1
|
Tizabi D, Hill RT, Bachvaroff T. Nanopore Sequencing of Amoebophrya Species Reveals Novel Collection of Bacteria Putatively Associated With Karlodinium veneficum. Genome Biol Evol 2025; 17:evaf022. [PMID: 39943733 PMCID: PMC11890096 DOI: 10.1093/gbe/evaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
The dinoflagellate parasite Amoebophrya sp. ex Karlodinium veneficum plays a major role in controlling populations of the toxic bloom-forming dinoflagellate K. veneficum and is one of the few cultured representatives of Marine Alveolate Group II. The obligate parasitic nature of this Amoebophrya spp. precludes isolation in culture, and therefore, genomic characterization of this parasite relies on metagenomic sequencing. Whole-genome sequencing of an Amoebophrya sp. ex K. veneficum-infected culture using Nanopore long reads revealed a diverse community of novel bacteria as well as several species previously reported to be associated with algae. In sum, 39 metagenome-assembled genomes were assembled, and less than half of these required binning of multiple contigs. Seven were abundant but of unknown genera, 13 were identifiable at the generic level by BLAST (8 of which were apparently complete single-contig genomes), and the remaining 19 comprised less abundant (individually accounting for <2% of the total bacterial reads in the culture) and often rarer and/or novel species. Attempts to culture strains identified through sequencing revealed that only two of these bacterial isolates were readily amenable to cultivation, stressing the importance of a dual culture- and sequencing-based approach for robust community analysis. Functional annotations of metagenome-assembled genomes are presented here to support the characterization of a microbial community associated with K. veneficum and/or Amoebophrya sp. ex K. veneficum cultured from the Chesapeake Bay and give preliminary insights into the nature of the associations these bacteria have with this parasite-host complex.
Collapse
Affiliation(s)
- Daniela Tizabi
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Russell T Hill
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Tsvetan Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| |
Collapse
|
2
|
Loeslakwiboon K, Li HH, Tsai S, Wen ZH, Lin C. Effects of chilling and cryoprotectants on glycans in shrimp embryos. Cryobiology 2024; 116:104930. [PMID: 38871207 DOI: 10.1016/j.cryobiol.2024.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Glycans are carbohydrates present in every organism that bind to specific molecules such as lectins, a diverse group of proteins. Glycans are vital to cell proliferation and protein trafficking. In addition, embryogenesis is a critical phase in the development of marine organisms. This study investigated the effects of chilling and cryoprotective agents (CPAs) on glycans in the embryos of Stenopus hispidus. The glycan profiles of embryos of S. hispidus at the heartbeat stage were analyzed using lectin arrays. The results of analyses revealed that mannose was the most abundant glycan in the S. hispidus embryos; mannose is crucial to cell proliferation, providing the energy required for embryonic growth. Additionally, the results reveled that chilling altered the content of several glycans, including fucose and Gla-GlcNAc. Chilling may promote monosaccharide accumulation, facilitating osmotic regulation of cells and signal molecules to aid S. hispidus embryos in adapting to cold conditions. Changes were also observed in the lectins NPA, orysata, PALa, ASA, discoidin II, discoidin I, UDA, PA-IIL, and PHA-P after the samples were treated with different CPAs. DMSO may minimize cell damage during exposure to chilling by preserving cell structures, membrane properties, and functions. The present study is the first to investigate the profiles and functions of glycans in shrimp embryos subjected to low-temperature injuries. This study enhances the understanding of cell reproduction during embryogenesis and provides valuable information for the study of glycans in embryos.
Collapse
Affiliation(s)
- Kanokpron Loeslakwiboon
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; National Museum of Marine Biology & Aquarium, Pingtung, Taiwan; Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Hsing-Hui Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; National Museum of Marine Biology & Aquarium, Pingtung, Taiwan
| | - Sujune Tsai
- Department of Post Modern Agriculture, Mingdao University, Chang Hua, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chiahsin Lin
- National Museum of Marine Biology & Aquarium, Pingtung, Taiwan; Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan.
| |
Collapse
|
3
|
Yang L, Yang Q, Lin L, Zhang C, Dong L, Gao X, Zhang Z, Zeng C, Wang PG. LectoScape: A Highly Multiplexed Imaging Platform for Glycome Analysis and Biomedical Diagnosis. Anal Chem 2024; 96:6558-6565. [PMID: 38632928 DOI: 10.1021/acs.analchem.3c04925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Glycosylation, a fundamental biological process, involves the attachment of glycans to proteins, lipids, and RNA, and it plays a crucial role in various biological pathways. It is of great significance to obtain the precise spatial distribution of glycosylation modifications at the cellular and tissue levels. Here, we introduce LectoScape, an innovative method enabling detailed imaging of tissue glycomes with up to 1 μm resolution through image mass cytometry (IMC). This method utilizes 12 distinct, nonoverlapping lectins selected via microarray technology, enabling the multiplexed detection of a wide array of glycans. Furthermore, we developed an efficient labeling strategy for these lectins. Crucially, our approach facilitates the concurrent imaging of diverse glycan motifs, including N-glycan and O-glycan, surpassing the capabilities of existing technologies. Using LectoScape, we have successfully delineated unique glycan structures in various cell types, enhancing our understanding of the glycan distribution across human tissues. Our method has identified specific glycan markers, such as α2,3-sialylated Galβ1, 3GalNAc in O-glycan, and terminal GalNAc, as diagnostic indicators for cervical intraepithelial neoplasia. This highlights the potential of LectoScape in cancer diagnostics through the detection of abnormal glycosylation patterns.
Collapse
Affiliation(s)
- Lujie Yang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Qianting Yang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, 518020, Guangdong, China
| | - Ling Lin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chi Zhang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Lingkai Dong
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Xiang Gao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, 518020, Guangdong, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, 518020, Guangdong, China
| | - Chen Zeng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| |
Collapse
|
4
|
Sasaki S, Mori T, Enomoto H, Nakamura S, Yokota H, Yamashita H, Goto-Inoue N. Assessing Molecular Localization of Symbiont Microalgae in Coral Branches Through Mass Spectrometry Imaging. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:223-229. [PMID: 38345665 DOI: 10.1007/s10126-024-10294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/31/2024] [Indexed: 04/25/2024]
Abstract
Reef-building corals are a fundamental pillar of coral reef ecosystems in tropical and subtropical shallow environments. Corals harbor symbiotic dinoflagellates belonging to the family Symbiodiniaceae, commonly known as zooxanthellae. Extensive research has been conducted on this symbiotic relationship, yet the fundamental information about the distribution and localization of Symbiodiniaceae cells in corals is still limited. This information is crucial to understanding the mechanism underlying the metabolite exchange between corals and their algal symbionts, as well as the metabolic flow within holobionts. To examine the distribution of Symbiodiniaceae cells within corals, in this study, we used fluorescence imaging and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MS-Imaging) on branches of the Acropora tenuis coral. We successfully prepared frozen sections of the coral for molecular imaging without fixing or decalcifying the coral branches. By combining the results of MS-Imaging with that of the fluorescence imaging, we determined that the algal Symbiodiniaceae symbionts were not only localized in the tentacle and surface region of the coral branches but also inhabited the in inner parts. Therefore, the molecular imaging technique used in this study could be valuable to further investigate the molecular dynamics between corals and their symbionts.
Collapse
Affiliation(s)
- Shudai Sasaki
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, , Fujisawa, Kanagawa, 252-0880, Japan
| | - Tsukasa Mori
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, , Fujisawa, Kanagawa, 252-0880, Japan
| | - Hirofumi Enomoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya-Shi, Tochigi, 320-8551, Japan
| | - Sakiko Nakamura
- Image Processing Research Team, RIKEN Center for Advanced Photonics, Wako, Japan
| | - Hideo Yokota
- Image Processing Research Team, RIKEN Center for Advanced Photonics, Wako, Japan
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 148 Fukai-Ohta, Ishigaki, Okinawa, 907-0451, Japan
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, , Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
5
|
Wang FQ, Bartosik D, Sidhu C, Siebers R, Lu DC, Trautwein-Schult A, Becher D, Huettel B, Rick J, Kirstein IV, Wiltshire KH, Schweder T, Fuchs BM, Bengtsson MM, Teeling H, Amann RI. Particle-attached bacteria act as gatekeepers in the decomposition of complex phytoplankton polysaccharides. MICROBIOME 2024; 12:32. [PMID: 38374154 PMCID: PMC10877868 DOI: 10.1186/s40168-024-01757-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/04/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Marine microalgae (phytoplankton) mediate almost half of the worldwide photosynthetic carbon dioxide fixation and therefore play a pivotal role in global carbon cycling, most prominently during massive phytoplankton blooms. Phytoplankton biomass consists of considerable proportions of polysaccharides, substantial parts of which are rapidly remineralized by heterotrophic bacteria. We analyzed the diversity, activity, and functional potential of such polysaccharide-degrading bacteria in different size fractions during a diverse spring phytoplankton bloom at Helgoland Roads (southern North Sea) at high temporal resolution using microscopic, physicochemical, biodiversity, metagenome, and metaproteome analyses. RESULTS Prominent active 0.2-3 µm free-living clades comprised Aurantivirga, "Formosa", Cd. Prosiliicoccus, NS4, NS5, Amylibacter, Planktomarina, SAR11 Ia, SAR92, and SAR86, whereas BD1-7, Stappiaceae, Nitrincolaceae, Methylophagaceae, Sulfitobacter, NS9, Polaribacter, Lentimonas, CL500-3, Algibacter, and Glaciecola dominated 3-10 µm and > 10 µm particles. Particle-attached bacteria were more diverse and exhibited more dynamic adaptive shifts over time in terms of taxonomic composition and repertoires of encoded polysaccharide-targeting enzymes. In total, 305 species-level metagenome-assembled genomes were obtained, including 152 particle-attached bacteria, 100 of which were novel for the sampling site with 76 representing new species. Compared to free-living bacteria, they featured on average larger metagenome-assembled genomes with higher proportions of polysaccharide utilization loci. The latter were predicted to target a broader spectrum of polysaccharide substrates, ranging from readily soluble, simple structured storage polysaccharides (e.g., laminarin, α-glucans) to less soluble, complex structural, or secreted polysaccharides (e.g., xylans, cellulose, pectins). In particular, the potential to target poorly soluble or complex polysaccharides was more widespread among abundant and active particle-attached bacteria. CONCLUSIONS Particle-attached bacteria represented only 1% of all bloom-associated bacteria, yet our data suggest that many abundant active clades played a pivotal gatekeeping role in the solubilization and subsequent degradation of numerous important classes of algal glycans. The high diversity of polysaccharide niches among the most active particle-attached clades therefore is a determining factor for the proportion of algal polysaccharides that can be rapidly remineralized during generally short-lived phytoplankton bloom events. Video Abstract.
Collapse
Grants
- AM 73/9-3 Deutsche Forschungsgemeinschaft,Germany
- SCHW 595/10-3 Deutsche Forschungsgemeinschaft,Germany
- TE 813/2-3 Deutsche Forschungsgemeinschaft,Germany
- RI 969/9-2 Deutsche Forschungsgemeinschaft,Germany
- BE 3869/4-3 Deutsche Forschungsgemeinschaft,Germany
- SCHW 595/11-3 Deutsche Forschungsgemeinschaft,Germany
- FU 627/2-3 Deutsche Forschungsgemeinschaft,Germany
- RI 969/9-2 Deutsche Forschungsgemeinschaft,Germany
- TE 813/2-3 Deutsche Forschungsgemeinschaft,Germany
- AM 73/9-3 Deutsche Forschungsgemeinschaft,Germany
- AWI_BAH_o 1 Biological Station Helgoland, Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research
- AWI_BAH_o 1 Biological Station Helgoland, Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research
- Max Planck Institute for Marine Microbiology (2)
Collapse
Affiliation(s)
- Feng-Qing Wang
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Daniel Bartosik
- Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489, Greifswald, Germany
- Institute of Marine Biotechnology, Walther-Rathenau-Straße 49a, 17489, Greifswald, Germany
| | - Chandni Sidhu
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Robin Siebers
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
| | - De-Chen Lu
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
- Marine College, Shandong University, Weihai, 264209, China
| | - Anke Trautwein-Schult
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, Carl von Linné-Weg 10, 50829, Cologne, Germany
| | - Johannes Rick
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, Helgoland, 27483, Germany
| | - Inga V Kirstein
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, Helgoland, 27483, Germany
| | - Karen H Wiltshire
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, Helgoland, 27483, Germany
| | - Thomas Schweder
- Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489, Greifswald, Germany
- Institute of Marine Biotechnology, Walther-Rathenau-Straße 49a, 17489, Greifswald, Germany
| | - Bernhard M Fuchs
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Mia M Bengtsson
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany.
| | - Hanno Teeling
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany.
| | - Rudolf I Amann
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany.
| |
Collapse
|
6
|
Jacobovitz MR, Hambleton EA, Guse A. Unlocking the Complex Cell Biology of Coral-Dinoflagellate Symbiosis: A Model Systems Approach. Annu Rev Genet 2023; 57:411-434. [PMID: 37722685 DOI: 10.1146/annurev-genet-072320-125436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Symbiotic interactions occur in all domains of life, providing organisms with resources to adapt to new habitats. A prime example is the endosymbiosis between corals and photosynthetic dinoflagellates. Eukaryotic dinoflagellate symbionts reside inside coral cells and transfer essential nutrients to their hosts, driving the productivity of the most biodiverse marine ecosystem. Recent advances in molecular and genomic characterization have revealed symbiosis-specific genes and mechanisms shared among symbiotic cnidarians. In this review, we focus on the cellular and molecular processes that underpin the interaction between symbiont and host. We discuss symbiont acquisition via phagocytosis, modulation of host innate immunity, symbiont integration into host cell metabolism, and nutrient exchange as a fundamental aspect of stable symbiotic associations. We emphasize the importance of using model systems to dissect the cellular complexity of endosymbiosis, which ultimately serves as the basis for understanding its ecology and capacity to adapt in the face of climate change.
Collapse
Affiliation(s)
- Marie R Jacobovitz
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Elizabeth A Hambleton
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria;
| | - Annika Guse
- Faculty of Biology, Ludwig-Maximilians-Universität Munich, Munich, Germany;
| |
Collapse
|
7
|
Matthews JL, Khalil A, Siboni N, Bougoure J, Guagliardo P, Kuzhiumparambil U, DeMaere M, Le Reun NM, Seymour JR, Suggett DJ, Raina JB. Coral endosymbiont growth is enhanced by metabolic interactions with bacteria. Nat Commun 2023; 14:6864. [PMID: 37891154 PMCID: PMC10611727 DOI: 10.1038/s41467-023-42663-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Bacteria are key contributors to microalgae resource acquisition, competitive performance, and functional diversity, but their potential metabolic interactions with coral microalgal endosymbionts (Symbiodiniaceae) have been largely overlooked. Here, we show that altering the bacterial composition of two widespread Symbiodiniaceae species, during their free-living stage, results in a significant shift in their cellular metabolism. Indeed, the abundance of monosaccharides and the key phytohormone indole-3-acetic acid (IAA) were correlated with the presence of specific bacteria, including members of the Labrenzia (Roseibium) and Marinobacter genera. Single-cell stable isotope tracking revealed that these two bacterial genera are involved in reciprocal exchanges of carbon and nitrogen with Symbiodiniaceae. We identified the provision of IAA by Labrenzia and Marinobacter, and this metabolite caused a significant growth enhancement of Symbiodiniaceae. By unravelling these interkingdom interactions, our work demonstrates how specific bacterial associates fundamentally govern Symbiodiniaceae fitness.
Collapse
Affiliation(s)
- Jennifer L Matthews
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Abeeha Khalil
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Jeremy Bougoure
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, WA, 6009, Australia
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, WA, 6009, Australia
| | | | - Matthew DeMaere
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Nine M Le Reun
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
8
|
Wang B, Wan AH, Xu Y, Zhang RX, Zhao BC, Zhao XY, Shi YC, Zhang X, Xue Y, Luo Y, Deng Y, Neely GG, Wan G, Wang QP. Identification of indocyanine green as a STT3B inhibitor against mushroom α-amanitin cytotoxicity. Nat Commun 2023; 14:2241. [PMID: 37193694 PMCID: PMC10188588 DOI: 10.1038/s41467-023-37714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/21/2023] [Indexed: 05/18/2023] Open
Abstract
The "death cap", Amanita phalloides, is the world's most poisonous mushroom, responsible for 90% of mushroom-related fatalities. The most fatal component of the death cap is α-amanitin. Despite its lethal effect, the exact mechanisms of how α-amanitin poisons humans remain unclear, leading to no specific antidote available for treatment. Here we show that STT3B is required for α-amanitin toxicity and its inhibitor, indocyanine green (ICG), can be used as a specific antidote. By combining a genome-wide CRISPR screen with an in silico drug screening and in vivo functional validation, we discover that N-glycan biosynthesis pathway and its key component, STT3B, play a crucial role in α-amanitin toxicity and that ICG is a STT3B inhibitor. Furthermore, we demonstrate that ICG is effective in blocking the toxic effect of α-amanitin in cells, liver organoids, and male mice, resulting in an overall increase in animal survival. Together, by combining a genome-wide CRISPR screen for α-amanitin toxicity with an in silico drug screen and functional validation in vivo, our study highlights ICG as a STT3B inhibitor against the mushroom toxin.
Collapse
Affiliation(s)
- Bei Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China
| | - Arabella H Wan
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Yu Xu
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China
| | - Ruo-Xin Zhang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China
| | - Ben-Chi Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China
| | - Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China
| | - Yan-Chuan Shi
- Obesity and Metabolic Disease Research Group, Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
| | - Xiaolei Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Yongbo Xue
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China
| | - Yong Luo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China
| | - G Gregory Neely
- Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Guohui Wan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, PR China.
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China.
| |
Collapse
|
9
|
Puntin G, Sweet M, Fraune S, Medina M, Sharp K, Weis VM, Ziegler M. Harnessing the Power of Model Organisms To Unravel Microbial Functions in the Coral Holobiont. Microbiol Mol Biol Rev 2022; 86:e0005322. [PMID: 36287022 PMCID: PMC9769930 DOI: 10.1128/mmbr.00053-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stony corals build the framework of coral reefs, ecosystems of immense ecological and economic importance. The existence of these ecosystems is threatened by climate change and other anthropogenic stressors that manifest in microbial dysbiosis such as coral bleaching and disease, often leading to coral mortality. Despite a significant amount of research, the mechanisms ultimately underlying these destructive phenomena, and what could prevent or mitigate them, remain to be resolved. This is mostly due to practical challenges in experimentation on corals and the highly complex nature of the coral holobiont that also includes bacteria, archaea, protists, and viruses. While the overall importance of these partners is well recognized, their specific contributions to holobiont functioning and their interspecific dynamics remain largely unexplored. Here, we review the potential of adopting model organisms as more tractable systems to address these knowledge gaps. We draw on parallels from the broader biological and biomedical fields to guide the establishment, implementation, and integration of new and emerging model organisms with the aim of addressing the specific needs of coral research. We evaluate the cnidarian models Hydra, Aiptasia, Cassiopea, and Astrangia poculata; review the fast-evolving field of coral tissue and cell cultures; and propose a framework for the establishment of "true" tropical reef-building coral models. Based on this assessment, we also suggest future research to address key aspects limiting our ability to understand and hence improve the response of reef-building corals to future ocean conditions.
Collapse
Affiliation(s)
- Giulia Puntin
- Department of Animal Ecology and Systematics, Marine Holobiomics Lab, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, United Kingdom
| | - Sebastian Fraune
- Institute for Zoology and Organismic Interactions, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Koty Sharp
- Department of Biology, Marine Biology, and Environmental Science, Roger Williams University, Bristol, Rhode Island, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Marine Holobiomics Lab, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
10
|
Seascape genomics of common dolphins (Delphinus delphis) reveals adaptive diversity linked to regional and local oceanography. BMC Ecol Evol 2022; 22:88. [PMID: 35818031 PMCID: PMC9275043 DOI: 10.1186/s12862-022-02038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
High levels of standing genomic variation in wide-ranging marine species may enhance prospects for their long-term persistence. Patterns of connectivity and adaptation in such species are often thought to be influenced by spatial factors, environmental heterogeneity, and oceanographic and geomorphological features. Population-level studies that analytically integrate genome-wide data with environmental information (i.e., seascape genomics) have the potential to inform the spatial distribution of adaptive diversity in wide-ranging marine species, such as many marine mammals. We assessed genotype-environment associations (GEAs) in 214 common dolphins (Delphinus delphis) along > 3000 km of the southern coast of Australia.
Results
We identified 747 candidate adaptive SNPs out of a filtered panel of 17,327 SNPs, and five putatively locally-adapted populations with high levels of standing genomic variation were disclosed along environmentally heterogeneous coasts. Current velocity, sea surface temperature, salinity, and primary productivity were the key environmental variables associated with genomic variation. These environmental variables are in turn related to three main oceanographic phenomena that are likely affecting the dispersal of common dolphins: (1) regional oceanographic circulation, (2) localised and seasonal upwellings, and (3) seasonal on-shelf circulation in protected coastal habitats. Signals of selection at exonic gene regions suggest that adaptive divergence is related to important metabolic traits.
Conclusion
To the best of our knowledge, this represents the first seascape genomics study for common dolphins (genus Delphinus). Information from the associations between populations and their environment can assist population management in forecasting the adaptive capacity of common dolphins to climate change and other anthropogenic impacts.
Collapse
|
11
|
Wang D, Wang C, Zhu G. Genomic reconstruction and features of glycosylation pathways in the apicomplexan Cryptosporidium parasites. Front Mol Biosci 2022; 9:1051072. [PMID: 36465557 PMCID: PMC9713705 DOI: 10.3389/fmolb.2022.1051072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/03/2022] [Indexed: 02/24/2024] Open
Abstract
Cryptosporidium is a genus of apicomplexan parasites infecting humans or other vertebrates. The majority of the Cryptosporidium species live in host intestines (e.g., C. parvum, C. hominis and C. ubiquitum), but there are a few gastric species (e.g., C. muris and C. andersoni). Among them, C. parvum is the most important zoonotic species, for which a number of glycoproteins have been reported for being involved in the interacting with host cells. However, little is known on the cryptosporidium glycobiology. Information on the glycosylation pathways in Cryptosporidium parasites remains sketchy and only a few studies have truly determined the glycoforms in the parasites. Here we reanalyzed the Cryptosporidium genomes and reconstructed the glycosylation pathways, including the synthesis of N- and O-linked glycans and GPI-anchors. In N-glycosylation, intestinal Cryptosporidium possesses enzymes to make a simple precursor with two terminal glucoses on the long arm (i.e., Glc2Man5GlcNAc2 vs. Glc3Man9GlcNAc2 in humans), but gastric species only makes a simpler precursor containing only the "core" structure (i.e., Man3GlcNAc2). There is an ortholog of glucosidase II (GANAB) in all Cryptosporidium species, for which the authenticity is questioned because it contains no signal peptide and exist in gastric species lacking terminal glucoses for the enzyme to act on. In O-linked glycosylation, all Cryptosporidium species may attach one-unit HexNAc (GalNAc and GlcNAc) and two-unit Fuc-type (Man-Fuc) glycans to the target proteins. Cryptosporidium lacks enzymes to further process N- and O-glycans in the Golgi. The glycosylphosphatidylinositol (GPI)-anchor in Cryptosporidium is predicted to be unbranched and unprocessed further in the Golgi. Cryptosporidium can synthesize limited nucleotide sugars, but possesses at least 12 transporters to scavenge nucleotide sugars or transport them across the ER/Golgi membranes. Overall, Cryptosporidium makes much simpler glycans than the hosts, and the N-glycoforms further differ between intestinal and gastric species. The Cryptosporidium N- and O-glycans are neutrally charged and have limited capacity to absorb water molecules in comparison to the host intestinal mucins that are negatively charged and highly expandable in waters.
Collapse
Affiliation(s)
| | | | - Guan Zhu
- Key Laboratory of Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
12
|
Changsut I, Womack HR, Shickle A, Sharp KH, Fuess LE. Variation in symbiont density is linked to changes in constitutive immunity in the facultatively symbiotic coral, Astrangia poculata. Biol Lett 2022; 18:20220273. [PMID: 36382375 PMCID: PMC9667134 DOI: 10.1098/rsbl.2022.0273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Scleractinian corals are essential ecosystem engineers, forming the basis of coral reef ecosystems. However, these organisms are in decline globally, in part due to rising disease prevalence. Most corals are dependent on symbiotic interactions with single-celled algae from the family Symbiodiniaceae to meet their nutritional needs, however, suppression of host immunity may be essential to this relationship. To explore immunological consequences of algal symbioses in scleractinian corals, we investigated constitutive immune activity in the facultatively symbiotic coral, Astrangia poculata. We compared immune metrics (melanin synthesis, antioxidant production and antibacterial activity) between coral colonies of varying symbiont density. Symbiont density was positively correlated to both antioxidant activity and melanin concentration, likely as a result of the dual roles of these pathways in immunity and symbiosis regulation. Our results confirm the complex nature of relationships between algal symbiosis and host immunity and highlight the need for nuanced approaches when considering these relationships.
Collapse
|
13
|
Heat Stress of Algal Partner Hinders Colonization Success and Alters the Algal Cell Surface Glycome in a Cnidarian-Algal Symbiosis. Microbiol Spectr 2022; 10:e0156722. [PMID: 35639004 PMCID: PMC9241721 DOI: 10.1128/spectrum.01567-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corals owe their ecological success to their symbiotic relationship with dinoflagellate algae (family Symbiodiniaceae). While the negative effects of heat stress on this symbiosis are well studied, how heat stress affects the onset of symbiosis and symbiont specificity is less explored. In this work, we used the model sea anemone, Exaiptasia diaphana (commonly referred to as Aiptasia), and its native symbiont, Breviolum minutum, to study the effects of heat stress on the colonization of Aiptasia by algae and the algal cell-surface glycome. Heat stress caused a decrease in the colonization of Aiptasia by algae that were not due to confounding variables such as algal motility or oxidative stress. With mass spectrometric analysis and lectin staining, a thermally induced enrichment of glycans previously found to be associated with free-living strains of algae (high-mannoside glycans) and a concomitant reduction in glycans putatively associated with symbiotic strains of algae (galactosylated glycans) were identified. Differential enrichment of specific sialic acid glycans was also identified, although their role in this symbiosis remains unclear. We also discuss the methods used to analyze the cell-surface glycome of algae, evaluate current limitations, and provide suggestions for future work in algal-coral glycobiology. Overall, this study provided insight into how stress may affect the symbiosis between cnidarians and their algal symbionts by altering the glycome of the symbiodinian partner. IMPORTANCE Coral reefs are under threat from global climate change. Their decline is mainly caused by the fragility of their symbiotic relationship with dinoflagellate algae which they rely upon for their ecological success. To better understand coral biology, researchers used the sea anemone, Aiptasia, a model system for the study of coral-algal symbiosis, and characterized how heat stress can alter the algae's ability to communicate to the coral host. This study found that heat stress caused a decline in algal colonization success and impacted the cell surface molecules of the algae such that it became more like that of nonsymbiotic species of algae. This work adds to our understanding of the molecular signals involved in coral-algal symbiosis and how it breaks down during heat stress.
Collapse
|
14
|
Cui G, Liew YJ, Konciute MK, Zhan Y, Hung SH, Thistle J, Gastoldi L, Schmidt-Roach S, Dekker J, Aranda M. Nutritional control regulates symbiont proliferation and life history in coral-dinoflagellate symbiosis. BMC Biol 2022; 20:103. [PMID: 35549698 PMCID: PMC9102920 DOI: 10.1186/s12915-022-01306-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/22/2022] [Indexed: 12/18/2022] Open
Abstract
Background The coral-Symbiodiniaceae symbiosis is fundamental for the coral reef ecosystem. Corals provide various inorganic nutrients to their algal symbionts in exchange for the photosynthates to meet their metabolic demands. When becoming symbionts, Symbiodiniaceae cells show a reduced proliferation rate and a different life history. While it is generally believed that the animal hosts play critical roles in regulating these processes, far less is known about the molecular underpinnings that allow the corals to induce the changes in their symbionts. Results We tested symbiont cell proliferation and life stage changes in vitro in response to different nutrient-limiting conditions to determine the key nutrients and to compare the respective symbiont transcriptomic profiles to cells in hospite. We then examined the effects of nutrient repletion on symbiont proliferation in coral hosts and quantified life stage transitions in vitro using time-lapse confocal imaging. Here, we show that symbionts in hospite share gene expression and pathway activation profiles with free-living cells under nitrogen-limited conditions, strongly suggesting that symbiont proliferation in symbiosis is limited by nitrogen availability. Conclusions We demonstrate that nitrogen limitation not only suppresses cell proliferation but also life stage transition to maintain symbionts in the immobile coccoid stage. Nutrient repletion experiments in corals further confirmed that nitrogen availability is the major factor limiting symbiont density in hospite. Our study emphasizes the importance of nitrogen in coral-algae interactions and, more importantly, sheds light on the crucial role of nitrogen in symbiont life history regulation. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01306-2.
Collapse
Affiliation(s)
- Guoxin Cui
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Yi Jin Liew
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Migle K Konciute
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ye Zhan
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shiou-Han Hung
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jana Thistle
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Lucia Gastoldi
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sebastian Schmidt-Roach
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Manuel Aranda
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
15
|
Poulhazan A, Dickwella Widanage MC, Muszyński A, Arnold AA, Warschawski DE, Azadi P, Marcotte I, Wang T. Identification and Quantification of Glycans in Whole Cells: Architecture of Microalgal Polysaccharides Described by Solid-State Nuclear Magnetic Resonance. J Am Chem Soc 2021; 143:19374-19388. [PMID: 34735142 PMCID: PMC8630702 DOI: 10.1021/jacs.1c07429] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 12/15/2022]
Abstract
Microalgae are photosynthetic organisms widely distributed in nature and serve as a sustainable source of bioproducts. Their carbohydrate components are also promising candidates for bioenergy production and bioremediation, but the structural characterization of these heterogeneous polymers in cells remains a formidable problem. Here we present a widely applicable protocol for identifying and quantifying the glycan content using magic-angle-spinning (MAS) solid-state NMR (ssNMR) spectroscopy, with validation from glycosyl linkage and composition analysis deduced from mass-spectrometry (MS). Two-dimensional 13C-13C correlation ssNMR spectra of a uniformly 13C-labeled green microalga Parachlorella beijerinckii reveal that starch is the most abundant polysaccharide in a naturally cellulose-deficient strain, and this polymer adopts a well-organized and highly rigid structure in the cell. Some xyloses are present in both the mobile and rigid domains of the cell wall, with their chemical shifts partially aligned with the flat-ribbon 2-fold xylan identified in plants. Surprisingly, most other carbohydrates are largely mobile, regardless of their distribution in glycolipids or cell walls. These structural insights correlate with the high digestibility of this cellulose-deficient strain, and the in-cell ssNMR methods will facilitate the investigations of other economically important algae species.
Collapse
Affiliation(s)
- Alexandre Poulhazan
- Department
of Chemistry, University of Quebec at Montreal, Montreal H2X 2J6, Canada
| | | | - Artur Muszyński
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Alexandre A. Arnold
- Department
of Chemistry, University of Quebec at Montreal, Montreal H2X 2J6, Canada
| | - Dror E. Warschawski
- Laboratoire
des Biomolécules, LBM, CNRS UMR 7203,
Sorbonne Université, École Normale Supérieure,
PSL University, 75005 Paris, France
| | - Parastoo Azadi
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Isabelle Marcotte
- Department
of Chemistry, University of Quebec at Montreal, Montreal H2X 2J6, Canada
| | - Tuo Wang
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
16
|
Rivera HE, Davies SW. Symbiosis maintenance in the facultative coral, Oculina arbuscula, relies on nitrogen cycling, cell cycle modulation, and immunity. Sci Rep 2021; 11:21226. [PMID: 34707162 PMCID: PMC8551165 DOI: 10.1038/s41598-021-00697-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Symbiosis with unicellular algae in the family Symbiodiniaceae is common across tropical marine invertebrates. Reef-building corals offer a clear example of cellular dysfunction leading to a dysbiosis that disrupts entire ecosystems in a process termed coral bleaching. Due to their obligate symbiotic relationship, understanding the molecular underpinnings that sustain this symbiosis in tropical reef-building corals is challenging, as any aposymbiotic state is inherently coupled with severe physiological stress. Here, we leverage the subtropical, facultatively symbiotic and calcifying coral Oculina arbuscula to investigate gene expression differences between aposymbiotic and symbiotic branches within the same colonies under baseline conditions. We further compare gene ontology (GO) and KOG enrichment in gene expression patterns from O. arbuscula with prior work in the sea anemone Exaiptasia pallida (Aiptasia) and the salamander Ambystoma maculatum-both of which exhibit endophotosymbiosis with unicellular algae. We identify nitrogen cycling, cell cycle control, and immune responses as key pathways involved in the maintenance of symbiosis under baseline conditions. Understanding the mechanisms that sustain a healthy symbiosis between corals and Symbiodiniaceae algae is of urgent importance given the vulnerability of these partnerships to changing environmental conditions and their role in the continued functioning of critical and highly diverse marine ecosystems.
Collapse
Affiliation(s)
- H E Rivera
- Department of Biology, Boston University, Boston, MA, USA.
| | - S W Davies
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
17
|
Tortorelli G, Rautengarten C, Bacic A, Segal G, Ebert B, Davy SK, van Oppen MJH, McFadden GI. Cell surface carbohydrates of symbiotic dinoflagellates and their role in the establishment of cnidarian-dinoflagellate symbiosis. ISME JOURNAL 2021; 16:190-199. [PMID: 34285364 PMCID: PMC8290866 DOI: 10.1038/s41396-021-01059-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/05/2023]
Abstract
Symbiodiniaceae algae are often photosymbionts of reef-building corals. The establishment of their symbiosis resembles a microbial infection where eukaryotic pattern recognition receptors (e.g. lectins) are thought to recognize a specific range of taxon-specific microbial-associated molecular patterns (e.g. glycans). The present study used the sea anemone, Exaiptasia diaphana and three species of Symbiodiniaceae (the homologous Breviolum minutum, the heterologous-compatible Cladocopium goreaui and the heterologous-incompatible Fugacium kawagutii) to compare the surface glycomes of three symbionts and explore the role of glycan–lectin interactions in host–symbiont recognition and establishment of symbiosis. We identified the nucleotide sugars of the algal cells, then examined glycans on the cell wall of the three symbiont species with monosaccharide analysis, lectin array technology and fluorescence microscopy of the algal cell decorated with fluorescently tagged lectins. Armed with this inventory of possible glycan moieties, we then assayed the ability of the three Symbiodiniaceae to colonize aposymbiotic E. diaphana after modifying the surface of one of the two partners. The Symbiodiniaceae cell-surface glycome varies among algal species. Trypsin treatment of the alga changed the rate of B. minutum and C. goreaui uptake, suggesting that a protein-based moiety is an essential part of compatible symbiont recognition. Our data strongly support the importance of D-galactose (in particular β-D-galactose) residues in the establishment of the cnidarian–dinoflagellate symbiosis, and we propose a potential involvement of L-fucose, D-xylose and D-galacturonic acid in the early steps of this mutualism.
Collapse
Affiliation(s)
- Giada Tortorelli
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia.
| | | | - Antony Bacic
- Department of Animal, Plant & Soil Sciences, La Trobe Institute for Agriculture and Food, La Trobe University, Bundoora, VIC, Australia
| | - Gabriela Segal
- Biological Optical Microscopy Platform, The University of Melbourne, Parkville, VIC, Australia
| | - Berit Ebert
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Madeleine J H van Oppen
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia.,Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Geoffrey I McFadden
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
18
|
Rosset SL, Oakley CA, Ferrier-Pagès C, Suggett DJ, Weis VM, Davy SK. The Molecular Language of the Cnidarian-Dinoflagellate Symbiosis. Trends Microbiol 2020; 29:320-333. [PMID: 33041180 DOI: 10.1016/j.tim.2020.08.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
The cnidarian-dinoflagellate symbiosis is of huge importance as it underpins the success of coral reefs, yet we know very little about how the host cnidarian and its dinoflagellate endosymbionts communicate with each other to form a functionally integrated unit. Here, we review the current knowledge of interpartner molecular signaling in this symbiosis, with an emphasis on lipids, glycans, reactive species, biogenic volatiles, and noncoding RNA. We draw upon evidence of these compounds from recent omics-based studies of cnidarian-dinoflagellate symbiosis and discuss the signaling roles that they play in other, better-studied symbioses. We then consider how improved knowledge of interpartner signaling might be used to develop solutions to the coral reef crisis by, for example, engineering more thermally resistant corals.
Collapse
Affiliation(s)
- Sabrina L Rosset
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | | | - David J Suggett
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, PO Box 123, Broadway NSW 2007, Australia
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand.
| |
Collapse
|