1
|
Hoang DQ, Wilson LR, Scheftgen AJ, Suen G, Currie CR. Disturbance-diversity relationships of microbial communities change based on growth substrate. mSystems 2024; 9:e0088723. [PMID: 38259105 PMCID: PMC10878081 DOI: 10.1128/msystems.00887-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Disturbance events can impact ecological community dynamics. Understanding how communities respond to disturbances and how those responses can vary is a challenge in microbial ecology. In this study, we grew a previously enriched specialized microbial community on either cellulose or glucose as a sole carbon source and subjected them to one of five different disturbance regimes of varying frequencies ranging from low to high. Using 16S rRNA gene amplicon sequencing, we show that the community structure is largely driven by substrate, but disturbance frequency affects community composition and successional dynamics. When grown on cellulose, bacteria in the genera Cellvibrio, Lacunisphaera, and Asticcacaulis are the most abundant microbes. However, Lacunisphaera is only abundant in the lower disturbance frequency treatments, while Asticcacaulis is more abundant in the highest disturbance frequency treatment. When grown on glucose, the most abundant microbes are two Pseudomonas sequence variants and a Cohnella sequence variant that is only abundant in the highest disturbance frequency treatment. Communities grown on cellulose exhibited a greater range of diversity (1.95-7.33 Hill 1 diversity) that peaks at the intermediate disturbance frequency treatment or one disturbance every 3 days. Communities grown on glucose, however, ranged from 1.63 to 5.19 Hill 1 diversity with peak diversity at the greatest disturbance frequency treatment. These results demonstrate that the dynamics of a microbial community can vary depending on substrate and the disturbance frequency and may potentially explain the variety of diversity-disturbance relationships observed in microbial systems.IMPORTANCEA generalizable diversity-disturbance relationship (DDR) of microbial communities remains a contentious topic. Various microbial systems have different DDRs. Rather than finding support or refuting specific DDRs, we investigated the underlying factors that lead to different DDRs. In this study, we measured a cellulose-enriched microbial community's response to a range of disturbance frequencies from high to low, across two different substrates: cellulose and glucose. We demonstrate that the community displays a unimodal DDR when grown on cellulose and a monotonically increasing DDR when grown on glucose. Our findings suggest that the same community can display different DDRs. These results suggest that the range of DDRs we observe across different microbial systems may be due to the nutritional resources microbial communities can access and the interactions between bacteria and their environment.
Collapse
Affiliation(s)
- Don Q. Hoang
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Lindsay R. Wilson
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew J. Scheftgen
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Biochemistry & Biomedical Sciences, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Ranheim Sveen T, Hannula SE, Bahram M. Microbial regulation of feedbacks to ecosystem change. Trends Microbiol 2024; 32:68-78. [PMID: 37500365 DOI: 10.1016/j.tim.2023.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/29/2023]
Abstract
Microbes are key biodiversity components of all ecosystems and control vital ecosystem functions. Although we have just begun to unravel the scales and factors that regulate microbial communities, their role in mediating ecosystem stability in response to disturbances remains underexplored. Here, we review evidence of how, when, and where microbes regulate or drive disturbance feedbacks. Negative feedbacks dampen the impacts of disturbance, which maintain ecosystem stability, whereas positive feedbacks instead erode stability by amplifying the disturbance. Here we describe the processes underlying the responses to disturbance using a hierarchy of functional traits, and we exemplify how these may drive biogeochemical feedbacks. We suggest that the feedback potential of functional traits at different hierarchical levels is contingent on the complexity and heterogeneity of the environment.
Collapse
Affiliation(s)
- T Ranheim Sveen
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 756 51 Uppsala, Sweden.
| | - S E Hannula
- Institute of Environmental Sciences, Leiden University, Leiden 2333, The Netherlands
| | - M Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 756 51 Uppsala, Sweden; Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
3
|
Liébana R, Modin O, Persson F, Hermansson M, Wilén BM. Resistance of aerobic granular sludge microbiomes to periodic loss of biomass. Biofilm 2023; 6:100145. [PMID: 37575957 PMCID: PMC10415711 DOI: 10.1016/j.bioflm.2023.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
Granular sludge is a biofilm process used for wastewater treatment which is currently being implemented worldwide. It is important to understand how disturbances affect the microbial community and performance of reactors. Here, two acetate-fed replicate reactors were inoculated with acclimatized sludge and the reactor performance, and the granular sludge microbial community succession were studied for 149 days. During this time, the microbial community was challenged by periodically removing half of the reactor biomass, subsequently increasing the food-to-microorganism (F/M) ratio. Diversity analysis together with null models show that overall, the microbial communities were resistant to the disturbances, observing some minor effects on polyphosphate-accumulating and denitrifying microbial communities and their associated reactor functions. Community turnover was driven by drift and random granule loss, and stochasticity was the governing ecological process for community assembly. These results evidence the aerobic granular sludge process as a robust system for wastewater treatment.
Collapse
Affiliation(s)
- Raquel Liébana
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE 412 96, Gothenburg, Sweden
- AZTI, Marine Research Division, Basque Research Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Bizkaia, Spain
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE 412 96, Gothenburg, Sweden
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE 412 96, Gothenburg, Sweden
| | - Malte Hermansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9E, SE-413 90, Gothenburg, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE 412 96, Gothenburg, Sweden
| |
Collapse
|
4
|
Hoang DQ, Wilson LR, Scheftgen AJ, Suen G, Currie CR. Disturbance-Diversity Relationships of Microbial Communities Change Based on Growth Substrate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554838. [PMID: 37662195 PMCID: PMC10473689 DOI: 10.1101/2023.08.25.554838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Disturbance events can impact ecological community dynamics. Understanding how communities respond to disturbances, and how those responses can vary, is a challenge in microbial ecology. In this study, we grew a previously enriched specialized microbial community on either cellulose or glucose as a sole carbon source, and subjected them to one of five different disturbance regimes of varying frequencies ranging from low to high. Using 16S rRNA gene amplicon sequencing, we show that community structure is largely driven by substrate, but disturbance frequency affects community composition and successional dynamics. When grown on cellulose, bacteria in the genera Cellvibrio, Lacunisphaera, and Asticaccacaulis are the most abundant microbes. However, Lacunisphaera is only abundant in the lower disturbance frequency treatments, while Asticaccaulis is more abundant in the highest disturbance frequency treatment. When grown on glucose, the most abundant microbes are two Pseudomonas sequence variants, and a Cohnella sequence variant that is only abundant in the highest disturbance frequency treatment. Communities grown on cellulose exhibited a greater range of diversity (0.67-1.99 Shannon diversity and 1.38-5.25 Inverse Simpson diversity) that peak at the intermediate disturbance frequency treatment, or 1 disturbance every 3 days. Communities grown on glucose, however, ranged from 0.49-1.43 Shannon diversity and 1.37- 3.52 Inverse Simpson with peak diversity at the greatest disturbance frequency treatment. These results demonstrate that the dynamics of a microbial community can vary depending on substrate and the disturbance frequency, and may potentially explain the variety of diversity-disturbance relationships observed in microbial ecosystems.
Collapse
Affiliation(s)
- Don Q Hoang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lindsay R Wilson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew J Scheftgen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
5
|
Assessing Impacts of Transgenic Plants on Soil Using Functional Indicators: Twenty Years of Research and Perspectives. PLANTS 2022; 11:plants11182439. [PMID: 36145839 PMCID: PMC9503467 DOI: 10.3390/plants11182439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Assessment of the effects of transgenic plants on microbiota and soil fertility is an important part of the overall assessment of their biosafety. However, the environmental risk assessment of genetically modified plants has long been focused on the aboveground effects. In this review, we discuss the results of two decades of research on the impact of transgenic plants on the physicochemical properties of soil, its enzyme activities and microbial biomass. These indicators allow us to assess both the short-term effects and long-term effects of cultivating transgenic plants. Most studies have shown that the effect of transgenic plants on the soil is temporary and inconsistent. Moreover, many other factors, such as the site location, weather conditions, varietal differences and management system, have a greater impact on soil quality than the transgenic status of the plants. In addition to the effects of transgenic crop cultivation, the review also considers the effects of transgenic plant residues on soil processes, and discusses the future prospects for studying the impact of genetically modified plants on soil ecosystems.
Collapse
|
6
|
Microbial Community Resilience across Ecosystems and Multiple Disturbances. Microbiol Mol Biol Rev 2021; 85:85/2/e00026-20. [PMID: 33789927 DOI: 10.1128/mmbr.00026-20] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ability of ecosystems to withstand disturbances and maintain their functions is being increasingly tested as rates of change intensify due to climate change and other human activities. Microorganisms are crucial players underpinning ecosystem functions, and the recovery of microbial communities from disturbances is therefore a key part of the complex processes determining the fate of ecosystem functioning. However, despite global environmental change consisting of numerous pressures, it is unclear and controversial how multiple disturbances affect microbial community stability and what consequences this has for ecosystem functions. This is particularly the case for those multiple or compounded disturbances that occur more frequently than the normal recovery time. The aim of this review is to provide an overview of the mechanisms that can govern the responses of microbes to multiple disturbances across aquatic and terrestrial ecosystems. We first summarize and discuss properties and mechanisms that influence resilience in aquatic and soil biomes to determine whether there are generally applicable principles. Following, we focus on interactions resulting from inherent characteristics of compounded disturbances, such as the nature of the disturbance, timing, and chronology that can lead to complex and nonadditive effects that are modulating the response of microorganisms.
Collapse
|
7
|
Skelly E, Johnson NW, Kapellas K, Kroon J, Lalloo R, Weyrich L. Response of Salivary Microbiota to Caries Preventive Treatment in Aboriginal and Torres Strait Islander Children. J Oral Microbiol 2020; 12:1830623. [PMID: 33149844 PMCID: PMC7586720 DOI: 10.1080/20002297.2020.1830623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A once-annual caries preventive (Intervention) treatment was offered to Aboriginal and Torres Strait Islander schoolchildren—a population with disproportionately poorer oral health than non-Indigenous Australian children—in the Northern Peninsula Area (NPA) of Far North Queensland (FNQ), which significantly improved their oral health. Here, we examine the salivary microbiota of these children (mean age = 10 ± 2.96 years; n = 103), reconstructing the bacterial community composition with high-throughput sequencing of the V4 region of bacterial 16S rRNA gene. Microbial communities of children who received the Intervention had lower taxonomic diversity than those who did not receive treatment (Shannon, p < 0.05). Moreover, the Intervention resulted in further decreased microbial diversity in children with active carious lesions existing at the time of saliva collection. Microbial species associated with caries were detected; Lactobacillus salivarius, Lactobacillus reuteri, Lactobacillus gasseri, Prevotella multisaccharivorax, Parascardovia denticolens, and Mitsuokella HMT 131 were significantly increased (p < 0.05) in children with severe caries, especially in children who did not receive the Intervention. These insights into microbial associations and community differences prompt future considerations to the mechanisms behind caries-preventive therapy induced change; important for understanding the long-term implications of like treatment to improve oral health disparities within Australia. Trial registration: ANZCTR, ACTRN12615000693527. Registered 3 July 2015, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=368750&isReview=true
Collapse
Affiliation(s)
- Emily Skelly
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, Australia
| | - Newell W Johnson
- School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Kostas Kapellas
- Australian Research Centre for Population Oral Health, School of Dentistry, University of Adelaide, Adelaide, Australia
| | - Jeroen Kroon
- School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia
| | - Ratilal Lalloo
- School of Dentistry, The University of Queensland, Herston, Australia
| | - Laura Weyrich
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, Australia.,Department of Anthropology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
8
|
Escalas A, Hale L, Voordeckers JW, Yang Y, Firestone MK, Alvarez‐Cohen L, Zhou J. Microbial functional diversity: From concepts to applications. Ecol Evol 2019; 9:12000-12016. [PMID: 31695904 PMCID: PMC6822047 DOI: 10.1002/ece3.5670] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
Functional diversity is increasingly recognized by microbial ecologists as the essential link between biodiversity patterns and ecosystem functioning, determining the trophic relationships and interactions between microorganisms, their participation in biogeochemical cycles, and their responses to environmental changes. Consequently, its definition and quantification have practical and theoretical implications. In this opinion paper, we present a synthesis on the concept of microbial functional diversity from its definition to its application. Initially, we revisit to the original definition of functional diversity, highlighting two fundamental aspects, the ecological unit under study and the functional traits used to characterize it. Then, we discuss how the particularities of the microbial world disallow the direct application of the concepts and tools developed for macroorganisms. Next, we provide a synthesis of the literature on the types of ecological units and functional traits available in microbial functional ecology. We also provide a list of more than 400 traits covering a wide array of environmentally relevant functions. Lastly, we provide examples of the use of functional diversity in microbial systems based on the different units and traits discussed herein. It is our hope that this paper will stimulate discussions and help the growing field of microbial functional ecology to realize a potential that thus far has only been attained in macrobial ecology.
Collapse
Affiliation(s)
- Arthur Escalas
- MARBECCNRSIfremerIRDUniversity of MontpellierMontpellier Cedex 5France
- Institute for Environmental Genomics and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOKUSA
| | - Lauren Hale
- Water Management Research UnitSJVASCUSDA‐ARSParlierCAUSA
| | | | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution ControlSchool of EnvironmentTsinghua UniversityBeijingChina
| | - Mary K. Firestone
- Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyCAUSA
| | - Lisa Alvarez‐Cohen
- Department of Civil and Environmental EngineeringUniversity of CaliforniaBerkeleyCAUSA
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOKUSA
- State Key Joint Laboratory of Environment Simulation and Pollution ControlSchool of EnvironmentTsinghua UniversityBeijingChina
- Earth and Environmental SciencesLawrence Berkeley National LaboratoryBerkeleyCAUSA
| |
Collapse
|
9
|
Santillan E, Seshan H, Constancias F, Wuertz S. Trait-based life-history strategies explain succession scenario for complex bacterial communities under varying disturbance. Environ Microbiol 2019; 21:3751-3764. [PMID: 31241822 DOI: 10.1111/1462-2920.14725] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/26/2019] [Accepted: 06/23/2019] [Indexed: 12/31/2022]
Abstract
Trait-based approaches are increasingly gaining importance in community ecology, as a way of finding general rules for the mechanisms driving changes in community structure and function under the influence of perturbations. Frameworks for life-history strategies have been successfully applied to describe changes in plant and animal communities upon disturbance. To evaluate their applicability to complex bacterial communities, we operated replicated wastewater treatment bioreactors for 35 days and subjected them to eight different disturbance frequencies of a toxic pollutant (3-chloroaniline), starting with a mixed inoculum from a full-scale treatment plant. Relevant ecosystem functions were tracked and microbial communities assessed through metagenomics and 16S rRNA gene sequencing. Combining a series of ordination, statistical and network analysis methods, we associated different life-history strategies with microbial communities across the disturbance range. These strategies were evaluated using tradeoffs in community function and genotypic potential, and changes in bacterial genus composition. We further compared our findings with other ecological studies and adopted a semi-quantitative competitors, stress-tolerants, ruderals (CSR) classification. The framework reduces complex data sets of microbial traits, functions and taxa into ecologically meaningful components to help understand the system response to disturbance and hence represents a promising tool for managing microbial communities.
Collapse
Affiliation(s)
- Ezequiel Santillan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore.,Department of Civil and Environmental Engineering, University of California, Davis, CA, 95616, USA
| | - Hari Seshan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore.,Department of Civil and Environmental Engineering, University of California, Davis, CA, 95616, USA
| | - Florentin Constancias
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore.,CIRAD, UMR Qualisud, Montpellier, F-34398, France.,Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d'Avignon, Univ de La Réunion, Montpellier, France
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore.,Department of Civil and Environmental Engineering, University of California, Davis, CA, 95616, USA.,School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
10
|
Pérez MV, Guerrero LD, Orellana E, Figuerola EL, Erijman L. Time Series Genome-Centric Analysis Unveils Bacterial Response to Operational Disturbance in Activated Sludge. mSystems 2019; 4:e00169-19. [PMID: 31266798 PMCID: PMC6606829 DOI: 10.1128/msystems.00169-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/08/2019] [Indexed: 01/08/2023] Open
Abstract
Understanding ecosystem response to disturbances and identifying the most critical traits for the maintenance of ecosystem functioning are important goals for microbial community ecology. In this study, we used 16S rRNA amplicon sequencing and metagenomics to investigate the assembly of bacterial populations in a full-scale municipal activated sludge wastewater treatment plant over a period of 3 years, including a 9-month period of disturbance characterized by short-term plant shutdowns. Following the reconstruction of 173 metagenome-assembled genomes, we assessed the functional potential, the number of rRNA gene operons, and the in situ growth rate of microorganisms present throughout the time series. Operational disturbances caused a significant decrease in bacteria with a single copy of the rRNA (rrn) operon. Despite moderate differences in resource availability, replication rates were distributed uniformly throughout time, with no differences between disturbed and stable periods. We suggest that the length of the growth lag phase, rather than the growth rate, is the primary driver of selection under disturbed conditions. Thus, the system could maintain its function in the face of disturbance by recruiting bacteria with the capacity to rapidly resume growth under unsteady operating conditions.IMPORTANCE Disturbance is a key determinant of community assembly and dynamics in natural and engineered ecosystems. Microbiome response to disturbance is thought to be influenced by bacterial growth traits and life history strategies. In this time series observational study, the response to disturbance of microbial communities in a full-scale activated sludge wastewater treatment plant was assessed by computing specific cellular traits of genomes retrieved from metagenomes. It was found that the genomes observed in disturbed periods have more copies of the rRNA operon than genomes observed in stable periods, whereas the in situ mean relative growth rates of bacteria present during stable and disturbed periods were indistinguishable. From these intriguing observations, we infer that the length of the lag phase might be a growth trait that affects the microbial response to disturbance. Further exploration of this hypothesis could contribute to better understanding of the adaptive response of microbiomes to unsteady environmental conditions.
Collapse
Affiliation(s)
- María Victoria Pérez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET) Vuelta de Obligado, Buenos Aires, Argentina
- Agua y Saneamientos Argentinos S. A. Tucumán, Buenos Aires, Argentina
| | - Leandro D Guerrero
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET) Vuelta de Obligado, Buenos Aires, Argentina
| | - Esteban Orellana
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET) Vuelta de Obligado, Buenos Aires, Argentina
| | - Eva L Figuerola
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET) Vuelta de Obligado, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET) Vuelta de Obligado, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Hu Y, Bai C, Cai J, Shao K, Tang X, Gao G. Low recovery of bacterial community after an extreme salinization-desalinization cycle. BMC Microbiol 2018; 18:195. [PMID: 30470189 PMCID: PMC6251166 DOI: 10.1186/s12866-018-1333-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/31/2018] [Indexed: 11/10/2022] Open
Abstract
Background Understanding the recovery of bacterial communities after extreme environmental disturbances offers key opportunities to investigate ecosystem resilience. However, it is not yet clear whether bacterial communities can rebound to their pre-disturbance levels. To shed light on this issue, we tracked the responses of bacterial communities during an extreme salinization-desalinization cycle. Results Our results showed that salinization-up process induced an ecological succession, shifting from a community dominated by Betaproteobacteria to Gammaproteobacteria. Within the desalinization-down process, taxon-specific recovery trajectories varied profoundly, with only Gammaproteobacteria returning to their initial levels, of which Alphaproteobacteria was the most prominent member. The α-diversity indices gradually increased at oligosaline environment (0.03‰ to 3‰) and subsequently decreased profoundly at hypersaline condition (10‰ to 90‰). However, the indices did not return to pre-disturbance level along the previous trajectory observed during the desalinization. Approximately half of the original OTUs were not detected during desalinization, suggesting that the seed bank may be damaged by the hypersaline environment. Moreover, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) implied that the osmosensors’ capacity of bacterial communities was also impaired by the hypersaline condition. Conclusions These results suggested that the bacterial communities showed a low recovery after the extreme salinization-desalinization cycle. Electronic supplementary material The online version of this article (10.1186/s12866-018-1333-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Chengrong Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Jian Cai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| |
Collapse
|
12
|
Zhang X, Johnston ER, Barberán A, Ren Y, Wang Z, Han X. Effect of intermediate disturbance on soil microbial functional diversity depends on the amount of effective resources. Environ Microbiol 2018; 20:3862-3875. [PMID: 30209865 DOI: 10.1111/1462-2920.14407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 11/30/2022]
Abstract
Many anthropogenic environmental changes are leading to a rapid decline in soil microbial functional diversity. However, ecological mechanisms that can serve to counteract/resist the diversity loss remain largely underexplored. In particular, although intermediate disturbance and increased amount of effective resources can promote the diversity of higher organisms, the potential role of these factors, and their combination, in maintaining microbial functional diversity is poorly studied. We conducted a 5-year experiment in a Eurasian steppe, manipulating mowing, nitrogen addition, phosphorus addition and their combinations. Nitrogen addition decreased soil pH by ~0.6 and bacterial abundance by ~19.5%, causing a disturbance effect. Phosphorus addition significantly decreased the effective amount of soil carbon-, nitrogen-, phosphorus- and water-relevant resources. Across all nitrogen-addition treatments subject to intermediate disturbance, there was a significant positive correlation between soil effective resource amount and microbial gene richness (r > 0.6, p < 0.01), which was elevated, in part, due to the increased fungal abundance. In contrast, significant correlations between gene richness and resource amount were not found under low-disturbance conditions. Overall, gene richness was greatest under conditions of both intermediate disturbance and ample effective resources, suggesting that the two factors could be manipulated in combination for the maintenance of microbial functional diversity.
Collapse
Affiliation(s)
- Ximei Zhang
- Key Laboratory of Dryland Agriculture, MOA, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Eric R Johnston
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA.,School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Albert Barberán
- Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, Arizona, 85721, USA
| | - Yi Ren
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai, 201318, China
| | - Zhiping Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xingguo Han
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA.,State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
13
|
Worrich A, Wick LY, Banitz T. Ecology of Contaminant Biotransformation in the Mycosphere: Role of Transport Processes. ADVANCES IN APPLIED MICROBIOLOGY 2018; 104:93-133. [PMID: 30143253 DOI: 10.1016/bs.aambs.2018.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fungi and bacteria often share common microhabitats. Their co-occurrence and coevolution give rise to manifold ecological interactions in the mycosphere, here defined as the microhabitats surrounding and affected by hyphae and mycelia. The extensive structure of mycelia provides ideal "logistic networks" for transport of bacteria and matter in structurally and chemically heterogeneous soil ecosystems. We describe the characteristics of the mycosphere as a unique and highly dynamic bacterial habitat and a hot spot for contaminant biotransformation. In particular, we emphasize the role of the mycosphere for (i) bacterial dispersal and colonization of subsurface interfaces and new habitats, (ii) matter transport processes and contaminant bioaccessibility, and (iii) the functional stability of microbial ecosystems when exposed to environmental fluctuations such as stress or disturbances. Adopting concepts from ecological theory, the chapter disentangles bacterial-fungal impacts on contaminant biotransformation in a systemic approach that interlinks empirical data from microbial ecosystems with simulation data from computational models. This approach provides generic information on key factors, processes, and ecological principles that drive microbial contaminant biotransformation in soil. We highlight that the transport processes create favorable habitat conditions for efficient bacterial contaminant degradation in the mycosphere. In-depth observation, understanding, and prediction of the role of mycosphere transport processes will support the use of bacterial-fungal interactions in nature-based solutions for contaminant biotransformation in natural and man-made ecosystems, respectively.
Collapse
Affiliation(s)
- Anja Worrich
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Lukas Y Wick
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany.
| | - Thomas Banitz
- Department of Ecological Modelling, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|