1
|
Konyshev I, Byvalov A, Ananchenko B, Fakhrullin R, Danilushkina A, Dudina L. Force interactions between Yersiniae lipopolysaccharides and monoclonal antibodies: An optical tweezers study. J Biomech 2020; 99:109504. [PMID: 31753213 DOI: 10.1016/j.jbiomech.2019.109504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 11/30/2022]
Abstract
This article reports the force spectroscopy investigation of interactions between lipopolysaccharides (LPSs) of two species from Yersinia genus and complementary (or heterologous) monoclonal antibodies (mAbs). We have obtained the experimental data by optical trapping on the "sensitized polystyrene microsphere - sensitized glass substrate" model system at its approach - retraction in vertical plane. We detected non-specific interactions in low-amplitude areas on histograms mainly due to physicochemical properties of abiotic surface and specific interactions in complementary pairs "antigen - antibodies" in high-amplitude areas (100-120 pN) on histograms. The developed measurement procedure can be used for detection of rupture forces in other molecular pairs.
Collapse
Affiliation(s)
- Ilya Konyshev
- Institute of Physiology of Кomi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic 167982, Russian Federation; Vyatka State University, Kirov 610000, Russian Federation
| | - Andrey Byvalov
- Institute of Physiology of Кomi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic 167982, Russian Federation; Vyatka State University, Kirov 610000, Russian Federation.
| | | | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan 420021, Russian Federation
| | - Anna Danilushkina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan 420021, Russian Federation
| | - Lyubov Dudina
- Institute of Physiology of Кomi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic 167982, Russian Federation; Vyatka State University, Kirov 610000, Russian Federation
| |
Collapse
|
2
|
Wen C, Ye A. Single-molecule force measurement via optical tweezers reveals different kinetic features of two BRaf mutants responsible for cardio-facial-cutaneous (CFC) syndrome. BIOMEDICAL OPTICS EXPRESS 2013; 4:2835-2845. [PMID: 24409384 PMCID: PMC3862169 DOI: 10.1364/boe.4.002835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/09/2013] [Accepted: 10/23/2013] [Indexed: 06/03/2023]
Abstract
BRaf (B- Rapid Accelerated Fibrosarcoma) protein is an important serine/threonine-protein kinase. Two domains on BRaf can independently bind its upstream kinase, Ras (Rat Sarcoma) protein. These are the Ras binding domain (RBD) and cysteine-rich-domain (CRD). Herein we use customized optical tweezers to compare the Ras binding process in two pathological mutants of BRaf responsible for CFC syndrome, abbreviated BRaf (A246P) and BRaf (Q257R). The two mutants differ in their kinetics of Ras-binding, though both bind Ras with similar increased overall affinity. BRaf (A246P) exhibits a slightly higher Ras/CRD unbinding force and a significantly higher Ras/RBD unbinding force versus the wild type. The contrary phenomenon is observed in the Q257R mutation. Simulations of the unstressed-off rate, koff (0), yield results in accordance with the changes revealed by the mean unbinding force. Our approach can be applied to rapidly assess other mutated proteins to deduce the effects of mutation on their kinetics compared to wild type proteins and to each other.
Collapse
Affiliation(s)
- Cheng Wen
- Key Laboratory for the Physics & Chemistry of Nano-devices, School of Electronic Engineering & Computer Science, Peking University, Beijing 100871,China
- School of Lifescience, Peking University, Beijing 100871, China
| | - Anpei Ye
- Key Laboratory for the Physics & Chemistry of Nano-devices, School of Electronic Engineering & Computer Science, Peking University, Beijing 100871,China
| |
Collapse
|
3
|
Alemany A, Sanvicens N, de Lorenzo S, Marco MP, Ritort F. Bond elasticity controls molecular recognition specificity in antibody-antigen binding. NANO LETTERS 2013; 13:5197-5202. [PMID: 24074342 DOI: 10.1021/nl402617f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Force-spectroscopy experiments make it possible to characterize single ligand-receptor pairs. Here we measure the spectrum of bond strengths and flexibilities in antibody-antigen interactions using optical tweezers. We characterize the mechanical evolution of polyclonal antibodies generated under infection and the ability of a monoclonal antibody to cross-react against different antigens. Our results suggest that bond flexibility plays a major role in remodeling antibody-antigen bonds in order to improve recognition during the maturation of the humoral immune system.
Collapse
Affiliation(s)
- Anna Alemany
- Small Biosystems Lab, Department Física Fonamental, Universitat de Barcelona , C/Martí i Franquès 1, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
4
|
Kwak TJ, Lee JW, Yoon DS, Lee SW. Investigation of the Binding Force between Protein A and Immunoglobulin G Using Dielectrophoretic(DEP) Tweezers Inside a Microfluidic Chip. ACTA ACUST UNITED AC 2013. [DOI: 10.9718/jber.2013.34.3.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Shergill B, Meloty-Kapella L, Musse AA, Weinmaster G, Botvinick E. Optical tweezers studies on Notch: single-molecule interaction strength is independent of ligand endocytosis. Dev Cell 2012; 22:1313-20. [PMID: 22658935 DOI: 10.1016/j.devcel.2012.04.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 02/15/2012] [Accepted: 04/11/2012] [Indexed: 10/28/2022]
Abstract
Notch signaling controls diverse cellular processes critical to development and disease. Cell surface ligands bind Notch on neighboring cells but require endocytosis to activate signaling. The role ligand endocytosis plays in Notch activation has not been established. Here we integrate optical tweezers with cell biological and biochemical methods to test the prevailing model that ligand endocytosis facilitates recycling to enhance ligand interactions with Notch necessary to trigger signaling. Specifically, single-molecule measurements indicate that interference of ligand endocytosis and/or recycling does not alter the force required to rupture bonds formed between cells expressing the Notch ligand Delta-like1 (Dll1) and laser-trapped Notch1 beads. Together, our analyses eliminate roles for ligand endocytosis and recycling in Dll1-Notch1 interactions and indicate that recycling indirectly affects signaling by regulating the accumulation of cell surface ligand. Importantly, our study demonstrates the utility of optical tweezers to test a role for ligand endocytosis in generating cell-mediated mechanical force.
Collapse
|
6
|
Gutsche C, Elmahdy MM, Kegler K, Semenov I, Stangner T, Otto O, Ueberschär O, Keyser UF, Krueger M, Rauscher M, Weeber R, Harting J, Kim YW, Lobaskin V, Netz RR, Kremer F. Micro-rheology on (polymer-grafted) colloids using optical tweezers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:184114. [PMID: 21508470 DOI: 10.1088/0953-8984/23/18/184114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Optical tweezers are experimental tools with extraordinary resolution in positioning (± 1 nm) a micron-sized colloid and in the measurement of forces (± 50 fN) acting on it-without any mechanical contact. This enables one to carry out a multitude of novel experiments in nano- and microfluidics, of which the following will be presented in this review: (i) forces within single pairs of colloids in media of varying concentration and valency of the surrounding ionic solution, (ii) measurements of the electrophoretic mobility of single colloids in different solvents (concentration, valency of the ionic solution and pH), (iii) similar experiments as in (i) with DNA-grafted colloids, (iv) the nonlinear response of single DNA-grafted colloids in shear flow and (v) the drag force on single colloids pulled through a polymer solution. The experiments will be described in detail and their analysis discussed.
Collapse
Affiliation(s)
- C Gutsche
- Institute of Experimental Physics I, Leipzig University, Linnéstrasse 5, D-04103, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
O'Dwyer DP, Phelan CF, Ballantine KE, Rakovich YP, Lunney JG, Donegan JF. Conical diffraction of linearly polarised light controls the angular position of a microscopic object. OPTICS EXPRESS 2010; 18:27319-27326. [PMID: 21197010 DOI: 10.1364/oe.18.027319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Conical diffraction of linearly polarised light in a biaxial crystal produces a beam with a crescent-shaped intensity profile. Rotation of the plane of polarisation produces the unique effect of spatially moving the crescent-shaped beam around a ring. We use this effect to trap microspheres and white blood cells and to position them at any angular position on the ring. Continuous motion around the circle is also demonstrated. This crescent beam does not require an interferometeric arrangement to form it, nor does it carry optical angular momentum. The ability to spatially locate a beam and an associated trapped object simply by varying the polarisation of light suggests that this optical process should find application in the manipulation and actuation of micro- and nano-scale physical and biological objects.
Collapse
Affiliation(s)
- D P O'Dwyer
- School of Physics, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
8
|
Busscher HJ, Norde W, Sharma PK, van der Mei HC. Interfacial re-arrangement in initial microbial adhesion to surfaces. Curr Opin Colloid Interface Sci 2010. [DOI: 10.1016/j.cocis.2010.05.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Wagner C, Olbrich C, Brutzer H, Salomo M, Kleinekathöfer U, Keyser UF, Kremer F. DNA condensation by TmHU studied by optical tweezers, AFM and molecular dynamics simulations. J Biol Phys 2010; 37:117-31. [PMID: 22210966 DOI: 10.1007/s10867-010-9203-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/20/2010] [Indexed: 11/24/2022] Open
Abstract
The compaction of DNA by the HU protein from Thermotoga maritima (TmHU) is analysed on a single-molecule level by the usage of an optical tweezers-assisted force clamp. The condensation reaction is investigated at forces between 2 and 40 pN applied to the ends of the DNA as well as in dependence on the TmHU concentration. At 2 and 5 pN, the DNA compaction down to 30% of the initial end-to-end distance takes place in two regimes. Increasing the force changes the progression of the reaction until almost nothing is observed at 40 pN. Based on the results of steered molecular dynamics simulations, the first regime of the length reduction is assigned to a primary level of DNA compaction by TmHU. The second one is supposed to correspond to the formation of higher levels of structural organisation. These findings are supported by results obtained by atomic force microscopy.
Collapse
|
10
|
Aubin-Tam ME, Appleyard DC, Ferrari E, Garbin V, Fadiran OO, Kunkel J, Lang MJ. Adhesion through single peptide aptamers. J Phys Chem A 2010; 115:3657-64. [PMID: 20795685 DOI: 10.1021/jp1031493] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aptamer and antibody mediated adhesion is central to biological function and is valuable in the engineering of "lab on a chip" devices. Single molecule force spectroscopy using optical tweezers enables direct nonequilibrium measurement of these noncovalent interactions for three peptide aptamers selected for glass, polystyrene, and carbon nanotubes. A comprehensive examination of the strong attachment between antifluorescein 4-4-20 and fluorescein was also carried out using the same assay. Bond lifetime, barrier width, and free energy of activation are extracted from unbinding histogram data using three single molecule pulling models. The evaluated aptamers appear to adhere stronger than the fluorescein antibody under no- and low-load conditions, yet weaker than antibodies at loads above ∼25 pN. Comparison to force spectroscopy data of other biological linkages shows the diversity of load dependent binding and provides insight into linkages used in biological processes and those designed for engineered systems.
Collapse
Affiliation(s)
- Marie-Eve Aubin-Tam
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | | | |
Collapse
|
11
|
Liao JH, Lin YC, Hsu J, Lee AYL, Chen TA, Hsu CH, Chir JL, Hua KF, Wu TH, Hong LJ, Yen PW, Chiou A, Wu SH. Binding and cleavage of E. coli HUbeta by the E. coli Lon protease. Biophys J 2010; 98:129-37. [PMID: 20085725 DOI: 10.1016/j.bpj.2009.09.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 09/22/2009] [Accepted: 09/24/2009] [Indexed: 10/20/2022] Open
Abstract
The Escherichia coli Lon protease degrades the E. coli DNA-binding protein HUbeta, but not the related protein HUalpha. Here we show that the Lon protease binds to both HUbeta and HUalpha, but selectively degrades only HUbeta in the presence of ATP. Mass spectrometry of HUbeta peptide fragments revealed that region K18-G22 is the preferred cleavage site, followed in preference by L36-K37. The preferred cleavage site was further refined to A20-A21 by constructing and testing mutant proteins; Lon degraded HUbeta-A20Q and HUbeta-A20D more slowly than HUbeta. We used optical tweezers to measure the rupture force between HU proteins and Lon; HUalpha, HUbeta, and HUbeta-A20D can bind to Lon, and in the presence of ATP, the rupture force between each of these proteins and Lon became weaker. Our results support a mechanism of Lon protease cleavage of HU proteins in at least three stages: binding of Lon with the HU protein (HUbeta, HUalpha, or HUbeta-A20D); hydrolysis of ATP by Lon to provide energy to loosen the binding to the HU protein and to allow an induced-fit conformational change; and specific cleavage of only HUbeta.
Collapse
Affiliation(s)
- Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Björnham O, Bugaytsova J, Borén T, Schedin S. Dynamic force spectroscopy of the Helicobacter pylori BabA-Lewis b binding. Biophys Chem 2009; 143:102-5. [PMID: 19344994 DOI: 10.1016/j.bpc.2009.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 03/11/2009] [Accepted: 03/11/2009] [Indexed: 01/12/2023]
Abstract
The binding strength of the Helicobacter pylori adhesin-receptor complex BabA-ABO/Lewis b has been analyzed by means of dynamic force spectroscopy. High-resolution measurements of rupture forces were performed in situ on single bacterial cells, expressing the high-affinity binding BabA adhesin, by the use of force measuring optical tweezers. The resulting force spectra revealed the mechanical properties of a single BabA-Leb bond. It was found that the bond is dominated by one single energy barrier and that it is a slip-bond. The bond length and thermal off-rate were assessed to be 0.86+/-0.07 nm and 0.015+/-0.006 s(-1), respectively.
Collapse
Affiliation(s)
- Oscar Björnham
- Department of Applied Physics and Electronics, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | |
Collapse
|