1
|
Lang T, Hussain M, Li M, Tam NFY, Pan M, Lee FWF, Xu SJL, Jiang M, Wang Y, Mu L, Zhou H. Unlocking the structure-activity relationship of mangrove condensed and hydrolysable tannins: Unveiling their potential ecological significance in antioxidant and antibacterial functions. Int J Biol Macromol 2025; 307:141918. [PMID: 40074115 DOI: 10.1016/j.ijbiomac.2025.141918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/12/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Tannins play key roles in regulating ecological processes within mangrove ecosystems, but the structures of mangrove condensed tannins (CT) and hydrolysable tannins (HT), as well as their antioxidant and antibacterial activities, are not well understood. In this study, MALDI-TOF MS was used to analyze the structural components of oligomers and polymers in phenolic extracts from Kandelia obovata, Aegiceras corniculatum, and Sonneratia apetala. Results identified two primary structural units: procyanidins (PC) and prodelphinidins (PD), with mass-to-charge ratios of 288 Da and 304 Da, respectively, and a 16 Da interval indicating differences in hydroxylation. Thiolysis degradation and acidic hydrolysis, combined with HPLC-ESI-MS, revealed significant variations in the mean degree of polymerization (mDP): oligomers had mDP values of 1.1-1.2, while polymers ranged from 7.8 to 9.1. Antioxidant assays (Folin-Ciocalteu, FRAP, TEAC, and DPPH) showed that PC < PD < HT in antioxidant capacity, with polymers exhibiting stronger activity than oligomers. Antibacterial tests revealed that A. corniculatum exhibited the weakest activity, while K. obovata and S. apetala showed similar efficacy against bacteria from Actinobacteria, Bacteroidetes, and Proteobacteria. This study enhances our understanding of mangrove phenolics' structural characteristics and their ecological roles in maintaining mangrove ecosystem functions.
Collapse
Affiliation(s)
- Tao Lang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; College of Agricultural and Food Engineering, Baise University, Baise 533000, China; Greater Bay Area Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518040, China; Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Muzammil Hussain
- College of Agricultural and Food Engineering, Baise University, Baise 533000, China
| | - Mingdang Li
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Greater Bay Area Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518040, China
| | - Nora Fung-Yee Tam
- Greater Bay Area Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518040, China; School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong 999077, China; State Key Laboratory in Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Min Pan
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong 999077, China
| | - Fred Wang-Fat Lee
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong 999077, China
| | - Steven Jing-Liang Xu
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong 999077, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Yibing Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Lin Mu
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Haichao Zhou
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Greater Bay Area Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518040, China.
| |
Collapse
|
2
|
Kuka A, Mileto I, Saler M, Petazzoni G, Corbella M, Baldanti F, Faga A, Nicoletti G. Native Bacterial Communities of Two Italian Salso-Bromo-Jodic and Sulphurous Natural Mineral Waters. Microorganisms 2025; 13:1038. [PMID: 40431211 DOI: 10.3390/microorganisms13051038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/23/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
A correlation between resident non-pathogenic bacterial populations in certain natural mineral waters and their beneficial effects has been established by several research groups. This study aims to characterize the bacterial composition of the Rivanazzano salso-bromo-jodic and sulphurous mineral waters (Pavia, Italy). Water samples were collected from natural sources and dispensing systems. DNA was extracted and subjected to 16S rRNA gene sequencing. Microbial composition, as well as alpha and beta diversity, were analyzed using amplicon sequence variants and compared across sampling sites. The predominant phyla in both waters were Proteobacteria, Campylobacterota, Bacteroidota, and Desulfobacterota. However, diversity at the family taxonomic level was recorded. In terms of bacterial diversity, waters collected from the dispensing systems within the spa resort were more similar between them than those from natural sources. The therapeutic properties of the Rivanazzano mineral waters are likely to be related to their combined mineral and biological composition.
Collapse
Affiliation(s)
- Angela Kuka
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Irene Mileto
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Marco Saler
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, 27100 Pavia, Italy
- Integrated Unit of Experimental Surgery, Advanced Microsurgery and Regenerative Medicine, University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
| | - Greta Petazzoni
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Marta Corbella
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fausto Baldanti
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Angela Faga
- Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Nicoletti
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, 27100 Pavia, Italy
- Integrated Unit of Experimental Surgery, Advanced Microsurgery and Regenerative Medicine, University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
- Surgery Unit, Azienda Socio-Sanitaria Territoriale di Pavia, 27100 Pavia, Italy
| |
Collapse
|
3
|
Bohra V, Lai KKY, Lam KL, Tam NFY, Jing-Liang S, Lee FWF. Metagenomic surveillance reveals different structure and function of microbial community associated with mangrove pneumatophores and their surrounding matrices. MARINE POLLUTION BULLETIN 2025; 213:117614. [PMID: 39904008 DOI: 10.1016/j.marpolbul.2025.117614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/25/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Present research employed metagenomics to explore the structural and functional diversity of microorganisms in two matrices of pneumatophore: adhered sediments (PS) and epiphytes (PE) of Avicennia marina. These were compared with microorganisms in surrounding environments: tidal water (TW), mudflat sediment (MF) and mangrove sediment (MS). Results revealed that bacteria made up over 95 % of the microbial community across all five matrices, with the dominance of phylum Proteobacteria, because of their metabolic flexibility and ability to survive in harsh mangrove environment. The bacterial community in PS and PE were similar to TW but differed from those in MF and MS, implying their provenance from TW. The high relative abundance of genes involved in nitrate and sulfur reduction pathways in PS and PE indicates pneumatophore bacteria helps in enhancing nitrogen and sulfur availability. This study is the first to explore the functional significance of pneumatophore-adhered prokaryotic communities using metagenomics.
Collapse
Affiliation(s)
- Varsha Bohra
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong
| | - Kaze King-Yip Lai
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong; Greater Bay Area Mangrove Wetland Research and Development Centre, Guangdong Neilingding Futian National Nature Reserve, Shenzhen, China
| | - Kit-Ling Lam
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong
| | - Nora Fung-Yee Tam
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong; Greater Bay Area Mangrove Wetland Research and Development Centre, Guangdong Neilingding Futian National Nature Reserve, Shenzhen, China
| | - Steven Jing-Liang
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong; Greater Bay Area Mangrove Wetland Research and Development Centre, Guangdong Neilingding Futian National Nature Reserve, Shenzhen, China
| | - Fred Wang-Fat Lee
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong; Greater Bay Area Mangrove Wetland Research and Development Centre, Guangdong Neilingding Futian National Nature Reserve, Shenzhen, China.
| |
Collapse
|
4
|
Yang Y, Liang Q, Peng Y, Paterson DM. Differential mediation of biogeochemical processes through bioturbation by fiddler and sesarmid mangrove crabs. MARINE POLLUTION BULLETIN 2025; 211:117431. [PMID: 39662187 DOI: 10.1016/j.marpolbul.2024.117431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Macrobenthic bioturbation is vital to facilitate nutrient turnover in estuarine ecosystems and drives spatial heterogeneity in the sediment matrix. In this study, we compared the sediment physico-chemical properties, microbial community structure and functional genes in vertically-stratified sediment samples from bioturbated (burrows of Parasesarma bidens and Tubuca arcuata) and non-bioturbated area in mangrove ecosystems (the Hanjiang River Estuary, Southern China). The result indicated that bioturbation by P. bidens and T. arcuata had significantly different effects on sediment properties, with the action of P. bidens enhancing nutrient accumulation while T. arcuata promoted N2O emission. Burrow microhabitats harbored distinctive microbial communities although the dominant phylum and genera shared considerable similarity with the control sediment surface with Woeseia dominating in vertical profiles across different habitats. Co-occurrence network analysis revealed that crab bioturbation promoted formation of less complex but more functionally-specialized microbial communities. Crab bioturbation enhanced nutrient metabolism and separated clusters in dendrogram demonstrated the species-specific effect between P. bidens and T. arcuata. Our work verified the significance of bioturbators in regulating biogeochemical processes and highlighted the species-specific bioturbation effect between two dominant mangrove crabs (P. bidens vs. T. arcuata).
Collapse
Affiliation(s)
- Yuting Yang
- School of Environmental Science and Engineering / Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology / Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Qiwen Liang
- School of Environmental Science and Engineering / Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology / Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Yisheng Peng
- School of Environmental Science and Engineering / Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology / Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| | - David M Paterson
- School of Biology, Scottish Oceans Institute, University of St Andrews, KY16 8LB, UK
| |
Collapse
|
5
|
Chen X, Zhou Y, Mai Z, Cheng H, Wang X. Mangroves increased the mercury methylation potential in the sediment by producing organic matters and altering microbial methylators community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178457. [PMID: 39799656 DOI: 10.1016/j.scitotenv.2025.178457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Mangrove ecosystem has attracted global attention as a hotspot for mercury (Hg) methylation. Although numerous biotic and abiotic parameters have been reported to influence methylmercury (MeHg) production in sediments, the key factors determining the elevated MeHg levels in mangrove wetlands have not been well addressed. In this study, Hg levels in the sediments from different habitats (mudflats, mangrove fringe, and mangrove interior) in the Futian mangrove wetland were investigated, aiming to characterize the predominant factors affecting the MeHg production and distinguish the key microbial taxa responsible for Hg methylation. MeHg concentrations in the sediments from the mangrove interior (1.03 ± 0.34 ng g-1 dw) were significantly higher than those in mudflats (0.26 ± 0.08 ng g-1 dw) and mangrove fringe (0.45 ± 0.10 ng g-1 dw). Mangrove vegetation also promoted the accumulation of organic matters in sediments, which stimulated the growth of methylators, ultimately leading to an elevated MeHg level in the sediment. The data from 16S sequencing and random forest analysis further indicated that the increased abundances of Desulfococcus and Desulfosarcina, which belong to complete-oxidizing microbes with acetyl-CoA pathway and are favored by mangrove vegetation, were the primary contributors to MeHg production. Besides, syntrophic partners of methylators (e.g. Syntrophus) also play a considerable role in MeHg production. The present findings provide a deep understanding of Hg-methylation in mangrove wetlands, and offers valuable insights into of the interactions between mangrove plants and soil microbiome in the presence of Hg contamination.
Collapse
Affiliation(s)
- Xiaoxin Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yanwu Zhou
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Zhimao Mai
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Xun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Qiao Y, Kong L, Shen M, Sun Y, Wang S, Gao Y, Xue J, Jiang Q, Cheng D, Liu Y. A baroduric immobilized composite material promoting remediation of oil-polluted sediment at typical deep-sea condition: The performances and potential mechanisms. ENVIRONMENTAL RESEARCH 2025; 264:120299. [PMID: 39510235 DOI: 10.1016/j.envres.2024.120299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Contriving immobilized bioreagent is of great significance to enhance bioremediation of marine oil pollution. However, there remains a notable scarcity of correlational study conducted at deep sea condition. Herein, we first developed a baroduric microsphere encasing biotic and chemical materials to remediate oil-contaminated sediments at deep-sea microcosm. Total oil degradation efficiency of microsphere-treated group reached 71% within a month, representing an approximate 35% increase compared to natural remediation. Absorption and biodegradation by microsphere provided a comparable contribution to oil elimination. Together with scanning electron microscope observation, the physical mechanism was that the reticulate structure of microsphere surface facilitating oil adsorption and bacteria attachment. Via metabarcoding analysis for meta and metabolically-active microbes, we demonstrated the primary working center was located at the microsphere. Proteobacteria, Firmicutes, Bacteroidota and Desulfobacterota were the key activated bacteria. More importantly, we revealed the ecological mechanisms were associated with the following aspects: 1) the addition of microsphere significantly improved the metabolic activity of bacteria (particularly including several oil-degrading taxa); 2) the microspheres enhanced ecological stability and microbial functional diversification during bioremediation; 3) expressing activity of pathways involving oil component degradation, biosurfactant production, biofilm architecture, biogeochemical and energy cycling all were observed to be up-regulated in microsphere-treated samples. Altogether, our results provide important theoretical guidance and data support on application of immobilization technology in removing in-situ oil pollution of deep-sea sediment.
Collapse
Affiliation(s)
- Yanlu Qiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Lingbing Kong
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Mingan Shen
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yudi Sun
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Shuo Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yu Gao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Qing Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yuyang Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| |
Collapse
|
7
|
Liu F, Zeng J, Ding J, Wang C, He Z, Liu Z, Shu L. Microbially-driven phosphorus cycling and its coupling mechanisms with nitrogen cycling in mangrove sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178118. [PMID: 39700989 DOI: 10.1016/j.scitotenv.2024.178118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
The phosphorus (P) cycle plays a crucial role in the biogeochemical cycling of mangrove sediments. However, the diversity of microbially-driven P-cycling and its coupling with nitrogen (N)-cycling remain poorly understood. In this study, we used metagenomic approaches to investigate microbial P-cycling and its potential interactions with N-cycling in mangrove sediments. Our results revealed that pH, total carbon, and total nitrogen were key environmental factors influencing the diversity of P-cycling microbial communities. Phosphorus metabolic pathways differed among mangrove sediment depths. In surface sediments (0-5 cm), microbial communities primarily acquired readily available inorganic phosphorus, whereas, in deeper sediments (>60 cm), they hydrolyzed more persistent triphosphates, reabsorbed nucleotides, and sourced free phosphate, reflecting a shift in phosphorus transport modes. We also identified glutamate metabolism as a potential pathway linking P-cycling with N-cycling, with these functions co-occurring in both contigs and genomes. Additionally, the diversity of microbial communities associated with the P-cycling increased with sediment depth, suggesting that microbially-driven P-cycling diversifies as depth increases. This study provides new insights into P-cycling and its potential coupling with N-cycling through glutamate metabolism, its coupling with N-cycling through glutamate metabolism.
Collapse
Affiliation(s)
- Fei Liu
- School of Life Sciences, Jiaying University, Meizhou 514015, China; Conservation and Utilization Laboratory of Mountain Characteristic Resources in Guangdong Province, Meizhou 514015, China; School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiaxiong Zeng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Jijuan Ding
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China; Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 509082, China
| | - Zhili He
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China; Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 509082, China
| | - Zhiwei Liu
- School of Life Sciences, Jiaying University, Meizhou 514015, China; Conservation and Utilization Laboratory of Mountain Characteristic Resources in Guangdong Province, Meizhou 514015, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China; Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 509082, China.
| |
Collapse
|
8
|
Pu Q, Zhang K, Liu J, Zhang Q, Abdelhafiz MA, Meng B, Feng X. Key active mercury methylating microorganisms and their synergistic effects on methylmercury production in paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136481. [PMID: 39536346 DOI: 10.1016/j.jhazmat.2024.136481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/14/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Rice contamination with neurotoxic methylmercury (MeHg) from paddy soils is an escalating global concern. Identifying the microorganisms responsible for mercury (Hg) methylation in these soils is essential for controlling Hg contamination in the food chain and mitigating health impacts. Current research often focuses on total Hg-methylating microorganisms, overlooking the contributions of active ones, which can lead to either overestimating or neglecting the specific roles of microorganisms in Hg methylation within paddy soils. In this study, active Hg-methylating microorganisms in paddy soils were identified using a combination of DNA-SIP, Hg isotope labelling, and Hg methylation gene sequencing techniques. Our findings revealed that Geobacter and Anaerolinea are pivotal active Hg-methylating microorganisms across a contamination gradient in paddy soils. Transcriptomic analysis of soils from major rice-producing provinces in China confirmed the widespread and synergistic involvement of these microorganisms. Microbial incubation further validated their interaction significantly enhances Hg methylation, with Me198Hg concentrations increasing 2.8-fold compared to Geobacter alone and 5.2-fold compared to Anaerolinea alone. These findings enhance our understanding of microbial Hg methylation in paddy soils, providing critical insights for accurately predicting soil MeHg load, rice grain MeHg contamination, and human MeHg exposure risks.
Collapse
Affiliation(s)
- Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kun Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianshuo Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mahmoud A Abdelhafiz
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Geology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Alghamdi AK, Parween S, Hirt H, Saad MM. Unveiling the bacterial diversity and potential of the Avicennia marina ecosystem for enhancing plant resilience to saline conditions. ENVIRONMENTAL MICROBIOME 2024; 19:101. [PMID: 39633419 PMCID: PMC11619459 DOI: 10.1186/s40793-024-00642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Avicennia marina ecosystems are critical for coastal protection, water quality enhancement, and biodiversity support. These unique ecosystems thrive in extreme saline conditions and host a diverse microbiome that significantly contributes to plant resilience and growth. Global food security is increasingly threatened by crop yield losses due to abiotic stresses, including saline soils. Traditional plant breeding for salt tolerance is both costly and time-consuming. This study explores the potential of bacteria from A. marina to enhance plant growth under saline conditions, emphasizing their ecological significance. RESULTS We analyzed the microbiome of A. marina from the Red Sea coast using high-throughput Illumina sequencing and culture-dependent methods across various compartments (bulk soil, rhizosphere, rhizoplane, roots, and leaves). Our findings revealed distinct compartment-specific microbial communities, with Proteobacteria being the dominant phylum. Functional predictions indicated diverse microbial roles in metal uptake and plant growth promotion (PGP). Remarkably, our culture-dependent methods allowed us to recover 56% of the bacterial diversity present in the microbiome, resulting in the isolation and characterization of 256 bacterial strains. These isolates were screened for PGP traits, including salt and heat tolerance, siderophore production, and pectinase activity. Out of the 77 bacterial isolates tested, 11 demonstrated a significant ability to enhance Arabidopsis growth under salt stress. CONCLUSIONS Our study highlights the ecological significance of mangrove microbiomes and the potential of culture collections in offering innovative solutions for ecological restoration and crop production in saline conditions. The unique collection of mangrove bacteria, particularly from the rhizosphere and endophytes, showcases significant PGP traits and stress tolerance capabilities. These findings emphasize the importance of functional traits, such as salt tolerance, in the recruitment of endophytic bacteria by plants over taxonomic affiliation. The identified bacterial strains hold potential not only for developing biofertilizers to improve crop productivity but also for ecological restoration projects aimed at rehabilitating saline-degraded lands, thereby contributing to overall ecosystem health and sustainability.
Collapse
Affiliation(s)
- Amal Khalaf Alghamdi
- DARWIN21, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sabiha Parween
- DARWIN21, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Max Perutz Laboratories, University of Vienna, Vienna, Austria.
| | - Maged M Saad
- DARWIN21, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
10
|
Li P, Zhou X, Wei T, Wang J, Gao Y. Potential mechanisms of synthetic endophytic bacterial community to reduce PAHs accumulation in vegetables. ENVIRONMENT INTERNATIONAL 2024; 194:109129. [PMID: 39556956 DOI: 10.1016/j.envint.2024.109129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
The functional endophytic bacterial community can effectively degrade polycyclic aromatic hydrocarbons (PAHs), thereby reducing their accumulation in vegetables grown on contaminated sites. However, the biological mechanisms underlying this reduction remain unclear. In this study, we analyzed the efficacy of different colonization methods of the functional endophytic bacterial community m5 in reducing PAHs in vegetables, with a particular focus on the leaf painting method. The results demonstrated that various colonization methods effectively reduced PAHs in vegetables, with leaf painting proving to be a cost-effective and efficient approach. Compared to the non-inoculated control, PAH content in the edible parts of amaranth was reduced by 40.63 % using the leaf painting method. High-throughput sequencing and quantitative PCR revealed that leaf painting altered the bacterial community structure and key components of the bacterial network, enhancing bacterial cooperation. After 20 days of colonization, the abundance of phe and nidA genes in vegetables increased significantly, by tens to hundreds of times, compared to uninoculated controls, thereby promoting the degradation of PAHs in vegetables. This study enhances our understanding of the biological mechanisms by which endophytic bacterial communities reduce PAHs in vegetables.
Collapse
Affiliation(s)
- Pengfei Li
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tong Wei
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
11
|
Peng B, Wang M, Wu Y, Huang S, Zhang Y, Huang J, Wang Y, Chen C. Anthropogenic activities affect the diverse autotrophic communities of coastal sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124817. [PMID: 39197647 DOI: 10.1016/j.envpol.2024.124817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Coastal sediments are a critical domain for carbon sequestration and are profoundly impacted by human activities. Therefore, it is essential to understand the structure and components of benthic autotrophs that play a crucial role in carbon sequestration processes, as well as the influence of anthropogenic activities on their communities. This study utilized an urban estuary, an industrial sea bay, a maricultural sea region, and two mangrove coastlines within the coastal areas of Guangdong Province, China. The micro-benthos in these environments, including prokaryotes and eukaryotes, were identified through high-throughput sequencing of 16S rRNA and 18S rRNA genes. The findings show that the autotrophic composition was altered by the interactions of anthropogenic heavy metals (Cd and Zn) and micro-eukaryotes (protazoa, metazoa, and parasitic organisms). Industrial pollution reduced the abundance of both prokaryotic and eukaryotic autotrophs. Mangroves induced a substantial transformation in the sediment eukaryotic and prokaryotic composition, increasing the proportion of autotrophs, notably sulfur-oxidizing and iron-oxidizing bacteria and microalgae. This alteration suggests an increase in specific sulfur and iron cycling with simultaneous carbon sequestration within mangrove sediments. These results indicate that anthropogenic activities affect sediment carbon sequestration by altering autotrophic assemblages along coastlines, thereby inducing consequential shifts in overall elemental cycling processes.
Collapse
Affiliation(s)
- Bo Peng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Research Center of Low Carbon Economy for Guangzhou Region, Guangzhou, China
| | - Min Wang
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou, China; Global Studies Center for Urban Environment and Sustainability, Guangzhou, China
| | - Yanli Wu
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou, China; Global Studies Center for Urban Environment and Sustainability, Guangzhou, China
| | - Shan Huang
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Yun Zhang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jilin Huang
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou, China; Global Studies Center for Urban Environment and Sustainability, Guangzhou, China
| | - Yuannan Wang
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou, China; Global Studies Center for Urban Environment and Sustainability, Guangzhou, China
| | - Chen Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou, China; Global Studies Center for Urban Environment and Sustainability, Guangzhou, China.
| |
Collapse
|
12
|
Ghabban H, Albalawi DA, Al-otaibi AS, Alshehri D, Alenzi AM, Alatawy M, Alatawi HA, Alnagar DK, Bahieldin A. Investigating the bacterial community of gray mangroves ( Avicennia marina) in coastal areas of Tabuk region. PeerJ 2024; 12:e18282. [PMID: 39434799 PMCID: PMC11493069 DOI: 10.7717/peerj.18282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Mangrove vegetation, a threatened and unique inter-tidal ecosystem, harbours a complex and largely unexplored bacterial community crucial for nutrient cycling and the degradation of toxic pollutants in coastal areas. Despite its importance, the bacterial community composition of the gray mangrove (Avicennia marina) in the Red Sea coastal regions remains under-studied. This study aims to elucidate the structural and functional diversity of the microbiome in the bulk and rhizospheric soils associated with A. marina in the coastal areas of Ras Alshabaan-Umluj (Umluj) and Almunibrah-Al-Wajh (Al-Wajh) within the Tabuk region of Saudi Arabia. Amplicon sequencing targeting the 16S rRNA was performed using the metagenomic DNAs from the bulk and rhizospheric soil samples from Umluj and Al-Wajh. A total of 6,876 OTUs were recovered from all samples, of which 1,857 OTUs were common to all locations while the total number of OTUs unique to Al-wajh was higher (3,011 OTUs) than the total number of OTUs observed (1,324 OTUs) at Umluj site. Based on diversity indices, overall bacterial diversity was comparatively higher in rhizospheric soil samples of both sites. Comparing the diversity indices for the rhizosphere samples from the two sites revealed that the diversity was much higher in the rhizosphere samples from Al-Wajh as compared to those from Umluj. The most dominant genera in rhizosphere sample of Al-Wajh were Geminicoccus and Thermodesulfovibrio while the same habitat of the Umluj site was dominated by Propionibacterium, Corynebacterium and Staphylococcus. Bacterial functional potential prediction analyses showed that bacteria from two locations have almost similar patterns of functional genes including amino acids and carbohydrates metabolisms, sulfate reduction and C-1 compound metabolism and xenobiotics biodegradation. However, the rhizosphere samples of both sites harbour more genes involved in the utilization and assimilation of C-1 compounds. Our results reveal that bacterial communities inhabiting the rhizosphere of A. marina differed significantly from those in the bulk soil, suggesting a possible role of A. marina roots in shaping these bacterial communities. Additionally, not only vegetation but also geographical location appears to influence the overall bacterial composition at the two sites.
Collapse
Affiliation(s)
- Hanaa Ghabban
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Doha A. Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Amenah S. Al-otaibi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Asma Massad Alenzi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Marfat Alatawy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Hanan Ali Alatawi
- Department of Biological Sciences, University Collage of Haqel, University of Tabuk, Tabuk, Saudi Arabia
| | - Dalia Kamal Alnagar
- Department of Statistics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmad Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
13
|
Wang J, Lin X, An X, Liu S, Wei X, Zhou T, Li Q, Chen Q, Liu X. Mangrove afforestation as an ecological control of invasive Spartina alterniflora affects rhizosphere soil physicochemical properties and bacterial community in a subtropical tidal estuarine wetland. PeerJ 2024; 12:e18291. [PMID: 39421423 PMCID: PMC11485052 DOI: 10.7717/peerj.18291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Background The planting of mangroves is extensively used to control the invasive plant Spartina alterniflora in coastal wetlands. Different plant species release diverse sets of small organic compounds that affect rhizosphere conditions and support high levels of microbial activity. The root-associated microbial community is crucial for plant health and soil nutrient cycling, and for maintaining the stability of the wetland ecosystem. Methods High-throughput sequencing was used to assess the structure and function of the soil bacterial communities in mudflat soil and in the rhizosphere soils of S. alterniflora, mangroves, and native plants in the Oujiang estuarine wetland, China. A distance-based redundancy analysis (based on Bray-Curtis metrics) was used to identify key soil factors driving bacterial community structure. Results S. alterniflora invasion and subsequent mangrove afforestation led to the formation of distinct bacterial communities. The main soil factors driving the structure of bacterial communities were electrical conductivity (EC), available potassium (AK), available phosphorus (AP), and organic matter (OM). S. alterniflora obviously increased EC, OM, available nitrogen (AN), and NO3 --N contents, and consequently attracted copiotrophic Bacteroidates to conduct invasion in the coastal areas. Mangroves, especially Kandelia obovata, were suitable pioneer species for restoration and recruited beneficial Desulfobacterota and Bacilli to the rhizosphere. These conditions ultimately increased the contents of AP, available sulfur (AS), and AN in soil. The native plant species Carex scabrifolia and Suaeda glauca affected coastal saline soil primarily by decreasing the EC, rather than by increasing nutrient contents. The predicted functions of bacterial communities in rhizosphere soils were related to active catabolism, whereas those of the bacterial community in mudflat soil were related to synthesis and resistance to environmental factors. Conclusions Ecological restoration using K. obovata has effectively improved a degraded coastal wetland mainly through increasing phosphorus availability and promoting the succession of the microbial community.
Collapse
Affiliation(s)
- Jinwang Wang
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xi Lin
- Wenzhou Institute of Eco-Environmental Sciences, Wenzhou, China
| | - Xia An
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuangshuang Liu
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xin Wei
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Tianpei Zhou
- Yueqing Bureau of Natural Resources and Planning, Wenzhou, China
| | - Qianchen Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Qiuxia Chen
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xing Liu
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| |
Collapse
|
14
|
Deng S, Luo S, Lin Q, Shen L, Gao L, Zhang W, Chen J, Li C. Analysis of heavy metal and arsenic sources in mangrove surface sediments at Wulishan Port on Leizhou Peninsula, China, using the APCS-MLR model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116788. [PMID: 39067073 DOI: 10.1016/j.ecoenv.2024.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Mangrove forests are sources and sinks for various pollutants. This study analyzed the current status of heavy metal and arsenic (As) pollution in mangrove surface sediments in rapidly industrializing and urbanizing port cities. Surface sediments of mangroves at Wulishan Port on the Leizhou Peninsula, China, were analyzed using inductively coupled plasma emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) for the presence of Cr, Pb, Ni, Zn, Cd, Cu, As, and Hg. The Pollution load index, Nemerow pollution index, and Potential ecological risk index were employed to evaluate the pollutant. Multivariate statistical methods were applied for the qualitative analysis of pollutant sources, and the APCS-MLR receptor model was used for quantification. This study indicated the following results: (1) The average content of eight pollutants surpassed the local background level but did not exceed the Marine Sediment Quality standard. The pollution levels across the four sampling areas were ranked as Ⅲ > Ⅳ > Ⅰ > Ⅱ. The area Ⅱ exhibited relatively lower pollution levels with the grain size of the sediments dominated by sand, which was not conducive to pollutant adsorption and enrichment. (2) The factor analysis and cluster analyses identified three primary sources of contamination. As, Cr, Ni, and Pb originated from nearby industrial activities and their associated wastewater, suggesting that the primary source was the industrial source. Cd, Cu, and Zn stem from the cement columns utilized in oyster farming, alongside discharges from mariculture and pig farming, establishing a secondary agricultural source. Hg originated from ship exhaust burning oil and vehicle emissions in the vicinity, representing the third traffic source. (3) The APCS-MLR receptor model results demonstrated industrial, agricultural, and traffic sources contributing 47.19 %, 33.13 %, and 13.03 %, respectively, with 6.65 % attributed to unidentified sources.
Collapse
Affiliation(s)
- Suyan Deng
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China; Faculty of Geography, Yunnan Normal University, Kunming, China
| | - Songying Luo
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China; Mangrove Institute, Lingnan Normal University, Zhanjiang, China.
| | - Qiance Lin
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China
| | - Linli Shen
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China
| | - Linmei Gao
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China
| | - Wei Zhang
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China
| | - Jinlian Chen
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China
| | - Chengyang Li
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China.
| |
Collapse
|
15
|
Esguerra-Rodríguez D, De León-Lorenzana A, Teutli C, Prieto-Davó A, García-Maldonado JQ, Herrera-Silveira J, Falcón LI. Do restoration strategies in mangroves recover microbial diversity? A case study in the Yucatan peninsula. PLoS One 2024; 19:e0307929. [PMID: 39150908 PMCID: PMC11329136 DOI: 10.1371/journal.pone.0307929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/15/2024] [Indexed: 08/18/2024] Open
Abstract
Mangrove forests are fundamental coastal ecosystems for the variety of services they provide, including green-house gas regulation, coastal protection and home to a great biodiversity. Mexico is the fourth country with the largest extension of mangroves of which 60% occurs in the Yucatan Peninsula. Understanding the microbial component of mangrove forests is necessary for their critical roles in biogeochemical cycles, ecosystem health, function and restoration initiatives. Here we study the relation between the microbial community from sediments and the restoration process of mangrove forests, comparing conserved, degraded and restored mangroves along the northern coast of the Yucatan peninsula. Results showed that although each sampling site had a differentiated microbial composition, the taxa belonged predominantly to Proteobacteria (13.2-23.6%), Desulfobacterota (7.6-8.3%) and Chloroflexi (9-15.7%) phyla, and these were similar between rainy and dry seasons. Conserved mangroves showed significantly higher diversity than degraded ones, and restored mangroves recovered their microbial diversity from the degraded state (Dunn test p-value Benjamini-Hochberg adjusted = 0.0034 and 0.0071 respectively). The structure of sediment microbial β-diversity responded significantly to the mangrove conservation status and physicochemical parameters (organic carbon content, redox potential, and salinity). Taxa within Chloroflexota, Desulfobacterota and Thermoplasmatota showed significantly higher abundance in degraded mangrove samples compared to conserved ones. This study can help set a baseline that includes the microbial component in health assessment and restoration strategies of mangrove forests.
Collapse
Affiliation(s)
- Daniel Esguerra-Rodríguez
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Instituto de Ecología, Laboratorio de Ecología Bacteriana, Unidad Mérida, Ucú, Yucatán, México
| | - Arit De León-Lorenzana
- Instituto de Ecología, Laboratorio de Ecología Bacteriana, Unidad Mérida, Ucú, Yucatán, México
| | - Claudia Teutli
- Escuela Nacional de Estudios Superiores Mérida, Universidad Nacional Autónoma de México, Ucú, Yucatán, México
| | - Alejandra Prieto-Davó
- Facultad de Química, Unidad de Química Sisal, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
| | - José Q García-Maldonado
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán, México
| | - Jorge Herrera-Silveira
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán, México
| | - Luisa I Falcón
- Instituto de Ecología, Laboratorio de Ecología Bacteriana, Unidad Mérida, Ucú, Yucatán, México
| |
Collapse
|
16
|
Ding Y, Li Y, You T, Liu S, Wang S, Zeng X, Jia Y. Effects of denitrification on speciation and redistribution of arsenic in estuarine sediments. WATER RESEARCH 2024; 258:121766. [PMID: 38759285 DOI: 10.1016/j.watres.2024.121766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Microbially-mediated redox processes involving arsenic (As) and its host minerals significantly contribute to the mobilization of As in estuarine sediments. Despite its significance, the coupling between As dynamics and denitrification processes in these sediments is not well understood. This study employed sequential sediment extractions and simultaneous monitoring of dissolved iron (Fe), nitrogen (N), and sulfur (S) to investigate the impact of nitrate (NO3-) on the speciation and redistribution of As, alongside changes in microbial community composition. Our results indicated that NO3- additions significantly enhance anaerobic arsenite (As(III)) oxidation, facilitating its immobilization by increased adsorption onto sediment matrices in As-contaminated estuarine settings. Furthermore, NO3- promoted the conversion of As bound to troilite (FeS) and pyrite (FeS2) into forms associated with Fe oxides, challenging the previously assumed stability of FeS/FeS2-bound As in such environments. Continuous NO3- additions ensured As and Fe oxidation, thereby preventing their reductive dissolution and stabilizing the process that reduces As mobility. Changes in the abundance of bacterial communities and correlation analyses revealed that uncultured Anaerolineaceae and Thioalkalispira may be the main genus involved in these transformations. This study underscores the critical role of NO3- availability in modulating the biogeochemical cycle of As in estuarine sediments, offering profound insights for enhancing As immobilization techniques and informing environmental management and remediation strategies in As-contaminated coastal regions.
Collapse
Affiliation(s)
- Yu Ding
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yongbin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Tingting You
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shichao Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
17
|
Meng J, Xu F, Yang H, Li X, Zhao P. Exploring microbiome and plankton responses and interactions in the mangrove ecosystem through eDNA and network analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172581. [PMID: 38641112 DOI: 10.1016/j.scitotenv.2024.172581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
The comprehensive analysis of multiple biological communities is essential for assessing diversities within mangrove ecosystems, yet such studies are infrequent. Environmental DNA (eDNA) facilitates the simultaneous exploration of organisms across various levels within a single ecosystem. In this investigation, 16S rRNA, cytochrome C oxidase I (COI), and Mito-fish primers were employed to characterize the microbiome, eukaryotic plankton, and fish communities, along with their intricate interactions, across 24 samples from three Chinese mangrove reservoirs. The resulting dataset encompasses 3779 taxonomic groups (genus level), spanning from the microbiome to vertebrates. Diversity analysis unveiled a higher level of stability in the microbiome community compared to plankton, underscoring the superior site-specificity of plankton. The association analysis revealed that biodiversity was primarily affected by temperature, turbidity, and fluorescent dissolved organic matter (fDOM). Notably, the physicochemical factors, turbidity, and fDOM had a more pronounced impact on the microbiome than on plankton, explaining their distinct sensitivities to site-specific conditions. Network analysis constructed 15 biological interaction subnetworks representing various community connections. The most connected genera in each subnetwork, highly responsive to different environmental factors, could serve as potential indicators of distinct ecosystem states. In summary, our findings represent the first comparison of the response sensitivities of different communities and the construction of their interaction networks in mangrove environments. These results contribute valuable insights into marine ecosystem dynamics and the role of environmental factors in shaping biodiversity.
Collapse
Affiliation(s)
- Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Fei Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Wuhan, China
| | - Haijie Yang
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xiaoxu Li
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Peng Zhao
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| |
Collapse
|
18
|
Hu M, Sardans J, Sun D, Yan R, Wu H, Ni R, Peñuelas J. Microbial diversity and keystone species drive soil nutrient cycling and multifunctionality following mangrove restoration. ENVIRONMENTAL RESEARCH 2024; 251:118715. [PMID: 38490631 DOI: 10.1016/j.envres.2024.118715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Vegetation restoration exerts transformative effects on nutrient cycling, microbial communities, and ecosystem functions. While extensive research has been conducted on the significance of mangroves and their restoration efforts, the effectiveness of mangrove restoration in enhancing soil multifunctionality in degraded coastal wetlands remains unclear. Herein, we carried out a field experiment to explore the impacts of mangrove restoration and its chronosequence on soil microbial communities, keystone species, and soil multifunctionality, using unrestored aquaculture ponds as controls. The results revealed that mangrove restoration enhanced soil multifunctionality, with these positive effects progressively amplifying over the restoration chronosequence. Furthermore, mangrove restoration led to a substantial increase in microbial diversity and a reshaping of microbial community composition, increasing the relative abundance of dominant phyla such as Nitrospirae, Deferribacteres, and Fusobacteria. Soil multifunctionality exhibited positive correlations with microbial diversity, suggesting a link between variations in microbial diversity and soil multifunctionality. Metagenomic screening demonstrated that mangrove restoration resulted in a simultaneous increase in the abundance of nitrogen (N) related genes, such as N fixation (nirD/H/K), nitrification (pmoA-amoA/B/C), and denitrification (nirK, norB/C, narG/H, napA/B), as well as phosphorus (P)-related genes, including organic P mineralization (phnX/W, phoA/D/G, phnJ/N/P), inorganic P solubilization (gcd, ppx-gppA), and transporters (phnC/D/E, pstA/B/C/S)). The relationship between the abundance of keystone species (such as phnC/D/E) and restoration-induced changes in soil multifunctionality indicates that mangrove restoration enhances soil multifunctionality through an increase in the abundance of keystone species associated with N and P cycles. Additionally, it was observed that changes in microbial community and multifunctionality were largely associated with shifts in soil salinity. These findings demonstrate that mangrove restoration positively influences soil multifunctionality and shapes nutrient dynamics, microbial communities, and overall ecosystem resilience. As global efforts continue to focus on ecosystem restoration, understanding the complexity of mangrove-soil interactions is critical for effective nutrient management and mangrove conservation.
Collapse
Affiliation(s)
- Minjie Hu
- Key Laboratory of Humid Sub-tropical Eco-geographical Processes of Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China.
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
| | - Dongyao Sun
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Ruibing Yan
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Hui Wu
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Ranxu Ni
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
| |
Collapse
|
19
|
Zhang D, Liu F, Al MA, Yang Y, Yu H, Li M, Wu K, Niu M, Wang C, He Z, Yan Q. Nitrogen and sulfur cycling and their coupling mechanisms in eutrophic lake sediment microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172518. [PMID: 38631637 DOI: 10.1016/j.scitotenv.2024.172518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Microorganisms play important roles in the biogeochemical cycles of lake sediment. However, the integrated metabolic mechanisms governing nitrogen (N) and sulfur (S) cycling in eutrophic lakes remain poorly understood. Here, metagenomic analysis of field and bioreactor enriched sediment samples from a typical eutrophic lake were applied to elucidate the metabolic coupling of N and S cycling. Our results showed significant diverse genes involved in the pathways of dissimilatory sulfur metabolism, denitrification and dissimilatory nitrate reduction to ammonium (DNRA). The N and S associated functional genes and microbial groups generally showed significant correlation with the concentrations of NH4+, NO2- and SO42, while with relatively low effects from other environmental factors. The gene-based co-occurrence network indicated clear cooperative interactions between N and S cycling in the sediment. Additionally, our analysis identified key metabolic processes, including the coupled dissimilatory sulfur oxidation (DSO) and DNRA as well as the association of thiosulfate oxidation complex (SOX systems) with denitrification pathway. However, the enriched N removal microorganisms in the bioreactor ecosystem demonstrated an additional electron donor, incorporating both the SOX systems and DSO processes. Metagenome-assembled genomes-based ecological model indicated that carbohydrate metabolism is the key linking factor for the coupling of N and S cycling. Our findings uncover the coupling mechanisms of microbial N and S metabolism, involving both inorganic and organic respiration pathways in lake sediment. This study will enhance our understanding of coupled biogeochemical cycles in lake ecosystems.
Collapse
Affiliation(s)
- Dandan Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Liu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Mamun Abdullah Al
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuchun Yang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Huang Yu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China; School of Resources Environment and Safety Engineering, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Mingyue Li
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Kun Wu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Mingyang Niu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingyun Yan
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
20
|
Mondal S, Biswas B, Chowdhury R, Sengupta R, Mandal A, Kotal HN, Giri CK, Ghosh A, Saha S, Begam MM, Mukherjee C, Das I, Basak SK, Mitra Ghosh M, Ray K. Estuarine mangrove niches select cultivable heterotrophic diazotrophs with diverse metabolic potentials-a prospective cross-dialog for functional diazotrophy. Front Microbiol 2024; 15:1324188. [PMID: 38873137 PMCID: PMC11174608 DOI: 10.3389/fmicb.2024.1324188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Biological nitrogen fixation (BNF), an unparalleled metabolic novelty among living microorganisms on earth, globally contributes ~88-101 Tg N year-1 to natural ecosystems, ~56% sourced from symbiotic BNF while ~22-45% derived from free-living nitrogen fixers (FLNF). The success of symbiotic BNF is largely dependent on its interaction with host-plant, however ubiquitous environmental heterotrophic FLNFs face many limitations in their immediate ecological niches to sustain unhindered BNF. The autotrophic FLNFs like cyanobacteria and oceanic heterotrophic diazotrophs have been well studied about their contrivances acclimated/adapted by these organisms to outwit the environmental constraints for functional diazotrophy. However, FLNF heterotrophs face more adversity in executing BNF under stressful estuarine/marine/aquatic habitats. Methods In this study a large-scale cultivation-dependent investigation was accomplished with 190 NCBI accessioned and 45 non-accessioned heterotrophic FLNF cultivable bacterial isolates (total 235) from halophilic estuarine intertidal mangrove niches of Indian Sundarbans, a Ramsar site and UNESCO proclaimed World Heritage Site. Assuming ~1% culturability of the microbial community, the respective niches were also studied for representing actual bacterial diversity via cultivation-independent next-generation sequencing of V3-V4 rRNA regions. Results Both the studies revealed a higher abundance of culturable Gammaproteobacteria followed by Firmicutes, the majority of 235 FLNFs studied belonging to these two classes. The FLNFs displayed comparable selection potential in media for free nitrogen fixers and iron-oxidizing bacteria, linking diazotrophy with iron oxidation, siderophore production, phosphorus solubilization, phosphorus uptake and accumulation as well as denitrification. Discussion This observation validated the hypothesis that under extreme estuarine mangrove niches, diazotrophs are naturally selected as a specialized multidimensional entity, to expedite BNF and survive. Earlier metagenome data from mangrove niches demonstrated a microbial metabolic coupling among C, N, P, S, and Fe cycling in mangrove sediments, as an adaptive trait, evident with the co-abundant respective functional genes, which corroborates our findings in cultivation mode for multiple interrelated metabolic potential facilitating BNF in a challenging intertidal mangrove environment.
Collapse
Affiliation(s)
- Sumana Mondal
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Biswajit Biswas
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
- Department of Microbiology, St. Xavier’s College (Autonomous), Kolkata, India
| | - Rajojit Chowdhury
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
- Department of Botany, Sree Chaitanya College, Habra, India
| | - Rudranil Sengupta
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Anup Mandal
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Hemendra Nath Kotal
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Chayan Kumar Giri
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Anjali Ghosh
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Subhajit Saha
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Mst Momtaj Begam
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
- Department of Botany, Kalimpong College, Darjeeling, India
| | - Chandan Mukherjee
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
- School of Biological and Life Sciences, Galgotias University, Greater Noida, India
| | - Ipsita Das
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | | | | | - Krishna Ray
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| |
Collapse
|
21
|
Wang A, Zhang S, Liang Z, Zeng Z, Ma Y, Zhang Z, Yang Y, He Z, Yu G, Liang Y. Response of microbial communities to exogenous nitrate nitrogen input in black and odorous sediment. ENVIRONMENTAL RESEARCH 2024; 248:118137. [PMID: 38295972 DOI: 10.1016/j.envres.2024.118137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024]
Abstract
Since nitrate nitrogen (NO3--N) input has proved an effective approach for the treatment of black and odorous river waterbody, it was controversial whether the total nitrogen concentration standard should be raised when the effluent from the sewage treatment plant is discharged into the polluted river. To reveal the effect of exogenous nitrate (NO3--N) on black odorous waterbody, sediments with different features from contaminated rivers were collected, and the changes of physical and chemical characteristics and microbial community structure in sediments before and after the addition of exogenous NO3--N were investigated. The results showed that after the input of NO3--N, reducing substances such as acid volatile sulfide (AVS) in the sediment decreased by 80 % on average, ferrous (Fe2+) decreased by 50 %, yet the changing trend of ammonia nitrogen (NH4+-N) in some sediment samples increased while others decreased. High-throughput sequencing results showed that the abundance of Thiobacillus at most sites increased significantly, becoming the dominant genus in the sediment, and the abundance of functional genes in the metabolome increased, such as soxA, soxX, soxY, soxZ. Network analysis showed that sediment microorganisms evolved from a single sulfur oxidation ecological function to diverse ecological functions, such as nitrogen cycle nirB, nirD, nirK, nosZ, and aerobic decomposition. In summary, inputting an appropriate amount of exogenous NO3--N is beneficial for restoring and maintaining the oxidation states of river sediment ecosystems.
Collapse
Affiliation(s)
- Ao Wang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Shengrui Zhang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ziyang Liang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhanqin Zeng
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yingshi Ma
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiang Zhang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zihao He
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Guangwei Yu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| | - Yuhai Liang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
22
|
Medina-Ruiz A, Jiménez-Millán J, Abad I, Gálvez A, Grande MJ, Jiménez-Espinosa R. Aragonite crystallization in a sulfate-rich hypersaline wetland under dry Mediterranean climate (Laguna Honda, eastern Guadalquivir basin, S Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171362. [PMID: 38428615 DOI: 10.1016/j.scitotenv.2024.171362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
This research investigates the influence of water composition, the presence of seasonal algal mats, detrital inputs and the activity of microorganisms on the crystallization of aragonite in the sediments deposited in the hypersaline Laguna Honda wetland (S of Spain). The high alkaline and hypersaline waters (pH > 9.2 and C.E. > 70 mS/cm) of the wetland lake are rich in SO42- (>24,000 mg/l), Cl- (>21,000 mg/l), Na+ (>11,000 mg/l) Mg2+ (>8400 mg/l) and Ca2+ (>1000 mg/l), and are supersaturated for dolomite, calcite and aragonite. Sediments have lower pH values than column waters, oscillating from 8.54 in the low Eh (up to -80.9 mV) central deep sediments and 6.33 in the shallower higher Eh (around -13.6 mV) shore sediments. Erosion of the surrounding olive groves soils produced detrital silicates rich sediments with concretions of carbonate or sulfate. Aragonite (up to 19 %) and pyrite (up to 13 %) are mainly concentrated in the organic matter rich samples from the upper part of the sediment cores, whereas gypsum is preferably concentrated in low organic matter content samples. Mineral crusts containing a MgAl silicate phase, epsomite, halite and gypsum are precipitated on the floating algal mats covering the wetland waters. Floating algal mats deposit increased the organic matter content of the upper sediments which promoted the presence of fermentative microorganisms, sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) communities and variations of Eh that influence the authigenesis of carbonate and S-bearing minerals. Replacement of poorly crystalline MgSi phases infilling algal cells by aragonite was favored in the organic matter rich sediments with low Eh values and important SRB communities that promoted sulfate bioreduction processes to form pyrite. Aragonite precipitation was favored by the increase of carbonate and bicarbonate concentration produced by the SRB oxidation of organic matter, the CO2 degassing by high summer temperatures and the CO2 uptake by photosynthesis of the algal mats.
Collapse
Affiliation(s)
- Antonio Medina-Ruiz
- Department of Geology and CEACTEMA, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Juan Jiménez-Millán
- Department of Geology and CEACTEMA, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| | - Isabel Abad
- Department of Geology and CEACTEMA, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Antonio Gálvez
- Microbiology Division, Department of Health Sciences, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - María José Grande
- Microbiology Division, Department of Health Sciences, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Rosario Jiménez-Espinosa
- Department of Geology and CEACTEMA, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
23
|
Muwawa EM, Makonde HM, Obieze CC, de Oliveira IG, Jefwa JM, Kahindi JHP, Khasa DP. Diversity and assembly patterns of mangrove rhizosphere mycobiome along the Coast of Gazi Bay and Mida Creek in Kenya. PLoS One 2024; 19:e0298237. [PMID: 38635689 PMCID: PMC11025898 DOI: 10.1371/journal.pone.0298237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/19/2024] [Indexed: 04/20/2024] Open
Abstract
Fungi are among key actors in the biogeochemical processes occurring in mangrove ecosystems. In this study, we investigated the changes of fungal communities in selected mangrove species by exploring differences in diversity, structure and the degree of ecological rearrangement occurring within the rhizospheres of four mangrove species (Sonneratia alba, Rhizophora mucronata, Ceriops tagal and Avicennia marina) at Gazi Bay and Mida Creek in Kenya. Alpha diversity investigation revealed that there were no significant differences in species diversity between the same mangrove species in the different sites. Rather, significant differences were observed in fungal richness for some of the mangrove species. Chemical parameters of the mangrove sediment significantly correlated with fungal alpha diversity and inversely with richness. The fungal community structure was significantly differentiated by mangrove species, geographical location and chemical parameters. Taxonomic analysis revealed that 96% of the amplicon sequence variants belonged to the Phylum Ascomycota, followed by Basidiomycota (3%). Predictive FUNGuild and co-occurrence network analysis revealed that the fungal communities in Gazi Bay were metabolically more diverse compared to those of Mida Creek. Overall, our results demonstrate that anthropogenic activities influenced fungal richness, community assembly and their potential ecological functions in the mangrove ecosystems investigated.
Collapse
Affiliation(s)
- Edith M. Muwawa
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
- Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| | - Huxley M. Makonde
- Department of Pure & Applied Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Chinedu C. Obieze
- Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| | - Isabelle G. de Oliveira
- Laboratory of Mycorrhizal Associations, Department of Microbiology/BIOAGRO, Universidade Federal de Vicosa, Vicosa-MG, Brazil
| | - Joyce M. Jefwa
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | | | - Damase P. Khasa
- Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| |
Collapse
|
24
|
Zhang X, Ji Z, Yang X, Huang J, Zhang Y, Zhou H, Qu Y, Zhan J. Deciphering the spatial distribution and function profiles of soil bacterial community in Liao River estuarine wetland, Northeast China. MARINE POLLUTION BULLETIN 2024; 199:115984. [PMID: 38176162 DOI: 10.1016/j.marpolbul.2023.115984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024]
Abstract
Soil microbes play vital roles in estuarine wetlands. Understanding the soil bacterial community structure and function profiles is essential to reveal the ecological functions of microbes in estuarine wetlands. Herein, soil samples were collected from Liao River estuarine wetland, Northeast China, along the river to the estuarine mouth, and soil bacterial communities were explored. Results showed that soil physiochemical properties, bacterial community structure and functions exhibited distinct variations influenced by geographical location. Bacterial phyla in soils were dominated by Proteobacteria and Bacteroidetes, while Gillisia and Woeseia were the predominant genera. Soil pH, electrical conductivity and nitrogen-related nutrients were the important factors affecting bacterial community structure. Based on PICRUSt prediction, the genes related to metabolism of nitrogen, sulfur and methane showed spatial distribution patterns, and the abundances of most biomarker genes increased as the distance from estuarine mouth extended. These findings could enrich the understanding of soil microbiome in estuarine wetlands.
Collapse
Affiliation(s)
- Xuwang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Zhe Ji
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Xiaojing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Jingyi Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Yiwen Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China.
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Yuanyuan Qu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
25
|
Kang W, Xiao Y, Li W, Cheng A, Cheng C, Jia Z, Yu L. Paddy cultivation in degraded karst wetland soil can significantly improve the physiological and ecological functions of carbon-fixing resident microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168187. [PMID: 37972785 DOI: 10.1016/j.scitotenv.2023.168187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Microorganisms play an important role in carbon fixation in karst wetland soils. However, the carbon fixation capacity of karst wetland soils and active microorganisms involved in the carbon fixation process are poorly understood. In this study, carbon fixation capacity and active microorganisms involved in the fixation of inorganic carbon into organic carbon were studied in native, naturally degraded, and reclaimed karst wetland soils by the combination of stable isotope probing (SIP) and high-throughput sequencing. Under light conditions, the soil carbon fixation capacity ranked: the reclaimed wetland soil (1.58 mg C kg-1 day-1) > native wetland soil (1.43 mg C kg-1 day-1) > degraded wetland soil (0.62 mg C kg-1 day-1). In the dark, the soils ranked: the native wetland soil (0.24 mg C kg-1 day-1) > reclaimed wetland soil (0.18 mg C kg-1 day-1) > degraded wetland soil (0.06 mg C kg-1 day-1). Active microorganisms fixing inorganic carbon in the karst wetland soils were mainly Sulfurovum, Thermovirga, Dethiosulfatibacter, Allochromatium, Methylorubrum, and Bradyrhizobium. Thus, paddy cultivation can restore the carbon fixation capacity of microorganisms in the degraded karst wetland soil. This study provides an experimental basis for improving soil carbon fixation capacity and repairing degraded soil in karst wetlands.
Collapse
Affiliation(s)
- Weihua Kang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yutian Xiao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Li
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China.
| | - Aoqi Cheng
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Congyu Cheng
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
| |
Collapse
|
26
|
Wang S, Jiang L, Zhao Z, Chen Z, Wang J, Alain K, Cui L, Zhong Y, Peng Y, Lai Q, Dong X, Shao Z. Chemolithoautotrophic diazotrophs dominate dark nitrogen fixation in mangrove sediments. THE ISME JOURNAL 2024; 18:wrae119. [PMID: 38916247 PMCID: PMC11474244 DOI: 10.1093/ismejo/wrae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/21/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Diazotrophic microorganisms regulate marine productivity by alleviating nitrogen limitation. So far chemolithoautotrophic bacteria are widely recognized as the principal diazotrophs in oligotrophic marine and terrestrial ecosystems. However, the contribution of chemolithoautotrophs to nitrogen fixation in organic-rich habitats remains unclear. Here, we utilized metagenomic and metatranscriptomic approaches integrated with cultivation assays to investigate the diversity, distribution, and activity of diazotrophs residing in Zhangzhou mangrove sediments. Physicochemical assays show that the studied mangrove sediments are typical carbon-rich, sulfur-rich, nitrogen-limited, and low-redox marine ecosystems. These sediments host a wide phylogenetic variety of nitrogenase genes, including groups I-III and VII-VIII. Unexpectedly diverse chemolithoautotrophic taxa including Campylobacteria, Gammaproteobacteria, Zetaproteobacteria, and Thermodesulfovibrionia are the predominant and active nitrogen fixers in the 0-18 cm sediment layer. In contrast, the 18-20 cm layer is dominated by active diazotrophs from the chemolithoautotrophic taxa Desulfobacterota and Halobacteriota. Further analysis of MAGs shows that the main chemolithoautotrophs can fix nitrogen by coupling the oxidation of hydrogen, reduced sulfur, and iron, with the reduction of oxygen, nitrate, and sulfur. Culture experiments further demonstrate that members of chemolithoautotrophic Campylobacteria have the nitrogen-fixing capacity driven by hydrogen and sulfur oxidation. Activity measurements confirm that the diazotrophs inhabiting mangrove sediments preferentially drain energy from diverse reduced inorganic compounds other than from organics. Overall, our results suggest that chemolithoautotrophs rather than heterotrophs are dominant nitrogen fixers in mangrove sediments. This study underscores the significance of chemolithoautotrophs in carbon-dominant ecosystems.
Collapse
Affiliation(s)
- Shasha Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Zhuoming Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Zhen Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Jun Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Karine Alain
- Univ Brest, CNRS, Ifremer, EMR6002 BIOMEX, Biologie Interactions et adaptations des Organismes en Milieu EXtrême, IRP 1211 MicrobSea, F-29280 Plouzané, France
| | - Liang Cui
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Yangsheng Zhong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
| |
Collapse
|
27
|
Du H, Pan J, Zhang C, Yang X, Wang C, Lin X, Li J, Liu W, Zhou H, Yu X, Mo S, Zhang G, Zhao G, Qu W, Jiang C, Tian Y, He Z, Liu Y, Li M. Analogous assembly mechanisms and functional guilds govern prokaryotic communities in mangrove ecosystems of China and South America. Microbiol Spectr 2023; 11:e0157723. [PMID: 37668400 PMCID: PMC10580968 DOI: 10.1128/spectrum.01577-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/19/2023] [Indexed: 09/06/2023] Open
Abstract
As an important coastal "blue carbon sink," mangrove ecosystems contain microbial communities with an as-yet-unknown high species diversity. Exploring the assemblage and structure of sediment microbial communities therein can aid in a better understanding of their ecosystem functioning, such as carbon sequestration and other biogeochemical cycles in mangrove wetlands. However, compared to other biomes, the study of mangrove sediment microbiomes is limited, especially in diverse mangrove ecosystems at a large spatial scale, which may harbor microbial communities with distinct compositions and functioning. Here, we analyzed 380 sediment samples from 13 and 8 representative mangrove ecosystems, respectively, in China and South America and compared their microbial features. Although the microbial community compositions exhibited strong distinctions, the community assemblage in the two locations followed analogous patterns: the assemblages of the entire community, abundant taxa, rare taxa, and generalists were predominantly driven by stochastic processes with significant distance-decay patterns, while the assembly of specialists was more likely related to the behaviors of other organisms in or surrounding the mangrove ecosystems. In addition, co-occurrence and topological network analysis of mangrove sediment microbiomes underlined the dominance of sulfate-reducing prokaryotes in both the regions. Moreover, we found that more than 70% of the keystone and hub taxa were sulfate-reducing prokaryotes, implying their important roles in maintaining the linkage and stability of the mangrove sediment microbial communities. This study fills a gap in the large-scale analysis of microbiome features covering distantly located and diverse mangrove ecosystems. Here, we propose a suggestion to the Mangrove Microbiome Initiative that 16S rRNA sequencing protocols should be standardized with a unified primer to facilitate the global-scale analysis of mangrove microbiomes and further comparisons with the reference data sets from other biomes.IMPORTANCEMangrove wetlands are important ecosystems possessing valuable ecological functions for carbon storage, species diversity maintenance, and coastline stabilization. These functions are greatly driven or supported by microorganisms that make essential contributions to biogeochemical cycles in mangrove ecosystems. The mechanisms governing the microbial community assembly, structure, and functions are vital to microbial ecology but remain unclear. Moreover, studying these mechanisms of mangrove microbiomes at a large spatial scale can provide a more comprehensive insight into their universal features and can help untangle microbial interaction patterns and microbiome functions. In this study, we compared the mangrove microbiomes in a large spatial range and found that the assembly patterns and key functional guilds of the Chinese and South American mangrove microbiomes were analogous. The entire communities exhibited significant distance-decay patterns and were strongly governed by stochastic processes, while the assemblage of specialists may be merely associated with the behaviors of the organisms in mangrove ecosystems. Furthermore, our results highlight the dominance of sulfate-reducing prokaryotes in mangrove microbiomes and their key roles in maintaining the stability of community structure and functions.
Collapse
Affiliation(s)
- Huan Du
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Cuijing Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Xilan Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen, China
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cheng Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- State Key Laboratory for Biocontrol, Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xiaolan Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jinhui Li
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, China
| | - Wan Liu
- National Genomics Data Center& Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Science, Shanghai, China
| | - Haokui Zhou
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen, China
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoli Yu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- State Key Laboratory for Biocontrol, Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Shuming Mo
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, China
| | - Guoqing Zhang
- National Genomics Data Center& Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Science, Shanghai, China
| | - Guoping Zhao
- National Genomics Data Center& Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Science, Shanghai, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Wu Qu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Chengjian Jiang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- State Key Laboratory for Biocontrol, Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
28
|
Yu X, Tu Q, Liu J, Peng Y, Wang C, Xiao F, Lian Y, Yang X, Hu R, Yu H, Qian L, Wu D, He Z, Shu L, He Q, Tian Y, Wang F, Wang S, Wu B, Huang Z, He J, Yan Q, He Z. Environmental selection and evolutionary process jointly shape genomic and functional profiles of mangrove rhizosphere microbiomes. MLIFE 2023; 2:253-266. [PMID: 38817818 PMCID: PMC10989796 DOI: 10.1002/mlf2.12077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/21/2023] [Accepted: 06/29/2023] [Indexed: 06/01/2024]
Abstract
Mangrove reforestation with introduced species has been an important strategy to restore mangrove ecosystem functioning. However, how such activities affect microbially driven methane (CH4), nitrogen (N), and sulfur (S) cycling of rhizosphere microbiomes remains unclear. To understand the effect of environmental selection and the evolutionary process on microbially driven biogeochemical cycles in native and introduced mangrove rhizospheres, we analyzed key genomic and functional profiles of rhizosphere microbiomes from native and introduced mangrove species by metagenome sequencing technologies. Compared with the native mangrove (Kandelia obovata, KO), the introduced mangrove (Sonneratia apetala, SA) rhizosphere microbiome had significantly (p < 0.05) higher average genome size (AGS) (5.8 vs. 5.5 Mb), average 16S ribosomal RNA gene copy number (3.5 vs. 3.1), relative abundances of mobile genetic elements, and functional diversity in terms of the Shannon index (7.88 vs. 7.84) but lower functional potentials involved in CH4 cycling (e.g., mcrABCDG and pmoABC), N2 fixation (nifHDK), and inorganic S cycling (dsrAB, dsrC, dsrMKJOP, soxB, sqr, and fccAB). Similar results were also observed from the recovered Proteobacterial metagenome-assembled genomes with a higher AGS and distinct functions in the introduced mangrove rhizosphere. Additionally, salinity and ammonium were identified as the main environmental drivers of functional profiles of mangrove rhizosphere microbiomes through deterministic processes. This study advances our understanding of microbially mediated biogeochemical cycling of CH4, N, and S in the mangrove rhizosphere and provides novel insights into the influence of environmental selection and evolutionary processes on ecosystem functions, which has important implications for future mangrove reforestation.
Collapse
Affiliation(s)
- Xiaoli Yu
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Qichao Tu
- Institute of Marine Science and TechnologyShandong UniversityQingdaoChina
| | - Jihua Liu
- Institute of Marine Science and TechnologyShandong UniversityQingdaoChina
| | - Yisheng Peng
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Cheng Wang
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Fanshu Xiao
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yingli Lian
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Xueqin Yang
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Ruiwen Hu
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Huang Yu
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Lu Qian
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Daoming Wu
- College of Forestry & Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Ziying He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine ScienceSun Yat‐sen UniversityGuangzhouChina
| | - Longfei Shu
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Qiang He
- Department of Civil and Environmental EngineeringThe University of TennesseeKnoxvilleTennesseeUSA
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life SciencesXiamen UniversityXiamenChina
| | - Faming Wang
- Xiaoliang Research Station for Tropical Coastal Ecosystems and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Shanquan Wang
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Bo Wu
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Zhijian Huang
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine ScienceSun Yat‐sen UniversityGuangzhouChina
| | - Jianguo He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine ScienceSun Yat‐sen UniversityGuangzhouChina
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Qingyun Yan
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| | - Zhili He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Environmental Microbiomics Research CenterSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
29
|
Zhang ZF, Liu LR, Pan YP, Pan J, Li M. Long-read assembled metagenomic approaches improve our understanding on metabolic potentials of microbial community in mangrove sediments. MICROBIOME 2023; 11:188. [PMID: 37612768 PMCID: PMC10464287 DOI: 10.1186/s40168-023-01630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Mangrove wetlands are coastal ecosystems with important ecological features and provide habitats for diverse microorganisms with key roles in nutrient and biogeochemical cycling. However, the overall metabolic potentials and ecological roles of microbial community in mangrove sediment are remained unanswered. In current study, the microbial and metabolic profiles of prokaryotic and fungal communities in mangrove sediments were investigated using metagenomic analysis based on PacBio single-molecule real time (SMRT) and Illumina sequencing techniques. RESULTS Comparing to Illumina short reads, the incorporation of PacBio long reads significantly contributed to more contiguous assemblies, yielded more than doubled high-quality metagenome-assembled genomes (MAGs), and improved the novelty of the MAGs. Further metabolic reconstruction for recovered MAGs showed that prokaryotes potentially played an essential role in carbon cycling in mangrove sediment, displaying versatile metabolic potential for degrading organic carbons, fermentation, autotrophy, and carbon fixation. Mangrove fungi also functioned as a player in carbon cycling, potentially involved in the degradation of various carbohydrate and peptide substrates. Notably, a new candidate bacterial phylum named as Candidatus Cosmopoliota with a ubiquitous distribution is proposed. Genomic analysis revealed that this new phylum is capable of utilizing various types of organic substrates, anaerobic fermentation, and carbon fixation with the Wood-Ljungdahl (WL) pathway and the reverse tricarboxylic acid (rTCA) cycle. CONCLUSIONS The study not only highlights the advantages of HiSeq-PacBio Hybrid assembly for a more complete profiling of environmental microbiomes but also expands our understanding of the microbial diversity and potential roles of distinct microbial groups in biogeochemical cycling in mangrove sediment. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Feng Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Present Address: Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Li-Rui Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yue-Ping Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
30
|
Ngamcharungchit C, Chaimusik N, Panbangred W, Euanorasetr J, Intra B. Bioactive Metabolites from Terrestrial and Marine Actinomycetes. Molecules 2023; 28:5915. [PMID: 37570885 PMCID: PMC10421486 DOI: 10.3390/molecules28155915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Actinomycetes inhabit both terrestrial and marine ecosystems and are highly proficient in producing a wide range of natural products with diverse biological functions, including antitumor, immunosuppressive, antimicrobial, and antiviral activities. In this review, we delve into the life cycle, ecology, taxonomy, and classification of actinomycetes, as well as their varied bioactive metabolites recently discovered between 2015 and 2023. Additionally, we explore promising strategies to unveil and investigate new bioactive metabolites, encompassing genome mining, activation of silent genes through signal molecules, and co-cultivation approaches. By presenting this comprehensive and up-to-date review, we hope to offer a potential solution to uncover novel bioactive compounds with essential activities.
Collapse
Affiliation(s)
- Chananan Ngamcharungchit
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Nutsuda Chaimusik
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Watanalai Panbangred
- Research, Innovation and Partnerships Office, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Jirayut Euanorasetr
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
- Laboratory of Biotechnological Research for Energy and Bioactive Compounds, Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Khet Thung Khru, Bangkok 10140, Thailand
| | - Bungonsiri Intra
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| |
Collapse
|
31
|
Long M, Tang S, Fan H, Gan Z, Xia H, Lu Y. Description and genomic characterization of Gallaecimonas kandeliae sp. nov., isolated from the sediments of mangrove plant Kandelia obovate. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01851-y. [PMID: 37358702 DOI: 10.1007/s10482-023-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/31/2023] [Indexed: 06/27/2023]
Abstract
The genus Gallaecimonas, proposed by Rodríguez-Blanco et al. (Int J Syst Evol Microbiol 60:504-509, 2010), is mainly isolated from marine environments. So far, only three species have been identified and characterized in this genus. In this study, a new Gallaecimonas strain named Q10T was isolated from the sediments of mangrove plant Kandelia obovate taken from Dapeng district, Shenzhen, China. Strain Q10T was a Gram-stain-negative, non-motile, strictly aerobic, rod-shaped bacterium, and grew with 0-8.0% (w/v) NaCl, at 10-45 °C and at pH 5.5-8.5. Phylogenetic analysis indicated that strain Q10T and the three Gallaecimonas species formed a clade in the tree, with 16S rRNA gene sequence similarities ranging from 96.0 to 97.0%. The major respiratory quinone is Q8. The polar lipids comprised aminolipid, aminophospholipid, diphosphatidylglycerol, glycolipid, phosphatidylethanolamine, phosphatidylglycerol, glycophospholipid and phospholipid. The predominant fatty acids are C16:0, C17:1ω8c, summed feature 3 (C16:1ω7c/C16:1ω6c), and iso-C16:0. The complete genome of strain Q10T is 3,836,841 bp with a G+C content of 62.6 mol%. The orthologous proteins analysis revealed 55 unique proteins in strain Q10T related to important biological processes, especially three frataxins related to iron-sulfur cluster assembly, which may play a pivotal role in environmental adaptability of this species. Based on polyphasic taxonomic data, strain Q10T is considered to represent a novel species within the genus Gallaecimonas, for which the name Gallaecimonas kandelia sp. nov. is proposed. The type strain is Q10T (=KCTC 92860T=MCCC 1K08421T). These results contribute to a better understanding of general features and taxonomy of the genus Gallaecimonas.
Collapse
Affiliation(s)
- Meng Long
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Shaoshuai Tang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Huimin Fan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Zhen Gan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Hongli Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Yishan Lu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
32
|
Lin X, Qiao B, Chang R, Li Y, Zheng W, He Z, Tian Y. Characterization of two keystone taxa, sulfur-oxidizing, and nitrate-reducing bacteria, by tracking their role transitions in the benzo[a]pyrene degradative microbiome. MICROBIOME 2023; 11:139. [PMID: 37355612 PMCID: PMC10290299 DOI: 10.1186/s40168-023-01583-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 05/23/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Keystone taxa are drivers of microbiome structure and functioning, which may play critical roles in microbiome-level responses to recalcitrant pollution and are a key to bioremediation. However, the characterization and manipulation of such taxa is a major challenge due to the complexity of microbial communities and rapid turnover in both time and space. Here, microcosms were set up with benzo[a]-pyrene (BaP) and/or nitrate based on C-rich, S-rich, and N-limited mangrove sediments as reductive experimental models to trigger and track the turnover of keystone taxa to address this challenge. RESULTS Based on microbial co-occurrence network analysis, two keystone taxa, Sulfurovum and Sulfurimonas, were found to exhibit significant role transitions in different microcosms, where these two taxa played nonkeystone roles with neutral relationships in in situ mangrove sediments. However, Sulfurimonas transitioned to be keystone taxa in nitrate-replenished microcosms and formed a keystone guild with Thioalkalispira. Sulfurovum stood out in BaP-added microcosms and mutualized in a densely polycyclic aromatic hydrocarbon (PAH)-degrader-centric keystone guild with Novosphingobium and Robiginitalea, where 63.25% of added BaP was removed. Under the occurrence of nitrate and BaP, they simultaneously played roles as keystone taxa in their respective guilds but exhibited significant competition. Comparative genomics and metagenome-assembled genome (MAG) analysis was then performed to reveal the metabolic potential of those keystone taxa and to empirically deduce their functional role in keystone guilds. Sulfurimonas possesses a better sense system and motility, indicative of its aggressive role in nitrate acquisition and conversion; Sulfurovum exhibited a better ability for oxidation resistance and transporting nutrients and electrons. High-efficiency thermal asymmetric interlaced polymerase reaction (hiTAIL-PCR) and enhanced green fluorescent protein (eGFP)-labeling approaches were employed to capture and label the BaP key degrader to further experimentally verify the roles of keystone taxa Sulfurovum in the keystone guilds. Observations of the enhancement in reactive oxygen species (ROS) removal, cell growth, and degradation efficiency by co-culture of isolated keystone taxa strains experimentally demonstrated that Sulfurovum contributes to the BaP degradative microbiome against BaP toxicity. CONCLUSIONS Our findings suggest that the combined use of co-occurrence network analysis, comparative genomics, and co-culture of captured keystone taxa (3C-strategy) in microbial communities whose structure is strongly shaped by changing environmental factors can characterize keystone taxa roles in keystone guilds and may provide targets for manipulation to improve the function of the microbiome. Video Abstract.
Collapse
Affiliation(s)
- Xiaolan Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Baoyi Qiao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Ruirui Chang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yixin Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Wei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
33
|
Mo S, Yan B, Gao T, Li J, Kashif M, Song J, Bai L, Yu D, Liao J, Jiang C. Sulfur metabolism in subtropical marine mangrove sediments fundamentally differs from other habitats as revealed by SMDB. Sci Rep 2023; 13:8126. [PMID: 37208450 PMCID: PMC10199032 DOI: 10.1038/s41598-023-34995-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
Shotgun metagenome sequencing provides the opportunity to recover underexplored rare populations and identify difficult-to-elucidate biochemical pathways. However, information on sulfur genes, including their sequences, is scattered in public databases. Here, we introduce SMDB ( https://smdb.gxu.edu.cn/ )-a manually curated database of sulfur genes based on an in-depth review of the scientific literature and orthology database. The SMDB contained a total of 175 genes and covered 11 sulfur metabolism processes with 395,737 representative sequences affiliated with 110 phyla and 2340 genera of bacteria/archaea. The SMDB was applied to characterize the sulfur cycle from five habitats and compared the microbial diversity of mangrove sediments with that of other habitats. The structure and composition of microorganism communities and sulfur genes were significantly different among the five habitats. Our results show that microorganism alpha diversity in mangrove sediments was significantly higher than in other habitats. Genes involved in dissimilatory sulfate reduction were abundant in subtropical marine mangroves and deep-sea sediments. The neutral community model results showed that microbial dispersal was higher in the marine mangrove ecosystem than in others habitats. The Flavilitoribacter of sulfur-metabolizing microorganism becomes a reliable biomarker in the five habitats. SMDB will assist researchers to analyze genes of sulfur cycle from the metagenomic efficiently.
Collapse
Affiliation(s)
- Shuming Mo
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, 530007, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Bing Yan
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, 530007, China
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai, 536000, China
| | - Tingwei Gao
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai, 536000, China
| | - Jinhui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Muhammad Kashif
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, 530007, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jingjing Song
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China
| | - Lirong Bai
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China
| | - Dahui Yu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China.
| | - Jianping Liao
- Guangxi Key Lab of Human-Machine Interaction and Intelligent Decision, Nanning Normal University, Nanning, 530299, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
| | - Chengjian Jiang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, 530007, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China.
| |
Collapse
|
34
|
Qian L, Yu X, Gu H, Liu F, Fan Y, Wang C, He Q, Tian Y, Peng Y, Shu L, Wang S, Huang Z, Yan Q, He J, Liu G, Tu Q, He Z. Vertically stratified methane, nitrogen and sulphur cycling and coupling mechanisms in mangrove sediment microbiomes. MICROBIOME 2023; 11:71. [PMID: 37020239 PMCID: PMC10074775 DOI: 10.1186/s40168-023-01501-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Mangrove ecosystems are considered as hot spots of biogeochemical cycling, yet the diversity, function and coupling mechanism of microbially driven biogeochemical cycling along the sediment depth of mangrove wetlands remain elusive. Here we investigated the vertical profile of methane (CH4), nitrogen (N) and sulphur (S) cycling genes/pathways and their potential coupling mechanisms using metagenome sequencing approaches. RESULTS Our results showed that the metabolic pathways involved in CH4, N and S cycling were mainly shaped by pH and acid volatile sulphide (AVS) along a sediment depth, and AVS was a critical electron donor impacting mangrove sediment S oxidation and denitrification. Gene families involved in S oxidation and denitrification significantly (P < 0.05) decreased along the sediment depth and could be coupled by S-driven denitrifiers, such as Burkholderiaceae and Sulfurifustis in the surface sediment (0-15 cm). Interestingly, all S-driven denitrifier metagenome-assembled genomes (MAGs) appeared to be incomplete denitrifiers with nitrate/nitrite/nitric oxide reductases (Nar/Nir/Nor) but without nitrous oxide reductase (Nos), suggesting such sulphide-utilizing groups might be an important contributor to N2O production in the surface mangrove sediment. Gene families involved in methanogenesis and S reduction significantly (P < 0.05) increased along the sediment depth. Based on both network and MAG analyses, sulphate-reducing bacteria (SRB) might develop syntrophic relationships with anaerobic CH4 oxidizers (ANMEs) by direct electron transfer or zero-valent sulphur, which would pull forward the co-existence of methanogens and SRB in the middle and deep layer sediments. CONCLUSIONS In addition to offering a perspective on the vertical distribution of microbially driven CH4, N and S cycling genes/pathways, this study emphasizes the important role of S-driven denitrifiers on N2O emissions and various possible coupling mechanisms of ANMEs and SRB along the mangrove sediment depth. The exploration of potential coupling mechanisms provides novel insights into future synthetic microbial community construction and analysis. This study also has important implications for predicting ecosystem functions within the context of environmental and global change. Video Abstract.
Collapse
Affiliation(s)
- Lu Qian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Xiaoli Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Hang Gu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Fei Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Yijun Fan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Qiang He
- Department of Civil and Environmental Engineering, the University of Tennessee, Knoxville, TN 37996 USA
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Yisheng Peng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhijian Huang
- School of Marine Science, Sun Yat-Sen University, Zhuhai, 519080 China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Jianguo He
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Guangli Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| |
Collapse
|
35
|
Gómez-Acata ES, Teutli C, Falcón LI, García-Maldonado JQ, Prieto-Davó A, Yanez-Montalvo A, Cadena S, Chiappa-Carrara X, Herrera-Silveira JA. Sediment microbial community structure associated to different ecological types of mangroves in Celestún, a coastal lagoon in the Yucatan Peninsula, Mexico. PeerJ 2023; 11:e14587. [PMID: 36785710 PMCID: PMC9921989 DOI: 10.7717/peerj.14587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/28/2022] [Indexed: 02/11/2023] Open
Abstract
Mangroves are unique coastal ecosystems, which have many important ecological functions, as they are a reservoir of many marine species well adapted to saline conditions and are fundamental as sites of carbon storage. Although the microbial contribution to nutrient cycling in these ecosystems has been well recognized, there is a lack of information regarding the microbial composition and structure of different ecological types of mangrove forests. In this study, we characterized the microbial community (Bacteria and Archaea) in sediments associated with five ecological types of mangrove forests in a coastal lagoon dominated by Avicennia germinans and Rhizophora mangle, through 16S rRNA-V4 gene sequencing. Overall, Proteobacteria (51%), Chloroflexi (12%), Gemmatimonadetes (5%) and Planctomycetes (6%) were the most abundant bacterial phyla, while Thaumarchaeota (30%), Bathyarchaeota (21%) and Nanoarchaeaeota (18%) were the dominant archaeal phyla. The microbial composition associated with basin mangroves dominated by Avicennia germinans was significantly different from the other ecological types, which becomes relevant for restoration strategies.
Collapse
Affiliation(s)
| | - Claudia Teutli
- Escuela Nacional de Estudios Superiores, Mérida, Yucatán, México,Laboratorio Nacional de Resiliencia Costera (LANRESC), Sisal, Yucatán, México
| | | | - José Q. García-Maldonado
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán, México
| | | | | | - Santiago Cadena
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán, México
| | - Xavier Chiappa-Carrara
- Escuela Nacional de Estudios Superiores, Mérida, Yucatán, México,Unidad Multidisciplinaria de Docencia e Investigación, Unidad Sisal, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
| | - Jorge A. Herrera-Silveira
- Laboratorio Nacional de Resiliencia Costera (LANRESC), Sisal, Yucatán, México,Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán, México
| |
Collapse
|
36
|
Mo S, He S, Sang Y, Li J, Kashif M, Zhang Z, Su G, Jiang C. Integration of Microbial Transformation Mechanism of Polyphosphate Accumulation and Sulfur Cycle in Subtropical Marine Mangrove Ecosystems with Spartina alterniflora Invasion. MICROBIAL ECOLOGY 2023; 85:478-494. [PMID: 35157108 DOI: 10.1007/s00248-022-01979-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Excessive phosphorus can lead to eutrophication in marine and coastal ecosystems. Sulfur metabolism-associated microorganisms stimulate biological phosphorous removal. However, the integrating co-biotransformation mechanism of phosphorus and sulfur in subtropical marine mangrove ecosystems with Spartina alterniflora invasion is poorly understood. In this study, an ecological model of the coupling biotransformation of sulfur and phosphorus is constructed using metagenomic analysis and quantitative polymerase chain reaction strategies. Phylogenetic analysis profiling, a distinctive microbiome with high frequencies of Gammaproteobacteria and Deltaproteobacteria, appears to be an adaptive characteristic of microbial structures in subtropical mangrove ecosystems. Functional analysis reveals that the levels of sulfate reduction, sulfur oxidation, and poly-phosphate (Poly-P) aggregation decrease with increasing depth. However, at depths of 25-50 cm in the mangrove ecosystems with S. alterniflora invasion, the abundance of sulfate reduction genes, sulfur oxidation genes, and polyphosphate kinase (ppk) significantly increased. A strong positive correlation was found among ppk, sulfate reduction, sulfur oxidation, and sulfur metabolizing microorganisms, and the content of sulfide was significantly and positively correlated with the abundance of ppk. Further microbial identification suggested that Desulfobacterales, Anaerolineales, and Chromatiales potentially drove the coupling biotransformation of phosphorus and sulfur cycling. In particular, Desulfobacterales exhibited dominance in the microbial community structure. Our findings provided insights into the simultaneous co-biotransformation of phosphorus and sulfur bioconversions in subtropical marine mangrove ecosystems with S. alterniflora invasion.
Collapse
Affiliation(s)
- Shuming Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Sheng He
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defect prevention, Guangxi Zhuang Autonomous Region Women and Children Health Care Hospital, Nanning, 530033, China
| | - Yimeng Sang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jinhui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Muhammad Kashif
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zufan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Guijiao Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Chengjian Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
37
|
Genomic Analysis to Elucidate the Lignocellulose Degrading Capability of a New Halophile Robertkochia solimangrovi. Genes (Basel) 2022; 13:genes13112135. [DOI: 10.3390/genes13112135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Robertkochia solimangrovi is a proposed marine bacterium isolated from mangrove soil. So far, the study of this bacterium is limited to taxonomy only. In this report, we performed a genomic analysis of R. solimangrovi that revealed its lignocellulose degrading ability. Genome mining of R. solimangrovi revealed a total of 87 lignocellulose degrading enzymes. These enzymes include cellulases (GH3, GH5, GH9 and GH30), xylanases (GH5, GH10, GH43, GH51, GH67, and GH115), mannanases (GH2, GH26, GH27 and GH113) and xyloglucanases (GH2, GH5, GH16, GH29, GH31 and GH95). Most of the lignocellulolytic enzymes encoded in R. solimangrovi were absent in the genome of Robertkochia marina, the closest member from the same genus. Furthermore, current work also demonstrated the ability of R. solimangrovi to produce lignocellulolytic enzymes to deconstruct oil palm empty fruit bunch (EFB), a lignocellulosic waste found abundantly in palm oil industry. The metabolic pathway taken by R. solimangrovi to transport and process the reducing sugars after the action of lignocellulolytic enzymes on EFB was also inferred based on genomic data. Collectively, genomic analysis coupled with experimental studies elucidated R. solimangrovi to serve as a promising candidate in seawater based-biorefinery industry.
Collapse
|
38
|
Liu GH, Liu DQ, Wang P, Chen QQ, Che JM, Wang JP, Li WJ, Zhou SG. Temperature drives the assembly of Bacillus community in mangrove ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157496. [PMID: 35870580 DOI: 10.1016/j.scitotenv.2022.157496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Mangroves are located at the interface of terrestrial and marine environments, and experience fluctuating conditions, creating a need to better explore the relative role of the bacterial community. Bacillus has been reported to be the dominant group in the mangrove ecosystem and plays a key role in maintaining the biodiversity and function of the mangrove ecosystem. However, studies on bacterial and Bacillus community across four seasons in the mangrove ecosystem are scarce. Here, we employed seasonal large-scale sediment samples collected from the mangrove ecosystem in southeastern China and utilized 16S rRNA gene amplicon sequencing to reveal bacterial and Bacillus community structure changes across seasons. Compared with the whole bacterial community, we found that Bacillus community was greatly affected by season (temperature) rather than site. The key factors, NO3-N and NH4-N showed opposite interaction with superabundant taxa Bacillus taxa (SAT) and three rare Bacillus taxa including high rare taxa (HRT), moderate rare taxa (MRT) and low rare taxa (LRT). Network analysis suggested the co-occurrence of Bacillus community and Bacillus-bacteria, and revealed SAT had closer relationship compared with rare Bacillus taxa. HRT might act crucial response during the temperature decreasing process across seasons. This study fills a gap in addressing the assembly of Bacillus community and their role in maintaining microbial diversity and function in mangrove ecosystem.
Collapse
Affiliation(s)
- Guo-Hong Liu
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Ding-Qi Liu
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qian-Qian Chen
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Jian-Mei Che
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Jie-Ping Wang
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province 350002, PR China.
| |
Collapse
|
39
|
Rath S, Palit K, Das S. Variable pH and subsequent change in pCO 2 modulates the biofilm formation, synthesis of extracellular polymeric substances, and survivability of a marine bacterium Bacillus stercoris GST-03. ENVIRONMENTAL RESEARCH 2022; 214:114128. [PMID: 36007573 DOI: 10.1016/j.envres.2022.114128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Biofilm-forming bacteria adhere to the substrates and engage in the nutrient cycling process. However, environmental conditions may interrupt the biofilm formation ability, which ultimately may affect various biogeochemical cycles. The present study reports the effect of varying pH and subsequent change in pCO2 on the survivability, biofilm formation, and synthesis of extracellular polymeric substances (EPS) of a biofilm-forming marine bacterium Bacillus stercoris GST-03 isolated from the Bhitarkanika mangrove ecosystem, Odisha, India. Understanding the pH-dependent alteration in EPS constituents, and associated functional groups of a marine bacterium will provide better insight into the adaptability of the bacteria in future ocean acidification scenarios. The strain was found to tolerate and form biofilm up to pH 4, with the maximum biofilm formation at pH 6. EPS yield and the synthesis of the key components of the EPS, including carbohydrate, protein, and lipid, were found maximum at pH 6. Changes in biofilm formation patterns and various topological parameters at varying pH/pCO2 conditions were observed. A cellular chaining pattern was observed at pH 4, and maximum biofilm formation was obtained at pH 6 with biomass of 5.28582 ± 0.5372 μm3/μm2 and thickness of 9.982 ± 1.5288 μm. Structural characterization of EPS showed changes in various functional groups of constituent macromolecules with varying pH. The amorphous nature of the EPS and the changes in linkages and associated functional groups (-R2CHOR, -CH3, and -CH2) with pH variation was confirmed. EPS showed a two-step degradation with a maximum weight loss of 59.147% and thermal stability up to 480 °C at pH 6. The present work efficiently demonstrates the role of EPS in providing structural and functional stability to the biofilm in varying pH conditions. The findings will provide a better understanding of the adaptability of marine bacteria in the future effect of ocean acidification.
Collapse
Affiliation(s)
- Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Krishna Palit
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
40
|
Dey G, Banerjee P, Maity JP, Sharma RK, Gnanachandrasamy G, Huang YH, Huang HB, Chen CY. Heavy metals distribution and ecological risk assessment including arsenic resistant PGPR in tidal mangrove ecosystem. MARINE POLLUTION BULLETIN 2022; 181:113905. [PMID: 35839665 DOI: 10.1016/j.marpolbul.2022.113905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HM) are the major proximate drivers of pollution in the mangrove ecosystem. Therefore, ecological risk (ER) due to HM distribution/concentration in core-sediment of Puzi mangrove region (Taiwan) was examined with tidal influence (TI) along with indigenous rhizospheric bacteria (IRB). The HM concentration was observed higher at active-tidal-sediment compared to partially-active-sediment. Geo-accumulation index (Igeo) and contamination factor (CF) indicated the tidal-sediment was highly contaminated with arsenic (As) and moderately contaminated with Lead (Pb) and Zinc (Zn). However, the pollution loading index (PLI) and degree of contamination (Cd) exhibited 'no pollution' and 'low-moderate degree of contamination', in the studied region respectively. The isolated IRB (Priestia megaterium, Bacillus safenis, Bacillus aerius, Bacillus subtilis, Bacillus velenzenesis, Bacillus lichenoformis, Kocuria palustris, Enterobacter hormaechei, Pseudomonus fulva, and Paenibacillus favisporus; accession number OM979069-OM979078) exhibited the arsenic resistant behavior with plant-growth-promoting characters (IAA, NH3, and P-solubilization), which can be used in mangrove reforestation and bioremediation of HM.
Collapse
Affiliation(s)
- Gobinda Dey
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Jyoti Prakash Maity
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Gopalakrishnan Gnanachandrasamy
- Department of Earth Sciences, School of Physical, Chemical, and Applied Sciences, Pondicherry University, Puducherry, 605014, India
| | - Yi-Hsun Huang
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Hsien-Bin Huang
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, Chiayi 62102, Taiwan.
| |
Collapse
|
41
|
Zhang Z, Nie S, Sang Y, Mo S, Li J, Kashif M, Su G, Yan B, Jiang C. Effects of Spartina alterniflora Invasion on Nitrogen Fixation and Phosphorus Solubilization in a Subtropical Marine Mangrove Ecosystem. Microbiol Spectr 2022; 10:e0068221. [PMID: 35604174 PMCID: PMC9241609 DOI: 10.1128/spectrum.00682-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 04/22/2022] [Indexed: 11/20/2022] Open
Abstract
Nitrogen fixation (NF) and phosphorus solubilization (PS) play a key role in maintaining the stability of mangrove ecosystems. In China, the invasion of Spartina alterniflora has brought a serious threat to the mangrove ecosystem. However, systematic research on NF and PS in mangrove sediments has not been conducted, and limited studies have focused on the response of NF and PS to S. alterniflora invasion, particularly at different sediment depths. In the present study, shotgun metagenomics and quantitative PCR were used to study the 0- to 100-cm sediment profile of the mangrove ecosystem in the Beibu Gulf of China. Results showed that the PS potential of mangrove sediments was primarily caused by enzymes encoded by phoA, phoD, ppx, ppa, and gcd genes. S. alterniflora changed environmental factors, such as total nitrogen, total phosphorus, and total organic carbon, and enhanced the potential of NF and PS in sediments. Moreover, most microorganisms involved in NF or PS (NFOPSMs) responded positively to the invasion of S. alterniflora. Cd, available iron, and salinity were the key environmental factors that affected the distribution of NF and PS genes (NFPSGs) and NFOPSMs. A strong coupling effect was observed between NF and PS in the mangrove ecosystem. S. alterniflora invasion enhanced the coupling of NF and PS and the interaction of microorganisms involved in NF and PS (NFAPSM), thereby promoting the turnover of NP and improving sediment quality. Finally, 108 metagenome-assembled genomes involved in NF or PS were reconstructed to further evaluate NFOPSMs. IMPORTANCE This study revealed the efficient nutrient cycling mechanism of mangroves. Positive coupling effects were observed in sediment quality, NF and PS processes, and NFOPSMs with the invasion of S. alterniflora. This research contributed to the understanding of the effects of S. alterniflora invasion on the subtropical mangrove ecosystem and provided theoretical guidance for mangrove protection, restoration, and soil management. Additionally, novel NFOPSMs provided a reference for the development of marine biological fertilizers.
Collapse
Affiliation(s)
- Zufan Zhang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shiqing Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yimeng Sang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shuming Mo
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jinhui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Muhammad Kashif
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Guijiao Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bing Yan
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai, China
| | - Chengjian Jiang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai, China
| |
Collapse
|
42
|
Changes in Temporal Dynamics and Factors Influencing the Environment of the Bacterial Community in Mangrove Rhizosphere Sediments in Hainan. SUSTAINABILITY 2022. [DOI: 10.3390/su14127415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The structural characteristics of the rhizosphere soil’s microbial community is crucial to understanding the ecological function of mangroves. However, the mechanism influencing mangrove plants in soil microbial communities has yet to be determined. Here, the mangrove ecosystem of Xinying Mangrove National Wetland Park in Hainan Province was taken as the research object. The microbial communities, external regulatory factors, and the relationship between communities were analyzed using 16S rRNA high-throughput sequencing in the rhizosphere and non-rhizosphere sediments of mangrove forests under different spatiotemporal conditions. The results showed that there was no significant difference in the α-diversity of the bacterial community between the rhizosphere and non-rhizosphere sediments. However, β-diversity was significantly different. Redundancy analysis (RDA) showed that other environmental factors besides sulfide and Fe2+ affected the bacterial community structure in sediments. The co-occurrence pattern analysis of bacteria in the mangrove ecosystem indicates that the bacteria in rhizosphere sediments were more closely related than those in non-rhizosphere sediments. The results reveal significant differences between the rhizosphere and non-rhizosphere bacterial community diversity, structure, and their interaction in the mangrove ecosystem. Therefore, the ecological system of the mangrove wetland needs to be preserved and rehabilitated, which would have a tremendous impact on the sustainable development.
Collapse
|
43
|
Peng M, Wang C, Wang Z, Huang X, Zhou F, Yan S, Liu X. Differences between the effects of plant species and compartments on microbiome composition in two halophyte Suaeda species. Bioengineered 2022; 13:12475-12488. [PMID: 35593105 PMCID: PMC9275862 DOI: 10.1080/21655979.2022.2076009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Root-related or endophytic microbes in halophytes play an important role in adaptation to extreme saline environments. However, there have been few comparisons of microbial distribution patterns in different tissues associated with halophytes. Here, we analyzed the bacterial communities and distribution patterns of the rhizospheres and tissue endosphere in two Suaeda species (S. salsa and S. corniculata Bunge) using the 16S rRNA gene sequencing. The results showed that the bacterial abundance and diversity in the rhizosphere were significantly higher than that of endophytic, but lower than that of bulk soil. Microbial-diversity analysis showed that the dominant phyla of all samples were Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria and Firmicutes, among which Proteobacteria were extremely abundant in all the tissue endosphere. Heatmap and Linear discriminant analysis Effect Size (LEfSe) results showed that there were notable differences in microbial community composition related to plant compartments. Different networks based on plant compartments exhibited distinct topological features. Additionally, the bulk soil and rhizosphere networks were more complex and showed higher centrality and connectedness than the three endosphere networks. These results strongly suggested that plant compartments, and not species, affect microbiome composition.
Collapse
Affiliation(s)
- Mu Peng
- College of Biological Science and Technology, Hubei Minzu University, Hubei, China.,College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Chao Wang
- Zibo Academy of Agricultural Sciences, Zibo, China
| | - Zhiyong Wang
- College of Biological Science and Technology, Hubei Minzu University, Hubei, China
| | - Xiufang Huang
- College of Biological Science and Technology, Hubei Minzu University, Hubei, China
| | - Fangzhen Zhou
- College of Biological Science and Technology, Hubei Minzu University, Hubei, China
| | - Shaopeng Yan
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaopeng Liu
- College of Biological Science and Technology, Hubei Minzu University, Hubei, China
| |
Collapse
|
44
|
Li L, Peng C, Yang Z, He Y, Liang M, Cao H, Qiu Q, Song J, Su Y, Gong B. Microbial communities in swamps of four mangrove reserves driven by interactions between physicochemical properties and microbe in the North Beibu Gulf, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37582-37597. [PMID: 35066825 DOI: 10.1007/s11356-021-18134-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Mangroves are distributed in coastal and estuarine regions and are characterized as a sink for terrestrial pollution. It is believed that complex interactions between environmental factors and microbial communities exist in mangrove swamps. However, little is known about environment-microbe interactions. There is a need to clarify some important environmental factors shaping microbial communities and how environmental factors interact with microbial assemblages in mangrove swamps. In the present study, physicochemical and microbial characteristics in four mangrove reserves (named ZZW, Qin, Bei, and GQ) in the North Beibu Gulf were determined. The interactions between environmental factors and microbial assemblages were analyzed with statistical methods in addition to CCA and RDA. Higher concentrations of sulfate (SO42--S) and Fe but lower concentrations of total phosphorus (TP) and NO3--N were detected in ZZW and Qin. Nutrient elements (NO3--N, NH4+-N, organic matter (OM), SO42--S, Fe, and TP) were more important than heavy metals for determining the microbial assemblages, and NO3--N was the most important factor. NO3--N, SO42--S, TP, and Fe formed a significant co-occurrence network in conjunction with some bacterial taxa, most of which were Proteobacteria. Notably, comparatively elevated amounts of sulfate-reducing bacteria (Desulfatibacillum, Desulfomonile, and Desulfatiglans) and sulfur-oxidizing bacteria (Thioprofundum and Thiohalophilus) were found in ZZW and Qin. The co-occurrence network suggested that some bacteria involved in sulfate reduction and sulfur oxidation drive the transformation of P and N, resulting in the reduction of P and N in mangrove swamps. Through the additional utilization of multivariate regression tree (MRT) and co-occurrence network analysis, our research provides a new perspective for understanding the interactions between environmental factors and microbial communities in mangroves.
Collapse
Affiliation(s)
- Lu Li
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Chunyan Peng
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Zicong Yang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Yu He
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Meng Liang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Hongmin Cao
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Qinghua Qiu
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Jingjing Song
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China.
| | - Youlu Su
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Bin Gong
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China.
| |
Collapse
|
45
|
Li K, Chen S, Pang X, Cai J, Zhang X, Liu Y, Zhu Y, Zhou X. Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. Eur J Med Chem 2022; 230:114117. [PMID: 35063731 DOI: 10.1016/j.ejmech.2022.114117] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
The mangrove forests are a complex ecosystem, and the microbial communities in mangrove sediments play a critical role in the biogeochemical cycles of mangrove ecosystems. Mangrove sediments-derived microbes (MSM), as a rich reservoir of natural product diversity, could be utilized in the exploration of new antibiotics or drugs. To understand the structural diversity and bioactivities of the metabolites of MSM, this review for the first time provides a comprehensive overview of 519 natural products isolated from MSM with their bioactivities, up to 2021. Most of the structural types of these compounds are alkaloids, lactones, xanthones, quinones, terpenoids, and steroids. Among them, 210 compounds are obtained from bacteria, most of which are from Streptomyces, while 309 compounds are from fungus, especially genus Aspergillus and Penicillium. The pharmacological mechanisms of some representative lead compounds are well studied, revealing that they have important medicinal potentials, such as piericidins with anti-renal cell cancer effects, azalomycins with anti-MRSA activities, and ophiobolins as antineoplastic agents. The biosynthetic pathways of representative natural products from MSM have also been summarized, especially ikarugamycin, piericidins, divergolides, and azalomycins. In addition, the total synthetic strategies of representative secondary metabolites from MSM are also reviewed, such as piericidin A and borrelidin. This review provides an important reference for the research status of natural products isolated from MSM and the lead compounds worthy of further development, and reveals that MSM have important medicinal values and are worthy of further development.
Collapse
Affiliation(s)
- Kunlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Siqiang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xinya Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
46
|
Ecological Role of Bacteria Involved in the Biogeochemical Cycles of Mangroves Based on Functional Genes Detected through GeoChip 5.0. mSphere 2022; 7:e0093621. [PMID: 35019668 PMCID: PMC8754168 DOI: 10.1128/msphere.00936-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mangroves provide a variety of ecosystem services and contribute greatly to the global biogeochemical cycle. Microorganisms play important roles in biogeochemical cycles and maintain the dynamic balance of mangroves. However, the roles of bacteria in the biogeochemical cycles of mangroves and their ecological distribution and functions remain largely uncharacterized. This study thus sought to analyze and compare the ecological distributions and potential roles of bacteria in typical mangroves using 16S rRNA gene amplicon sequencing and GeoChip. Interestingly, the bacterial community compositions were largely similar in the studied mangroves, including Shenzhen, Yunxiao, Zhanjiang, Hainan, Hongkong, Fangchenggang, and Beihai mangroves. Moreover, gamma-proteobacterium_uncultured and Woeseia were the most abundant microorganisms in the mangroves. Furthermore, most of the bacterial communities were significantly correlated with phosphorus levels (P < 0.05; −0.93 < R < 0.93), suggesting that this nutrient is a vital driver of bacterial community composition. Additionally, GeoChip analysis indicated that the functional genes amyA, narG, dsrA, and ppx were highly abundant in the studied mangroves, suggesting that carbon degradation, denitrification, sulfite reduction, and polyphosphate degradation are crucial processes in typical mangroves. Moreover, several genera were found to synergistically participate in biogeochemical cycles in mangroves. For instance, Neisseria, Ruegeria, Rhodococcus, Desulfotomaculum, and Gordonia were synergistically involved in the carbon, nitrogen, and sulfur cycles, whereas Neisseria and Treponema were synergistically involved in the nitrogen cycle and the sulfur cycle. Taken together, our findings provide novel insights into the ecological roles of bacteria in the biogeochemical cycles of mangroves. IMPORTANCE Bacteria have important functions in biogeochemical cycles, but studies on their function in an important ecosystem, mangroves, are still limited. Here, we investigated the ecological role of bacteria involved in biogeochemical cycles in seven representative mangroves of southern China. Furthermore, various functional genes from bacteria involved in biogeochemical cycles were identified by GeoChip 5.0. The functional genes associated with the carbon cycle (particularly carbon degradation) were the most abundant, suggesting that carbon degradation is the most active process in mangroves. Additionally, some high-abundance bacterial populations were found to synergistically mediate key biogeochemical cycles in the mangroves, including Neisseria, Pseudomonas, Treponema, Desulfotomaculum, and Nitrosospira. In a word, our study gives novel insights into the function of bacteria in biogeochemical cycles in mangroves.
Collapse
|
47
|
Tongununui P, Kuriya Y, Murata M, Sawada H, Araki M, Nomura M, Morioka K, Ichie T, Ikejima K, Adachi K. Mangrove crab intestine and habitat sediment microbiomes cooperatively work on carbon and nitrogen cycling. PLoS One 2021; 16:e0261654. [PMID: 34972143 PMCID: PMC8719709 DOI: 10.1371/journal.pone.0261654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022] Open
Abstract
Mangrove ecosystems, where litter and organic components are degraded and converted into detrital materials, support rich coastal fisheries resources. Sesarmid (Grapsidae) crabs, which feed on mangrove litter, play a crucial role in material flow in carbon-rich and nitrogen-limited mangrove ecosystems; however, the process of assimilation and conversion into detritus has not been well studied. In this study, we performed microbiome analyses of intestinal bacteria from three species of mangrove crab and five sediment positions in the mud lobster mounds, including the crab burrow wall, to study the interactive roles of crabs and sediment in metabolism. Metagenome analysis revealed species-dependent intestinal profiles, especially in Neosarmatium smithi, while the sediment microbiome was similar in all positions, albeit with some regional dependency. The microbiome profiles of crab intestines and sediments were significantly different in the MDS analysis based on OTU similarity; however, 579 OTUs (about 70% of reads in the crab intestinal microbiome) were identical between the intestinal and sediment bacteria. In the phenotype prediction, cellulose degradation was observed in the crab intestine. Cellulase activity was detected in both crab intestine and sediment. This could be mainly ascribed to Demequinaceae, which was predominantly found in the crab intestines and burrow walls. Nitrogen fixation was also enriched in both the crab intestines and sediments, and was supported by the nitrogenase assay. Similar to earlier reports, sulfur-related families were highly enriched in the sediment, presumably degrading organic compounds as terminal electron acceptors under anaerobic conditions. These results suggest that mangrove crabs and habitat sediment both contribute to carbon and nitrogen cycling in the mangrove ecosystem via these two key reactions.
Collapse
Affiliation(s)
- Prasert Tongununui
- Department of Marine Science and Environment, Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Tambon Maifad, Amphur Sikao, Trang, Thailand
| | - Yuki Kuriya
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Masahiro Murata
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Hideki Sawada
- Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto University, Maizuru, Kyoto, Japan
| | - Michihiro Araki
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Mika Nomura
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, Japan
| | - Katsuji Morioka
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Tomoaki Ichie
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Kou Ikejima
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Kohsuke Adachi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
48
|
Mai Z, Ye M, Wang Y, Foong SY, Wang L, Sun F, Cheng H. Characteristics of Microbial Community and Function With the Succession of Mangroves. Front Microbiol 2021; 12:764974. [PMID: 34950118 PMCID: PMC8689078 DOI: 10.3389/fmicb.2021.764974] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, 16S high-throughput and metagenomic sequencing analyses were employed to explore the changes in microbial community and function with the succession of mangroves (Sonneratia alba, Rhizophora apiculata, and Bruguiera parviflora) along the Merbok river estuary in Malaysia. The sediments of the three mangroves harbored their own unique dominant microbial taxa, whereas R. apiculata exhibited the highest microbial diversity. In general, Gammaproteobacteria, Actinobacteria, Alphaproteobacteria, Deltaproteobacteria, and Anaerolineae were the dominant microbial classes, but their abundances varied significantly among the three mangroves. Principal coordinates and redundancy analyses revealed that the specificity of the microbial community was highly correlated with mangrove populations and environmental factors. The results further showed that R. apiculata exhibited the highest carbon-related metabolism, coinciding with the highest organic carbon and microbial diversity. In addition, specific microbial taxa, such as Desulfobacterales and Rhizobiales, contributed the highest functional activities related to carbon metabolism, prokaryote carbon fixation, and methane metabolism. The present results provide a comprehensive understanding of the adaptations and functions of microbes in relation to environmental transition and mangrove succession in intertidal regions. High microbial diversity and carbon metabolism in R. apiculata might in turn facilitate and maintain the formation of climax mangroves in the middle region of the Merbok river estuary.
Collapse
Affiliation(s)
- Zhimao Mai
- State Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Mai Ye
- State Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Academy of Environmental Science, Guangzhou, China
| | - Youshao Wang
- State Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Swee Yeok Foong
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Lin Wang
- State Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Fulin Sun
- State Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
49
|
A Meta-Omics Analysis Unveils the Shift in Microbial Community Structures and Metabolomics Profiles in Mangrove Sediments Treated with a Selective Actinobacterial Isolation Procedure. Molecules 2021; 26:molecules26237332. [PMID: 34885912 PMCID: PMC8658942 DOI: 10.3390/molecules26237332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Mangrove sediment ecosystems in the coastal areas of the Yucatan peninsula are unique environments, influenced by their karstic origin and connection with the world’s largest underground river. The microbial communities residing in these sediments are influenced by the presence of mangrove roots and the trading chemistry for communication between sediment bacteria and plant roots can be targeted for secondary metabolite research. To explore the secondary metabolite production potential of microbial community members in mangrove sediments at the “El Palmar” natural reserve in Sisal, Yucatan, a combined meta-omics approach was applied. The effects of a cultivation medium reported to select for actinomycetes within mangrove sediments’ microbial communities was also analyzed. The metabolome of the microbial communities was analyzed by high-resolution liquid chromatography-tandem mass spectrometry, and molecular networking analysis was used to investigate if known natural products and their variants were present. Metagenomic results suggest that the sediments from “El Palmar” harbor a stable bacterial community independently of their distance from mangrove tree roots. An unexpected decrease in the observed abundance of actinomycetes present in the communities occurred when an antibiotic-amended medium considered to be actinomycete-selective was applied for a 30-day period. However, the use of this antibiotic-amended medium also enhanced production of secondary metabolites within the microbial community present relative to the water control, suggesting the treatment selected for antibiotic-resistant bacteria capable of producing a higher number of secondary metabolites. Secondary metabolite mining of “El Palmar” microbial community metagenomes identified polyketide synthase and non-ribosomal peptide synthetases’ biosynthetic genes in all analyzed metagenomes. The presence of these genes correlated with the annotation of several secondary metabolites from the Global Natural Product Social Molecular Networking database. These results highlight the biotechnological potential of the microbial communities from “El Palmar”, and show the impact selective media had on the composition of communities of actinobacteria.
Collapse
|
50
|
Revealing the Potential of Xylanase from a New Halophilic Microbulbifer sp. CL37 with Paper De-Inking Ability. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-06400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|