1
|
Barros-Medina I, Robles-Ramos MÁ, Sobrinos-Sanguino M, Luque-Ortega JR, Alfonso C, Margolin W, Rivas G, Monterroso B, Zorrilla S. Evidence for biomolecular condensates formed by the Escherichia coli MatP protein in spatiotemporal regulation of the bacterial cell division cycle. Int J Biol Macromol 2025; 309:142691. [PMID: 40174834 DOI: 10.1016/j.ijbiomac.2025.142691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/18/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
An increasing number of proteins involved in bacterial cell cycle events have been recently shown to form biomolecular condensates important for their functions that may play a role in development of antibiotic-tolerant persister cells. Here we report that the E. coli chromosomal Ter macrodomain organizer MatP, a division site selection protein coordinating chromosome segregation with cell division, formed biomolecular condensates in crowding cytomimetic systems preferentially localized at the membrane of microfluidics droplets. Condensates were antagonized and partially dislodged from the membrane by DNA sequences recognized by MatP (matS), which partitioned into them. FtsZ, a core component of the division machinery previously described to phase-separate, unexpectedly enhanced MatP condensation. Our biophysical analyses uncovered direct interaction between both proteins, disrupted by matS. This may have potential implications for midcell FtsZ ring positioning by the Ter-linkage, which comprises MatP and two other proteins bridging the canonical MatP-FtsZ interaction. FtsZ/MatP condensates interconverted with GTP-triggered bundles, suggesting that local fluctuations of GTP concentrations may regulate FtsZ/MatP phase separation. Consistent with discrete MatP foci previously reported in cells, phase separation might influence MatP-dependent chromosome organization, spatiotemporal coordination of cytokinesis and DNA segregation, which is potentially relevant for cell entry into dormant states that can resist antibiotic treatments.
Collapse
Affiliation(s)
- Inés Barros-Medina
- Department of Cellular and Molecular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| | - Miguel Ángel Robles-Ramos
- Department of Cellular and Molecular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| | - Marta Sobrinos-Sanguino
- Department of Cellular and Molecular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| | - Juan Román Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| | - Carlos Alfonso
- Department of Cellular and Molecular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth-Houston, Houston, TX 77030, USA.
| | - Germán Rivas
- Department of Cellular and Molecular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| | - Begoña Monterroso
- Department of Crystallography and Structural Biology, Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain.
| | - Silvia Zorrilla
- Department of Cellular and Molecular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| |
Collapse
|
2
|
Barros-Medina I, Robles-Ramos MÁ, Sobrinos-Sanguino M, Luque-Ortega JR, Alfonso C, Margolin W, Rivas G, Monterroso B, Zorrilla S. Evidence for biomolecular condensates of MatP in spatiotemporal regulation of the bacterial cell division cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604758. [PMID: 39211257 PMCID: PMC11361077 DOI: 10.1101/2024.07.23.604758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An increasing number of proteins involved in bacterial cell cycle events have been recently shown to undergo phase separation. The resulting biomolecular condensates play an important role in cell cycle protein function and may be involved in development of persister cells tolerant to antibiotics. Here we report that the E. coli chromosomal Ter macrodomain organizer MatP, a division site selection protein implicated in the coordination of chromosome segregation with cell division, forms biomolecular condensates in cytomimetic systems. These condensates are favored by crowding and preferentially localize at the membrane of microfluidics droplets, a behavior probably mediated by MatP-lipid binding. Condensates are negatively regulated and partially dislodged from the membrane by DNA sequences recognized by MatP ( matS ), which partition into them. Unexpectedly, MatP condensation is enhanced by FtsZ, a core component of the division machinery previously described to undergo phase separation. Our biophysical analyses uncover a direct interaction between the two proteins, disrupted by matS sequences. This binding might have implications for FtsZ ring positioning at mid-cell by the Ter linkage, which comprises MatP and two other proteins that bridge the canonical MatP/FtsZ interaction. FtsZ/MatP condensates interconvert with bundles in response to GTP addition, providing additional levels of regulation. Consistent with discrete foci reported in cells, MatP biomolecular condensates may facilitate MatP's role in chromosome organization and spatiotemporal regulation of cytokinesis and DNA segregation. Moreover, sequestration of MatP in these membraneless compartments, with or without FtsZ, could promote cell entry into dormant states that are able to survive antibiotic treatments.
Collapse
|
3
|
Suigo L, Monterroso B, Sobrinos-Sanguino M, Alfonso C, Straniero V, Rivas G, Zorrilla S, Valoti E, Margolin W. Benzodioxane-benzamides as promising inhibitors of Escherichia coli FtsZ. Int J Biol Macromol 2023; 253:126398. [PMID: 37634788 DOI: 10.1016/j.ijbiomac.2023.126398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
The conserved process of cell division in bacteria has been a long-standing target for antimicrobials, although there are few examples of potent broad-spectrum compounds that inhibit this process. Most currently available compounds acting on division are directed towards the FtsZ protein, a self-assembling GTPase that is a central element of the division machinery in most bacteria. Benzodioxane-benzamides are promising candidates, but poorly explored in Gram-negatives. We have tested a number of these compounds on E. coli FtsZ and found that many of them significantly stabilized the polymers against disassembly and reduced the GTPase activity. Reconstitution in crowded cell-like conditions showed that FtsZ bundles were also susceptible to these compounds, including some compounds that were inactive on protofilaments in dilute conditions. They efficiently killed E. coli cells defective in the AcrAB efflux pump. The activity of the compounds on cell growth and division generally showed a good correlation with their effect in vitro, and our experiments are consistent with FtsZ being the target in vivo. Our results uncover the detrimental effects of benzodioxane-benzamides on permeable E. coli cells via its central division protein, implying that lead compounds may be found within this class for the development of antibiotics against Gram-negative bacteria.
Collapse
Affiliation(s)
- Lorenzo Suigo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli, 25, 20133 Milano, Italy
| | - Begoña Monterroso
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Marta Sobrinos-Sanguino
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Valentina Straniero
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli, 25, 20133 Milano, Italy
| | - Germán Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Silvia Zorrilla
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| | - Ermanno Valoti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli, 25, 20133 Milano, Italy.
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas, Houston 77030, TX, USA.
| |
Collapse
|
4
|
Kembaren R, Westphal AH, Kamperman M, Kleijn JM, Borst JW. Charged Polypeptide Tail Boosts the Salt Resistance of Enzyme-Containing Complex Coacervate Micelles. Biomacromolecules 2022; 23:1195-1204. [PMID: 35042326 PMCID: PMC8924873 DOI: 10.1021/acs.biomac.1c01466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/05/2022] [Indexed: 11/28/2022]
Abstract
Encapsulation of proteins can have advantages for their protection, stability, and delivery purposes. One of the options to encapsulate proteins is to incorporate them in complex coacervate core micelles (C3Ms). This can easily be achieved by mixing aqueous solutions of the protein and an oppositely charged neutral-hydrophilic diblock copolymer. However, protein-containing C3Ms often suffer from salt-inducible disintegration due to the low charge density of proteins. The aim of this study is to improve the salt stability of protein-containing C3Ms by increasing the net charge of the protein by tagging it with a charged polypeptide. As a model protein, we used CotA laccase and generated variants with 10, 20, 30, and 40 glutamic acids attached at the C-terminus of CotA using genetic engineering. Micelles were obtained by mixing the five CotA variants with poly(N-methyl-2-vinyl-pyridinium)-block-poly(ethylene oxide) (PM2VP128-b-PEO477) at pH 10.8. Hydrodynamic radii of the micelles of approximately 31, 27, and 23 nm for native CotA, CotA-E20, and CotA-E40, respectively, were determined using dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS). The encapsulation efficiency was not affected using enzymes with a polyglutamic acid tail but resulted in more micelles with a smaller number of enzyme molecules per micelle. Furthermore, it was shown that the addition of a polyglutamic acid tail to CotA indeed resulted in improved salt stability of enzyme-containing C3Ms. Interestingly, the polyglutamic acid CotA variants showed an enhanced enzyme activity. This study demonstrates that increasing the net charge of enzymes through genetic engineering is a promising strategy to improve the practical applicability of C3Ms as enzyme delivery systems.
Collapse
Affiliation(s)
- Riahna Kembaren
- Physical
Chemistry and Soft Matter, Wageningen University
& Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Laboratory
of Biochemistry, Microspectroscopy Research Facility, Wageningen University & Research, Stippeneng 4, 6708
WE Wageningen, The Netherlands
| | - Adrie H. Westphal
- Laboratory
of Biochemistry, Microspectroscopy Research Facility, Wageningen University & Research, Stippeneng 4, 6708
WE Wageningen, The Netherlands
| | - Marleen Kamperman
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - J. Mieke Kleijn
- Physical
Chemistry and Soft Matter, Wageningen University
& Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jan Willem Borst
- Laboratory
of Biochemistry, Microspectroscopy Research Facility, Wageningen University & Research, Stippeneng 4, 6708
WE Wageningen, The Netherlands
| |
Collapse
|
5
|
Nederveen-Schippers LM, Pathak P, Keizer-Gunnink I, Westphal AH, van Haastert PJM, Borst JW, Kortholt A, Skakun V. Combined FCS and PCH Analysis to Quantify Protein Dimerization in Living Cells. Int J Mol Sci 2021; 22:ijms22147300. [PMID: 34298920 PMCID: PMC8307594 DOI: 10.3390/ijms22147300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022] Open
Abstract
Protein dimerization plays a crucial role in the regulation of numerous biological processes. However, detecting protein dimers in a cellular environment is still a challenge. Here we present a methodology to measure the extent of dimerization of GFP-tagged proteins in living cells, using a combination of fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analysis of single-color fluorescence fluctuation data. We named this analysis method brightness and diffusion global analysis (BDGA) and adapted it for biological purposes. Using cell lysates containing different ratios of GFP and tandem-dimer GFP (diGFP), we show that the average brightness per particle is proportional to the fraction of dimer present. We further adapted this methodology for its application in living cells, and we were able to distinguish GFP, diGFP, as well as ligand-induced dimerization of FKBP12 (FK506 binding protein 12)-GFP. While other analysis methods have only sporadically been used to study dimerization in living cells and may be prone to errors, this paper provides a robust approach for the investigation of any cytosolic protein using single-color fluorescence fluctuation spectroscopy.
Collapse
Affiliation(s)
- Laura M. Nederveen-Schippers
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (L.M.N.-S.); (P.P.); (I.K.-G.); (P.J.M.v.H.)
| | - Pragya Pathak
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (L.M.N.-S.); (P.P.); (I.K.-G.); (P.J.M.v.H.)
| | - Ineke Keizer-Gunnink
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (L.M.N.-S.); (P.P.); (I.K.-G.); (P.J.M.v.H.)
| | - Adrie H. Westphal
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (A.H.W.); (J.W.B.)
| | - Peter J. M. van Haastert
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (L.M.N.-S.); (P.P.); (I.K.-G.); (P.J.M.v.H.)
| | - Jan Willem Borst
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (A.H.W.); (J.W.B.)
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (L.M.N.-S.); (P.P.); (I.K.-G.); (P.J.M.v.H.)
- Correspondence: (A.K.); (V.S.)
| | - Victor Skakun
- Department of Systems Analysis and Computer Simulation, Belarusian State University, 220030 Minsk, Belarus
- Correspondence: (A.K.); (V.S.)
| |
Collapse
|
6
|
Kembaren R, Fokkink R, Westphal AH, Kamperman M, Kleijn JM, Borst JW. Balancing Enzyme Encapsulation Efficiency and Stability in Complex Coacervate Core Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8494-8502. [PMID: 32598154 PMCID: PMC7467766 DOI: 10.1021/acs.langmuir.0c01073] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Encapsulation of charged proteins into complex coacervate core micelles (C3Ms) can be accomplished by mixing them with oppositely charged diblock copolymers. However, these micelles tend to disintegrate at high ionic strength. Previous research showed that the addition of a homopolymer with the same charge sign as the protein improved the stability of protein-containing C3Ms. In this research, we used fluorescence correlation spectroscopy (FCS) and dynamic light scattering (DLS) to study how the addition of the homopolymer affects the encapsulation efficiency and salt stability of the micelles. We studied the encapsulation of laccase spore coat protein A (CotA), a multicopper oxidase, using a strong cationic-neutral diblock copolymer, poly(N-methyl-2-vinyl-pyridinium iodide)-block-poly(ethylene oxide) (PM2VP128-b-PEO477), and a negatively charged homopolymer, poly(4-styrenesulfonate) (PSS215). DLS indeed showed an improved stability of this three-component C3M system against the addition of salt compared to a two-component system. Remarkably, FCS showed that the release of CotA from a three-component C3M system occurred at a lower salt concentration and over a narrower concentration range than the dissociation of C3Ms. In conclusion, although the addition of the homopolymer to the system leads to micelles with a higher salt stability, CotA is excluded from the C3Ms already at lower ionic strengths because the homopolymer acts as a competitor of the enzyme for encapsulation.
Collapse
Affiliation(s)
- Riahna Kembaren
- Physical
Chemistry and Soft Matter, Wageningen University
and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
- Laboratory
of Biochemistry, Microspectroscopy Research Facility, Wageningen University and Research, Stippeneng 4, 6708
WE Wageningen, Netherlands
| | - Remco Fokkink
- Physical
Chemistry and Soft Matter, Wageningen University
and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Adrie H. Westphal
- Laboratory
of Biochemistry, Microspectroscopy Research Facility, Wageningen University and Research, Stippeneng 4, 6708
WE Wageningen, Netherlands
| | - Marleen Kamperman
- Zernike
Institute for Advanced Research, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - J. Mieke Kleijn
- Physical
Chemistry and Soft Matter, Wageningen University
and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Jan Willem Borst
- Laboratory
of Biochemistry, Microspectroscopy Research Facility, Wageningen University and Research, Stippeneng 4, 6708
WE Wageningen, Netherlands
| |
Collapse
|
7
|
de Lange N, Leermakers FAM, Kleijn JM. Self-limiting aggregation of phospholipid vesicles. SOFT MATTER 2020; 16:2379-2389. [PMID: 32064491 DOI: 10.1039/c9sm01692a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipid vesicles are widely used as model systems to study biological membranes. The self-assembly of such vesicles into vesicle pairs provides further opportunity to study interactions between membranes. However, formation of vesicle pairs, while subsequently keeping their colloidal stability intact, is challenging. Here, we report on three strategies that lead to stable finite-sized aggregates of phospholipid vesicles: (i) vesicles containing biotinylated lipids are coupled together with streptavidin, (ii) bridging attraction is exploited by adding cationic polymers (polylysine) to negatively charged vesicles, and (iii) temperature as a control parameter is used for the aggregation of vesicles mixed with a thermo-sensitive surfactant. While each strategy has its own advantages and disadvantages for vesicle pair formation, the latter strategy additionally shows reversible limited aggregation: above the LCST of pNIPAm, vesicle pairs are formed, while below the LCST, single vesicles prevail. Mixing protocols were assessed by dynamic and static light scattering as well as fluorescence correlation spectroscopy to determine under which conditions vesicle pairs dominate the aggregate size distribution. We have strong indications that without subsequent perturbation, the individual vesicles remain intact and no fusion or leakage between vesicles occurs after vesicle pairs have formed.
Collapse
Affiliation(s)
- N de Lange
- Physical Chemistry & Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - F A M Leermakers
- Physical Chemistry & Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - J M Kleijn
- Physical Chemistry & Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
8
|
Nolles A, Westphal AH, Kleijn JM, van Berkel WJH, Borst JW. Colorful Packages: Encapsulation of Fluorescent Proteins in Complex Coacervate Core Micelles. Int J Mol Sci 2017; 18:ijms18071557. [PMID: 28753915 PMCID: PMC5536045 DOI: 10.3390/ijms18071557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/30/2017] [Accepted: 07/13/2017] [Indexed: 12/02/2022] Open
Abstract
Encapsulation of proteins can be beneficial for food and biomedical applications. To study their biophysical properties in complex coacervate core micelles (C3Ms), we previously encapsulated enhanced green fluorescent protein (EGFP) and its monomeric variant, mEGFP, with the cationic-neutral diblock copolymer poly(2-methyl-vinyl-pyridinium)n-b-poly(ethylene-oxide)m (P2MVPn-b-PEOm) as enveloping material. C3Ms with high packaging densities of fluorescent proteins (FPs) were obtained, resulting in a restricted orientational freedom of the protein molecules, influencing their structural and spectral properties. To address the generality of this behavior, we encapsulated seven FPs with P2MVP41-b-PEO205 and P2MVP128-b-PEO477. Dynamic light scattering and fluorescence correlation spectroscopy showed lower encapsulation efficiencies for members of the Anthozoa class (anFPs) than for Hydrozoa FPs derived from Aequorea victoria (avFPs). Far-UV CD spectra of the free FPs showed remarkable differences between avFPs and anFPs, caused by rounder barrel structures for avFPs and more elliptic ones for anFPs. These structural differences, along with the differences in charge distribution, might explain the variations in encapsulation efficiency between avFPs and anFPs. Furthermore, the avFPs remain monomeric in C3Ms with minor spectral and structural changes. In contrast, the encapsulation of anFPs gives rise to decreased quantum yields (monomeric Kusabira Orange 2 (mKO2) and Tag red fluorescent protein (TagRFP)) or to a pKa shift of the chromophore (FP variant mCherry).
Collapse
Affiliation(s)
- Antsje Nolles
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- MicroSpectroscopy Centre Wageningen, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - J Mieke Kleijn
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Jan Willem Borst
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- MicroSpectroscopy Centre Wageningen, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
9
|
Visser AJWG, Westphal AH, Skakun VV, Borst JW. GFP as potential cellular viscosimeter. Methods Appl Fluoresc 2016; 4:035002. [PMID: 28355162 DOI: 10.1088/2050-6120/4/3/035002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The molecular dimensions of proteins such as green fluorescent protein (GFP) are large as compared to the ones of solvents like water or glycerol. The microscopic viscosity, which determines the resistance to diffusion of, e.g. GFP, is then the same as that determined from the resistance of the solvent to flow, which is known as macroscopic viscosity. GFP in water/glycerol mixtures senses this macroscopic viscosity, because the translational and rotational diffusion coefficients are proportional to the reciprocal value of the viscosity as predicted by the Stokes-Einstein equations. To test this hypothesis, we have performed time-resolved fluorescence anisotropy (reporting on rotational diffusion) and fluorescence correlation spectroscopy (reporting on translational diffusion) experiments of GFP in water/glycerol mixtures. When the solvent also contains macromolecules of similar or larger dimensions as GFP, the microscopic and macroscopic viscosities can be markedly different and the Stokes-Einstein relations must be adapted. It was established from previous dynamic fluorescence spectroscopy observations of diffusing proteins with dextran polysaccharides as co-solvents (Lavalette et al 2006 Eur. Biophys. J. 35 517-22), that rotation and translation sense a different microscopic viscosity, in which the one arising from rotation is always less than that from translation. A microscopic viscosity parameter is defined that depends on scaling factors between GFP and its immediate environment. The direct consequence is discussed for two reported diffusion coefficients of GFP in living cells.
Collapse
Affiliation(s)
- Antonie J W G Visser
- Laboratory of Biochemistry, Microspectroscopy Centre, Wageningen University, PO Box 8128, 6700 ET Wageningen, The Netherlands
| | | | | | | |
Collapse
|
10
|
Skakun VV, Novikov EG, Apanasovich TV, Apanasovich VV. Fluorescence cumulants analysis with non-ideal observation profiles. Methods Appl Fluoresc 2015; 3:045003. [PMID: 29148513 DOI: 10.1088/2050-6120/3/4/045003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
One of the challenges of fluorescence fluctuation fpectroscopy (FFS) is an adequate approximation of a brightness profile. The key feature of fluorescence intensity distribution analysis (FIDA) is a polynomial approximation of a brightness profile. A broad range of brightness profile shapes can be well described by this approximation. A different approach consisting of the introduction of additional fitting parameters, defined as a relative difference between integrals of the actual brightness profile and its Gaussian approximation, is used in photon counting histogram (PCH) analysis. It is sufficient to introduce only one additional fitting parameter (first-order correction) to get an adequate fit to the experimental data in many practical applications. In the current study, we apply these approaches to the theory of time integrated fluorescence cumulants analysis. We demonstrate that developed corrections improve results of FFS analysis applied to simulated and experimental data. The use of different brightness profile approximations and normalizations in PCH and FIDA leads to different estimates of brightness and the number of molecules, even though they represent the same physical quantities. Based on the developed theory, we derive equations that relate brightness and the number of molecules in PCH and FIDA.
Collapse
Affiliation(s)
- Victor V Skakun
- Department of Systems Analysis and Computer Simulation, Belarusian State University, Minsk, Belarus
| | | | | | | |
Collapse
|
11
|
Hernández-Rocamora VM, Alfonso C, Margolin W, Zorrilla S, Rivas G. Evidence That Bacteriophage λ Kil Peptide Inhibits Bacterial Cell Division by Disrupting FtsZ Protofilaments and Sequestering Protein Subunits. J Biol Chem 2015; 290:20325-35. [PMID: 26124275 DOI: 10.1074/jbc.m115.653329] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 11/06/2022] Open
Abstract
The effects of Kil peptide from bacteriophage λ on the assembly of Escherichia coli FtsZ into one subunit thick protofilaments were studied using combined biophysical and biochemical methods. Kil peptide has recently been identified as the factor from bacteriophage λ responsible for the inhibition of bacterial cell division during lytic cycle, targeting FtsZ polymerization. Here, we show that this antagonist blocks FtsZ assembly into GTP-dependent protofilaments, producing a wide distribution of smaller oligomers compared with the average size of the intact protofilaments. The shortening of FtsZ protofilaments by Kil is detectable at concentrations of the peptide in the low micromolar range, the mid-point of the inhibition being close to its apparent affinity for GDP-bound FtsZ. This antagonist not only interferes with FtsZ assembly but also reverses the polymerization reaction. The negative regulation by Kil significantly reduces the GTPase activity of FtsZ protofilaments, and FtsZ polymers assembled in guanosine-5'-[(α,β)-methyleno]triphosphate are considerably less sensitive to Kil. Our results suggest that, at high concentrations, Kil may use an inhibition mechanism involving the sequestration of FtsZ subunits, similar to that described for other inhibitors like the SOS response protein SulA or the moonlighting enzyme OpgH. This mechanism is different from those employed by the division site selection antagonists MinC and SlmA. This work provides new insight into the inhibition of FtsZ assembly by phages, considered potential tools against bacterial infection.
Collapse
Affiliation(s)
- Víctor M Hernández-Rocamora
- From the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain and
| | - Carlos Alfonso
- From the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain and
| | - William Margolin
- the Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030
| | - Silvia Zorrilla
- From the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain and
| | - Germán Rivas
- From the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain and
| |
Collapse
|
12
|
Nolles A, Westphal AH, de Hoop JA, Fokkink RG, Kleijn JM, van Berkel WJH, Borst JW. Encapsulation of GFP in Complex Coacervate Core Micelles. Biomacromolecules 2015; 16:1542-9. [DOI: 10.1021/acs.biomac.5b00092] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Antsje Nolles
- Laboratory of Biochemistry, ‡Physical Chemistry and Soft Matter,
and §MicroSpectroscopy Centre
Wageningen, Wageningen University, Wageningen, The Netherlands
| | - Adrie H. Westphal
- Laboratory of Biochemistry, ‡Physical Chemistry and Soft Matter,
and §MicroSpectroscopy Centre
Wageningen, Wageningen University, Wageningen, The Netherlands
| | - Jacob A. de Hoop
- Laboratory of Biochemistry, ‡Physical Chemistry and Soft Matter,
and §MicroSpectroscopy Centre
Wageningen, Wageningen University, Wageningen, The Netherlands
| | - Remco G. Fokkink
- Laboratory of Biochemistry, ‡Physical Chemistry and Soft Matter,
and §MicroSpectroscopy Centre
Wageningen, Wageningen University, Wageningen, The Netherlands
| | - J. Mieke Kleijn
- Laboratory of Biochemistry, ‡Physical Chemistry and Soft Matter,
and §MicroSpectroscopy Centre
Wageningen, Wageningen University, Wageningen, The Netherlands
| | - Willem J. H. van Berkel
- Laboratory of Biochemistry, ‡Physical Chemistry and Soft Matter,
and §MicroSpectroscopy Centre
Wageningen, Wageningen University, Wageningen, The Netherlands
| | - Jan Willem Borst
- Laboratory of Biochemistry, ‡Physical Chemistry and Soft Matter,
and §MicroSpectroscopy Centre
Wageningen, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
13
|
Abstract
Fluorescence fluctuation spectroscopy techniques allow the quantification of fluorescent molecules present at the nanomolar concentration level. After a brief introduction to the technique, this chapter presents a protocol including background information in order to measure and quantify the molecular interaction of two signaling proteins inside the living cell using fluorescence cross-correlation spectroscopy.
Collapse
Affiliation(s)
- Mark A Hink
- Department Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy (LCAM), University of Amsterdam, Sciencepark 904, 1098 XH, Amsterdam, The Netherlands,
| |
Collapse
|
14
|
Anthony NR, Berland KM. τFCS: multi-method global analysis enhances resolution and sensitivity in fluorescence fluctuation measurements. PLoS One 2014; 9:e90456. [PMID: 24587370 PMCID: PMC3938748 DOI: 10.1371/journal.pone.0090456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/03/2014] [Indexed: 11/18/2022] Open
Abstract
Fluorescence fluctuation methods have become invaluable research tools for characterizing the molecular-level physical and chemical properties of complex systems, such as molecular concentrations, dynamics, and the stoichiometry of molecular interactions. However, information recovery via curve fitting analysis of fluctuation data is complicated by limited resolution and challenges associated with identifying accurate fit models. We introduce a new approach to fluorescence fluctuation spectroscopy that couples multi-modal fluorescence measurements with multi-modal global curve fitting analysis. This approach yields dramatically enhanced resolution and fitting model discrimination capabilities in fluctuation measurements. The resolution enhancement allows the concentration of a secondary species to be accurately measured even when it constitutes only a few percent of the molecules within a sample mixture, an important new capability that will allow accurate measurements of molecular concentrations and interaction stoichiometry of minor sample species that can be functionally important but difficult to measure experimentally. We demonstrate this capability using τFCS, a new fluctuation method which uses simultaneous global analysis of fluorescence correlation spectroscopy and fluorescence lifetime data, and show that τFCS can accurately recover the concentrations, diffusion coefficients, lifetimes, and molecular brightness values for a two component mixture over a wide range of relative concentrations.
Collapse
Affiliation(s)
- Neil R. Anthony
- Department of Physics, Emory University, Atlanta, Georgia, United States of America
| | - Keith M. Berland
- Department of Physics, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
15
|
Skakun VV, Digris AV, Apanasovich VV. Global analysis of autocorrelation functions and photon counting distributions in fluorescence fluctuation spectroscopy. Methods Mol Biol 2014; 1076:719-741. [PMID: 24108652 DOI: 10.1007/978-1-62703-649-8_33] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analysis, the same experimental fluorescence intensity fluctuations are used, but each analytical method focuses on a different property of the signal. The time-dependent decay of the correlation of fluorescence fluctuations is measured in FCS yielding molecular diffusion coefficients and triplet-state parameters such as fraction and decay time. The amplitude distribution of these fluctuations is calculated by PCH analysis yielding the molecular brightness. Both FCS and PCH give information about the molecular concentration. Here we describe a global analysis protocol that simultaneously recovers relevant and common parameters in model functions of FCS and PCH from a single fluorescence fluctuation trace. Application of a global analysis approach allows increasing the information content available from a single measurement that results in more accurate values of molecular diffusion coefficients and triplet-state parameters and also in robust, time-independent estimates of molecular brightness and number of molecules.
Collapse
Affiliation(s)
- Victor V Skakun
- Department of Systems Analysis and Computer Simulation, Belarusian State University, Minsk, Belarus
| | | | | |
Collapse
|
16
|
Abstract
Nowadays, fluorescent protein (FP) variants have been engineered to fluoresce in all different colors; to display photoswitchable, or photochromic, behavior; or to show yet other beneficial properties that enable or enhance a still growing set of new fluorescence spectroscopy and microcopy techniques. This has allowed the (in situ) study of biomolecules with unprecedented resolution, specificity, sensitivity, and ease of labeling. However, brighter FPs, more photostable FPs, and FPs that display an even better compatibility with biophysical microspectroscopic techniques are still highly desired. The key characteristics of FPs-absorption spectrum, emission spectrum, brightness, fluorescence lifetime, maturation rate, oligomeric state, photostability, pH sensitivity, and functionality in protein fusions-determine their application. This chapter will describe these key features and present several experimental protocols to optimize them.The optimization procedure contains three steps. First the amino acid sequence of a template FP is changed via random or site-directed mutagenesis. A primary screening based on fluorescence intensity, fluorescence lifetime, and emission spectrum is applied on the FP libraries expressed in bacteria. The most promising mutants are isolated, purified, and characterized in vitro. In this step all key characteristics are determined experimentally. Finally the new FPs are evaluated for use in vivo. The protein production and maturation is monitored in bacteria, while transfected mammalian cells report on the photostability, relative brightness, and correct localization to various subcellular compartments.
Collapse
|
17
|
Monterroso B, Alfonso C, Zorrilla S, Rivas G. Combined analytical ultracentrifugation, light scattering and fluorescence spectroscopy studies on the functional associations of the bacterial division FtsZ protein. Methods 2013; 59:349-62. [DOI: 10.1016/j.ymeth.2012.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/22/2012] [Accepted: 12/26/2012] [Indexed: 11/28/2022] Open
|
18
|
Anthony N, Berland K. Global analysis in fluorescence correlation spectroscopy and fluorescence lifetime microscopy. Methods Enzymol 2013; 518:145-73. [PMID: 23276539 DOI: 10.1016/b978-0-12-388422-0.00007-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fluorescence correlation spectroscopy (FCS) and related fluctuation spectroscopy and microscopy methods have become important research tools that enable detailed investigations of the chemical and physical properties of molecules and molecular systems in a variety of complex environments. Information recovery via curve fitting of fluctuation data can present complicating challenges due to limited resolution and/or problems with fitting model verification. We discuss a new approach to data analysis called τFCS that couples multiple modes of signal acquisition, here specifically FCS and fluorescence lifetimes, with global analysis. We demonstrate enhanced resolution using τFCS, including the capability to recover the concentration of both molecular species in a two-component mixture even when the species have identical diffusion coefficients and molecular brightness values, provided their fluorescent lifetimes are distinct. We also demonstrate how τFCS provides useful tools for model discrimination in FCS curve fitting.
Collapse
Affiliation(s)
- Neil Anthony
- Department of Physics, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
19
|
|
20
|
Skakun VV, Engel R, Borst JW, Apanasovich VV, Visser AJWG. Simultaneous diffusion and brightness measurements and brightness profile visualization from single fluorescence fluctuation traces of GFP in living cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:1055-64. [PMID: 23064964 DOI: 10.1007/s00249-012-0864-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/12/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) and photon-counting histogram (PCH) analysis use the same experimental fluorescence intensity fluctuations, but each analytical method focuses on a different property of the signal. The time-dependent decay of the correlation of fluorescence fluctuations is measured in FCS yielding, for instance, molecular diffusion coefficients. The amplitude distribution of these fluctuations is calculated by PCH analysis yielding information about the molecular brightness of fluorescent species. Analysis of both FCS and PCH results in the molecular concentration of the sample. Using a previously described global analysis procedure we report here precise, simultaneous measurements of diffusion constants and brightness values from single fluorescence fluctuation traces of green-fluorescent protein (GFP, S65T) in the cytoplasm of Dictyostelium cells. The use of a polynomial profile in PCH analysis, describing the detected three-dimensional shape of the confocal volume, enabled us to obtain well fitting results for GFP in cells. We could visualize the polynomial profile and show its deviation from a Gaussian profile.
Collapse
Affiliation(s)
- Victor V Skakun
- Department of Systems Analysis and Computer Simulation, Belarusian State University, 220030 Minsk, Belarus.
| | | | | | | | | |
Collapse
|
21
|
Monterroso B, Ahijado-Guzmán R, Reija B, Alfonso C, Zorrilla S, Minton AP, Rivas G. Mg(2+)-linked self-assembly of FtsZ in the presence of GTP or a GTP analogue involves the concerted formation of a narrow size distribution of oligomeric species. Biochemistry 2012; 51:4541-50. [PMID: 22568594 PMCID: PMC3448011 DOI: 10.1021/bi300401b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The assembly of the bacterial cell division FtsZ protein in the presence of constantly replenished GTP was studied as a function of Mg(2+) concentration (at neutral pH and 0.5 M potassium) under steady-state conditions by sedimentation velocity, concentration-gradient light scattering, fluorescence correlation spectroscopy, and dynamic light scattering. Sedimentation velocity measurements confirmed previous results indicating cooperative appearance of a narrow size distribution of finite oligomers with increasing protein concentration. The concentration dependence of light scattering and diffusion coefficients independently verified the cooperative appearance of a narrow distribution of high molecular weight oligomers, and in addition provided a measurement of the average size of these species, which corresponds to 100 ± 20 FtsZ protomers at millimolar Mg(2+) concentration. Parallel experiments on solutions containing guanosine-5'-[(α,β)-methyleno]triphosphate, sodium salt (GMPCPP), a slowly hydrolyzable analogue of GTP, in place of GTP, likewise indicated the concerted formation of a narrow size distribution of fibrillar oligomers with a larger average mass (corresponding to 160 ± 20 FtsZ monomers). The closely similar behavior of FtsZ in the presence of both GTP and GMPCPP suggests that the observations reflect equilibrium rather than nonequilibrium steady-state properties of both solutions and exhibit parallel manifestations of a common association scheme.
Collapse
Affiliation(s)
- Begoña Monterroso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Rubén Ahijado-Guzmán
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Belén Reija
- Instituto de Química-Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Silvia Zorrilla
- Instituto de Química-Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Allen P. Minton
- Section on Physical Biochemistry, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
22
|
Kraut R, Bag N, Wohland T. Fluorescence Correlation Methods for Imaging Cellular Behavior of Sphingolipid-Interacting Probes. Methods Cell Biol 2012; 108:395-427. [DOI: 10.1016/b978-0-12-386487-1.00018-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Fluorescence Correlation Spectroscopy and Fluorescence Recovery After Photobleaching to study receptor kinase mobility in planta. Methods Mol Biol 2011; 779:225-42. [PMID: 21837570 DOI: 10.1007/978-1-61779-264-9_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Plasma-membrane-localized receptor kinases are essential for cell-cell communication and as sensors for the extracellular environment. Receptor function is dependent on their distribution in the membrane and interaction with other proteins that are either membrane-localized, present in the cytoplasm, or in the extracellular space. The organized distribution and mobility of receptor kinases is, therefore, thought to regulate the efficiency of downstream signaling. This chapter describes two methods to study receptor mobility in the plasma membrane. Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Recovery After Photobleaching (FRAP). Especially, the combination of FRAP and FCS provides a better insight into plasma membrane receptor mobility.
Collapse
|
24
|
Reija B, Monterroso B, Jiménez M, Vicente M, Rivas G, Zorrilla S. Development of a homogeneous fluorescence anisotropy assay to monitor and measure FtsZ assembly in solution. Anal Biochem 2011; 418:89-96. [PMID: 21802401 DOI: 10.1016/j.ab.2011.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/24/2011] [Accepted: 07/01/2011] [Indexed: 11/25/2022]
Abstract
We present here a fluorescence anisotropy method for the quantification of the polymerization of FtsZ, an essential protein for cytokinesis in prokaryotes whose GTP-dependent assembly initiates the formation of the divisome complex. Using Alexa 488 labeled wild-type FtsZ as a tracer, the assay allows determination of the critical concentration of FtsZ polymerization from the dependence of the measured steady-state fluorescence anisotropy on the concentration of FtsZ. The incorporation of the labeled protein into FtsZ polymers and the lack of spectral changes on assembly were independently confirmed by time-resolved fluorescence and fluorescence correlation spectroscopy. Critical concentration values determined by this new assay are compatible with those reported previously under the same conditions by other well-established methods. As a proof of principle, data on the sensitivity of the assay to changes in FtsZ assembly in response to Mg(2+) concentration or to the presence of high concentrations of Ficoll 70 as crowding agent are shown. The proposed method is sensitive, low sample consuming, rapid, and reliable, and it can be extended to other cooperatively polymerizing systems. In addition, it can help to discover new antimicrobials that may interfere with FtsZ polymerization because it can be easily adapted to systematic screening assays.
Collapse
Affiliation(s)
- Belén Reija
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, E-28006 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
25
|
RNA dimerization monitored by fluorescence correlation spectroscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:907-21. [PMID: 21674181 DOI: 10.1007/s00249-011-0701-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 03/02/2011] [Accepted: 03/18/2011] [Indexed: 10/18/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) provides a versatile tool to investigate molecular interaction under native conditions, approximating infinite dilution. One precondition for its application is a sufficient difference between the molecular weights of the fluorescence-labelled unbound and bound ligand. In previous studies, an 8-fold difference in molecular weights or correspondingly a 1.6-fold difference in diffusion coefficients was required to accurately distinguish between two diffusion species by FCS. In the presented work, the hybridization of two complementary equally sized RNA single strands was investigated at an excellent signal-to-noise ratio enabled by the highly photostable fluorophore Atto647N. The fractions of ssRNA and dsRNA were quantified by applying multicomponent model analysis of single autocorrelation functions and globally fitting several autocorrelation functions. By introducing a priori knowledge into the fitting procedure, 1.3- to 1.4-fold differences in diffusion coefficients of single- and double-stranded RNA of 26, 41, and 54 nucleotides could be accurately resolved. Global fits of autocorrelation functions of all titration steps enabled a highly accurate quantification of diffusion species fractions and mobilities. At a high signal-to-noise ratio, the median of individually fitted autocorrelation functions allowed a robust representation of heterogeneous data. These findings point out the possibility of studying molecular interaction of equally sized molecules based on their diffusional behavior, which significantly broadens the application spectrum of FCS.
Collapse
|
26
|
Hink MA, de Vries SC, Visser AJWG. Fluorescence fluctuation analysis of receptor kinase dimerization. Methods Mol Biol 2011; 779:199-215. [PMID: 21837568 DOI: 10.1007/978-1-61779-264-9_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Receptor kinases are essential for the cellular perception of signals. The classical model for activation of the receptor kinase involves dimerization, induced by the binding of the ligand. The mechanisms by which plant receptors transduce signals across the cell surface are largely unknown but plant receptors seem to dimerize as well. In this chapter, we describe two fluorescence fluctuation techniques, fluorescence cross-correlation spectroscopy and photon counting histogram analysis, to study the oligomerization state of receptor kinases in living plant cells in a quantitative manner.
Collapse
Affiliation(s)
- Mark A Hink
- Department of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy (LCAM), University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
27
|
Engel R, Westphal AH, Huberts DH, Nabuurs SM, Lindhoud S, Visser AJ, van Mierlo CP. Macromolecular Crowding Compacts Unfolded Apoflavodoxin and Causes Severe Aggregation of the Off-pathway Intermediate during Apoflavodoxin Folding. J Biol Chem 2008; 283:27383-27394. [DOI: 10.1074/jbc.m802393200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
28
|
Previte MJR, Pelet S, Kim KH, Buehler C, So PTC. Spectrally resolved fluorescence correlation spectroscopy based on global analysis. Anal Chem 2008; 80:3277-84. [PMID: 18351754 PMCID: PMC5780552 DOI: 10.1021/ac702474u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multicolor fluorescence correlation spectroscopy has been recently developed to study chemical interactions of multiple chemical species labeled with spectrally distinct fluorophores. In the presence of spectral overlap, there exists a lower detectability limit for reaction products with multicolor fluorophores. In addition, the ability to separate bound product from reactants allows thermodynamic properties such as dissociation constants to be measured for chemical reactions. In this report, we utilize a spectrally resolved two-photon microscope with single-photon counting sensitivity to acquire spectral and temporal information from multiple chemical species. Further, we have developed a global fitting analysis algorithm that simultaneously analyzes all distinct auto- and cross-correlation functions from 15 independent spectral channels. We have demonstrated that the global analysis approach allows the concentration and diffusion coefficients of fluorescent particles to be resolved despite the presence of overlapping emission spectra.
Collapse
Affiliation(s)
- Michael J R Previte
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | |
Collapse
|
29
|
Petrov EP, Schwille P. State of the Art and Novel Trends in Fluorescence Correlation Spectroscopy. SPRINGER SERIES ON FLUORESCENCE 2008. [DOI: 10.1007/4243_2008_032] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Hink MA, Shah K, Russinova E, de Vries SC, Visser AJ. Fluorescence fluctuation analysis of Arabidopsis thaliana somatic embryogenesis receptor-like kinase and brassinosteroid insensitive 1 receptor oligomerization. Biophys J 2008; 94:1052-62. [PMID: 17905839 PMCID: PMC2186235 DOI: 10.1529/biophysj.107.112003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 08/31/2007] [Indexed: 11/18/2022] Open
Abstract
Receptor kinases play a key role in the cellular perception of signals. To verify models for receptor activation through dimerization, an experimental system is required to determine the precise oligomerization status of proteins within living cells. Here we show that photon counting histogram analysis and dual-color fluorescence cross correlation spectroscopy are able to monitor fluorescently labeled proteins at the single-molecule detection level in living plant cells. In-frame fusion proteins of the brassinosteroid insensitive 1 (BRI1) receptor and the Arabidopsis thaliana somatic embryogenesis receptor-like kinases 1 and 3 (AtSERK1 and 3) to the enhanced cyan or yellow fluorescent protein were transiently expressed in plant cells. Although no oligomeric structures were detected for AtSERK3, 15% (AtSERK1) to 20% (BRI1) of the labeled proteins in the plasma membrane was found to be present as homodimers, whereas no evidence was found for higher oligomeric complexes.
Collapse
Affiliation(s)
- Mark A. Hink
- MicroSpectroscopy Centre, Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Khalid Shah
- MicroSpectroscopy Centre, Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Eugenia Russinova
- MicroSpectroscopy Centre, Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Sacco C. de Vries
- MicroSpectroscopy Centre, Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Antonie J.W.G. Visser
- MicroSpectroscopy Centre, Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
31
|
Aker J, Hesselink R, Engel R, Karlova R, Borst JW, Visser AJWG, de Vries SC. In vivo hexamerization and characterization of the Arabidopsis AAA ATPase CDC48A complex using forster resonance energy transfer-fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy. PLANT PHYSIOLOGY 2007; 145:339-50. [PMID: 17693538 PMCID: PMC2048723 DOI: 10.1104/pp.107.103986] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) AAA ATPase CDC48A was fused to cerulean fluorescent protein and yellow fluorescent protein. AAA ATPases like CDC48 are only active in hexameric form. Förster resonance energy transfer-based fluorescence lifetime imaging microscopy using CDC48A-cerulean fluorescent protein and CDC48A-yellow fluorescent protein showed interaction between two adjacent protomers, demonstrating homo-oligomerization occurs in living plant cells. Interaction between CDC48A and the SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 (SERK1) transmembrane receptor occurs in very restricted domains at the plasma membrane. In these domains the predominant form of the fluorescently tagged CDC48A protein is a hexamer, suggesting that SERK1 is associated with the active form of CDC48A in vivo. SERK1 trans-phosphorylates CDC48A on Ser-41. Förster resonance energy transfer-fluorescence lifetime imaging microscopy was used to show that in vivo the C-terminal domains of CDC48A stay in close proximity. Employing fluorescence correlation spectroscopy, it was shown that CDC48A hexamers are part of larger complexes.
Collapse
Affiliation(s)
- José Aker
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Pan X, Foo W, Lim W, Fok MHY, Liu P, Yu H, Maruyama I, Wohland T. Multifunctional fluorescence correlation microscope for intracellular and microfluidic measurements. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2007; 78:053711. [PMID: 17552829 DOI: 10.1063/1.2740053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A modified fluorescence correlation microscope (FCM) was built on a commercial confocal laser scanning microscope (CLSM) by adding two sensitive detectors to perform fluorescence correlation spectroscopy (FCS). A single pinhole for both imaging and spectroscopy and a simple slider switch between the two modes thus facilitate the accurate positioning of the FCS observation volume after the confocal image acquisition. Due to the use of a single pinhole for CLSM and FCS the identity of imaged and spectroscopically observed positions is guaranteed. The presented FCM system has the capability to position the FCS observation volume at any point within the inner 30% of the field of view without loss in performance and in the inner 60% of the field of view with changes of FCS parameters of less than 10%. A single pinhole scheme for spatial fluorescence cross correlation spectroscopy performed on the FCM system is proposed to determine microfluidic flow angles. To show the applicability and versatility of the system, we measured the translational diffusion coefficients on the upper and lower membranes of Chinese hamster ovary cells. Two-photon excitation FCS was also realized by coupling a pulsed Ti: sapphire laser into the microscope and used for flow direction characterization in microchannels.
Collapse
Affiliation(s)
- Xiaotao Pan
- NUS Graduate Program in Bioengineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Visser NV, Wang D, Stanley WA, Groves MR, Wilmanns M, Veenhuis M, van der Klei IJ. Octameric alcohol oxidase dissociates into stable, soluble monomers upon incubation with dimethylsulfoxide. Arch Biochem Biophys 2007; 459:208-13. [PMID: 17300740 DOI: 10.1016/j.abb.2007.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 01/02/2007] [Accepted: 01/02/2007] [Indexed: 10/23/2022]
Abstract
Alcohol oxidase (AO) is a peroxisomal, homo-octameric flavoenzyme, which catalyzes methanol oxidation in methylotrophic yeast. Here, we report on the generation of soluble, FAD-lacking AO monomers. Using steady-state fluorescence, fluorescence correlation spectroscopy, circular dichroism and static light scattering approaches, we demonstrate that FAD-lacking AO monomers are formed upon incubation of purified, native octameric AO in a solution containing 50% dimethylsulfoxide (DMSO). Upon removal of DMSO the protein remained monomeric and soluble and did not contain FAD. Binding experiments revealed that the AO monomers bind to purified pyruvate carboxylase, a protein that plays a role in the formation of enzymatically active AO octamers in vivo.
Collapse
Affiliation(s)
- Nina V Visser
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, P.O. Box 14, 9750AA, Haren, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Zorrilla S, Hink MA, Visser AJWG, Lillo MP. Translational and rotational motions of proteins in a protein crowded environment. Biophys Chem 2007; 125:298-305. [PMID: 17007994 DOI: 10.1016/j.bpc.2006.09.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/06/2006] [Accepted: 09/06/2006] [Indexed: 11/19/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) was used to measure the translational diffusion of labeled apomyoglobin (tracer) in concentrated solutions of ribonuclease A and human serum albumin (crowders), as a quantitative model system of protein diffusive motions in crowded physiological environments. The ratio of the diffusion coefficient of the tracer protein in the protein crowded solutions and its diffusion coefficient in aqueous solution has been interpreted in terms of local apparent viscosities, a molecular parameter characteristic for each tracer-crowder system. In all protein solutions studied in this work, local translational viscosity values were larger than the solution bulk viscosity, and larger than rotational viscosities estimated for apomyoglobin in the same crowding solutions. Here we propose a method to estimate local apparent viscosities for the tracer translational and rotational diffusion directly from the bulk viscosity of the concentrated protein solutions. As a result of this study, the identification of protein species and the study of hydrodynamic changes and interactions in model crowded protein solutions by means of FCS and time-resolved fluorescence depolarization techniques may be expected to be greatly simplified.
Collapse
Affiliation(s)
- Silvia Zorrilla
- Instituto de Química Física Rocasolano, Consejo Superior Investigaciones Científicas (CSIC), Serrano 119, 28006 Madrid, Spain
| | | | | | | |
Collapse
|
35
|
Fluorescence Photobleaching and Fluorescence Correlation Spectroscopy: Two Complementary Technologies To Study Molecular Dynamics in Living Cells. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/978-3-540-71331-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
36
|
New Technologies for Imaging and Analysis of Individual Microbial Cells. IMAGING CELLULAR AND MOLECULAR BIOLOGICAL FUNCTIONS 2007. [DOI: 10.1007/978-3-540-71331-9_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Paradise A, Levin MK, Korza G, Carson JH. Significant proportions of nuclear transport proteins with reduced intracellular mobilities resolved by fluorescence correlation spectroscopy. J Mol Biol 2006; 365:50-65. [PMID: 17056062 PMCID: PMC1831836 DOI: 10.1016/j.jmb.2006.09.089] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 09/26/2006] [Accepted: 09/27/2006] [Indexed: 11/20/2022]
Abstract
Nuclear transport requires freely diffusing nuclear transport proteins to facilitate movement of cargo molecules through the nuclear pore. We analyzed dynamic properties of importin alpha, importin beta, Ran and NTF2 in nucleus, cytoplasm and at the nuclear pore of neuroblastoma cells using fluorescence correlation spectroscopy. Mobile components were quantified by global fitting of autocorrelation data from multiple cells. Immobile components were quantified by analysis of photobleaching kinetics. Wild-type Ran was compared to various mutant Ran proteins to identify components representing GTP or GDP forms of Ran. Untreated cells were compared to cells treated with nocodazole or latrunculin to identify components associated with cytoskeletal elements. The results indicate that freely diffusing importin alpha, importin beta, Ran and NTF2 are in dynamic equilibrium with larger pools associated with immobile binding partners such as microtubules in the cytoplasm. These findings suggest that formation of freely diffusing nuclear transport intermediates is in competition with binding to immobile partners. Variation in concentrations of freely diffusing nuclear transport intermediates among cells indicates that the nuclear transport system is sufficiently robust to function over a wide range of conditions.
Collapse
Affiliation(s)
- Allison Paradise
- Department of Molecular Microbial and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
38
|
Fletcher KA, Fakayode SO, Lowry M, Tucker SA, Neal SL, Kimaru IW, McCarroll ME, Patonay G, Oldham PB, Rusin O, Strongin RM, Warner IM. Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. Anal Chem 2006; 78:4047-68. [PMID: 16771540 PMCID: PMC2662353 DOI: 10.1021/ac060683m] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Engel R, Van Haastert PJM, Visser AJWG. Spectral characterization of Dictyostelium autofluorescence. Microsc Res Tech 2006; 69:168-74. [PMID: 16538623 DOI: 10.1002/jemt.20282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dictyostelium discoideum is used extensively as a model organism for the study of chemotaxis. In recent years, an increasing number of studies of Dictyostelium chemotaxis have made use of fluorescence-based techniques. One of the major factors that can interfere with the application of these techniques in cells is the cellular autofluorescence. In this study, the spectral properties of Dictyostelium autofluorescence have been characterized using fluorescence microscopy. Whole cell autofluorescence spectra obtained using spectral imaging microscopy show that Dictyostelium autofluorescence covers a wavelength range from approximately 500 to 650 nm with a maximum at approximately 510 nm, and thus, potentially interferes with measurements of green fluorescent protein (GFP) fusion proteins with fluorescence microscopy techniques. Further characterization of the spatial distribution, intensity, and brightness of the autofluorescence was performed with fluorescence confocal microscopy and fluorescence fluctuation spectroscopy (FFS). The autofluorescence in both chemotaxing and nonchemotaxing cells is localized in discrete areas. The high intensity seen in cells incubated in the growth medium HG5 reduces by around 50% when incubated in buffer, and can be further reduced by around 85% by photobleaching cells for 5-7 s. The average intensity and spatial distribution of the autofluorescence do not change with long incubations in the buffer. The cellular autofluorescence has a seven times lower molecular brightness than eGFP. The influence of autofluorescence in FFS measurements can be minimized by incubating cells in buffer during the measurements, pre-bleaching, and making use of low excitation intensities. The results obtained in this study thus offer guidelines to the design of future fluorescence studies of Dictyostelium.
Collapse
Affiliation(s)
- Ruchira Engel
- MicroSpectroscopy Centre, Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | | | | |
Collapse
|
40
|
Lavalette D, Hink MA, Tourbez M, Tétreau C, Visser AJ. Proteins as micro viscosimeters: Brownian motion revisited. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 35:517-22. [PMID: 16612584 DOI: 10.1007/s00249-006-0060-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 02/23/2006] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
Translational and rotational diffusion coefficients of proteins in solution strongly deviate from the Stokes-Einstein laws when the ambient viscosity is induced by macromolecular co-solutes rather than by a solvent of negligible size as was assumed by A. Einstein one century ago for deriving the laws of Brownian motion and diffusion. Rotational and translational motions experience different micro viscosities and both become a function of the size ratio of protein and macromolecular co-solute. Possible consequences upon fluorescence spectroscopy observations of diffusing proteins within living cells are discussed.
Collapse
Affiliation(s)
- Daniel Lavalette
- Institut Curie-Recherche, Bâtiment 112, Centre Universitaire, 91405, Orsay, France.
| | | | | | | | | |
Collapse
|
41
|
Delon A, Usson Y, Derouard J, Biben T, Souchier C. Continuous photobleaching in vesicles and living cells: a measure of diffusion and compartmentation. Biophys J 2006; 90:2548-62. [PMID: 16428281 PMCID: PMC1403194 DOI: 10.1529/biophysj.105.069815] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 12/12/2005] [Indexed: 11/18/2022] Open
Abstract
We present a comprehensive and analytical treatment of continuous photobleaching in a compartment, under single photon excitation. In the very short time regime (t<0.1 ms), the diffusion does not play any role. After a transition (or short time regime), one enters in the long time regime (t>0.1-5 s), for which the diffusion and the photobleaching balance each other. In this long time regime, the diffusion is either fast (i.e., the photobleaching probability of a molecule diffusing through the laser beam is low) so that the photobleaching rate is independent of the diffusion constant and dependent only of the laser power, or the diffusion is slow (i.e., the photobleaching probability is high) and the photobleaching rate is mainly dependent on the diffusion constant. We illustrate our theory by using giant unilamellar vesicles ranging from approximately 10 to 100 microm in diameter, loaded with molecules of various diffusion constants (from 20 to 300 microm2/s) and various photobleaching cross sections, illuminated under laser powers between 3 and 100 microW. We also demonstrated that information about compartmentation can be obtained by this method in living cells expressing enhanced green fluorescent proteins or that were loaded with small FITC-dextrans. Our quantitative approach shows that molecules freely diffusing in a cellular compartment do experience a continuous photobleaching. We provide a generic theoretical framework that should be taken into account when studying, under confocal microscopy, molecular interactions, permeability, etc.
Collapse
Affiliation(s)
- A Delon
- Laboratoire de Spectrométrie Physique, Centre National de la Recherche Scientifique, UMR5588, Université Joseph Fourier, Saint Martin d'Hères, France.
| | | | | | | | | |
Collapse
|
42
|
Westphal AH, Matorin A, Hink MA, Borst JW, van Berkel WJH, Visser AJWG. Real-time enzyme dynamics illustrated with fluorescence spectroscopy of p-hydroxybenzoate hydroxylase. J Biol Chem 2006; 281:11074-81. [PMID: 16492664 DOI: 10.1074/jbc.m600609200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used the flavoenzyme p-hydroxybenzoate hydroxylase (PHBH) to illustrate that a strongly fluorescent donor label can communicate with the flavin via single-pair Förster resonance energy transfer (spFRET). The accessible Cys-116 of PHBH was labeled with two different fluorescent maleimides with full preservation of enzymatic activity. One of these labels shows overlap between its fluorescence spectrum and the absorption spectrum of the FAD prosthetic group in the oxidized state, while the other fluorescent probe does not have this spectral overlap. The spectral overlap strongly diminished when the flavin becomes reduced during catalysis. The donor fluorescence properties can then be used as a sensitive antenna for the flavin redox state. Time-resolved fluorescence experiments on ensembles of labeled PHBH molecules were carried out in the absence and presence of enzymatic turnover. Distinct changes in fluorescence decays of spFRET-active PHBH can be observed when the enzyme is performing catalysis using both substrates p-hydroxybenzoate and NADPH. Single-molecule fluorescence correlation spectroscopy on spFRET-active PHBH showed the presence of a relaxation process (relaxation time of 23 micros) that is related to catalysis. In addition, in both labeled PHBH preparations the number of enzyme molecules reversibly increased during enzymatic turnover indicating that the dimer-monomer equilibrium is affected.
Collapse
Affiliation(s)
- Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Alberto Diaspro
- LAMBS/MicroScoBio and IFOM Research Centre, Department of Physics, University of Genoa, Genoa, Italy
| |
Collapse
|
44
|
Knol JC, Engel R, Blaauw M, Visser AJWG, van Haastert PJM. The phosducin-like protein PhLP1 is essential for G{beta}{gamma} dimer formation in Dictyostelium discoideum. Mol Cell Biol 2005; 25:8393-400. [PMID: 16135826 PMCID: PMC1234308 DOI: 10.1128/mcb.25.18.8393-8400.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosducin proteins are known to inhibit G protein-mediated signaling by sequestering Gbetagamma subunits. However, Dictyostelium discoideum cells lacking the phosducin-like protein PhLP1 display defective rather than enhanced G protein signaling. Here we show that green fluorescent protein (GFP)-tagged Gbeta (GFP-Gbeta) and GFP-Ggamma subunits exhibit drastically reduced steady-state levels and are absent from the plasma membrane in phlp1(-) cells. Triton X-114 partitioning suggests that lipid attachment to GFP-Ggamma occurs in wild-type cells but not in phlp1(-) and gbeta(-) cells. Moreover, Gbetagamma dimers could not be detected in vitro in coimmunoprecipitation assays with phlp1(-) cell lysates. Accordingly, in vivo diffusion measurements using fluorescence correlation spectroscopy showed that while GFP-Ggamma proteins are present in a complex in wild-type cells, they are free in phlp1(-) and gbeta(-) cells. Collectively, our data strongly suggest the absence of Gbetagamma dimer formation in Dictyostelium cells lacking PhLP1. We propose that PhLP1 serves as a cochaperone assisting the assembly of Gbeta and Ggamma into a functional Gbetagamma complex. Thus, phosducin family proteins may fulfill hitherto unsuspected biosynthetic functions.
Collapse
Affiliation(s)
- Jaco C Knol
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|