1
|
Chik AHS, Emelko MB, Anderson WB, O'Sullivan KE, Savio D, Farnleitner AH, Blaschke AP, Schijven JF. Evaluation of groundwater bacterial community composition to inform waterborne pathogen vulnerability assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140472. [PMID: 32758810 DOI: 10.1016/j.scitotenv.2020.140472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/05/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Microbial water quality evaluations are essential for determining the vulnerability of subsurface drinking water sources to fecal pathogen intrusion. Rather than directly monitor waterborne pathogens using culture- or enumeration-based techniques, the potential of assessing bacterial community using 16S rRNA gene amplicon sequencing to support these evaluations was investigated. A framework for analyzing 16S rRNA gene amplicon sequencing results featuring negative-binomial generalized linear models is demonstrated, and applied to bacterial taxa sequences in purge water samples collected from a shallow, highly aerobic, unconfined aquifer. Bacterial taxa relevant as indicators of fecal source and surface connectivity were examined using this approach. Observed sequences of Escherichia, a genus suggestive of fecal source, were consistently detected but not confirmed by culture-based methods. On the other hand, episodic appearance of anaerobic taxa sequences in this highly aerobic environment, namely Clostridia and Bacteroides, warrants further investigation as potential indicators of fecal contamination. Betaproteobacteria sequences varied significantly on a seasonal basis, and therefore may be linked to understanding surface-water groundwater interactions at this site. However, sequences that are often encountered in surface water bodies (Cyanobacteria and Flavobacteriia) were notably absent or present at very low levels, suggesting that microbial transport from surface-derived sources may be rather limited. This work demonstrates the utility of 16S rRNA gene amplicon sequencing for contextualizing and complementing conventional microbial techniques, allowing for hypotheses about source and transport processes to be tested and refined.
Collapse
Affiliation(s)
- Alex H S Chik
- Utrecht University, Domplein 29, 3512 JE Utrecht, Netherlands; TU Wien, Karlsplatz 13, 1040 Vienna, Austria; University of Waterloo, 200 University Ave. W., Waterloo, Ontario N2L 3G1, Canada.
| | - Monica B Emelko
- University of Waterloo, 200 University Ave. W., Waterloo, Ontario N2L 3G1, Canada
| | - William B Anderson
- University of Waterloo, 200 University Ave. W., Waterloo, Ontario N2L 3G1, Canada
| | - Kaitlyn E O'Sullivan
- University of Waterloo, 200 University Ave. W., Waterloo, Ontario N2L 3G1, Canada
| | - Domenico Savio
- Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; TU Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| | - Andreas H Farnleitner
- Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; TU Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| | | | - Jack F Schijven
- Utrecht University, Domplein 29, 3512 JE Utrecht, Netherlands
| |
Collapse
|
2
|
Nikolova C, Gutierrez T. Use of Microorganisms in the Recovery of Oil From Recalcitrant Oil Reservoirs: Current State of Knowledge, Technological Advances and Future Perspectives. Front Microbiol 2020; 10:2996. [PMID: 32010082 PMCID: PMC6978736 DOI: 10.3389/fmicb.2019.02996] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/11/2019] [Indexed: 11/26/2022] Open
Abstract
The depletion of oil resources, increasing global energy demand, the current low, yet unpredictable, price of oil, and increasing maturity of major oil fields has driven the need for the development of oil recovery technologies that are less costly and, where possible, environmentally compatible. Using current technologies, between 20 and 40% of the original oil in a reservoir can be extracted by conventional production operations (e.g., vertical drilling), with secondary recovery methods yielding a further 15-25%. Hence, up to 55% of the original oil can remain unrecovered in a reservoir. Enhanced oil recovery (EOR) is a tertiary recovery process that involves application of different thermal, chemical, and microbial processes to recover an additional 7-15% of the original oil in place (OOIP) at an economically feasible production rate from poor-performing and depleted oil wells. EOR can significantly impact oil production, as increase in the recovery rate of oil by even a small margin could bring significant revenues without developing unconventional resources. Microbial enhanced oil recovery (MEOR) is an attractive, alternative oil recovery approach, which is claimed to potentially recover up to 50% of residual oil. The in situ production of biological surface-active compounds (e.g., biosurfactants) during the MEOR process does not require vast energy inputs and are not affected by global crude oil prices. Compared to other EOR methods, MEOR can be an economically and more environmentally friendly alternative. In this review, the current state of knowledge of MEOR, with insights from discussions with the industry and other stakeholders, is presented and in addition to the future outlook for this technology.
Collapse
Affiliation(s)
| | - Tony Gutierrez
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Liu J, Li B, Wang Y, Zhang G, Jiang X, Li X. Passage and community changes of filterable bacteria during microfiltration of a surface water supply. ENVIRONMENT INTERNATIONAL 2019; 131:104998. [PMID: 31330365 DOI: 10.1016/j.envint.2019.104998] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/06/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
The omnipresence of filterable bacteria that can pass through 0.22-μm membrane filters demands a change in the sterile filtration practice. In this study, we identified that filterable bacteria enriched from a surface water are members of the Bacteroidetes, Proteobacteria, Spirochaetae, Firmicutes, and Actinobacteria. Filterable bacteria displayed superior filterability during the entire bacterial growth phase, especially at the exponential phase. Maximal passage percentages were comparable at different cell densities, and achieved earlier at high cell density. Furthermore, filter retention for the investigated bacteria is independent of liquid temperature. However, cultivation temperature could affect the growth of some specific filterable bacteria and lead to variability in the passage percentage. Additionally, membrane materials, pore size and filtering flux greatly affected the passage of filterable bacteria. The majority of filterable Hylemonella and SAR324 could pass through 0.1-μm polyvinylidene fluoride and polyethersulfone filters but could not pass through 0.1-μm polycarbonate and mixed cellulose esters filters. Taken together, our results demonstrated that the ultra-small size of filterable bacteria, membrane characteristics and filtration operational conditions could challenge the validity of the 0.22/0.1-μm sterilizing grade filters in providing bio-safety barriers.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, China.
| | - Yingying Wang
- College of Environmental Science and Engineering, Nankai University, China
| | - Guijuan Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, China
| | - Xiaotao Jiang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China.
| |
Collapse
|
4
|
Liu J, Zhao R, Zhang J, Zhang G, Yu K, Li X, Li B. Occurrence and Fate of Ultramicrobacteria in a Full-Scale Drinking Water Treatment Plant. Front Microbiol 2018; 9:2922. [PMID: 30568635 PMCID: PMC6290093 DOI: 10.3389/fmicb.2018.02922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/14/2018] [Indexed: 12/23/2022] Open
Abstract
Ultramicrobacteria (UMB) are omnipresent and numerically dominate in freshwater, as microbes can present in drinking water systems, however, the UMB communities that occur and their removal behaviors remain poorly characterized in drinking water treatment plants (DWTPs). To gain insights into these issues, we profiled bacterial cell density, community structure and functions of UMB and their counterpart large bacteria (LB) using flow cytometry and filtration paired with 16S rRNA gene high-throughput sequencing in a full-scale DWTP. Contrary to the reduction of bacterial density and diversity, the proportion of UMB in the total bacteria community increased as the drinking water treatment process progressed, and biological activated carbon facilitated bacterial growth. Moreover, UMB were less diverse than LB, and their community structure and predicted functions were significantly different. In the DWTP, UMB indicator taxa were mainly affiliated with α/β/γ-Proteobacteria, Deinococcus-Thermus, Firmicutes, Acidobacteria, and Dependentiae. In particular, the exclusive clustering of UMB at the phylum level, e.g., Parcubacteria, Elusimicrobia, and Saccharibacteria, confirmed the fact that the ultra-small size of UMB is a naturally and evolutionarily conserved trait. Additionally, the streamlined genome could be connected to UMB, such as candidate phyla radiation (CPR) bacteria, following a symbiotic or parasitic lifestyle, which then leads to the observed high connectedness, i.e., non-random intra-taxa co-occurrence patterns within UMB. Functional prediction analysis revealed that environmental information processing and DNA replication and repair likely contribute to the higher resistance of UMB to drinking water treatment processes in comparison to LB. Overall, the study provides valuable insights into the occurrence and fate of UMB regarding community structure, phylogenetic characteristics and potential functions in a full-scale DWTP, and it is a useful reference for beneficial manipulation of the drinking water microbiome.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Jiayu Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Guijuan Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| |
Collapse
|
5
|
Phoku J, Barnard T, Potgieter N, Dutton M. Mycotoxigenic potentials of the genera: Aspergillus, Fusarium and Penicillium isolated from houseflies (Musca domestica L.). Acta Trop 2017; 168:29-36. [PMID: 28042000 DOI: 10.1016/j.actatropica.2016.12.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/03/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
Abstract
A study on the potential of houseflies (Musca domestica L.) to spread fungal spores in Gauteng Province, South Africa proved that houseflies are vectors for fungal spores. Therefore, there is a need to determine the toxigenic potentials and to identify the mycotoxins produced by fungal isolates derived from this study. In total 377 potentially toxigenic isolates of Aspergillus (186), Fusarium (85) and Penicillium (106) species (spp.) were isolated. These isolates were further tested for their ability to produce aflatoxins (AFs) [aflatoxin B1, B2, G1 and G2], deoxynivalenol (DON), fumonisin B1 (FB1) ochratoxin A (OTA), and zearalenone (ZEA) by high-performance liquid chromatography (HPLC) respectively. Strains of A. flavus and A. parasiticus belonging to the genera of Aspergillus were found to be the main producers of AFB1, AFB2, AFG1, and AFG2, while A. carbonarius, A. niger and A. ochraceus produced OTA. Fumonisin B1 was produced by F. verticillioides and F. proliferatum with concentrations ranging from 20 to 1834μg/kg and 79 to 262μg/kg respectively. Deoxynivalenol produced mainly by F. culmorum (2-6μg/kg), F. graminearum (1-4μg/kg), F. poae (1-3μg/kg), and F. sporotrichioides (2-3μg/kg) species was the least detected toxin in this study. The high mycotoxins levels produced in isolates from houseflies in this study are regarded as unsafe, especially when international legislated tolerance levels for mycotoxins are considered. Thus, possible human exposure to mycotoxins may pose concerns with respect to human health and demands constant and consistent investigation.
Collapse
|
6
|
Lee YS, Zhou Y, Park DJ, Chang J, Choi YL. β-cyclodextrin production by the cyclodextrin glucanotransferase from Paenibacillus illinoisensis ZY-08: cloning, purification, and properties. World J Microbiol Biotechnol 2012; 29:865-73. [PMID: 23264152 DOI: 10.1007/s11274-012-1241-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/14/2012] [Indexed: 11/25/2022]
Abstract
The gene encoding the cyclodextrin glucanotransferase (CGTase, EC2.4.1.19) of Paenibacillus illinoisensis was isolated, cloned, sequenced and expressed in Escherichia coli. Sequence analysis showed that the mature enzyme (684 amino acids) was preceded by a signal peptide of 34-residues. The deduced amino acid sequence of the CGTase from P. illinoisensis ZY-08 exhibited highest identity (99 %) to the CGTase sequence from Bacillus licheniformis (P14014). The four consensus regions of carbohydrate converting domain and Ca(2+) binding domain could be identified in the sequence. The CGTase was purified by using cold expression vector, pCold I, and His-tag affinity chromatography. The molecular weight of the purified enzyme was about 74 kDa. The optimum temperature and pH of the enzyme were 40 °C and pH 7.4, respectively. The enzyme activity was increased by the addition of Ca(2+) and inhibited by Ba(2+), Cu(2+), and Hg(2+). The K m and V max values calculated were 0.48 mg/ml and 51.38 mg of β-cyclodextrin/ml/min. The ZY-08 and recombinant readily converted soluble starch to β-cyclodextrin but ZY-08 did not convert king oyster mushroom powder and enoki mushroom powder. However the recombinant CGTase converted king oyster mushroom powder and enoki mushroom powder to β-cyclodextrin.
Collapse
Affiliation(s)
- Yong-Suk Lee
- Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | | | | | | | | |
Collapse
|
7
|
Hwang G, Kang S, El-Din MG, Liu Y. Impact of an extracellular polymeric substance (EPS) precoating on the initial adhesion of Burkholderia cepacia and Pseudomonas aeruginosa. BIOFOULING 2012; 28:525-538. [PMID: 22686692 DOI: 10.1080/08927014.2012.694138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Extracellular polymeric substances (EPS) significantly influence bacterial adhesion to solid surfaces, but it is difficult to elucidate the role of EPS on bacterial adhesion due to their complexity and variability. In the present study, the effect of EPS on the initial adhesion of B. cepaciaepacia PC184 and P. aeruginosa PAO1 on glass slides with and without an EPS precoating was investigated under three ionic strength conditions. The surface roughness of EPS coated slides was evaluated by atomic force microscopy (AFM), and its effect on initial bacterial adhesion was found to be trivial. X-ray photoelectron spectroscopy (XPS) studies were performed to determine the elemental surface compositions of bacterial cells and substrata. The results showed that an EPS precoating hindered bacterial adhesion on solid surfaces, which was largely attributed to the presence of proteins in the EPS. This observation can be attributed to the increased steric repulsion at high ionic strength conditions. A steric model for polymer brushes that considers the combined influence of steric effects and DLVO interaction forces is shown to adequately describe bacterial adhesion behaviors.
Collapse
Affiliation(s)
- Geelsu Hwang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2W2, Canada
| | | | | | | |
Collapse
|
8
|
Antimicrobial activity of Paenibacillus kribbensis POC 115 against the dermatophyte Trichophyton rubrum. World J Microbiol Biotechnol 2011; 28:953-62. [DOI: 10.1007/s11274-011-0893-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
|
9
|
Abstract
AIMS To examine the diversity of cultivable 0.2 micron filtrate biofilm forming bacteria from drinking water systems. METHODS AND RESULTS Potable chlorinated drinking water hosts phylogenetically diverse ultramicrocells (UMC) (0.2 and 0.1 microm filterable). UMC (starved or dwarf bacteria) were isolated by cultivation on minimal medium from a flow system wall model with polyvinyl chloride (PVC) pipes. All cultivated cells (25 different isolates) did not maintain their ultra-size after passages on rich media. Cultured UMC were identified by their 16S ribosomal DNA sequences. The results showed that they were closely related to uncultured and cultured members of the Proteobacteria, Actinobacteria and Firmicutes. The isolates of phylum Actinobacteria included representatives of a diverse set of Actinobacterial families: Micrococcaceae, Microbacteriaceae, Dermabacteraceae, Nocardiaceae and Nocardioidaceae. CONCLUSIONS This study is the first to show an abundance of cultivable UMC of various phyla in drinking water system, including a high frequency of bacteria known to be involved in opportunistic infections, such as Stenotrophomonas maltophilia, Microbacterium sp., Pandoraea sp. and Afipia strains. SIGNIFICANCE AND IMPACT OF THE STUDY Chlorinated tap water filtrate (0.2 and 0.1 microm) still harbours opportunistic micro-organisms that can pose some health threat.
Collapse
Affiliation(s)
- F S Silbaq
- Mar Elias Educational Institutions and Mar Elias Campus, Ibillin, Galilee, Israel.
| |
Collapse
|
10
|
von der Weid I, Artursson V, Seldin L, Jansson JK. Antifungal and Root Surface Colonization Properties of GFP-Tagged Paenibacillus brasilensis PB177. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-005-8123-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Abstract
Twenty bacterial isolates (supplied by NASA) from the Mir space station water system were identified using Vitek GNI+ test card, API 20NE, and 16S rRNA gene sequencing. The identification of only one isolate agreed among the three techniques. The utility of the API 20NE and Vitek GNI+ test card approaches for identifying these isolates was Limited. Although 16S rRNA gene sequencing effectively identified many of the bacteria to the genus level, 74% of the isolates could not be identified to the species level. Isolates were also characterized based on motility and hydrophobicity. About 40% of the isolates were motile and four isolates were hydrophobic, suggesting that many of the bacteria have the potential to colonize surfaces and form biofilms. These findings demonstrate the difficulties in identifying bacteria from some environments to the species level and have implications for determining the risks of contamination in water systems of space shuttles and stations.
Collapse
Affiliation(s)
- Bo Song
- Department of Biological Sciences, Kent State University, Kent, OH 44242-0001, USA
| | | |
Collapse
|
12
|
Dorigo U, Volatier L, Humbert JF. Molecular approaches to the assessment of biodiversity in aquatic microbial communities. WATER RESEARCH 2005; 39:2207-18. [PMID: 15935436 DOI: 10.1016/j.watres.2005.04.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 03/10/2005] [Accepted: 03/16/2005] [Indexed: 05/02/2023]
Abstract
For the past 20 years, the increased development and routine application of molecular-based techniques has made it possible to carry out detailed evaluations of the biodiversity of aquatic microbial communities. It also offers great opportunities for finding out how this parameter responds to various environmental stresses. Most of these approaches involve an initial PCR amplification of a target, which is generally located within the ribosomal operon. The amplification is achieved by means of primers that are specific to the organisms of interest. The second step involves detecting sequence variations in the PCR fragments either by a cloning/sequencing analysis, which provides a complete characterization of the fragments, or by an electrophoretic analysis, which provides a visual separation of the mixture of fragments according to sequence polymorphism (denaturing or temperature gradient gel electrophoresis, single strand conformation polymorphism) or length polymorphism (terminal-restriction fragment length polymorphism, automated ribosomal intergenic spacer analysis). Other non-PCR-based methods are also commonly used, such as fluorescence in-situ hybridization and DNA re-association analysis. Depending on the technique used, the information gained can be quite different. Moreover, some of these analyses may be rather onerous in terms of time and money, and so not always suitable for screening large numbers of samples. The most widely used techniques are discussed in this paper to illustrate the principles, advantages and shortcomings of each of them. Finally, we will conclude by evaluating the techniques and discussing some emerging molecular techniques, such as real-time PCR and the microarray technique.
Collapse
Affiliation(s)
- Ursula Dorigo
- INRA, UMR CARRTEL, Equipe de Microbiologie Aquatique, BP 511, 74203 Thonon Cedex, France
| | | | | |
Collapse
|
13
|
Sanin SL. Effect of starvation on resuscitation and the surface characteristics of bacteria. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2003; 38:1517-1528. [PMID: 12929805 DOI: 10.1081/ese-120021476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Resuscitation behavior of bacteria after starvation for carbon and nitrogen was investigated. In addition effect of carbon and nitrogen starvation conditions on the surface characteristics and adhesive properties of bacteria were studied. Two pure culture herbicide degrading bacteria were used in the study: Pseudomonas sp. strain A, and Rhodococcus corallinus strain 11. These bacteria are known to degrade cyanuric acid which is a derivative of s-triazine, a common herbicide used widely. Selected bacteria were starved for carbon (glucose) and nitrogen (cyanuric acid) in different bioreactors and their physiological responses to starvation and resuscitation were measured. Different resuscitation responses were observed under different starvation conditions such that long lag phase was, observed for Rhodococcus corallinus strain 11 subjected to cyanuric acid starvation. Slow exponential growth rates were calculated for both microorganisms subjected to cyanuric acid starvation. The surface properties of both microorganisms were investigated using MATH test with two different hydrocarbons (hexadecane and octane). Hexadecane was observed to be the best organic attachment phase for these tests. Surface hydrophobiciy for all the microorganisms stayed unchanged during carbon starvation conditions. Significant decrease in hydrophobicity was observed for both cultures starved for nitrogen. When the hydrophobicity of the cultures decreased, the attachment capabilities of the microorganisms decreased. The decrease in attachment capabilities is a result of highly hydrated extracellular polysaccharides produced in the presence of carbon in the medium. Results of this study can be used as control tools in soil remediation applications.
Collapse
|
14
|
Sanin SL, Sanin F, Bryers JD. Effect of starvation on the adhesive properties of xenobiotic degrading bacteria. Process Biochem 2003. [DOI: 10.1016/s0032-9592(02)00173-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Ross N, Bickerton G. Application of Biobarriers for Groundwater Containment at Fractured Bedrock Sites. ACTA ACUST UNITED AC 2002. [DOI: 10.1002/rem.10031] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|