption on human health and gut microbiota diversity. Three hundred fifty-five mL of non-alcoholic beer (NAB) or alcoholic beer (AB) were consumed daily by the participants for 30 days in each study. Anthropometric measures, blood samples for biochemistry, and fecal samples for microbiota analysis were collected on Day 1 and Day 30. Microbial diversity was characterized by high-throughput sequencing of 16S rDNA libraries, and data were analyzed using the QIIME pipeline. We found that NAB and AB have effects on the composition of the gut microbiota, favoring the proliferation of Bacteroidetes with respect to Firmicutes. No increase in weight, waist, and hip parameters was observed, and the liver and lipid profile values were not modified for NAB. In addition, the consumption of NAB induced a decrease in fasting blood serum glucose and an increase in functional β cells, while, on the other hand, there was an increase in blood serum glucose and a decrease in functional β cells with the consumption of AB. In general, beer consumption neither changed anthropometric values, nor affected liver function. Although the glucose values decreased with NAB or increased with AB, they remained within the normal range. Our conclusion is that moderate consumption of NAB has a positive effect on human health via supplementation of biological active polyphenol and phenolic acids, and by enrichment of the gut microbiota diversity with beneficial bacteria, while the presence of alcohol in AB interferes with this effect. More work should be done on this topic before general conclusions are drawn.
Collapse
Affiliation(s)
- Fernando Hernández-Quiroz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México, 07360, Mexico.
| | - Khemlal Nirmalkar
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México, 07360, Mexico.
| | - Loan Edel Villalobos-Flores
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México, 07360, Mexico.
| | - Selvasankar Murugesan
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México, 07360, Mexico.
| | - Yair Cruz-Narváez
- Laboratorio de Posgrado de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractiva del Instituto Politécnico Nacional, Av. Luis Enrique Erro s/n, Col. Zacatenco. Ciudad de México 07738, Mexico.
| | - Enrique Rico-Arzate
- Laboratorio de Posgrado de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractiva del Instituto Politécnico Nacional, Av. Luis Enrique Erro s/n, Col. Zacatenco. Ciudad de México 07738, Mexico.
| | - Carlos Hoyo-Vadillo
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México, 07360, Mexico.
| | - Alejandra Chavez-Carbajal
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México, 07360, Mexico.
| | - María Luisa Pizano-Zárate
- Departamento de Nutrición y Bioprogramación. Instituto Nacional de Perinatología, Ciudad de México, 11000, Mexico.
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México, 07360, Mexico.
| |
Collapse
|
17
|
Gállego Bravo AK, Salcedo Serrano DA, López Jiménez G, Nirmalkar K, Murugesan S, García-Mena J, Gutiérrez Castillo ME, Tovar Gálvez LR. Microbial Profile of the Leachate from Mexico City’s Bordo Poniente Composting Plant: An Inoculum to Digest Organic Waste. ENERGIES 2019; 12:2343. [DOI: 10.3390/en12122343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, municipal solid waste (MSW) management has become a complex problem worldwide. Similarly, Mexico City is facing such a situation for the management and treatment of organic fraction of municipal solid waste (OFMSW). Therefore, in this work, we investigated whether leachate from the composting plant, Bordo Poniente, located in Mexico City can be used as an inoculum for the treatment of OFMSW using thermophilic anaerobic digestion (AD) with a hydraulic retention time of 30 days. We analyzed the physicochemical properties of the leachate and performed a biochemical methane potential test. Archaeal and bacterial diversity was also identified using high throughput DNA sequencing of 16S rDNA libraries. Methane yield was 0.29 m3 CH4/kg VSadded in the positive control and 0.16 m3 CH4/kg VSadded in the treatment group. The phylum, Bacteroidetes, and genus, Methanosarcina, prevailed in the leachate. However, in thermophilic conditions, the microbial communities changed, and the phylum, Firmicutes, genera, Methanoculleus, and candidate genus, vadinCA11, were dominant in the treatment group. We concluded that the leachate contains a suitable initial charge of many active bacteria and methanogenic archaea which contribute to the AD process, hence it can be used as an inoculum for the treatment of OFMSW.
Collapse
Affiliation(s)
- Aixa Kari Gállego Bravo
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo, Calle 30 de Junio de 1520 s/n, 07340 Ciudad de México, Mexico
- Instituto Politécnico Nacional, Centro Mexicano para la Producción más Limpia, Av. Acueducto s/n, 07340 Ciudad de México, Mexico
| | - Daniel Alejandro Salcedo Serrano
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo, Calle 30 de Junio de 1520 s/n, 07340 Ciudad de México, Mexico
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Unidad Laguna, Periférico Raúl López Sánchez s/n, 27054 Torreón Coahuila, Mexico
| | - Gloria López Jiménez
- Departamento de Ciencias Básicas, Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, 07340 Ciudad de México, Mexico
| | - Khemlal Nirmalkar
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, 07360 Ciudad de México, Mexico
| | - Selvasankar Murugesan
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, 07360 Ciudad de México, Mexico
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha 26999, Qatar
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, 07360 Ciudad de México, Mexico
| | - María Eugenia Gutiérrez Castillo
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo, Calle 30 de Junio de 1520 s/n, 07340 Ciudad de México, Mexico
| | - Luis Raúl Tovar Gálvez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo, Calle 30 de Junio de 1520 s/n, 07340 Ciudad de México, Mexico
| |
Collapse
|
18
|
Mattei V, Murugesan S, Al Hashmi M, Mathew R, James N, Singh P, Kumar M, Lakshmanan AP, Terranegra A, Al Khodor S, Tomei S. Evaluation of Methods for the Extraction of Microbial DNA From Vaginal Swabs Used for Microbiome Studies. Front Cell Infect Microbiol 2019; 9:197. [PMID: 31245304 PMCID: PMC6563847 DOI: 10.3389/fcimb.2019.00197] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/22/2019] [Indexed: 12/26/2022] Open
Abstract
Background: The composition of the microbiome in human body sites plays an important role in health. The vaginal environment is colonized by several species of bacteria that have a major influence on reproductive health. The advancement of sequencing technologies has made the assessment of the composition of the microbiota possible through microbial DNA extraction and sequencing. Therefore, it is of a paramount importance to select a sensitive and reproducible DNA extraction method, that facilitates isolation of microbial DNA with a sufficient quantity and purity, from microbial species living in the vaginal environment. Here, we have evaluated four different DNA extraction protocols from self-collected vaginal swabs. Methods: Five healthy female volunteers were enrolled in the study. Each donor was asked to self-collect 4 samples using Copan ESwab. DNA was extracted using Qiagen DNeasy kit and three modified protocols of the MoBio PowerSoil kit ("DNeasy PowerSoil" after acquisition from Qiagen). DNA quantity and integrity was checked through Nanodrop and LabChip GX. DNA was further tested through quantitative real-time PCR (qPCR) and 16S sequencing. Vaginal microbiota diversities were determined using MiSeq-Illumina high-throughput sequencing of bacterial 16S rDNA V1-V3 fingerprint. Sequencing data were analyzed using QIIME pipeline. Results: Qiagen DNeasy protocol resulted in the highest DNA yield as compared to the modified protocols of MoBio Powersoil kit. The size of the DNA extracted using each protocol was ~40 kb. Qiagen DNeasy protocol gave the highest Genomic Quality Score (average ± standard deviation: 4.24 ± 0.36), followed by the different MoBio Powersoil protocols. A substantial variability in microbial DNA abundance was found across the protocols. The vaginal microbiota of the healthy volunteers was dominated by Lactobacillus species. MoBio Powersoil kit provided a significantly higher alpha diversity as compared to the Qiagen DNeasy kit, while beta diversity measures did not reveal any significant cluster changes, except when the Bray-Curtis method was applied. Conclusion: We were able to isolate microbial DNA from the vaginal swabs. Qiagen DNeasy method gave the highest DNA yield and quality but was not optimal in detecting microbial diversity. The modified MoBio PowerSoil protocols showed higher microbial diversities as compared to the standard protocol.
Collapse
Affiliation(s)
| | | | | | | | | | - Parul Singh
- Research Branch, Sidra Medicine, Doha, Qatar
| | - Manoj Kumar
- Research Branch, Sidra Medicine, Doha, Qatar
| | | | | | | | - Sara Tomei
- Research Branch, Sidra Medicine, Doha, Qatar
| |
Collapse
|
19
|
Kamaraj SK, Rivera AE, Murugesan S, García-Mena J, Maya O, Frausto-Reyes C, Tapia-Ramírez J, Espino HS, Caballero-Briones F. Electricity generation from Nopal biogas effluent using a surface modified clay cup ( cantarito) microbial fuel cell. Heliyon 2019; 5:e01506. [PMID: 31183413 PMCID: PMC6495065 DOI: 10.1016/j.heliyon.2019.e01506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/21/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
A modified clay cup (cantarito) microbial fuel cell (C-MFCs) was designed to digest the biomass effluent from a nopal biogas (NBE). To improve the process, commercial acrylic varnish (AV) was applied to the C-MFCs. The experiment was performed as:Both-C-MFCs, painting of AV on both sides of the clay cup; In-C-MFCs, painting of AV on the internal side, and Out-C-MFCs painting of AV on the external side. The order for the maximum volumetric power densities were Both-C-MFCs (1841.99 mW/m3)>Out-C-MFCs (1023.74 mW/m3) >In-C-MFCs (448.90 mW/m3). The control experiment without applied varnish did not show a stable potential, supporting the idea that the acryloyl group in varnish could favor the performance. Finally, a 4-digits clock was powered with two, Both-C-MFCs connected in series; the microbial diversity in this format was explored and a well-defined bacterial community including members of the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, Synergistetes and candidate division TM7 was found.
Collapse
Affiliation(s)
- Sathish-Kumar Kamaraj
- Laboratorio de medio ambiente sostenible y Laboratorio de Cultivo de Tejidos Vegetales, Instituto Tecnológico El Llano (ITEL)/ Tecnológico Nacional de México (TecNM), Aguascalientes. Km 18 carr, Aguascalientes-San Luis Potosí, El Llano Ags., C.P. 20330, Mexico
| | - Alejandro Esqueda Rivera
- Universidad Politécnica de Aguascalientes, Ingeniería en Energía, Calle Paseo San Gerardo No. 207, Fracc. San Gerardo, Aguascalientes, Ags., 20342, Mexico
| | - Selvasankar Murugesan
- Departamento de Genética y Biología Molecular, Cinvestav-IPN, México DF, D.F. 07360, Mexico
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav-IPN, México DF, D.F. 07360, Mexico
| | - Otoniel Maya
- Departamento de Genética y Biología Molecular, Cinvestav-IPN, México DF, D.F. 07360, Mexico
| | - Claudio Frausto-Reyes
- Centro de Investigaciones en Óptica, A.C., Unidad Aguascalientes, Prol. Constitución 607, Fracc. Reserva Loma Bonita Aguascalientes, 20200, Mexico
| | - José Tapia-Ramírez
- Departamento de Genética y Biología Molecular, Cinvestav-IPN, México DF, D.F. 07360, Mexico
| | - Hector Silos Espino
- Laboratorio de medio ambiente sostenible y Laboratorio de Cultivo de Tejidos Vegetales, Instituto Tecnológico El Llano (ITEL)/ Tecnológico Nacional de México (TecNM), Aguascalientes. Km 18 carr, Aguascalientes-San Luis Potosí, El Llano Ags., C.P. 20330, Mexico
| | - Felipe Caballero-Briones
- Instituto Politécnico Nacional, Materials and Technologies for Energy, Health and Environment (GESMAT), CICATA Altamira, Km 14.5 Carretera Tampico-Puerto Industrial Altamira, 89600, Altamira, Mexico
| |
Collapse
|
20
|
Chávez-Carbajal A, Nirmalkar K, Pérez-Lizaur A, Hernández-Quiroz F, Ramírez-Del-Alto S, García-Mena J, Hernández-Guerrero C. Gut Microbiota and Predicted Metabolic Pathways in a Sample of Mexican Women Affected by Obesity and Obesity Plus Metabolic Syndrome. Int J Mol Sci 2019; 20:438. [PMID: 30669548 PMCID: PMC6358992 DOI: 10.3390/ijms20020438] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is an excessive fat accumulation that could lead to complications like metabolic syndrome. There are reports on gut microbiota and metabolic syndrome in relation to dietary, host genetics, and other environmental factors; however, it is necessary to explore the role of the gut microbiota metabolic pathways in populations like Mexicans, where the prevalence of obesity and metabolic syndrome is high. This study identify alterations of the gut microbiota in a sample of healthy Mexican women (CO), women with obesity (OB), and women with obesity plus metabolic syndrome (OMS). We studied 67 women, characterizing their anthropometric and biochemical parameters along with their gut bacterial diversity by high-throughput DNA sequencing. Our results indicate that in OB or OMS women, Firmicutes was the most abundant bacterial phylum. We observed significant changes in abundances of bacteria belonging to the Ruminococcaceae, Lachnospiraceae, and Erysipelotrichaceae families and significant enrichment of gut bacteria from 16 different taxa that might explain the observed metabolic alterations between the groups. Finally, the predicted functional metagenome of the gut microbiota found in each category shows differences in metabolic pathways related to lipid metabolism. We demonstrate that Mexican women have a particular bacterial gut microbiota characteristic of each phenotype. There are bacteria that potentially explain the observed metabolic differences between the groups, and gut bacteria in OMS and OB conditions carry more genes of metabolic pathways implicated in lipid metabolism.
Collapse
Affiliation(s)
- Alejandra Chávez-Carbajal
- Departamento de Genética y Biología Molecular, Cinvestav-IPN, Av IPN 2508, Ciudad de México 07360, Mexico.
| | - Khemlal Nirmalkar
- Departamento de Genética y Biología Molecular, Cinvestav-IPN, Av IPN 2508, Ciudad de México 07360, Mexico.
| | - Ana Pérez-Lizaur
- Departamento de Salud, Universidad Iberoamericana, Ciudad de México, Paseo de la Reforma 880, Ciudad de México 01219, Mexico.
| | - Fernando Hernández-Quiroz
- Departamento de Genética y Biología Molecular, Cinvestav-IPN, Av IPN 2508, Ciudad de México 07360, Mexico.
| | - Silvia Ramírez-Del-Alto
- Departamento de Salud, Universidad Iberoamericana, Ciudad de México, Paseo de la Reforma 880, Ciudad de México 01219, Mexico.
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav-IPN, Av IPN 2508, Ciudad de México 07360, Mexico.
| | - César Hernández-Guerrero
- Departamento de Salud, Universidad Iberoamericana, Ciudad de México, Paseo de la Reforma 880, Ciudad de México 01219, Mexico.
| |
Collapse
|
21
|
Brummaier T, Syed Ahamed Kabeer B, Lindow S, Konje JC, Pukrittayaamee S, Utzinger J, Toufiq M, Antoniou A, Marr AK, Suriyakan S, Kino T, Al Khodor S, Terranegra A, Nosten F, Paris DH, McGready R, Chaussabel D. A prospective cohort for the investigation of alteration in temporal transcriptional and microbiome trajectories preceding preterm birth: a study protocol. BMJ Open 2019; 9:e023417. [PMID: 30782707 PMCID: PMC6340419 DOI: 10.1136/bmjopen-2018-023417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Preterm birth (PTB) results from heterogeneous influences and is a major contributor to neonatal mortality and morbidity that continues to have adverse effects on infants beyond the neonatal period. This protocol describes the procedures to determine molecular signatures predictive of PTB through high-frequency sampling during pregnancy, at delivery and the postpartum period. METHODS AND ANALYSIS Four hundred first trimester pregnant women from either Myanmar or Thailand of either Karen or Burman ethnicity, with a viable, singleton pregnancy will be enrolled in this non-interventional, prospective pregnancy birth cohort study and will be followed through to the postpartum period. Fortnightly finger prick capillary blood sampling will allow the monitoring of genome-wide transcript abundance in whole blood. Collection of stool samples and vaginal swabs each trimester, at delivery and postpartum will allow monitoring of intestinal and vaginal microbial composition. In a nested case-control analysis, perturbations of transcript abundance in capillary blood as well as longitudinal changes of the gut, vaginal and oral microbiome will be compared between mothers giving birth to preterm and matched cases giving birth to term neonates. Placenta tissue of preterm and term neonates will be used to determine bacterial colonisation as well as for the establishment of coding and non-coding RNA profiles. In addition, RNA profiles of circulating, non-coding RNA in cord blood serum will be compared with those of maternal peripheral blood serum at time of delivery. ETHICS AND DISSEMINATION This research protocol that aims to detect perturbations in molecular trajectories preceding adverse pregnancy outcomes was approved by the ethics committee of the Faculty of Tropical Medicine, Mahidol University in Bangkok, Thailand (Ethics Reference: TMEC 15-062), the Oxford Tropical Research Ethics Committee (Ethics Reference: OxTREC: 33-15) and the local Tak Province Community Ethics Advisory Board. The results of this cooperative project will be disseminated in multiple publications staggered over time in international peer-reviewed scientific journals. TRIAL REGISTRATION NUMBER NCT02797327; Pre-results.
Collapse
Affiliation(s)
- Tobias Brummaier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Department of Medicine, Swiss Tropical and Public Health Institute, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | | | | | | | | | - Juerg Utzinger
- Department of Medicine, Swiss Tropical and Public Health Institute, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | | | | | | | - Sangrawee Suriyakan
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | | | | | | | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, United Kingdom
| | - Daniel H Paris
- Department of Medicine, Swiss Tropical and Public Health Institute, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, United Kingdom
| | | |
Collapse
|
22
|
Salazar-Huerta MA, Ruiz-Ordaz N, Galíndez-Mayer J, García-Mena J, Juárez-Ramírez C. Simulation and experimental validation of a gradient feeding system for fast assessment of the kinetic behavior of a microbial consortium in a tubular biofilm reactor. Bioprocess Biosyst Eng 2019; 42:17-27. [PMID: 30238361 DOI: 10.1007/s00449-018-2009-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
This study deals with the mathematical simulation and experimental validation of a gradient system for the gradual change of the imidacloprid loading rate to a tubular biofilm reactor (TBR). The strategy was used for fast studies of the kinetic and stoichiometric impact caused by the increase in the pesticide loading rate in a TBR, running in plug flow regime. Seemingly, this strategy has never been used for biokinetic and stoichiometric studies in biofilm reactors. For this purpose, a mathematical model describing the substrate transient behavior Sg(t) in a concentration gradient generator system using variable volume tanks is proposed. A second model, representing the temporary variation in the loading rate of imidacloprid to an aerated equalizer tank preceding the packed zone of the TBR, is also presented. Both models were experimentally confirmed. After the treatment of the experimental data, the kinetic and stoichiometric changes occurring in the TBR, caused by the gradual increase in the imidacloprid loading rate, were readily evaluated. Although the structure of the microbial community, at the phylum level, showed similar behavior along the tubular reactor, the stress produced by the gradual increase in imidacloprid concentration had functional consequences on the mixed microbial populations which were reflected on the stoichiometric and kinetic parameters. After increasing more than five times the imidacloprid loading rate to the TBR, the imidacloprid removal efficiency decayed about 40%, and the microbial-specific removal rate of the insecticide showed a decrease of about 30%.
Collapse
Affiliation(s)
| | - Nora Ruiz-Ordaz
- Departamento de Ingeniería Bioquímica ENCB-Zacatenco, Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Juvencio Galíndez-Mayer
- Departamento de Ingeniería Bioquímica ENCB-Zacatenco, Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Cleotilde Juárez-Ramírez
- Departamento de Ingeniería Bioquímica ENCB-Zacatenco, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
23
|
Indoor Air Quality and Potential Health Risk Impacts of Exposure to Antibiotic Resistant Bacteria in an Office Rooms in Southern Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15112604. [PMID: 30469413 PMCID: PMC6267043 DOI: 10.3390/ijerph15112604] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/08/2018] [Accepted: 11/21/2018] [Indexed: 01/06/2023]
Abstract
The aims of this article are to characterize: the quantity of culturable bacterial aerosol (QCBA) and the quality of culturable bacterial aerosol (QlCBA) in an office building in Southern Poland during the spring. The average concentration of culturable bacterial aerosol (CCBA) in this building ranged from 424 CFU m-3 to 821 CFU m-3, below Polish proposals for threshold limit values. Size distributions were unimodal, with a peak of particle bacterial aerodynamic diameters less than 3.3 μm, increasing potentially adverse health effects due to their inhalation. The spring office exposure dose (SPED) of bacterial aerosol was estimated. The highest value of SPED was in April (218 CFU kg-1), whereas the lowest was in June (113 CFU kg-1). Analysis was undertaken to determine the antibiotic resistance of isolated strains and their ability to form biofilms, which may facilitate the spread of antibiotic resistance genes. In the course of the study, it was found that Staphylococcus xylosus had the greatest ability to form biofilms, while the strains with the highest antibiotic resistance were Micrococcus luteus D and Macrococcus equipercicus. Given that mainly antibiotic-sensitive bacteria from bioaerosol were isolated, which transfers resistance genes to their plasmids, this shows the need for increased monitoring of indoor air quality in workplaces.
Collapse
|
24
|
Murugesan S, Reyes-Mata MP, Nirmalkar K, Chavez-Carbajal A, Juárez-Hernández JI, Torres-Gómez RE, Piña-Escobedo A, Maya O, Hoyo-Vadillo C, Ramos-Ramírez EG, Salazar-Montoya JA, García-Mena J. Profiling of bacterial and fungal communities of Mexican cheeses by high throughput DNA sequencing. Food Res Int 2018; 113:371-381. [PMID: 30195531 DOI: 10.1016/j.foodres.2018.07.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/05/2018] [Accepted: 07/14/2018] [Indexed: 11/18/2022]
Abstract
Cheese is a live food whose preparation involves procedures and microbial communities playing an important role for the final product. We characterized the bacterial and fungal diversity of seventeen different Mexican cheeses by high-throughput DNA sequencing of 16S/18S rDNA libraries. We propose the existence of bacterial and fungal core communities, where at genera level, bacteria include Streptococcus spp., Lactococcus spp., Lactobacillus spp., Aerococcus spp., and Weisella spp. while at species level, the fungal community includes Galactomyces reessii, Scheffersomyces stipitis, Saccharomyces cerevisiae (baker's yeast), and S. cerevisiae_rm11-1a. In addition to the bacterial and fungal core communities, we found members of the cheese microbiota that could be associated to other factors of the cheese manufacturing process. Co-occurrence analysis made in this work, indicates that bacterial and fungal communities maintain positive and negative interactions which are important to shape the resident microbial communities in cheeses. This work is a contribution to the description of the microbial diversity found in some Mexican cheeses.
Collapse
Affiliation(s)
- Selvasankar Murugesan
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México 07360, Mexico.
| | - Maria Paulina Reyes-Mata
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México 07360, Mexico
| | - Khemlal Nirmalkar
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México 07360, Mexico; Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av IPN 2508 Col Zacatenco, Ciudad de México 07360, Mexico.
| | - Alejandra Chavez-Carbajal
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México 07360, Mexico.
| | - Josue Isaac Juárez-Hernández
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México 07360, Mexico
| | - Rosario Erea Torres-Gómez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México 07360, Mexico
| | - Alberto Piña-Escobedo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México 07360, Mexico.
| | - Otoniel Maya
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México 07360, Mexico.
| | - Carlos Hoyo-Vadillo
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av IPN 2508 Col Zacatenco, Ciudad de México 07360, Mexico.
| | - Emma Gloria Ramos-Ramírez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México 07360, Mexico.
| | - Juan Alfredo Salazar-Montoya
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México 07360, Mexico.
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av IPN 2508 Col Zacatenco, Ciudad de México 07360, Mexico.
| |
Collapse
|
25
|
Serrano-Silva N, Calderón-Ezquerro MC. Metagenomic survey of bacterial diversity in the atmosphere of Mexico City using different sampling methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:20-29. [PMID: 29274534 DOI: 10.1016/j.envpol.2017.12.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 05/20/2023]
Abstract
The identification of airborne bacteria has traditionally been performed by retrieval in culture media, but the bacterial diversity in the air is underestimated using this method because many bacteria are not readily cultured. Advances in DNA sequencing technology have produced a broad knowledge of genomics and metagenomics, which can greatly improve our ability to identify and study the diversity of airborne bacteria. However, researchers are facing several challenges, particularly the efficient retrieval of low-density microorganisms from the air and the lack of standardized protocols for sample collection and processing. In this study, we tested three methods for sampling bioaerosols - a Durham-type spore trap (Durham), a seven-day recording volumetric spore trap (HST), and a high-throughput 'Jet' spore and particle sampler (Jet) - and recovered metagenomic DNA for 16S rDNA sequencing. Samples were simultaneously collected with the three devices during one week, and the sequencing libraries were analyzed. A simple and efficient method for collecting bioaerosols and extracting good quality DNA for high-throughput sequencing was standardized. The Durham sampler collected preferentially Cyanobacteria, the HST Actinobacteria, Proteobacteria and Firmicutes, and the Jet mainly Proteobacteria and Firmicutes. The HST sampler collected the largest amount of airborne bacterial diversity. More experiments are necessary to select the right sampler, depending on study objectives, which may require monitoring and collecting specific airborne bacteria.
Collapse
Affiliation(s)
- N Serrano-Silva
- Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera - Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Coyoacan, University City, 04510 Mexico City, Mexico
| | - M C Calderón-Ezquerro
- Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera - Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Coyoacan, University City, 04510 Mexico City, Mexico.
| |
Collapse
|