1
|
Hwang J, Hayward A, Sofen LE, Pitz KJ, Chavez FP, Edwards BR. Daily microbial rhythms of the surface ocean interrupted by the new moon-a lipidomic study. ISME COMMUNICATIONS 2025; 5:ycaf044. [PMID: 40177466 PMCID: PMC11962720 DOI: 10.1093/ismeco/ycaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
Lipids are essential biomolecules for cell physiology and are commonly used as biomarkers to elucidate biogeochemical processes over a large range of environments and timescales. Here, we use high-temporal-resolution lipidomic analysis to characterize the surface ocean community in the productive upwelling region overlying the Monterey Bay Canyon. We observed a strong diel signal with a drawdown of lipids at night and an increase during the day that seemed to correspond to wholesale removal of lipids from the surface ocean as opposed to internal metabolism. Individual lipid species were organized into coregulated groups that were interpreted as representing different phytoplankton guilds. Concentrations of long-chained triacylglycerols (TAGs) showed unique patterns over the course of five days. TAGs were used to estimate the amount of energy cycled through the surface ocean. These calculations revealed diurnal carbon cycling that was on scales comparable to net primary production. The diel pattern dissipated from most lipid modules on Day 3 as tidal forcing increased at our site with the advent of the new moon. Pigment analysis indicated that the community shifted from a diatom-dominated community to a more diverse assemblage, including more haptophytes, chlorophytes, and Synechococcus during the new moon. The shift in community appears to promote higher nutritional quality of biomass, with more essential fatty acids in the surface ocean during the spring tide. This analysis showcases the utility of lipidomics in characterizing community dynamics and underscores the importance of considering both diel and tidal timescales when sampling in productive coastal regions.
Collapse
Affiliation(s)
- Jiwoon Hwang
- Department of Earth and Planetary Science, University of California - Berkeley, Berkeley, CA 94720, United States
| | - Alexander Hayward
- National Centre for Climate Research (NCKF), Danish Meteorological Institute, Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Laura E Sofen
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, United States
| | - Kathleen J Pitz
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, United States
| | - Francisco P Chavez
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, United States
| | - Bethanie R Edwards
- Department of Earth and Planetary Science, University of California - Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
2
|
Suzuki H, Cuiné S, Légeret B, Wijffels RH, Hulatt CJ, Li‐Beisson Y, Kiron V. Phosphorus starvation induces the synthesis of novel lipid class diacylglyceryl glucuronide and diacylglyceryl-N,N,N-trimethylhomoserine in two species of cold-adapted microalgae Raphidonema (Chlorophyta). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17227. [PMID: 39868466 PMCID: PMC11771548 DOI: 10.1111/tpj.17227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025]
Abstract
Microalgae possess diverse lipid classes as components of structural membranes and have adopted various lipid remodeling strategies involving phospholipids to cope with a phosphorus (P)-limited environment. Here, we report a unique adaptative strategy to P deficient conditions in two cold-adapted microalgae, Raphidonema monicae and Raphidonema nivale, involving the lipid class diacylglyceryl glucuronide (DGGA) and the betaine lipid diacylglyceryl-N,N,N-trimethylhomoserine. Lipidomic analyses showed that these two lipid classes were present only in trace amounts in nutrient replete conditions, whereas they significantly increased under P-starvation concomitant with a reduction in phospholipids, suggesting a physiological significance of these lipid classes to combat P-starvation. Additionally, we found two putative sulfoquinovosyldiacylglycerol (SQDG) synthases, known to be involved in DGGA synthesis in higher plants, in the draft genome of R. monicae, and compared it with SQDG synthases found in other organisms such as higher plants, Streptophyta, and Chlorophyta. DGGA has not been previously recognized in Chlorophyta, and our findings suggest that the lipid class may be present in other closely related green algae too. Thus, this study expands our knowledge on diverse lipid remodeling responses of Chlorophycean algae to adapt to low P environments.
Collapse
Affiliation(s)
- Hirono Suzuki
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Stéphan Cuiné
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix‐Marseille, CEA CadaracheSaint Paul‐Lez‐DuranceFrance
| | - Bertrand Légeret
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix‐Marseille, CEA CadaracheSaint Paul‐Lez‐DuranceFrance
| | - René H. Wijffels
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
- Bioprocess Engineering, AlgaePARCWageningen UniversityWageningenthe Netherlands
| | - Chris J. Hulatt
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Yonghua Li‐Beisson
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix‐Marseille, CEA CadaracheSaint Paul‐Lez‐DuranceFrance
| | - Viswanath Kiron
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| |
Collapse
|
3
|
Couto D, Conde TA, Melo T, Neves B, Costa M, Silva J, Domingues R, Domingues P. The chemodiversity of polar lipidomes of microalgae from different taxa. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
4
|
Strandberg U, Hiltunen M, Syväranta J, Levi EE, Davidson TA, Jeppesen E, Brett MT. Combined effects of eutrophication and warming on polyunsaturated fatty acids in complex phytoplankton communities: A mesocosm experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157001. [PMID: 35772541 DOI: 10.1016/j.scitotenv.2022.157001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Climate change and eutrophication are among the main stressors of shallow freshwater ecosystems, and their effects on phytoplankton community structure and primary production have been studied extensively. However, their combined effects on the algal production of polyunsaturated fatty acids (PUFA), specifically, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are currently unresolved. Moreover, the proximate reasons for changes in phytoplankton EPA and DHA concentrations are unclear, i.e., the relative importance of ecological (changes in the community composition) vs. ecophysiological (within taxa changes in EPA and DHA levels) factors. We investigated the responses of phytoplankton EPA and DHA concentrations to warming (IPCC climate scenario) and nutrient additions in mesocosms which had been run continuously at varying temperature and nutrient levels for 15 years prior to this study. Nutrient treatment had a significant effect on phytoplankton EPA and DHA concentrations and about 59 % of the variation in EPA and DHA concentrations could be explained by changes in the phytoplankton community structure. Increased biomass of diatoms corresponded with high EPA and DHA concentrations, while cyanobacteria/chlorophyte dominated mesocosm had low EPA and DHA concentrations. Warming had only a marginal effect on the EPA and DHA concentrations in these mesocosms. However, a significant interaction was observed with warming and N:P ratio. Our findings indicate that direct nutrient/temperature effects on algal physiology and PUFA metabolism were negligible and the changes in EPA and DHA concentrations were mostly related to the phytoplankton community structure and biomass. These results also imply that in shallow temperate lakes eutrophication, leading to increased dominance of cyanobacteria, will probably be a greater threat to phytoplankton EPA and DHA production than warming. EPA and DHA are nutritionally important for upper trophic level consumers and decreased production may impair secondary production.
Collapse
Affiliation(s)
- Ursula Strandberg
- University of Eastern Finland, Department of Environmental and Biological Sciences, Joensuu, Finland.
| | - Minna Hiltunen
- University of Jyväskylä, Department of Biological and Environmental Science, Jyväskylä, Finland
| | - Jari Syväranta
- University of Eastern Finland, Department of Environmental and Biological Sciences, Joensuu, Finland
| | - Eti E Levi
- Aarhus University, Department of Ecoscience - Lake Ecology, Silkeborg, Denmark
| | - Thomas A Davidson
- Aarhus University, Department of Ecoscience - Lake Ecology, Silkeborg, Denmark
| | - Erik Jeppesen
- Aarhus University, Department of Ecoscience - Lake Ecology, Silkeborg, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin 33731, Turkey
| | - Michael T Brett
- University of Washington, Civil and Environmental Engineering, Seattle, USA
| |
Collapse
|
5
|
Brown ER, Moore SG, Gaul DA, Kubanek J. Differentiating toxic and nontoxic congeneric harmful algae using the non-polar metabolome. HARMFUL ALGAE 2021; 110:102129. [PMID: 34887009 DOI: 10.1016/j.hal.2021.102129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Recognition and rejection of chemically defended prey is critical to maximizing fitness for predators. Paralytic shellfish toxins (PSTs) which strongly inhibit voltage-gated sodium channels in diverse animal taxa are produced by several species of the bloom-forming algal genus Alexandrium where they appear to function as chemical defenses against grazing copepods. Despite PSTs being produced and localized within phytoplankton cells, some copepods distinguish toxic from non-toxic prey, selectively ingesting less toxic cells, in ways that suggest cell surface recognition perhaps associated with non-polar metabolites. In this study LC/MS and NMR-based metabolomics revealed that the non-polar metabolomes of two toxic species (Alexandrium catenella and Alexandrium pacificum) vary considerably from their non-toxic congener Alexandrium tamarense despite all three being very closely related. Toxic and non-toxic Alexandrium spp. were distinguished from each other by metabolites belonging to seven lipid classes. Of these, 17 specific metabolites were significantly more abundant in both toxic A. catenella and A. pacificum compared to non-toxic A. tamarense suggesting that just a small portion of the observed metabolic variability is associated with toxicity. Future experiments aimed at deciphering chemoreception mechanisms of copepod perception of Alexandrium toxicity should consider these metabolites, and the broader lipid classes phosphatidylcholines and sterols, as potential candidate cues.
Collapse
Affiliation(s)
- Emily R Brown
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr, Atlanta, GA 30332, USA
| | - Sam G Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr, Atlanta, GA 30332, USA
| | - David A Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr, Atlanta, GA 30332, USA
| | - Julia Kubanek
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr, Atlanta, GA 30332, USA; School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332, USA; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
6
|
Seasonal mixed layer depth shapes phytoplankton physiology, viral production, and accumulation in the North Atlantic. Nat Commun 2021; 12:6634. [PMID: 34789722 PMCID: PMC8599477 DOI: 10.1038/s41467-021-26836-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 10/20/2021] [Indexed: 12/03/2022] Open
Abstract
Seasonal shifts in phytoplankton accumulation and loss largely follow changes in mixed layer depth, but the impact of mixed layer depth on cell physiology remains unexplored. Here, we investigate the physiological state of phytoplankton populations associated with distinct bloom phases and mixing regimes in the North Atlantic. Stratification and deep mixing alter community physiology and viral production, effectively shaping accumulation rates. Communities in relatively deep, early-spring mixed layers are characterized by low levels of stress and high accumulation rates, while those in the recently shallowed mixed layers in late-spring have high levels of oxidative stress. Prolonged stratification into early autumn manifests in negative accumulation rates, along with pronounced signatures of compromised membranes, death-related protease activity, virus production, nutrient drawdown, and lipid markers indicative of nutrient stress. Positive accumulation renews during mixed layer deepening with transition into winter, concomitant with enhanced nutrient supply and lessened viral pressure. Phytoplankton are important primary producers. Here the authors investigate phytoplankton physiological changes associated with bloom phases and mixing regimes in the North Atlantic, finding that stratification and deep mixing shape accumulation rates by altering physiology and viral production.
Collapse
|
7
|
Marcellin-Gros R, Piganeau G, Stien D. Metabolomic Insights into Marine Phytoplankton Diversity. Mar Drugs 2020; 18:E78. [PMID: 31991720 PMCID: PMC7074452 DOI: 10.3390/md18020078] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/10/2020] [Accepted: 01/22/2020] [Indexed: 02/08/2023] Open
Abstract
The democratization of sequencing technologies fostered a leap in our knowledge of the diversity of marine phytoplanktonic microalgae, revealing many previously unknown species and lineages. The evolutionary history of the diversification of microalgae can be inferred from the analysis of their genome sequences. However, the link between the DNA sequence and the associated phenotype is notoriously difficult to assess, all the more so for marine phytoplanktonic microalgae for which the lab culture and, thus, biological experimentation is very tedious. Here, we explore the potential of a high-throughput untargeted metabolomic approach to explore the phenotypic-genotypic gap in 12 marine microalgae encompassing 1.2 billion years of evolution. We identified species- and lineage-specific metabolites. We also provide evidence of a very good correlation between the molecular divergence, inferred from the DNA sequences, and the metabolomic divergence, inferred from the complete metabolomic profiles. These results provide novel insights into the potential of chemotaxonomy in marine phytoplankton and support the hypothesis of a metabolomic clock, suggesting that DNA and metabolomic profiles co-evolve.
Collapse
Affiliation(s)
- Rémy Marcellin-Gros
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France;
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Gwenaël Piganeau
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France;
| |
Collapse
|