1
|
Sun X, Sun Y, Li P, Gao Y, Han M, Zhang P. Intensive oyster farming alters the microbial-regulated blue carbon storage in sediment. MARINE POLLUTION BULLETIN 2025; 216:118016. [PMID: 40267797 DOI: 10.1016/j.marpolbul.2025.118016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/19/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
Intensive oyster farming enhances the organic matter coupling from water to sediment through biodeposition, potentially contributing to carbon storage. Microbes play a key role in regulating biogeochemical cycling in the coastal sediment. However, their specific contributions to carbon storage under oyster farming remain poorly understood. This study investigates microbial necromass and associated biogeochemical processes in sediments from an intensive oyster farm in Sanggou Bay, China, and compares these indicators with adjacent seagrass beds and bare zones. Additionally, carbon use efficiency (CUE) was employed to indicate microbial-regulated carbon cycling and storage in sediment. The results demonstrate that oyster farming promotes organic carbon accumulation in surface sediments but reduces its stability. Microbial necromass was identified as a critical driver of sedimentary organic carbon in oyster farm sediments, supported by enhanced nitrogen and sulfur cycling pathways. Notably, contrasting relationships between CUE and organic carbon were observed between the seagrass bed and the oyster farm. Functional metagenomic analysis further revealed distinct microbial metabolic pathways across habitats, highlighting the role of biodeposition in shaping microbial functions. These findings enhance our understanding of microbial contributions to blue carbon storage in aquaculture systems and provide new insights into coastal carbon storage beyond vegetated ecosystems.
Collapse
Affiliation(s)
- Xin Sun
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, PR China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yihua Sun
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Peilong Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yaping Gao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ming Han
- National Laboratory for Marine Science and Technology, Qingdao, China
| | - Peidong Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, PR China.
| |
Collapse
|
2
|
Ding C, Wu J, Guo Q, Luan J, Yang K, Li Z, Li X, Yu J, Liang F, Yang B, Chen T. Characteristics and potential human health risks of Paralytic Shellfish Toxins identified in eight species of bivalves from South Yellow Sea Mudflat. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 278:107174. [PMID: 39603051 DOI: 10.1016/j.aquatox.2024.107174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
The consumption of bivalves contaminated with paralytic shellfish toxins (PSTs) poses a serious risk to human health. However, the presence of PSTs in bivalves from the South Yellow Sea Mudflat remains unclear. This study comprehensively examined the characteristics and potential health risks of PSTs in eight species of bivalves from the South Yellow Sea Mudflat across four seasons. Typical PSTs, including STX, dcNeoSTX, GTX1, GTX2, GTX3, and GTX4, were detected in white clams, clams, short-necked clams, blue mussels, razor clams, mussels, scallops, and oysters. Significant differences of PSTs concentrations among bivalves across different seasons were detected using Kruskal-Wallis tests (p < 0.05), with the highest PSTs concentrations found in mussels (20.46 μg/individual) during autumn. Furthermore, Pearson tests revealed significant positive correlations between PSTs concentrations and shell length, shell height, shell width, and soft tissue wet weight, indicating that larger bivalves contain higher PSTs levels. The highest dietary toxin intake (DTI) of PSTs across the four seasons was found in mussels (2.138 μgSTX eq. kg⁻¹ bw day⁻¹) during autumn. Notably, the exposure risk index (ERI) from bivalve consumption for male consumers was 1.23 ± 0.819, which was higher than that for female consumers (1.102 ± 0.735). The ERI of PSTs for children aged 2-7 and the elderly over 65 were 1.448 ± 0.957 and 1.316 ± 0.874, respectively, which were higher than those for other age groups, indicating that children and the elderly are more sensitive to PSTs. It is important to note that most ERIs of PSTs from total tissues were higher than 1 (potential risk), while ERIs of PSTs from non-digestive tissues were lower than 1, suggesting that potential health risks could be reduced by removing the digestive tissues of bivalves before consumption. This study provides valuable information for mitigating health risks associated with bivalve consumption.
Collapse
Affiliation(s)
- Cheng Ding
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Jinling Wu
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Qingyuan Guo
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China.
| | - Jiaxuan Luan
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Kai Yang
- China MCC5 Group Limited Corporation, Chengdu, 610023, China
| | - Zhaoxia Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Yancheng, Jiangsu Province, 224051, China
| | - Feng Liang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Yancheng, Jiangsu Province, 224051, China
| | - Bairen Yang
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Tianming Chen
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| |
Collapse
|
3
|
Unzueta‐Martínez A, Bowen J. Persistent tissue-specific resident microbiota in oysters across a broad geographical range. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70026. [PMID: 39446070 PMCID: PMC11500617 DOI: 10.1111/1758-2229.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Marine animals often harbour complex microbial communities that influence their physiology. However, strong evidence for resident microbiomes in marine bivalves is lacking, despite their contribution to estuarine habitats and coastal economies. We investigated whether marine bivalves harbour stable, resident microorganisms in specific tissues or if their microbiomes primarily consist of transient members reflecting the environmental microbial pool. Conducting a latitudinal study of wild eastern oysters (Crassostrea virginica) along the East Coast of the United States, we aimed to identify resident microorganisms that persist across a wide geographical range. Our results revealed that microbial communities in seawater and sediment samples followed latitudinal diversity patterns driven by geographic location. In contrast, oyster-associated microbiomes were distinct from their surrounding environments and exhibited tissue-specific compositions. Notably, oyster microbiomes showed greater similarity within the same tissue type across different geographic locations than among different tissue types within the same location. This indicates the presence of tissue-specific resident microbes that persist across large geographical ranges. We identified a persistent set of resident microbiome members for each tissue type, with key microbial members consistent across all locations. These findings underscore the oyster host's role in selecting its microbiome and highlight the importance of tissue-specific microbial communities in understanding bivalve-associated microbiomes.
Collapse
Affiliation(s)
- Andrea Unzueta‐Martínez
- Department of Marine and Environmental ScienceNortheastern UniversityNahantMassachusettsUSA
- Present address:
Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| | - Jennifer Bowen
- Department of Marine and Environmental ScienceNortheastern UniversityNahantMassachusettsUSA
| |
Collapse
|
4
|
Crump BC, Bowen JL. The Microbial Ecology of Estuarine Ecosystems. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:335-360. [PMID: 37418833 DOI: 10.1146/annurev-marine-022123-101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Human civilization relies on estuaries, and many estuarine ecosystem services are provided by microbial communities. These services include high rates of primary production that nourish harvests of commercially valuable species through fisheries and aquaculture, the transformation of terrestrial and anthropogenic materials to help ensure the water quality necessary to support recreation and tourism, and mutualisms that maintain blue carbon accumulation and storage. Research on the ecology that underlies microbial ecosystem services in estuaries has expanded greatly across a range of estuarine environments, including water, sediment, biofilms, biological reefs, and stands of seagrasses, marshes, and mangroves. Moreover, the application of new molecular tools has improved our understanding of the diversity and genomic functions of estuarine microbes. This review synthesizes recent research on microbial habitats in estuaries and the contributions of microbes to estuarine food webs, elemental cycling, and interactions with plants and animals, and highlights novel insights provided by recent advances in genomics.
Collapse
Affiliation(s)
- Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA;
| | - Jennifer L Bowen
- Marine Science Center, Department of Marine and Environmental Sciences, Northeastern University, Nahant, Massachusetts, USA;
| |
Collapse
|
5
|
Hamani V, Brenon I, Coulombier T, Huguet JR, Murillo L. The forgotten ones of ports: The filter feeders at the heart of siltation processes. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105843. [PMID: 36512864 DOI: 10.1016/j.marenvres.2022.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Siltation is a major concern in dynamic and complex ecosystems, such as ports. The mud must be regularly dredged to avoid disturbing the navigation channels. Sediments are carried by the waters entering the port and are partially trapped by harbour structures. Numerous studies have been conducted on the physical factors influencing siltation in port areas, whereas, few have focused on the role of biotic factors in mud formation. However, research in other contexts has shown that organisms that are abundant in pontoons, such as bivalves and tunicates, play an important role in this siltation process. All of these organisms belong to the filter feeder group. The sediments sucked in by the filter feeders are excreted in the form of faeces or mucus-bound pseudo-faeces. These waste materials, called bioproducts, settle efficiently and are involved in the composition of the mud. This study aimed to highlight the role of filter feeders in the siltation process in port areas and to determine the factors that influence the production of bioproducts by filter feeders. To investigate the role of filter feeders in the siltation processes, an experimental analysis was conducted in the largest marina in Europe (La Rochelle, France). It is divided into four basins with distinct filter feeder communities and environmental conditions, allowing for a detailed study of the environmental factors that influence the production of bioproducts. This analysis consisted of recovering and studying the bioproducts generated by the filter feeders using sediment traps fixed under pontoons. To explore the evolution of this biological production, 16 campaigns were conducted from January to March 2020 and May to July 2020. The total amount of dry matter produced was constant between seasons at approximately 130 g/m2/d; marina-wide, this amount represents a total daily production of 3.2 tons. However, the production amount varies spatially and temporally in relation to marine hydrodynamics and the organisms involved. Bioproduction was taxon-dependent: areas abundant in oysters and mussels were the areas with the most pronounced bioproduction, whereas there was no significant relationship between bioproduction and the presence of tunicates or scallops. If we consider bioproduction on a seasonal scale, we can see that the campaigns with the greatest production correspond to the periods when the sediment supply was the highest, i.e. when the tidal range was the highest. The quality of the bioproducts (organic matter content) differed between seasons, which can be explained by both environmental and metabolic changes. Understanding the role of filter feeders in siltation processes appears to be essential in port environments that need to be regularly dredged to ensure safe navigation.
Collapse
Affiliation(s)
- Vincent Hamani
- UMR 7266 LIENSs, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France.
| | - Isabelle Brenon
- UMR 7266 LIENSs, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Thibault Coulombier
- UMR 7266 LIENSs, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Jean-Remy Huguet
- SAS Benoit Waeles-Consultant Génie Côtier, 53 Rue du Commandant Groix, 29200, Brest, France
| | - Laurence Murillo
- UMR 7266 LIENSs, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| |
Collapse
|
6
|
Zhang Y, Goss GG. Nanotechnology in agriculture: Comparison of the toxicity between conventional and nano-based agrochemicals on non-target aquatic species. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129559. [PMID: 35863222 DOI: 10.1016/j.jhazmat.2022.129559] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Increased crop production is necessary to keep up with rising food demand. However, conventional agricultural practices and agrochemicals are unable to sustain further increases without serious risk of adverse environmental consequences. The implementation of nanotechnology in agriculture practices has been increasing in recent years and has shown tremendous potential to boost crop production. The rapid growth in development and use of nano-agrochemicals in agriculture will inevitably result in more chemicals reaching water bodies. Some unique properties of nanoformulations may also alter the toxicity of the AI on aquatic organisms when compared to their conventional counterparts. Results from studies on conventional formulations may not properly represent the toxicity of new nanoformulations in the aquatic environment. As a result, current guidelines derived from conventional formulations may not be suitable to regulate those newly developed nanoformulations. Current knowledge on the toxicity of nano-agrochemicals on aquatic organisms is limited, especially in an ecologically relevant setting. This review complies and analyzes 18 primary studies based on 7 criteria to provide a comprehensive analysis of the available toxicity information of nano-agrochemicals and their conventional counterparts on aquatic organisms. Our analysis demonstrates that the overall toxicity of nano-agrochemicals on non-target aquatic species is significantly lower as compared to conventional counterparts. However, further dividing formulations into three categories (organic, bulk and ionic) shows that some nanoformulations can be more toxic when compared to bulk materials but less toxic as compared to ionic formulations while organic nanopesticides do not show a general trend in overall toxicity. Moreover, our analysis reveals the limitations of current studies and provides recommendations for future toxicity studies to ensure the effective and sustainable application of nano-agrochemicals, which will be beneficial to both the agrochemical industry and regulatory agencies alike.
Collapse
Affiliation(s)
- Yueyang Zhang
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada.
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada; National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada; Director of Office of Environmental Nanosafety, University of Alberta, Canada.
| |
Collapse
|
7
|
Intrahabitat Differences in Bacterial Communities Associated with Corbicula fluminea in the Large Shallow Eutrophic Lake Taihu. Appl Environ Microbiol 2022; 88:e0232821. [PMID: 35285714 DOI: 10.1128/aem.02328-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Asian clam Corbicula fluminea is a keystone zoobenthos in freshwater ecosystems. However, its associated microbiome is not well understood. We investigated the bacterial communities of this clam and its surrounding environment, including sediment and water simultaneously, in a large lake by means of 16S rRNA gene sequencing. Approximately two-thirds of the bacterial operational taxonomic units (OTUs) associated with clams were observed in the surrounding environment and mostly from particle-associated samples. The associated bacterial communities were site specific and more similar to environmental bacteria from the same site than those at other sites, suggesting a local environmental influence on host bacteria. However, the significant differences in bacterial diversities and compositions between the clam and the environment also indicated strong host selection pressure on bacteria from the surrounding environment. Bacteria affiliated with Firmicutes, Spirochaetes, Tenericutes, Bacteroidetes, Epsilonbacteraeota, Patescibacteria, and Fusobacteria were found to be significantly enriched in the clams in comparison to their local environment. Oligotyping analyses of the core-associated bacterial OTUs also demonstrated that most of the core OTUs had lower relative abundances and occurrence frequencies in environmental samples. The core bacterial OTUs were found to play an important role in maintaining the stability of the bacterial community network. These core bacteria included the two most abundant taxa Romboutsia and Paraclostridium with the potential function of fermenting polysaccharides for assisting host clams in food digestion. Overall, we demonstrate that clam-associated bacteria were spatially dynamic and site specific, which were mainly structured both by local environments and host selection. IMPORTANCE The Asian clam Corbicula fluminea is an important benthic clam in freshwater ecosystems due to its high population densities and high filtering efficiency for particulate organic matter. While the associated microbiota is believed to be vital for host living, our knowledge about the compositions, sources, and potential functions is still lacking. We found that C. fluminea offers a unique ecological niche for specific lake bacteria. We also observed high intrahabitat variation in the associated bacterial communities. Such variations were driven mainly by local environments, followed by host selection pressure. While the local microbes served as a source of the clam-associated bacteria, host selection resulted in enrichments of bacterial taxa with the potential for assisting the host in organic matter digestion. These results significantly advance our current understanding of the origins and ecological roles of the microbiota associated with a keynote clam in freshwater ecosystems.
Collapse
|
8
|
Atkinson CL, Forshay KJ. Community patch dynamics governs direct and indirect nutrient recycling by aggregated animals across spatial scales. Funct Ecol 2022. [DOI: 10.1111/1365-2435.13982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carla L. Atkinson
- Department of Biological Sciences University of Alabama Tuscaloosa AL USA
| | - Kenneth J. Forshay
- Robert S. Kerr Environmental Research Center Office of Research and Development United States Environmental Protection Agency Ada OK USA
| |
Collapse
|
9
|
Ray NE, Fulweiler RW. Negligible Greenhouse Gas Release from Sediments in Oyster Habitats. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14225-14233. [PMID: 34614357 DOI: 10.1021/acs.est.1c05253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
After centuries of decline, oyster populations are now on the rise in coastal systems globally following aquaculture development and restoration efforts. Oysters regulate the biogeochemistry of coastal systems in part by promoting sediment nutrient recycling and removing excess nitrogen via denitrification. Less clear is how oysters alter sediment greenhouse gas (GHG) fluxes-an important consideration as oyster populations grow. Here, we show that sediments in oyster habitats produce carbon dioxide (CO2), with highest rates in spring (2396.91 ± 381.98 μmol CO2 m-2 h-1) following deposition of seasonal diatom blooms and in summer (2795.20 ± 307.55 μmol CO2 m-2 h-1) when temperatures are high. Sediments in oyster habitats also consistently released methane to the water column (725.94 ± 150.34 nmol CH4 m-2 h-1) with no seasonal pattern. Generally, oyster habitat sediments were a sink for nitrous oxide (N2O; -36.11 ± 7.24 nmol N2O m-2 h-1), only occasionally releasing N2O in spring. N2O release corresponded to high organic matter and dissolved nitrogen availability, suggesting denitrification as the production pathway. Despite potential CO2 production increases under aquaculture in some locations, we conclude that in temperate regions oysters have an overall negligible impact on sediment GHG cycling.
Collapse
Affiliation(s)
- Nicholas E Ray
- Department of Biology, Boston University, Boston, Massachusetts 02215, United States
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
| | - Robinson W Fulweiler
- Department of Biology, Boston University, Boston, Massachusetts 02215, United States
- Department of Earth and Environment, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
10
|
Song X, Song J, Yan Q, Zhou J, Cai Z. Assembly of a Benthic Microbial Community in a Eutrophic Bay with a Long History of Oyster Culturing. Microorganisms 2021; 9:microorganisms9102019. [PMID: 34683340 PMCID: PMC8536970 DOI: 10.3390/microorganisms9102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 11/27/2022] Open
Abstract
The introduction of oysters to a waterbody is an efficient method for decreasing levels of eutrophication. Oysters affect sedimental environments and benthic microbes via their roles in nutrient cycling. However, little is known about how long-term oyster culturing affects benthic microbial community assembly. In the present study, top and bottom sediments from an oyster-culture area and non-culture area, in a eutrophic bay with a long history of oyster culturing, were obtained for environmental parameter measurement and microbe identification. Deterministic and stochastic processes in microbial community assembly were assessed. In particular, keystone species identification through network analysis was combined with measured environmental parameters to determine the factors related to community assembly processes. Our results suggest that oyster culturing relates to greater variation in both biological and non-biological sediment profiles. In benthic communities, Proteobacteria and Chloroflexi were the most abundant phyla, and community compositions were significantly different between sample groups. We also found that community assembly was more affected by deterministic factors than stochastic ones, when oysters were present. Moisture, or water content, and pH were identified as affecting deterministic and stochastic processes, respectively, but only water content was a driver associated with oyster culturing. Additionally, although keystone species presented a similar pattern of composition to peripheral species, they responded to their environments differently. Furthermore, model selection, fitting keystone species to community assembly processes, indicates their role in shaping microbial communities.
Collapse
Affiliation(s)
- Xiao Song
- School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.S.); (J.S.); (Q.Y.)
- Shenzhen Public Platform of Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Junting Song
- School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.S.); (J.S.); (Q.Y.)
- Shenzhen Public Platform of Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Qi Yan
- School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.S.); (J.S.); (Q.Y.)
- Shenzhen Public Platform of Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Jin Zhou
- Shenzhen Public Platform of Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Zhonghua Cai
- Shenzhen Public Platform of Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
- Correspondence:
| |
Collapse
|
11
|
Choi JW, Lee JY, Hyun DW, Lee JY, Kim PS, Han JE, Jeong YS, Lee SY, Sung H, Tak EJ, Kim HS, Bae JW. Chitinibacter bivalviorum sp. nov., isolated from the gut of the freshwater mussel Anodonta arcaeformis. Int J Syst Evol Microbiol 2021; 71. [PMID: 34296988 DOI: 10.1099/ijsem.0.004909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative, aerobic, rod-shaped bacterium with a single polar flagellum, designated strain 2T18T, was isolated from the gut of the freshwater mussel Anodonta arcaeformis collected in the Republic of Korea. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain belonged to the genus Chitinibacter. Strain 2T18T formed a monophyletic clade with Chitinibacter fontanus KCTC 42982T, C. tainanensis KACC 11706T and C. alvei KCTC 23839T, with sequence similarities of 98.5, 98.4 and 95.9 %, respectively. Strain 2T18T exhibited optimal growth at 30 °C, at pH 8 and with 0.5 % (w/v) NaCl. The major isoprenoid quinone was ubiquinone-8 (Q-8). The predominant fatty acids were summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) and C16 : 0. The polar lipids comprised phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified lipid, three unidentified phospholipids and two unidentified aminophospholipids. The G+C content of the genomic DNA was 50.6 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strains 2T18T and C. fontanus KCTC 42982T were below the thresholds used for the delineation of a novel species. Based on the phylogenetic, phenotypic, chemotaxonomic and genotypic characteristics, strain 2T18T represents a novel species of the genus Chitinibacter, for which the name Chitinibacter bivalviorum sp. nov. is proposed. The type strain is 2T18T (=KCTC 72821T=CCUG 74764T).
Collapse
Affiliation(s)
- Jee-Won Choi
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Yun Lee
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Dong-Wook Hyun
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - June-Young Lee
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Pil Soo Kim
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong Eun Han
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Yun-Seok Jeong
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - So-Yeon Lee
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Hojun Sung
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Euon Jung Tak
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun Sik Kim
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Jin-Woo Bae
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Microbiome Analysis Reveals Diversity and Function of Mollicutes Associated with the Eastern Oyster, Crassostrea virginica. mSphere 2021; 6:6/3/e00227-21. [PMID: 33980678 PMCID: PMC8125052 DOI: 10.1128/msphere.00227-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite their biological and ecological significance, a mechanistic characterization of microbiome function is frequently missing from many nonmodel marine invertebrates. As an initial step toward filling this gap for the eastern oyster, Crassostrea virginica, this study provides an integrated taxonomic and functional analysis of the oyster microbiome using samples from a coastal salt pond in August 2017. Marine invertebrate microbiomes play important roles in diverse host and ecological processes. However, a mechanistic understanding of host-microbe interactions is currently available for a small number of model organisms. Here, an integrated taxonomic and functional analysis of the microbiome of the eastern oyster, Crassostrea virginica, was performed using 16S rRNA gene-based amplicon profiling, shotgun metagenomics, and genome-scale metabolic reconstruction. Relatively high variability of the microbiome was observed across individual oysters and among different tissue types. Specifically, a significantly higher alpha diversity was observed in the inner shell than in the gut, gill, mantle, and pallial fluid samples, and a distinct microbiome composition was revealed in the gut compared to other tissues examined in this study. Targeted metagenomic sequencing of the gut microbiota led to further characterization of a dominant bacterial taxon, the class Mollicutes, which was captured by the reconstruction of a metagenome-assembled genome (MAG). Genome-scale metabolic reconstruction of the oyster Mollicutes MAG revealed a reduced set of metabolic functions and a high reliance on the uptake of host-derived nutrients. A chitin degradation and an arginine deiminase pathway were unique to the MAG compared to closely related genomes of Mollicutes isolates, indicating distinct mechanisms of carbon and energy acquisition by the oyster-associated Mollicutes. A systematic reanalysis of public eastern oyster-derived microbiome data revealed a high prevalence of the Mollicutes among adult oyster guts and a significantly lower relative abundance of the Mollicutes in oyster larvae and adult oyster biodeposits. IMPORTANCE Despite their biological and ecological significance, a mechanistic characterization of microbiome function is frequently missing from many nonmodel marine invertebrates. As an initial step toward filling this gap for the eastern oyster, Crassostrea virginica, this study provides an integrated taxonomic and functional analysis of the oyster microbiome using samples from a coastal salt pond in August 2017. The study identified high variability of the microbiome across tissue types and among individual oysters, with some dominant taxa showing higher relative abundance in specific tissues. A high prevalence of Mollicutes in the adult oyster gut was revealed by comparative analysis of the gut, biodeposit, and larva microbiomes. Phylogenomic analysis and metabolic reconstruction suggested the oyster-associated Mollicutes is closely related but functionally distinct from Mollicutes isolated from other marine invertebrates. To the best of our knowledge, this study represents the first metagenomics-derived functional inference of Mollicutes in the eastern oyster microbiome.
Collapse
|
13
|
Stevick RJ, Post AF, Gómez-Chiarri M. Functional plasticity in oyster gut microbiomes along a eutrophication gradient in an urbanized estuary. Anim Microbiome 2021; 3:5. [PMID: 33499983 PMCID: PMC7934548 DOI: 10.1186/s42523-020-00066-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/29/2020] [Indexed: 01/04/2023] Open
Abstract
Background Oysters in coastal environments are subject to fluctuating environmental conditions that may impact the ecosystem services they provide. Oyster-associated microbiomes are responsible for some of these services, particularly nutrient cycling in benthic habitats. The effects of climate change on host-associated microbiome composition are well-known, but functional changes and how they may impact host physiology and ecosystem functioning are poorly characterized. We investigated how environmental parameters affect oyster-associated microbial community structure and function along a trophic gradient in Narragansett Bay, Rhode Island, USA. Adult eastern oyster, Crassostrea virginica, gut and seawater samples were collected at 5 sites along this estuarine nutrient gradient in August 2017. Samples were analyzed by 16S rRNA gene sequencing to characterize bacterial community structures and metatranscriptomes were sequenced to determine oyster gut microbiome responses to local environments. Results There were significant differences in bacterial community structure between the eastern oyster gut and water samples, suggesting selection of certain taxa by the oyster host. Increasing salinity, pH, and dissolved oxygen, and decreasing nitrate, nitrite and phosphate concentrations were observed along the North to South gradient. Transcriptionally active bacterial taxa were similar for the different sites, but expression of oyster-associated microbial genes involved in nutrient (nitrogen and phosphorus) cycling varied throughout the Bay, reflecting the local nutrient regimes and prevailing environmental conditions. Conclusions The observed shifts in microbial community composition and function inform how estuarine conditions affect host-associated microbiomes and their ecosystem services. As the effects of estuarine acidification are expected to increase due to the combined effects of eutrophication, coastal pollution, and climate change, it is important to determine relationships between host health, microbial community structure, and environmental conditions in benthic communities. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-020-00066-0.
Collapse
Affiliation(s)
- Rebecca J Stevick
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Anton F Post
- Division of Research, Florida Atlantic University, Boca Raton, FL, USA
| | - Marta Gómez-Chiarri
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
14
|
Griffin TW, Baer JG, Ward JE. Direct Comparison of Fecal and Gut Microbiota in the Blue Mussel (Mytilus edulis) Discourages Fecal Sampling as a Proxy for Resident Gut Community. MICROBIAL ECOLOGY 2021; 81:180-192. [PMID: 32638043 DOI: 10.1007/s00248-020-01553-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Bivalves have ecological and economic importance but information regarding their associated microbiomes is lacking. As suspension feeders, bivalves capture and ingest a myriad of particles, and their digestive organs have a high throughput of particle-associated microbiota. To better understand the complement of transient and resident microbial communities, standard methods need to be developed. For example, fecal sampling could represent a convenient proxy for the gut microbiome and is simple, nondestructive, and allows for sampling of individuals through time. The goal of this study was to evaluate fecal sampling as a reliable proxy for gut microbiome assessment in the blue mussel (Mytilus edulis). Mussels were collected from the natural environment and placed into individual sterilized microcosms for 6 h to allow for fecal egestion. Feces and gut homogenates from the same individuals were sampled and subjected to 16S rRNA gene amplicon sequencing. Fecal communities of different mussels resembled each other but did not resemble gut communities. Fecal communities were significantly more diverse, in terms of amplicon sequence variant (ASV) richness and evenness, than gut communities. Results suggested a mostly transient nature for fecal microbiota. Nonetheless, mussels retained a distinct resident microbial community in their gut after fecal egestion that was dominated by ASVs belonging to Mycoplasma. The use of fecal sampling as a nondestructive substitute for direct sampling of the gut is strongly discouraged. Experiments that aim to study solely resident bivalve gut microbiota should employ an egestion period prior to gut sampling to allow time for voidance of transient microbes.
Collapse
Affiliation(s)
- Tyler W Griffin
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA.
| | - Julia G Baer
- Department of Science, Mount St. Mary's University, Emmitsburg, MD, USA
| | - J Evan Ward
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| |
Collapse
|
15
|
Offret C, Paulino S, Gauthier O, Château K, Bidault A, Corporeau C, Miner P, Petton B, Pernet F, Fabioux C, Paillard C, Blay GL. The marine intertidal zone shapes oyster and clam digestive bacterial microbiota. FEMS Microbiol Ecol 2020; 96:fiaa078. [PMID: 32353873 DOI: 10.1093/femsec/fiaa078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/29/2020] [Indexed: 02/05/2023] Open
Abstract
Digestive microbiota provide a wide range of beneficial effects on host physiology and are therefore likely to play a key role in marine intertidal bivalve ability to acclimatize to the intertidal zone. This study investigated the effect of intertidal levels on the digestive bacterial microbiota of oysters (Crassostrea gigas) and clams (Ruditapes philippinarum), two bivalves with different ecological niches. Based on 16S rRNA region sequencing, digestive glands, seawater and sediments harbored specific bacterial communities, dominated by operational taxonomic units assigned to the Mycoplasmatales,Desulfobacterales and Rhodobacterales orders, respectively. Field implantation modified digestive bacterial microbiota of both bivalve species according to their intertidal position. Rhodospirillales and Legionellales abundances increased in oysters and clams from the low intertidal level, respectively. After a 14-day depuration process, these effects were still observed, especially for clams, while digestive bacterial microbiota of oysters were subjected to more short-term environmental changes. Nevertheless, 3.5 months stay on an intertidal zone was enough to leave an environmental footprint on the digestive bacterial microbiota, suggesting the existence of autochthonous bivalve bacteria. When comparing clams from the three intertidal levels, 20% of the bacterial assemblage was shared among the levels and it was dominated by an operational taxonomic unit affiliated to the Mycoplasmataceae and Spirochaetaceae families.
Collapse
Affiliation(s)
- Clément Offret
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Sauvann Paulino
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | | | - Kevin Château
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Adeline Bidault
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | | | - Philippe Miner
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | - Bruno Petton
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | - Fabrice Pernet
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | | | | | | |
Collapse
|
16
|
Weingarten EA, Atkinson CL, Jackson CR. The gut microbiome of freshwater Unionidae mussels is determined by host species and is selectively retained from filtered seston. PLoS One 2019; 14:e0224796. [PMID: 31721801 PMCID: PMC6853330 DOI: 10.1371/journal.pone.0224796] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/22/2019] [Indexed: 01/06/2023] Open
Abstract
Freshwater mussels are a species-rich group of aquatic invertebrates that are among the most endangered groups of fauna worldwide. As filter-feeders that are constantly exposed to new microbial inoculants, mussels represent an ideal system to investigate the effects of species or the environment on gut microbiome composition. In this study, we examined if host species or site exerts a greater influence on microbiome composition. Individuals of four co-occurring freshwater mussel species, Cyclonaias asperata, Fusconaia cerina, Lampsilis ornata, and Obovaria unicolor were collected from six sites along a 50 km stretch of the Sipsey River in Alabama, USA. High throughput 16S rRNA gene sequencing revealed that mussel gut bacterial microbiota were distinct from bacteria on seston suspended in the water column, and that the composition of the gut microbiota was influenced by both host species and site. Despite species and environmental variation, the most frequently detected sequences within the mussel microbiota were identified as members of the Clostridiales. Sequences identified as the nitrogen-fixing taxon Methylocystis sp. were also abundant in all mussel species, and sequences of both bacterial taxa were more abundant in mussels than in water. Site physicochemical conditions explained almost 45% of variation in seston bacterial communities but less than 8% of variation in the mussel bacterial microbiome. Together, these findings suggest selective retention of bacterial taxa by the freshwater mussel host, and that both species and the environment are important in determining mussel gut microbiome composition.
Collapse
Affiliation(s)
- Eric A. Weingarten
- Department of Biology, University of Mississippi, University, Mississippi, United States of America
| | - Carla L. Atkinson
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Colin R. Jackson
- Department of Biology, University of Mississippi, University, Mississippi, United States of America
| |
Collapse
|
17
|
The Effect of Chironomid Larvae on Nitrogen Cycling and Microbial Communities in Soft Sediments. WATER 2019. [DOI: 10.3390/w11091931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The combination of biogeochemical methods and molecular techniques has the potential to uncover the black-box of the nitrogen (N) cycle in bioturbated sediments. Advanced biogeochemical methods allow the quantification of the process rates of different microbial processes, whereas molecular tools allow the analysis of microbial diversity (16S rRNA metabarcoding) and activity (marker genes and transcripts) in biogeochemical hot-spots such as the burrow wall or macrofauna guts. By combining biogeochemical and molecular techniques, we analyzed the role of tube-dwelling Chironomus plumosus (Insecta, Diptera) larvae on nitrification and nitrate reduction processes in a laboratory experiment with reconstructed sediments. We hypothesized that chironomid larvae stimulate these processes and host bacteria actively involved in N-cycling. Our results suggest that chironomid larvae significantly enhance the recycling of ammonium (80.5 ± 48.7 µmol m−2 h−1) and the production of dinitrogen (420.2 ± 21.4 µmol m−2 h−1) via coupled nitrification–denitrification and the consumption of water column nitrates. Besides creating oxygen microniches in ammonium-rich subsurface sediments via burrow digging and ventilation, chironomid larvae serve as hot-spots of microbial communities involved in N-cycling. The quantification of functional genes showed a significantly higher potential for microbial denitrification and nitrate ammonification in larvae as compared to surrounding sediments. Future studies may further scrutinize N transformation rates associated with intimate macrofaunal–bacteria associations.
Collapse
|