1
|
Herman L, Guagliardo R, Zamborlin A, Liu Q, Pérez-Gil J, De Smedt SC, Raemdonck K. Surfactant protein B-derived peptides as endosomal escape enhancers for pulmonary delivery of siRNA. J Control Release 2025; 381:113571. [PMID: 40010411 DOI: 10.1016/j.jconrel.2025.02.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/06/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
Respiratory diseases still cause significant mortality and morbidity worldwide, highlighting the need for new inhalable drugs. RNA therapeutics, which have the potential to modulate the expression of virtually any gene, could address this unmet medical need. Nevertheless, clinical translation requires the design of RNA formulations able to overcome the extra- and intracellular barriers in the lung. We previously discovered that the endogenous cationic amphiphilic surfactant protein B (SP-B) promotes cytosolic delivery of small interfering RNA (siRNA) in lung-related cell types via endosomal membrane fusion. However, to bypass drawbacks related to the use of animal-derived SP-B, there is a keen interest in developing synthetic SP-B analogues with comparable activity. Here, we show that native SP-B can successfully be replaced by smaller peptides, with the N-terminal heptapeptide and amphipathic helix being minimally required to promote siRNA-induced gene silencing. Peptidolipid-coated nanogels were designed and demonstrated equivalent siRNA delivery efficacy compared to state-of-the-art lipid nanoparticles (LNPs). Moreover, they exhibit enhanced resistance to vibrating mesh nebulization and reduced inflammatory activation of bronchial epithelial cells. Collectively, the discovery of SP-B peptides as RNA delivery enhancers holds promise for developing potent inhalable RNA formulations with favorable safety profiles, of value for the treatment of chronic inflammatory pathologies.
Collapse
Affiliation(s)
- Lore Herman
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Roberta Guagliardo
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Agata Zamborlin
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Qiaoyu Liu
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Jesús Pérez-Gil
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, Research Institute Hospital 12 de Octubre, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
2
|
Isasi-Campillo M, Rangel-Arranz P, García-Ortega L, Pérez-Gil J. Role of N-glycosylation of surfactant protein SP-B N in lipid and SP-B interacting properties. Implications in disease. Am J Physiol Lung Cell Mol Physiol 2025; 328:L700-L715. [PMID: 40214202 DOI: 10.1152/ajplung.00350.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/05/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
SP-BN is an independent protein derived from the precursor of pulmonary surfactant protein B (SP-B), a critical component of the pulmonary surfactant (PS), the membrane-based system that coats the alveolar air-liquid interface and is essential for both respiratory mechanics and innate defense. In humans, a single-nucleotide polymorphism (SNP) defining hSP-BN glycosylation has been associated with propensity to certain respiratory diseases, but molecular studies in this regard are scarce. Previous studies with the murine SP-BN, nonglycosylated, have suggested a role for this protein in lipid transfer during PS biogenesis. This study focuses on the structural and functional characterization of both glycosylated and nonglycosylated human SP-BN protein variants to elucidate the impact of N-glycosylation. Recombinant proteins (hSP-BN, glycosylated, and hSP-BN-T73I, nonglycosylated) were produced in Pichia pastoris and purified to homogeneity. The structural characterization confirmed the main features of hSP-BN as a member of the SAPLIP protein family: mainly α-helical, a propensity to dimerization and a high stability. Interestingly, N-glycosylation did not significantly affect hSP-BN structure. Regarding lipid interactions, both hSP-BN variants were able to bind and perturb membranes in lipid vesicles with a PS-like composition at acidic, but not neutral pH, which is relevant given the acidification during PS biogenesis. Remarkably, N-glycosylation impaired the synergistic effect of hSP-BN and mature SP-B to promote lipid mixing/transfer activity. These results support the joint action of both proteins in PS biogenesis and, more importantly, suggest that this combined activity affected with the SNP-induced glycosylation of hSP-BN could be behind certain PS defects acquired during biogenesis causing some susceptibility to respiratory diseases.NEW & NOTEWORTHY The impact of N-glycosylation on the structure and function of human SP-BN protein has been studied. Homogeneous production of glycosylated hSP-BN and nonglycosylated hSP-BN-T73I was achieved in Pichia pastoris. Structural characterization and lipid interaction properties at acidic pH revealed no significant differences due to glycosylation. N-glycosylation impairs the synergistic action of hSP-BN and SP-B in lipid transfer/mixing activity. N-glycosylation of hSP-BN could impair PS biogenesis, in agreement with its potential involvement in respiratory disease.
Collapse
Affiliation(s)
- Miriam Isasi-Campillo
- Biochemistry and Molecular Biology Department, Complutense University, Madrid, Spain
- Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Paula Rangel-Arranz
- Biochemistry and Molecular Biology Department, Complutense University, Madrid, Spain
| | - Lucía García-Ortega
- Biochemistry and Molecular Biology Department, Complutense University, Madrid, Spain
- Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Jesús Pérez-Gil
- Biochemistry and Molecular Biology Department, Complutense University, Madrid, Spain
- Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
| |
Collapse
|
3
|
Asrat T, Jackman D, Booth V. Bacterial expression, purification and folding of exceptionally hydrophobic and essential protein: Surfactant Protein-B (SP-B). PLoS One 2025; 20:e0321446. [PMID: 40279330 PMCID: PMC12027065 DOI: 10.1371/journal.pone.0321446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/06/2025] [Indexed: 04/27/2025] Open
Abstract
Lung Surfactant Protein B (SP-B) is essential for life. It is thus striking that, to this point, no method for making the full-length protein has been published and consequently we lack detailed understanding of SP-B's basic structure-function relationships, as well as an inability to make it for clinical use. The major challenge in producing SP-B lies with its exceptionally hydrophobic nature. In this work, we present a method to produce recombinant SP-B in bacteria that can be used to make the full-length protein as well as the product focused on here, which is a construct lacking the N-terminal 7 residues, rSP-B (Δ7NTC48S-SP-B-6His). The construct is produced as a fusion to Staphylococcus nuclease A (SN) in Escherichia coli C43 cells, a strain known to promote production of toxic and membrane recombinant proteins. After cleavage from SN, rSP-B is folded on column and then exchanged into the lipid or detergent system of choice. rSP-B prepared in this way exhibits the correct secondary structure and demonstrates surface activity. The yield obtained is 0.3 mg of purified rSP-B (Δ7NTC48S-SP-B-6His) per liter of initial bacterial culture. We expect this method for producing SP-B will be valuable in enabling basic research into SP-B's mechanisms, as well as possibly facilitating the inclusion of SP-B in lung surfactant formulations to treat common and frequently fatal lung conditions and in lung surfactant-based drug delivery.
Collapse
Affiliation(s)
- Tadiwos Asrat
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Donna Jackman
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Valerie Booth
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
- Department Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
4
|
Modica MV, Leone S, Gerdol M, Greco S, Aurelle D, Oliverio M, Fassio G, El Koulali K, Barrachina C, Dutertre S. The proteotranscriptomic characterization of venom in the white seafan Eunicella singularis elucidates the evolution of Octocorallia arsenal. Open Biol 2025; 15:250015. [PMID: 40068811 PMCID: PMC11896702 DOI: 10.1098/rsob.250015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 03/15/2025] Open
Abstract
All the members of the phylum Cnidaria are characterized by the production of venom in specialized structures, the nematocysts. Venom of jellyfish (Medusozoa) and sea anemones (Anthozoa) has been investigated since the 1970s, revealing a remarkable molecular diversity. Specifically, sea anemones harbour a rich repertoire of neurotoxic peptides, some of which have been developed in drug leads. However, venoms of the vast majority of Anthozoa species remain uncharacterized, particularly in the class Octocorallia. To fill this gap, we applied a proteo-transcriptomic approach to investigate venom composition in Eunicella singularis, a gorgonian species common in Mediterranean hard-bottom benthic communities. Our results highlighted the peculiarities of the venom of E. singularis with respect to sea anemones, which is reflected in the presence of several toxins with novel folds, worthy of functional characterization. A comparative genomic survey across the octocoral radiation allowed us to generalize these findings and provided insights into the evolutionary history, molecular diversification patterns and putative adaptive roles of venom toxins. A comparison of whole-body and nematocyst proteomes revealed the presence of different cytolytic toxins inside and outside the nematocysts. Two instances of differential maturation patterns of toxin precursors were also identified, highlighting the intricate regulatory pathways underlying toxin expression.
Collapse
Affiliation(s)
- Maria Vittoria Modica
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Italy
| | - Serena Leone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Italy
| | - Marco Gerdol
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Didier Aurelle
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Marco Oliverio
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Rome, Italy
| | - Giulia Fassio
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Rome, Italy
| | | | - Célia Barrachina
- Platform MGX, IGF, University of Montpellier, Montpellier, France
| | | |
Collapse
|
5
|
Cheung LKY, Thallmair S, Yada RY. Elucidating the structure and function of a membrane-active plant protein domain using in silico mutagenesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184409. [PMID: 39788471 DOI: 10.1016/j.bbamem.2025.184409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
The Solanum tuberosum (common potato) plant specific insert (StPSI) is an antimicrobial protein domain that exhibits membrane-disrupting and membrane-fusing activity upon dimerization at acidic pH, activity proposed to involve electrostatic attraction and membrane anchoring mediated by specific positively-charged and conserved tryptophan residues, respectively. This study is the first to employ an in silico mutagenesis approach to clarify the structure-function relationship of a plant specific insert (PSI), where ten rationally-mutated StPSI variants were investigated using all-atom and coarse-grained molecular dynamics. The tryptophan (W) residue at position 18 (W18) of wild-type StPSI was predicted to confer structural flexibility to the dimer and mediate a partial separation of the assembled monomers upon bilayer contact, while residues including W77 and the lysine (K) residue at position 83 (K83) were predicted to stabilize secondary structure and influence association with the model membrane. Mechanisms predicted to influence StPSI-membrane association included the partial separation of assembled monomers on the bilayer surface, formation of a specific salt bridge, and membrane anchoring of hinge 2 residues. The findings suggested that the structure-function relationship of StPSI involved several mechanisms that may each be modulated by specific key residues, insights that may support efforts to develop PSI with tailored membrane association for novel applications in plant biotechnology and crop protection.
Collapse
Affiliation(s)
- Lennie K Y Cheung
- Land and Food Systems, University of British Columbia, Vancouver, Canada
| | | | - Rickey Y Yada
- Land and Food Systems, University of British Columbia, Vancouver, Canada; Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Canada.
| |
Collapse
|
6
|
Yacoub HA, Mahmoud MM, Al-Hejin AM, Abujamel TS, Tabrez S, Abd-Elmaksoud S. Effect of Nk-lysin peptides on bacterial growth, MIC, antimicrobial resistance, and viral activities. Anim Biotechnol 2024; 35:2290520. [PMID: 38100547 DOI: 10.1080/10495398.2023.2290520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
NK-lysins from chicken, bovine and human are used as antiviral and antibacterial agents. Gram-negative and gram-positive microorganisms, including Streptococcus pyogenes, Streptococcus mutans, Escherichia coli, Pseudomonas aeruginosa, Klebsiella oxytoca, Shigella sonnei, Klebsiella pneumoniae and Salmonella typhimurium, are susceptible to NK-lysin treatment. The presence of dominant TEM-1 gene was noted in all untreated and treated bacteria, while TOHO-1 gene was absent in all bacteria. Importantly, β-lactamase genes CTX-M-1, CTX-M-8, and CTX-M-9 genes were detected in untreated bacterial strains; however, none of these were found in any bacterial strains following treatment with NK-lysin peptides. NK-lysin peptides are also used to test for inhibition of infectivity, which ranged from 50 to 90% depending on NK-lysin species. Chicken, bo vine and human NK-lysin peptides are demonstrated herein to have antibacterial activity and antiviral activity against Rotavirus (strain SA-11). On the basis of the comparison between these peptides, potent antiviral activity of bovine NK-lysin against Rotavirus (strain SA-11) is particularly evident, inhibiting infection by up to 90%. However, growth was also significantly inhibited by chicken and human NK-lysin peptides, restricted by 80 and 50%, respectively. This study provided a novel treatment using NK-lysin peptides to inhibit expression of β-lactamase genes in β-lactam antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Haitham A Yacoub
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Maged Mostafa Mahmoud
- Regerenative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
| | - Ahmed M Al-Hejin
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turki S Abujamel
- Regerenative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- Regerenative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
| | - Sherif Abd-Elmaksoud
- Environmental Virology Laboratory, Water Pollution Research Department, Environmental Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
7
|
Eligini S, Savini C, Ghilardi S, Mallia A, Vieceli Dalla Sega F, Fortini F, Mikus E, Munno M, Modafferi G, Agostoni P, Tremoli E, Banfi C. Immature Surfactant Protein B Increases in the Serum of Patients with Calcific Severe Aortic Stenosis. Int J Mol Sci 2024; 25:6418. [PMID: 38928127 PMCID: PMC11204170 DOI: 10.3390/ijms25126418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Valvular disease is a complex pathological condition that impacts countless individuals around the globe. Due to limited treatments, it is crucial to understand its mechanisms to identify new targets. Valve disease may result in pulmonary venous hypertension, which is linked to compromised functioning of the alveolar and capillary membranes and hindered gas exchange. Nonetheless, the correlation between surfactant proteins (SPs) and valve disease remains unexplored. A total of 44 patients were enrolled in this study, with 36 undergoing aortic valve replacement and 8 needing a second aortic valve substitution due to bioprosthetic valve degeneration. Ten healthy subjects were also included. The results showed that patients who underwent both the first valve replacement and the second surgery had significantly higher levels of immature SP-B (proSP-B) compared to control subjects. The levels of the extra-lung collectin SP-D were higher in patients who needed a second surgery due to bioprosthetic valve degeneration, while SP-A levels remained unchanged. The research also showed that there was no reciprocal relationship between inflammation and SP-D as the levels of inflammatory mediators did not differ between groups. The present study demonstrates that circulating proSP-B serves as a reliable marker of alveolar-capillary membrane damage in patients with valvular heart disease.
Collapse
Affiliation(s)
- Sonia Eligini
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.E.); (S.G.); (A.M.); (M.M.); (G.M.)
| | - Carlo Savini
- Maria Cecilia Hospital, GVM Care and Research, 48033 Cotignola, Italy; (C.S.); (F.V.D.S.); (F.F.); (E.M.); (E.T.)
- Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum, Università di Bologna, 40126 Bologna, Italy
| | - Stefania Ghilardi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.E.); (S.G.); (A.M.); (M.M.); (G.M.)
| | - Alice Mallia
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.E.); (S.G.); (A.M.); (M.M.); (G.M.)
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, 27100 Pavia, Italy
| | - Francesco Vieceli Dalla Sega
- Maria Cecilia Hospital, GVM Care and Research, 48033 Cotignola, Italy; (C.S.); (F.V.D.S.); (F.F.); (E.M.); (E.T.)
| | - Francesca Fortini
- Maria Cecilia Hospital, GVM Care and Research, 48033 Cotignola, Italy; (C.S.); (F.V.D.S.); (F.F.); (E.M.); (E.T.)
| | - Elisa Mikus
- Maria Cecilia Hospital, GVM Care and Research, 48033 Cotignola, Italy; (C.S.); (F.V.D.S.); (F.F.); (E.M.); (E.T.)
| | - Marco Munno
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.E.); (S.G.); (A.M.); (M.M.); (G.M.)
| | - Gloria Modafferi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.E.); (S.G.); (A.M.); (M.M.); (G.M.)
| | - Piergiuseppe Agostoni
- Heart Failure Unit, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy;
- Department of Clinical and Community Sciences, University of Milan, 20122 Milan, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care and Research, 48033 Cotignola, Italy; (C.S.); (F.V.D.S.); (F.F.); (E.M.); (E.T.)
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.E.); (S.G.); (A.M.); (M.M.); (G.M.)
| |
Collapse
|
8
|
Abstract
Pulmonary surfactant is a critical component of lung function in healthy individuals. It functions in part by lowering surface tension in the alveoli, thereby allowing for breathing with minimal effort. The prevailing thinking is that low surface tension is attained by a compression-driven squeeze-out of unsaturated phospholipids during exhalation, forming a film enriched in saturated phospholipids that achieves surface tensions close to zero. A thorough review of past and recent literature suggests that the compression-driven squeeze-out mechanism may be erroneous. Here, we posit that a surfactant film enriched in saturated lipids is formed shortly after birth by an adsorption-driven sorting process and that its composition does not change during normal breathing. We provide biophysical evidence for the rapid formation of an enriched film at high surfactant concentrations, facilitated by adsorption structures containing hydrophobic surfactant proteins. We examine biophysical evidence for and against the compression-driven squeeze-out mechanism and propose a new model for surfactant function. The proposed model is tested against existing physiological and pathophysiological evidence in neonatal and adult lungs, leading to ideas for biophysical research, that should be addressed to establish the physiological relevance of this new perspective on the function of the mighty thin film that surfactant provides.
Collapse
Affiliation(s)
- Fred Possmayer
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
- Department of Obstetrics/Gynaecology, Western University, London, Ontario N6A 3K7, Canada
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manon, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
| | - Ruud A W Veldhuizen
- Department of Physiology & Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Department of Medicine, Western University, London, Ontario N6A 3K7, Canada
- Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
9
|
Mahmoud MM, Al-Hejin AM, Abujamel TS, Ghetas AM, Yacoub HA. Chicken β-defensin-1 peptide as a candidate anticoccidial agent in broiler chickens. Anim Biotechnol 2023; 34:3108-3125. [PMID: 36309816 DOI: 10.1080/10495398.2022.2136677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The current study aimed to investigate the potentiality of using avian β-defensin-1 peptide as a candidate agent against coccidiosis infection in broiler chicken.We employed an in-silico analysis to study the primary structure of β-defensin-1 peptide as well as its 3-D and molecular dynamic structures. This will also enable obtaining adequate information about the mode of action of these peptides and the intra-cellular transduction pathways. The results revealed no significant difference among groups of broiler chicken in terms of body weight before the Eimeria challenge.The results of our study indicated a significant reduction in oocyst count in birds administered β-defensin-1 peptide treatment, vis-a-vis healthy birds. The treated group showed a 2-3 times reduction in oocyst count, compared to the positive control group. The Eimeria oocysts count evaluated for birds administered with β-defensin-1 after the Eimeria challenge showed a significant difference. The study indicated significant reduction and down-regulation in the level of expression of β-defensin 1 and 4 in the control and treatment groups.This electrostatic profile and hydrophobicity regulate the functioning of this peptide. The results may help in the development of novel approaches that could be used as alternatives or adjunct to the existing means of coccidiosis control in broilers.
Collapse
Affiliation(s)
- Maged M Mahmoud
- Regerenative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
- Molecular Genetics and Enzymology Department, Human Genetics and Genome Research institute, National Research Centre, Cairo, Egypt
| | - Ahmed M Al-Hejin
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turki S Abujamel
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center (KFMRC), King Abdulaziz University, Jeddah, Saudi Arabia (SA)
| | - Aly M Ghetas
- Poultry Diseases Department, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Haitham A Yacoub
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
10
|
Yang Y, Song X, Cui N, Lei T, Huang Y, Shi Y, Hu Y, Zhou X, Zhao Z. Functional characterization of obscure puffer ToNK-lysin: A novel immunomodulator possessing anti-bacterial and anti-inflammatory properties. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109080. [PMID: 37748586 DOI: 10.1016/j.fsi.2023.109080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
NK-lysins are one of the most abundant antimicrobial peptides produced by cytotoxic T lymphocytes (CTLs) and natural killer cells (NKs), and identified as a new class of intrinsically disordered proteins, playing critical roles in the cell-mediated cytotoxicity response, as well as immunomodulatory and antimicrobial activities upon a significant range of pathogens. In the present study, an NK-lysin was identified from Obscure puffer Takifugu obscurus (ToNK-lysin). The open reading frame of ToNK-lysin sequence spans 423 bp, encoding a peptide with 140 amino acids which shares a moderate residue identity (18%-60%) with NK-lysin of mammals and other teleost species. Phylogenetic analysis revealed that ToNK-lysin was most closely related to NK-lysins from the Pleuronectiformes (Bastard halibut Paralichthys olivaceus and Pacific halibut Hippoglossus stenolepis). Comprehensive computational analysis revealed that ToNK-lysin have substantial level of intrinsic disorder, which might be contribute to its multifunction. The transcripts of the ToNK-lysin were detected in multiple examined tissues and most abundant in gills. After bacterial and Poly I:C challenge, the transcriptional levels of ToNK-lysin were significantly up-regulated in the head kidney, liver and spleen at different time points. The recombinant ToNK-lysin showed significant antibacterial activity against Vibrio harveyi and Escherichia coli, and the ToNK-lysin treatment not only reduced the bacterial loads in liver and head kidney, but also alleviated the pathogen-mediated upregulation of immune-related genes. In addition, the co-incubation with rToNK-lysin protein remarkably degraded bacterial genomic DNA, suggesting the potential mechanism of ToNK-lysin against microbes. These results suggest that ToNK-lysin possess antibacterial and immunoregulatory function both in vivo and in vitro, which may allow it a potential applicability to the aquaculture industry.
Collapse
Affiliation(s)
- Yaxing Yang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Xiaorui Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Nan Cui
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Tianying Lei
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Ying Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Yan Shi
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Yadong Hu
- Jiangsu Innovation Center of Marine Bioresource, Jiangsu Coast Development Group Co., Ltd, Nanjing, 210019, China
| | - Xinghu Zhou
- Jiangsu Innovation Center of Marine Bioresource, Jiangsu Coast Development Group Co., Ltd, Nanjing, 210019, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China.
| |
Collapse
|
11
|
Banfi C, Gugliandolo P, Paolillo S, Mallia A, Gianazza E, Agostoni P. The alveolar-capillary unit in the physiopathological conditions of heart failure: identification of a potential marker. Eur J Prev Cardiol 2023; 30:ii2-ii8. [PMID: 37819226 DOI: 10.1093/eurjpc/zwad227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 10/13/2023]
Abstract
In this review, we describe the structure and function of the alveolar-capillary membrane and the identification of a novel potential marker of its integrity in the context of heart failure (HF). The alveolar-capillary membrane is indeed a crucial structure for the maintenance of the lung parenchyma gas exchange capacity, and the occurrence of pathological conditions determining lung fluids accumulation, such as HF, might significantly impair lung diffusion capacity altering the alveolar-capillary membrane protective functions. In the years, we found that the presence of immature forms of the surfactant protein-type B (proSP-B) in the circulation reflects alterations in the alveolar-capillary membrane integrity. We discussed our main achievements showing that proSP-B, due to its chemical properties, specifically binds to high-density lipoprotein, impairing their antioxidant activity, and likely contributing to the progression of the disease. Further, we found that immature proSP-B, not the mature protein, is related to lung abnormalities, more precisely than the lung function parameters. Thus, to the list of the potential proposed markers of HF, we add proSP-B, which represents a precise marker of alveolar-capillary membrane dysfunction in HF, correlates with prognosis, and represents a precocious marker of drug therapy.
Collapse
Affiliation(s)
- Cristina Banfi
- Centro Cardiologico Monzino, Functional Proteomics, Metabolomics, and Network Analysis, IRCCS, via Parea, 4, Milan 20138, Italy
| | | | - Stefania Paolillo
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples 80131, Italy
| | - Alice Mallia
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia 27100, Italy
- Centro Cardiologico Monzino, Functional Proteomics, Metabolomics, and Network Analysis, IRCCS, via Parea, 4, Milan 20138, Italy
| | - Erica Gianazza
- Centro Cardiologico Monzino, Functional Proteomics, Metabolomics, and Network Analysis, IRCCS, via Parea, 4, Milan 20138, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan 20138, Italy
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| |
Collapse
|
12
|
Liu MY, Zhang YR, Zhang JH, Miao L, Dang YF, Fei CJ, Li CH, Chen J. Molecular characterization and antimicrobial activity of NK-lysin in black scraper (Thamnaconus modestus). FISH & SHELLFISH IMMUNOLOGY 2023; 136:108703. [PMID: 36948366 DOI: 10.1016/j.fsi.2023.108703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
NK-lysin (NKL) is a positively charged antimicrobial peptide with broad-spectrum bactericidal activities. In this study, the cDNA sequence of NKL (TmNKL) from black scraper (Thamnaconus modestus) was cloned, which encodes a predicted polypeptide of 150 amino acids that contains a surfactant protein B domain with three disulfide bonds. Phylogenetically, TmNKL was most closely related to its teleost counterpart from tiger puffer (Takifugu rubripes). Expression analysis demonstrated that TmNKL transcripts were constitutively expressed in all tested tissues, with the highest expression levels in the gills. Its expression was significantly upregulated in the gills, head kidney, and spleen after infection with Vibrio parahaemolyticus. A linear peptide (TmNKLP40L) and a disulfide-type peptide (TmNKLP40O) were further synthesized and results showed that disulfide bonds are not essential for bactericidal activities of TmNKL, and that both forms of TmNKL exhibited potent bactericidal activities against 4 gram- negative bacteria, including V. parahaemolyticus, V. alginolyticus, Edwardsiella tarda, and V. harveyi. Observed antimicrobial activities are likely due to the effects of TmNKLP40L and TmNKLP40O treatment on disrupting the integrity of both inner and outer membrane of V. parahaemolyticus, resulting in hydrolysis of bacterial genomic DNA. Damaged cell membranes and leakage of intracellular contents were further confirmed using scanning and transmission microscopy. Moreover, administration of 1.0 μg/g TmNKLP40L or TmNKLP40O significantly decreased bacterial load in tissues and thus, pronouncedly enhanced the survival of V. parahaemolyticus-infected fish. Overall, our results demonstrated that TmNKL is a potent innate effector and provides protective effects against bacterial infection.
Collapse
Affiliation(s)
- Mei-Yi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| | - Yi-Rong Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| | - Jian-Hua Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| | - Liang Miao
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| | - Yun-Fei Dang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China.
| | - Chang-Hong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| |
Collapse
|
13
|
Waring AJ, Whitelegge JP, Sharma SK, Gordon LM, Walther FJ. Emulation of the structure of the Saposin protein fold by a lung surfactant peptide construct of surfactant Protein B. PLoS One 2022; 17:e0276787. [PMID: 36327300 PMCID: PMC9632872 DOI: 10.1371/journal.pone.0276787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional structure of the synthetic lung Surfactant Protein B Peptide Super Mini-B was determined using an integrative experimental approach, including mass spectrometry and isotope enhanced Fourier-transform infrared (FTIR) spectroscopy. Mass spectral analysis of the peptide, oxidized by solvent assisted region-specific disulfide formation, confirmed that the correct folding and disulfide pairing could be facilitated using two different oxidative structure-promoting solvent systems. Residue specific analysis by isotope enhanced FTIR indicated that the N-terminal and C-terminal domains have well defined α-helical amino acid sequences. Using these experimentally derived measures of distance constraints and disulfide connectivity, the ensemble was further refined with molecular dynamics to provide a medium resolution, residue-specific structure for the peptide construct in a simulated synthetic lung surfactant lipid multilayer environment. The disulfide connectivity combined with the α-helical elements stabilize the peptide conformationally to form a helical hairpin structure that resembles critical elements of the Saposin protein fold of the predicted full-length Surfactant Protein B structure.
Collapse
Affiliation(s)
- Alan J. Waring
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Julian P. Whitelegge
- Jane & Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shantanu K. Sharma
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California, United States of America
| | - Larry M. Gordon
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Frans J. Walther
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
14
|
Zhang H, Cao Z, Diao Q, Zhou Y, Ao J, Liu C, Sun Y. Antimicrobial activity and mechanisms of a derived antimicrobial peptide TroNKL-27 from golden pompano (Trachinotus ovatus) NK-lysin. FISH & SHELLFISH IMMUNOLOGY 2022; 126:357-369. [PMID: 35661768 DOI: 10.1016/j.fsi.2022.05.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/07/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
NK-lysin, a homologue of granulysin among human, is predominantly found in natural killer cells and cytotoxic T-lymphocytes, which plays a pivotal part in innate immune responses against diverse pathogenic bacteria. Nonetheless, in teleosts, the research on antimicrobial activity and mechanisms of NK-lysin are seldom reported. In this study, we determined the antimicrobial activity of the truncated peptide TroNKL-27 that derived from golden pompano (Trachinotus ovatus) NK-lysin, and investigated its antimicrobial mechanisms. The results showed that TroNKL-27 had considerable antimicrobial potency against both Gram-positive (Staphylococcus aureus, Streptococcus agalactiae) and Gram-negative bacteria (Vibrio harveyi, V. alginolyticus, Escherichia coli, Edwardsiella tarda). Cytoplasmic membrane depolarization and propidium iodide (PI) uptake assay manifested that TroNKL-27 could induce the bacterial membrane depolarization and change its membrane permeability, respectively. In the light of scanning electron microscopy (SEM) observation, TroNKL-27 was capable of altering morphological structures of bacteria and leading to leakage of cellular contents. Moreover, the results of gel retardation assay indicated TroNKL-27 had the ability to induce the degradation of bacterial genomic DNA. As regards in vivo assay, TroNKL-27 could reduce the replication of V. harveyi in tissues of golden pompano, protect the tissue from pathological changes. Moreover, TroNKL-27 in vivo could significantly increase the expression of the immune genes (such as IL1β, TNFα, IFN-γ, C3 and Mx) in presence or absence of V. harveyi infection. All of these results suggest that TroNKL-27 is a novel antimicrobial peptide possessing antibacterial and immunoregulatory function in vivo and in vitro, and the observed effects of TroNKL-27 will lay a solid foundation for the development of new antimicrobial agents used in aquaculture.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Qianying Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China
| | - Chunsheng Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| |
Collapse
|
15
|
The lung surfactant activity probed with molecular dynamics simulations. Adv Colloid Interface Sci 2022; 304:102659. [PMID: 35421637 DOI: 10.1016/j.cis.2022.102659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 01/17/2023]
Abstract
The surface of pulmonary alveolar subphase is covered with a mixture of lipids and proteins. This lung surfactant plays a crucial role in lung functioning. It shows a complex phase behavior which can be altered by the interaction with third molecules such as drugs or pollutants. For studying multicomponent biological systems, it is of interest to couple experimental approach with computational modelling yielding atomic-scale information. Simple two, three, or four-component model systems showed to be useful for getting more insight in the interaction between lipids, lipids and proteins or lipids and proteins with drugs and impurities. These systems were studied theoretically using molecular dynamic simulations and experimentally by means of the Langmuir technique. A better understanding of the structure and behavior of lung surfactants obtained from this research is relevant for developing new synthetic surfactants for efficient therapies, and may contribute to public health protection.
Collapse
|
16
|
Singh R, Chen Y, Ng SW, Cain D, Etherington R, Hardman C, Ogg G. Phospholipase activity of acyloxyacyl hydrolase induces IL-22-producing CD1a-autoreactive T cells in individuals with psoriasis. Eur J Immunol 2022; 52:511-524. [PMID: 34913478 PMCID: PMC9302981 DOI: 10.1002/eji.202149485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/07/2021] [Accepted: 12/10/2021] [Indexed: 11/08/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by Th17 responses. Recent evidence has identified Langerhans cells to have a key role in disease pathogenesis, with constitutive high expression of CD1a and capacity to present lipid antigens to T cells. Phospholipase A2 enzymes generate neolipid antigens for recognition by CD1a-reactive T cells; however, the broader enzymatic pathways of CD1a lipid ligand generation have not been thoroughly investigated. In this study, we used immunofluorescence of skin and ELISpot analyses of CD1a-reactive T cells to investigate the role of the lipase acyloxyacyl hydrolase (AOAH) in CD1a ligand generation with relevance to the pathogenesis of psoriasis. We found that the PLA2 activity of rAOAH leads to the activation of circulating CD1a auto-reactive T cells, leading to the production of IFN-γ and IL-22. Circulating AOAH-responsive CD1a-reactive T cells from patients with psoriasis showed elevated IL-22 production. We observed that AOAH is highly expressed in psoriatic lesions compared to healthy skin. Overall, these data present a role for AOAH in generating antigens that activate circulating lipid-specific CD1a-restricted T cells and, thus, contribute to psoriatic inflammation. These findings suggest that inhibition of PLA2 activity of AOAH may have therapeutic potential for individuals with psoriasis.
Collapse
Affiliation(s)
- Randeep Singh
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Yi‐Ling Chen
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Soo Weei Ng
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - David Cain
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Rachel Etherington
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Clare Hardman
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Graham Ogg
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University HospitalsOxfordUnited Kingdom
| |
Collapse
|
17
|
Herman L, De Smedt SC, Raemdonck K. Pulmonary surfactant as a versatile biomaterial to fight COVID-19. J Control Release 2022; 342:170-188. [PMID: 34813878 PMCID: PMC8605818 DOI: 10.1016/j.jconrel.2021.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic has wielded an enormous pressure on global health care systems, economics and politics. Ongoing vaccination campaigns effectively attenuate viral spreading, leading to a reduction of infected individuals, hospitalizations and mortality. Nevertheless, the development of safe and effective vaccines as well as their global deployment is time-consuming and challenging. In addition, such preventive measures have no effect on already infected individuals and can show reduced efficacy against SARS-CoV-2 variants that escape vaccine-induced host immune responses. Therefore, it is crucial to continue the development of specific COVID-19 targeting therapeutics, including small molecular drugs, antibodies and nucleic acids. However, despite clear advantages of local drug delivery to the lung, inhalation therapy of such antivirals remains difficult. This review aims to highlight the potential of pulmonary surfactant (PS) in the treatment of COVID-19. Since SARS-CoV-2 infection can progress to COVID-19-related acute respiratory distress syndrome (CARDS), which is associated with PS deficiency and inflammation, replacement therapy with exogenous surfactant can be considered to counter lung dysfunction. In addition, due to its surface-active properties and membrane-interacting potential, PS can be repurposed to enhance drug spreading along the respiratory epithelium and to promote intracellular drug delivery. By merging these beneficial features, PS can be regarded as a versatile biomaterial to combat respiratory infections, in particular COVID-19.
Collapse
Affiliation(s)
- Lore Herman
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
18
|
Basabe-Burgos O, Landreh M, Rising A, Curstedt T, Jan Johansson. Treatment of Respiratory Distress Syndrome with Single Recombinant Polypeptides that Combine Features of SP-B and SP-C. ACS Chem Biol 2021; 16:2864-2873. [PMID: 34878249 DOI: 10.1021/acschembio.1c00816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Treatment of respiratory distress syndrome (RDS) with surfactant replacement therapy in prematurely born infants was introduced more than 30 years ago; however, the surfactant preparations currently in clinical use are extracts from animal lungs. A synthetic surfactant that matches the currently used nature-derived surfactant preparations and can be produced in a cost-efficient manner would enable worldwide treatment of neonatal RDS and could also be tested against lung diseases in adults. The major challenge in developing fully functional synthetic surfactant preparations is to recapitulate the properties of the hydrophobic lung surfactant proteins B (SP-B) and SP-C. Here, we have designed single polypeptides that combine properties of SP-B and SP-C and produced them recombinantly using a novel solubility tag based on spider silk production. These Combo peptides mixed with phospholipids are as efficient as nature-derived surfactant preparations against neonatal RDS in premature rabbit fetuses.
Collapse
Affiliation(s)
- Oihana Basabe-Burgos
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden
| | - Michael Landreh
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, SE-171 65 Stockholm, Sweden
| | - Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 751 23 Uppsala, Sweden
| | - Tore Curstedt
- Department of Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden
| |
Collapse
|
19
|
Wu M, Wang F, Chen J, Zhang H, Zeng H, Liu J. Interactions of model airborne particulate matter with dipalmitoyl phosphatidylcholine and a clinical surfactant Calsurf. J Colloid Interface Sci 2021; 607:1993-2009. [PMID: 34798708 DOI: 10.1016/j.jcis.2021.09.193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022]
Abstract
HYPOTHESIS Lung surfactant protects lung tissue and reduces the surface tension in the alveoli during respiration. Particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5), which invades primely through inhalation, can deposit on and interact with the surfactant layer, leading to changes in the biophysical and morphological properties of the lung surfactant. EXPERIMENTS Langmuir monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and clinical surfactant Calsurf were investigated with a PM2.5 model injected into the water subphase, which were characterized by surface pressure-area isotherms, Brewster angle microscopy, atomic force microscopy, fluorescent microscopy, and x-ray photoelectron spectroscopy. The binding between DPPC/Calsurf and PM2.5 was studied using isothermal titration calorimetry. FINDINGS PM2.5 induced the expansion of the monolayers at low surface pressure (п) and film condensation at high п. Aggregation of PM2.5 mainly occurred at the interface of liquid expanded/liquid condensed (LE/LC) phases. PM2.5 led to slimmer and ramified LC domains on DPPC and the reduction of nano-sized condensed domains on Calsurf. Both DPPC and Calsurf showed fast binding with PM2.5 through complex binding modes attributed to the heterogeneity and amphiphilic property of PM2.5. This study improves the fundamental understanding of PM2.5-lung surfactant interaction and shows useful implications of the toxicity of PM2.5 through respiration process.
Collapse
Affiliation(s)
- Min Wu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Feifei Wang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China.
| |
Collapse
|
20
|
He L, Abuzeid AMI, Zhuang T, Zhao Q, Zhu S, Chen X, Liu J, Li X, Li G. Expression and biological functions of Ancylostoma ceylanicum saposin-like protein. Parasitol Res 2021; 120:3805-3813. [PMID: 34546437 DOI: 10.1007/s00436-021-07313-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/07/2021] [Indexed: 01/28/2023]
Abstract
Ancylostoma ceylanicum is a common zoonotic nematode that inhabits the small intestine of humans, dogs, and cats. Saposin-like proteins (SLPs) have hemolytic and antibacterial activities and could be used as diagnostic or vaccine candidates. To explore the biological functions of Ancylostoma ceylanicum SLP (Ace-SLP-1), cDNA-encoding Ace-SLP-1 mature peptide was cloned into prokaryotic expression vector pET-28a and transformed into Escherichia coli BL21 (DE3) to induce expression. After incubation of canine red blood cell suspension with different concentrations of recombinant Ace-SLP-1, the supernatant was separated to measure OD value and calculate the hemolysis rate. The different concentrations of recombinant protein were co-cultured with E. coli and Enterococcus faecalis, and colony-forming units (CFU) were determined by the plate counting method. Peripheral blood mononuclear cells (PBMCs) from healthy dogs were incubated with different concentrations of recombinant Ace-SLP-1, and the cytokine expression was evaluated by relative quantitative PCR. Our results showed that the hemolytic activity of Ace-SLP-1 increased with the increase in protein concentration from 25 to 100 μg/mL. The recombinant protein had no antibacterial activity against the two kinds of bacteria but could stimulate the secretion of cytokines (IL-4, IL-10, IL-12, and IL-13) in canine PBMCs. These data suggest that Ace-SLP-1 is involved in hookworm blood-feeding and survival and has good immunogenicity, supporting its potential as a diagnostic and vaccine target molecule.
Collapse
Affiliation(s)
- Long He
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China
| | - Asmaa M I Abuzeid
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China
| | - Tingting Zhuang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China
| | - Qi Zhao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China
| | - Shilan Zhu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China
| | - Xiaoyu Chen
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China
| | - Jumei Liu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China
| | - Xiu Li
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China
| | - Guoqing Li
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China.
| |
Collapse
|
21
|
Pioselli B, Salomone F, Mazzola G, Amidani D, Sgarbi E, Amadei F, Murgia X, Catinella S, Villetti G, De Luca D, Carnielli V, Civelli M. Pulmonary surfactant: a unique biomaterial with life-saving therapeutic applications. Curr Med Chem 2021; 29:526-590. [PMID: 34525915 DOI: 10.2174/0929867328666210825110421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Pulmonary surfactant is a complex lipoprotein mixture secreted into the alveolar lumen by type 2 pneumocytes, which is composed by tens of different lipids (approximately 90% of its entire mass) and surfactant proteins (approximately 10% of the mass). It is crucially involved in maintaining lung homeostasis by reducing the values of alveolar liquid surface tension close to zero at end-expiration, thereby avoiding the alveolar collapse, and assembling a chemical and physical barrier against inhaled pathogens. A deficient amount of surfactant or its functional inactivation is directly linked to a wide range of lung pathologies, including the neonatal respiratory distress syndrome. This paper reviews the main biophysical concepts of surfactant activity and its inactivation mechanisms, and describes the past, present and future roles of surfactant replacement therapy, focusing on the exogenous surfactant preparations marketed worldwide and new formulations under development. The closing section describes the pulmonary surfactant in the context of drug delivery. Thanks to its peculiar composition, biocompatibility, and alveolar spreading capability, the surfactant may work not only as a shuttle to the branched anatomy of the lung for other drugs but also as a modulator for their release, opening to innovative therapeutic avenues for the treatment of several respiratory diseases.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Sgarbi
- Preclinical R&D, Chiesi Farmaceutici, Parma. Italy
| | | | - Xabi Murgia
- Department of Biotechnology, GAIKER Technology Centre, Zamudio. Spain
| | | | | | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Antoine Béclère Medical Center, APHP, South Paris University Hospitals, Paris, France; Physiopathology and Therapeutic Innovation Unit-U999, South Paris-Saclay University, Paris. France
| | - Virgilio Carnielli
- Division of Neonatology, G Salesi Women and Children's Hospital, Polytechnical University of Marche, Ancona. Italy
| | | |
Collapse
|
22
|
Guagliardo R, Herman L, Penders J, Zamborlin A, De Keersmaecker H, Van de Vyver T, Verstraeten S, Merckx P, Mingeot-Leclercq MP, Echaide M, Pérez-Gil J, Stevens MM, De Smedt SC, Raemdonck K. Surfactant Protein B Promotes Cytosolic SiRNA Delivery by Adopting a Virus-like Mechanism of Action. ACS NANO 2021; 15:8095-8109. [PMID: 33724778 DOI: 10.1021/acsnano.0c04489] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
RNA therapeutics are poised to revolutionize medicine. To unlock the full potential of RNA drugs, safe and efficient (nano)formulations to deliver them inside target cells are required. Endosomal sequestration of nanocarriers represents a major bottleneck in nucleic acid delivery. Gaining more detailed information on the intracellular behavior of RNA nanocarriers is crucial to rationally develop delivery systems with improved therapeutic efficiency. Surfactant protein B (SP-B) is a key component of pulmonary surfactant (PS), essential for mammalian breathing. In contrast to the general belief that PS should be regarded as a barrier for inhaled nanomedicines, we recently discovered the ability of SP-B to promote gene silencing by siRNA-loaded and lipid-coated nanogels. However, the mechanisms governing this process are poorly understood. The major objective of this work was to obtain mechanistic insights into the SP-B-mediated cellular delivery of siRNA. To this end, we combined siRNA knockdown experiments, confocal microscopy, and focused ion beam scanning electron microscopy imaging in an in vitro non-small-cell lung carcinoma model with lipid mixing assays on vesicles that mimic the composition of (intra)cellular membranes. Our work highlights a strong correlation between SP-B-mediated fusion with anionic endosomal membranes and cytosolic siRNA delivery, a mode of action resembling that of certain viruses and virus-derived cell-penetrating peptides. Building on these gained insights, we optimized the SP-B proteolipid composition, which dramatically improved delivery efficiency. Altogether, our work provides a mechanistic understanding of SP-B-induced perturbation of intracellular membranes, offering opportunities to fuel the rational design of SP-B-inspired RNA nanoformulations for inhalation therapy.
Collapse
Affiliation(s)
- Roberta Guagliardo
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Lore Herman
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Jelle Penders
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Agata Zamborlin
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Herlinde De Keersmaecker
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Centre for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| | - Thijs Van de Vyver
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Sandrine Verstraeten
- Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium
| | - Pieterjan Merckx
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Marie-Paule Mingeot-Leclercq
- Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium
| | - Mercedes Echaide
- Departamento de Bioquímica y Biología Molecular, Facultad de Biologia, and Research Institute Hospital 12 de Octubre, Universidad Complutense, José Antonio Novais 12, 28040 Madrid, Spain
| | - Jesús Pérez-Gil
- Departamento de Bioquímica y Biología Molecular, Facultad de Biologia, and Research Institute Hospital 12 de Octubre, Universidad Complutense, José Antonio Novais 12, 28040 Madrid, Spain
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
23
|
Structural hallmarks of lung surfactant: Lipid-protein interactions, membrane structure and future challenges. Arch Biochem Biophys 2021; 703:108850. [PMID: 33753033 DOI: 10.1016/j.abb.2021.108850] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/20/2021] [Accepted: 03/16/2021] [Indexed: 11/23/2022]
Abstract
Lung surfactant (LS) is an outstanding example of how a highly regulated and dynamic membrane-based system has evolved to sustain a wealth of structural reorganizations in order to accomplish its biophysical function, as it coats and stabilizes the respiratory air-liquid interface in the mammalian lung. The present review dissects the complexity of the structure-function relationships in LS through an updated description of the lipid-protein interactions and the membrane structures that sustain its synthesis, secretion, interfacial performance and recycling. We also revise the current models and the biophysical techniques employed to study the membranous architecture of LS. It is important to consider that the structure and functional properties of LS are often studied in bulk or under static conditions, in spite that surfactant function is strongly connected with a highly dynamic behaviour, sustained by very polymorphic structures and lipid-lipid, lipid-protein and protein-protein interactions that reorganize in precise spatio-temporal coordinates. We have tried to underline the evidences available of the existence of such structural dynamism in LS. A last important aspect is that the synthesis and assembly of LS is a strongly regulated intracellular process to ensure the establishment of the proper interactions driving LS surface activity, while protecting the integrity of other cell membranes. The use of simplified lipid models or partial natural materials purified from animal tissues could be too simplistic to understand the true molecular mechanisms defining surfactant function in vivo. In this line, we will bring into the attention of the reader the methodological challenges and the questions still open to understand the structure-function relationships of LS at its full biological relevance.
Collapse
|
24
|
Ding L, Tang S, Wyatt TA, Knoell DL, Oupický D. Pulmonary siRNA delivery for lung disease: Review of recent progress and challenges. J Control Release 2021; 330:977-991. [PMID: 33181203 DOI: 10.1016/j.jconrel.2020.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/12/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Lung diseases are a leading cause of mortality worldwide and there exists urgent need for new therapies. Approval of the first siRNA treatments in humans has opened the door for further exploration of this therapeutic strategy for other disease states. Pulmonary delivery of siRNA-based biopharmaceuticals offers the potential to address multiple unmet medical needs in lung-related diseases because of the specific physiology of the lung and characteristic properties of siRNA. Inhalation-based siRNA delivery designed for efficient, targeted delivery to specific cells within the lung holds great promise. Efficient delivery of siRNA directly to the lung, however, is relatively complex. This review focuses on the barriers that impact pulmonary siRNA delivery and successful recent approaches to advance this field forward. We focus on the pulmonary barriers that affect siRNA delivery, the disease-dependent pathological changes and their role in pulmonary disease and impact on siRNA delivery, as well as the recent development on the pulmonary siRNA delivery systems.
Collapse
Affiliation(s)
- Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Todd A Wyatt
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Nebraska Medical Center, Department of Veterans Affairs Nebraska, Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Daren L Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
25
|
Cao W, Liu Q, Wang T, Zhang Q, Cheng F, Tang Y, Mei C, Wen F, Wang W. Recombinant expression of the precursor of rat lung surfactant protein B in Escherichia coli and its antibacterial mechanism. Protein Expr Purif 2020; 179:105801. [PMID: 33248225 DOI: 10.1016/j.pep.2020.105801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022]
Abstract
While the discovery of antibiotics has made a huge contribution to medicine, bacteria that are resistant to many antibiotics pose new challenges to medicine. Antimicrobial peptides (AMPs), a new kind of antibiotics, have attracted people's attention because they are not prone to drug resistance. In this study, glutathione transferase (GST) was used as a fusion partner to recombinantly expressed rat lung surfactant protein B precursor (proSP-B) in E. coli pLySs. Cck-8 evaluated the cytotoxicity of the fusion protein and calculated its 50% inhibitory concentration (IC50). The purified peptides showed broad-spectrum antibacterial activity using filter paper method and MIC, and propidium iodide (PI) was used to explore the antibacterial mechanism against Staphylococcus aureus. In addition, the pEGFP-N2-proSP-B vector was constructed to explore the localization of proSP-B in CCL-149 cells. We found that proSP-B has obvious antibacterial activity against Gram-positive bacteria, Gram-negative bacteria and fungi, and has broad-spectrum antibacterial activity. Besides, proSP-B fusion protein has low toxicity and can change the permeability of Staphylococcus aureus cell membrane to realize its antibacterial. For these reasons, proSP-B can be used as a potential natural antibacterial drug.
Collapse
Affiliation(s)
- Wulong Cao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| | - Qin Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| | - Ting Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| | - Qiuhan Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| | - Fu Cheng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| | - Yishan Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| | - Chenchen Mei
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| | - Fang Wen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| | - Wanneng Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| |
Collapse
|
26
|
Sever N, Miličić G, Bodnar NO, Wu X, Rapoport TA. Mechanism of Lamellar Body Formation by Lung Surfactant Protein B. Mol Cell 2020; 81:49-66.e8. [PMID: 33242393 DOI: 10.1016/j.molcel.2020.10.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/14/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022]
Abstract
Breathing depends on pulmonary surfactant, a mixture of phospholipids and proteins, secreted by alveolar type II cells. Surfactant requires lamellar bodies (LBs), organelles containing densely packed concentric membrane layers, for storage and secretion. LB biogenesis remains mysterious but requires surfactant protein B (SP-B), which is synthesized as a precursor (pre-proSP-B) that is cleaved during trafficking into three related proteins. Here, we elucidate the functions and cooperation of these proteins in LB formation. We show that the N-terminal domain of proSP-B is a phospholipid-binding and -transfer protein whose activities are required for proSP-B export from the endoplasmic reticulum (ER) and sorting to LBs, the conversion of proSP-B into lipoprotein particles, and neonatal viability in mice. The C-terminal domain facilitates ER export of proSP-B. The mature middle domain, generated after proteolytic cleavage of proSP-B, generates the striking membrane layers characteristic of LBs. Together, our results lead to a mechanistic model of LB biogenesis.
Collapse
Affiliation(s)
- Navdar Sever
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Goran Miličić
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Nicholas O Bodnar
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Xudong Wu
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Merckx P, Lammens J, Nuytten G, Bogaert B, Guagliardo R, Maes T, Vervaet C, De Beer T, De Smedt SC, Raemdonck K. Lyophilization and nebulization of pulmonary surfactant-coated nanogels for siRNA inhalation therapy. Eur J Pharm Biopharm 2020; 157:191-199. [PMID: 33022391 DOI: 10.1016/j.ejpb.2020.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 09/05/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
RNA interference (RNAi) enables highly specific silencing of potential target genes for treatment of pulmonary pathologies. The intracellular RNAi pathway can be activated by cytosolic delivery of small interfering RNA (siRNA), inducing sequence-specific gene knockdown on the post-transcriptional level. Although siRNA drugs hold many advantages over currently applied therapies, their clinical translation is hampered by inefficient delivery across cellular membranes. We previously developed hybrid nanoparticles consisting of an siRNA-loaded nanosized hydrogel core (nanogel) coated with Curosurf®, a clinically used pulmonary surfactant (PS). The latter enhances both particle stability as well as intracellular siRNA delivery, which was shown to be governed by the PS-associated surfactant protein B (SP-B). Despite having a proven in vitro and in vivo siRNA delivery potential when prepared ex novo, clinical translation of this liquid nanoparticle suspension requires the identification of a long-term preservation strategy that maintains nanoparticle stability and potency. In addition, to achieve optimal pulmonary deposition of the nanocomposite, its compatibility with state-of-the-art pulmonary administration techniques should be evaluated. Here, we demonstrate that PS-coated nanogels can be lyophilized, reconstituted and subsequently nebulized via a vibrating mesh nebulizer. The particles retain their physicochemical integrity and their ability to deliver siRNA in a human lung epithelial cell line. The latter result suggests that the functional integrity of SP-B in the PS coat towards siRNA delivery might be preserved as well. Of note, successful lyophilization was achieved without the need for stabilizing lyo- or cryoprotectants. Our results demonstrate that PS-coated siRNA-loaded nanogels can be lyophilized, which offers the prospect of long-term storage. In addition, the formulation was demonstrated to be suitable for local administration with a state-of-the-art nebulizer for human use upon reconstitution. Hence, the data presented in this study represent an important step towards clinical application of such nanocomposites for treatment of pulmonary disease.
Collapse
Affiliation(s)
- Pieterjan Merckx
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Joris Lammens
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Gust Nuytten
- Laboratory of Pharmaceutical Process Analytical Technology, Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Bram Bogaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Roberta Guagliardo
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Faculty of Medicine and Health Sciences, Department of Respiratory Medicine, Ghent University Hospital, Medical Research Building 2, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
28
|
Mahmoud MM, Yacoub HA. Characterization of transcription profile and structural properties of avian NK-lysin. Poult Sci 2020; 99:3793-3806. [PMID: 32731965 PMCID: PMC7597936 DOI: 10.1016/j.psj.2020.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/22/2020] [Accepted: 04/06/2020] [Indexed: 10/31/2022] Open
Abstract
This study aimed to determine the transcription profile of NK-lysin gene in native chickens. Moreover, it was targeted toward determining the primary, three-dimensional, and molecular dynamic structures of NK-lysin and granulysin peptides to understand their mode of action and intracellular transduction pathways using in silico analysis. The results revealed that NK-lysin gene in native chickens and Gallus gallus were closely related to those of other avian species. However, there was a low sequence homology when aligned with the mammalian peptides. The coding region of NK-lysin peptide in native chickens encoded 140 amino acids as found in G. gallus with a homology of 98% that declined to 20%, particularly in mammalian species. The results revealed that the NK-lysin in native chickens was closely related to that in avian species at a range of 71-76%. However, it was different from that of other mammalians in terms of nucleotide and amino acid identities. The mRNA transcripts of NK-lysin had high and moderate expression levels in the testis and pancreas, respectively. Nonetheless, the small intestine, kidney, spleen, and liver had a low expression level. The NK-lysin peptides contained more than 50% of the total AA with a nonpolar feature, whereas polar AA constituted up to 30% of AA. The results also indicated that the hydrophilic regions and positively charged amino acids were predominant on the surface of the investigated peptides. The NK-lysin was folded in 4-5 helical units and 3-4 loop structures in their saposin domain. The third helical peptide was long in both avian and bovine species (104-123 residues). However, the fourth helical peptide was short in humans, pigs, and chimpanzees (101-123, 104-123, and 102-124 residues, respectively), with the helical unit residues of 95-97, 96-99, and 96-98, respectively. The obtained results can be helpful in developing novel approaches that could be used as alternatives or adjuncts to the existing means of control.
Collapse
Affiliation(s)
- Maged M Mahmoud
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Human Genetics Division and Genome Research, Molecular Genetics and Enzymology Department, National Research Centre, Cairo, Egypt
| | - Haitham A Yacoub
- Genetic Engineering and Biotechnology Research Division, Cell Biology Department, National Research Centre, Dokki, Gizza 12622, Egypt.
| |
Collapse
|
29
|
Cheung LKY, Dupuis JH, Dee DR, Bryksa BC, Yada RY. Roles of Plant-Specific Inserts in Plant Defense. TRENDS IN PLANT SCIENCE 2020; 25:682-694. [PMID: 32526173 DOI: 10.1016/j.tplants.2020.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 06/11/2023]
Abstract
Ubiquitously expressed in plants, the plant-specific insert (PSI) of typical plant aspartic proteases (tpAPs) has been associated with plant development, stress response, and defense processes against invading pathogens. Despite sharing high sequence identity, structural studies revealed possible different mechanisms of action among species. The PSI induces signaling pathways of defense hormones in vivo and demonstrates broad-spectrum activity against phytopathogens in vitro. Recent characterization of the PSI-tpAP relationship uncovered novel, nonconventional intracellular protein transport pathways and improved tpAP production yields for industrial applications. In spite of research to date, relatively little is known about the structure-function relationships of PSIs. A comprehensive understanding of their biological roles may benefit plant protection strategies against virulent phytopathogens.
Collapse
Affiliation(s)
- Lennie K Y Cheung
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John H Dupuis
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Derek R Dee
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Brian C Bryksa
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rickey Y Yada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada. @ubc.ca
| |
Collapse
|
30
|
Liekkinen J, Enkavi G, Javanainen M, Olmeda B, Pérez-Gil J, Vattulainen I. Pulmonary Surfactant Lipid Reorganization Induced by the Adsorption of the Oligomeric Surfactant Protein B Complex. J Mol Biol 2020; 432:3251-3268. [DOI: 10.1016/j.jmb.2020.02.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
|
31
|
Zhu R, Wu YS, Liu XX, Lv X, Wu YQ, Song JJ, Wang XG. Membrane disruptive antimicrobial potential of NK-lysin from yellow catfish (Pelteobagrus fulvidraco). FISH & SHELLFISH IMMUNOLOGY 2020; 97:571-580. [PMID: 31669280 DOI: 10.1016/j.fsi.2019.10.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/24/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
NK-lysins, a type of broad-spectrum antimicrobial peptide (AMP), act as an essential effector of innate defense against microbial attack in higher vertebrates and so in fish. The present study delineates the structural and functional characterization of NK-lysin from yellow catfish (Pelteobagrus fulvidrac) (Pelteobagrus fulvidraco). PfNK-lysin encodes a 153-residue peptide, which displays the hallmark features of other known NK-lysins with the ordered array of six well-conserved cysteine residues and five-exon/four-intron structure. It was found to be ubiquitous in tissues, being detected most abundantly in gill and head kidney. In vivo exposure to stimuli (LPS, PolyI:C, and Edwardsiella ictaluri) induced PfNK-lysin expression in head kidney and spleen. Synthetic PfNK-lysin-derived peptide exhibited in vitro bactericidal potency against both Gram-positive and Gram-negative bacteria, with the highest inhibitory effect on pathogen Edwardsiella ictaluri. Fluorescence microscopy and scanning electron microscopy further confirmed its capacity to cause damage to the bacterial plasma membrane. Taken together, these data suggest that PfNK-lysin might participate in antimicrobial defense of yellow catfish by membrane-disruptive action.
Collapse
Affiliation(s)
- Rong Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Yin-Sheng Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xiao-Xiao Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xue Lv
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Ye-Qing Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Jing-Jing Song
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xing-Guo Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| |
Collapse
|
32
|
Abstract
Sphingosine, ceramide, sphingosine-1-phosphate, and other related sphingolipids have emerged as important bioactive molecules involved in a variety of key cellular processes such as cell growth, differentiation, apoptosis, exosome release, and inter- and intracellular cell communication, making the pathways of sphingolipid metabolism a key domain in maintaining cell homeostasis (Hannun and Obeid, Trends Biochem Sci 20:73-77, 1995; Hannun and Obeid, Nat Rev Mol Cell Biol 9:139-150, 2008; Kosaka et al., J Biol Chem 288:10849-10859, 2013). Various studies have determined that these pathways play a central role in regulating intracellular production of ceramide and the other bioactive sphingolipids and hence are an important component of signaling in various diseases such as cancer, diabetes, and neurodegenerative and cardiovascular diseases (Chaube et al., Biochim Biophys Acta 1821:313-323, 2012; Clarke et al., Adv Enzyme Regul 51:51-58, 2011b; Horres and Hannun, Neurochem Res 37:1137-1149, 2012). In this chapter, we discuss one of the major enzyme classes in producing ceramide, sphingomyelinases (SMases), from a biochemical and structural perspective with an emphasis on their applicability as therapeutic targets.
Collapse
Affiliation(s)
- Prajna Shanbhogue
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
- Stony Brook University Cancer Center, Stony Brook, NY, USA.
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
33
|
Zhang M, Wang Z, Wang C, Ma X, Cheng G, Qiao Y. Identification and characterization of five Nk-lysins from Pseudocrossocheilus bamaensis and their diverse expression patterns in response to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2019; 94:346-354. [PMID: 31499205 DOI: 10.1016/j.fsi.2019.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Nk-lysin is an effector protein of cytotoxic T lymphocytes and natural killer cells. It is known to possess anti-bacterial, anti-fungal, anti-viral, and anti-tumor activity. Here we describe five Nk-lysin genes (PbNkla, PbNklb, PbNklc, PbNkld, and PbNkle) from Pseudocrossocheilus bamaensis, a rare indigenous species distributed in Guangxi, China. The open reading frames (ORFs) consisted of 426 (PbNkla), 435 (PbNklb), 369 (PbNklc), 366 (PbNkld), and 339 (PbNkle) bp nucleic acids. The surfactant-associated protein B (SapB) domain and six conserved cysteine residues were identified in each PbNkl gene. Phylogenetic analysis revealed similar results to homology comparison that PbNkla and PbNklb consist of five exons and four introns and grouped together, whereas PbNklc and PbNkld each contain four exons and three introns and formed a separate clade. PbNkle had three exons and two introns and formed an independent clade separate from the four other PbNkls. qPCR analysis demonstrated that PbNkla, PbNklc, PbNkld, and PbNkle were ubiquitously expressed in all tissues examined, whereas PbNklb was expressed only after bacterial infection. Aeromonas hydrophila challenge significantly up- and down-regulated PbNkls at different time points post-injection and in different immune-related tissues. These results suggested that PbNkls were conserved immune molecules that may be involved in the immune response to pathogen invasion.
Collapse
Affiliation(s)
- Man Zhang
- Guangxi Colleges and Universities Key Laboratory of Aquatic Healthy Breeding and Nutrition Regulation, College of Animal Science and Technology, Guangxi University, Nanning, 530000, China
| | - Zhenguang Wang
- Guangxi Colleges and Universities Key Laboratory of Aquatic Healthy Breeding and Nutrition Regulation, College of Animal Science and Technology, Guangxi University, Nanning, 530000, China
| | - Conggang Wang
- Guangxi Colleges and Universities Key Laboratory of Aquatic Healthy Breeding and Nutrition Regulation, College of Animal Science and Technology, Guangxi University, Nanning, 530000, China
| | - Xiaowan Ma
- The Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China.
| | - Guangping Cheng
- Guangxi Colleges and Universities Key Laboratory of Aquatic Healthy Breeding and Nutrition Regulation, College of Animal Science and Technology, Guangxi University, Nanning, 530000, China
| | - Ying Qiao
- The Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China
| |
Collapse
|
34
|
Shu L, Guo X, Niu L, Chen X, Cai T, Ding X, Xie Z, Wang J, Zhu N, Kou T, Yang F. Comprehensive characterization and proteoform analysis of the hydrophobic surfactant proteins B and C in calf pulmonary surfactant. J Pharm Biomed Anal 2019; 174:625-632. [PMID: 31276983 DOI: 10.1016/j.jpba.2019.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/11/2023]
Abstract
Calf pulmonary surfactant (CPS), which contains about 98% lipids and 2% hydrophobic surfactant proteins B (SP-B) and C (SP-C), has been used as a surfactant preparation for the clinical replacement therapy of respiratory distress syndrome (RDS). Characterization of SP-B and SP-C in CPS is informative for quality control and the evaluation of their biological activities. However, analysis of SP-B and SP-C is impeded by the high content of lipids in CPS. Here, we describe an integrated method by combining size exclusion chromatography (SEC)-based delipidation, SDS-PAGE separation, in-gel digestion and mass spectrometric analysis for comprehensive characterization and proteoform analysis of the extremely hydrophobic SP-B and SP-C in CPS. This study has shown that 30 proteoforms of SP-C with different truncations and modifications were identified and SP-B was found to be existed as a dimer form in the CPS.
Collapse
Affiliation(s)
- Lian Shu
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojing Guo
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Niu
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tanxi Cai
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Ding
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhensheng Xie
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jifeng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Nali Zhu
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongxin Kou
- China Resources Double-crane Pharmaceutical Co. Ltd. Beijing, 100102, China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
35
|
Robichaud NAS, Khatami MH, Saika-Voivod I, Booth V. All-Atom Molecular Dynamics Simulations of Dimeric Lung Surfactant Protein B in Lipid Multilayers. Int J Mol Sci 2019; 20:ijms20163863. [PMID: 31398818 PMCID: PMC6719169 DOI: 10.3390/ijms20163863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Although lung surfactant protein B (SP-B) is an essential protein that plays a crucial role in breathing, the details of its structure and mechanism are not well understood. SP-B forms covalent homodimers, and in this work we use all-atom molecular dynamics simulations to study dimeric SP-B’s structure and its behavior in promoting lipid structural transitions. Four initial system configurations were constructed based on current knowledge of SP-B’s structure and mechanism, and the protein maintained a helicity consistent with experiment in all systems. Several SP-B-induced lipid reorganization behaviors were observed, and regions of the protein particularly important for these activities included SP-B’s “central loop” and “hinge” regions. SP-B dimers with one subunit initially positioned in each of two adjacent bilayers appeared to promote close contact between two bilayers. When both subunits were initially positioned in the same bilayer, SP-B induced the formation of a defect in the bilayer, with water penetrating into the centre of the bilayer. Similarly, dimeric SP-B showed a propensity to interact with preformed interpores in the bilayer. SP-B dimers also promoted bilayer thinning and creasing. This work fleshes out the atomistic details of the dimeric SP-B structures and SP-B/lipid interactions that underlie SP-B’s essential functions.
Collapse
Affiliation(s)
- Nicholas A S Robichaud
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Mohammad Hassan Khatami
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Ivan Saika-Voivod
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada.
| | - Valerie Booth
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada.
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
36
|
Functional Reconstitution of HlyB, a Type I Secretion ABC Transporter, in Saposin-A Nanoparticles. Sci Rep 2019; 9:8436. [PMID: 31182729 PMCID: PMC6558041 DOI: 10.1038/s41598-019-44812-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/23/2019] [Indexed: 11/08/2022] Open
Abstract
Type I secretion systems (T1SS) are ubiquitous transport machineries in Gram-negative bacteria. They comprise a relatively simple assembly of three membrane-localised proteins: an inner-membrane complex composed of an ABC transporter and a membrane fusion protein, and a TolC-like outer membrane component. T1SS transport a wide variety of substrates with broad functional diversity. The ABC transporter hemolysin B (HlyB), for example, is part of the hemolysin A-T1SS in Escherichia coli. In contrast to canonical ABC transporters, an accessory domain, a C39 peptidase-like domain (CLD), is located at the N-terminus of HlyB and is essential for secretion. In this study, we have established an optimised purification protocol for HlyB and the subsequent reconstitution employing the saposin-nanoparticle system. We point out the negative influence of free detergent on the basal ATPase activity of HlyB, studied the influence of a lysolipid or lipid matrix on activity and present functional studies with the full-length substrate proHlyA in its folded and unfolded states, which both have a stimulatory effect on the ATPase activity.
Collapse
|
37
|
Johansson J, Curstedt T. Synthetic surfactants with SP-B and SP-C analogues to enable worldwide treatment of neonatal respiratory distress syndrome and other lung diseases. J Intern Med 2019; 285:165-186. [PMID: 30357986 DOI: 10.1111/joim.12845] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Treatment of neonatal respiratory distress syndrome (RDS) using animal-derived lung surfactant preparations has reduced the mortality of handling premature infants with RDS to a 50th of that in the 1960s. The supply of animal-derived lung surfactants is limited and only a part of the preterm babies is treated. Thus, there is a need to develop well-defined synthetic replicas based on key components of natural surfactant. A synthetic product that equals natural-derived surfactants would enable cost-efficient production and could also facilitate the development of the treatments of other lung diseases than neonatal RDS. Recently the first synthetic surfactant that contains analogues of the two hydrophobic surfactant proteins B (SP-B) and SP-C entered clinical trials for the treatment of neonatal RDS. The development of functional synthetic analogues of SP-B and SP-C, however, is considerably more challenging than anticipated 30 years ago when the first structural information of the native proteins became available. For SP-B, a complex three-dimensional dimeric structure stabilized by several disulphides has necessitated the design of miniaturized analogues. The main challenge for SP-C has been the pronounced amyloid aggregation propensity of its transmembrane region. The development of a functional non-aggregating SP-C analogue that can be produced synthetically was achieved by designing the amyloidogenic native sequence so that it spontaneously forms a stable transmembrane α-helix.
Collapse
Affiliation(s)
- J Johansson
- Department of Neurobiology, Care Sciences and Society, Section for Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - T Curstedt
- Laboratory for Surfactant Research, Department of Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
38
|
Micro-Surface and -Interfacial Tensions Measured Using the Micropipette Technique: Applications in Ultrasound-Microbubbles, Oil-Recovery, Lung-Surfactants, Nanoprecipitation, and Microfluidics. MICROMACHINES 2019; 10:mi10020105. [PMID: 30717224 PMCID: PMC6413238 DOI: 10.3390/mi10020105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 01/08/2023]
Abstract
This review presents a series of measurements of the surface and interfacial tensions we have been able to make using the micropipette technique. These include: equilibrium tensions at the air-water surface and oil-water interface, as well as equilibrium and dynamic adsorption of water-soluble surfactants and water-insoluble and lipids. At its essence, the micropipette technique is one of capillary-action, glass-wetting, and applied pressure. A micropipette, as a parallel or tapered shaft, is mounted horizontally in a microchamber and viewed in an inverted microscope. When filled with air or oil, and inserted into an aqueous-filled chamber, the position of the surface or interface meniscus is controlled by applied micropipette pressure. The position and hence radius of curvature of the meniscus can be moved in a controlled fashion from dimensions associated with the capillary tip (~5–10 μm), to back down the micropipette that can taper out to 450 μm. All measurements are therefore actually made at the microscale. Following the Young–Laplace equation and geometry of the capillary, the surface or interfacial tension value is simply obtained from the radius of the meniscus in the tapered pipette and the applied pressure to keep it there. Motivated by Franklin’s early experiments that demonstrated molecularity and monolayer formation, we also give a brief potted-historical perspective that includes fundamental surfactancy driven by margarine, the first use of a micropipette to circuitously measure bilayer membrane tensions and free energies of formation, and its basis for revolutionising the study and applications of membrane ion-channels in Droplet Interface Bilayers. Finally, we give five examples of where our measurements have had an impact on applications in micro-surfaces and microfluidics, including gas microbubbles for ultrasound contrast; interfacial tensions for micro-oil droplets in oil recovery; surface tensions and tensions-in-the surface for natural and synthetic lung surfactants; interfacial tension in nanoprecipitation; and micro-surface tensions in microfluidics.
Collapse
|
39
|
Falco A, Medina-Gali RM, Poveda JA, Bello-Perez M, Novoa B, Encinar JA. Antiviral Activity of a Turbot ( Scophthalmus maximus) NK-Lysin Peptide by Inhibition of Low-pH Virus-Induced Membrane Fusion. Mar Drugs 2019; 17:md17020087. [PMID: 30717094 PMCID: PMC6410327 DOI: 10.3390/md17020087] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/10/2019] [Accepted: 01/23/2019] [Indexed: 12/20/2022] Open
Abstract
Global health is under attack by increasingly-frequent pandemics of viral origin. Antimicrobial peptides are a valuable tool to combat pathogenic microorganisms. Previous studies from our group have shown that the membrane-lytic region of turbot (Scophthalmus maximus) NK-lysine short peptide (Nkl71–100) exerts an anti-protozoal activity, probably due to membrane rupture. In addition, NK-lysine protein is highly expressed in zebrafish in response to viral infections. In this work several biophysical methods, such as vesicle aggregation, leakage and fluorescence anisotropy, are employed to investigate the interaction of Nkl71–100 with different glycerophospholipid vesicles. At acidic pH, Nkl71–100 preferably interacts with phosphatidylserine (PS), disrupts PS membranes, and allows the content leakage from vesicles. Furthermore, Nkl71–100 exerts strong antiviral activity against spring viremia of carp virus (SVCV) by inhibiting not only the binding of viral particles to host cells, but also the fusion of virus and cell membranes, which requires a low pH context. Such antiviral activity seems to be related to the important role that PS plays in these steps of the replication cycle of SVCV, a feature that is shared by other families of virus-comprising members with health and veterinary relevance. Consequently, Nkl71–100 is shown as a promising broad-spectrum antiviral candidate.
Collapse
Affiliation(s)
- Alberto Falco
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Miguel Hernández University (UMH); 03202 Elche Alicante, Spain.
| | - Regla María Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Miguel Hernández University (UMH); 03202 Elche Alicante, Spain.
| | - José Antonio Poveda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Miguel Hernández University (UMH); 03202 Elche Alicante, Spain.
| | - Melissa Bello-Perez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Miguel Hernández University (UMH); 03202 Elche Alicante, Spain.
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), 36208 Vigo, Spain.
| | - José Antonio Encinar
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Miguel Hernández University (UMH); 03202 Elche Alicante, Spain.
| |
Collapse
|
40
|
Guagliardo R, Pérez-Gil J, De Smedt S, Raemdonck K. Pulmonary surfactant and drug delivery: Focusing on the role of surfactant proteins. J Control Release 2018; 291:116-126. [PMID: 30321577 DOI: 10.1016/j.jconrel.2018.10.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022]
Abstract
Pulmonary surfactant (PS) has been extensively studied because of its primary role in mammalian breathing. The deposition of this surface-active material at the alveolar air-water interface is essential to lower surface tension, thus avoiding alveolar collapse during expiration. In addition, PS is involved in host defense, facilitating the clearance of potentially harmful particulates. PS has a unique composition, including 92% of lipids and 8% of surfactant proteins (SPs) by mass. Although they constitute the minor fraction, SPs to a large extent orchestrate PS-related functions. PS contains four surfactant proteins (SPs) that can be structurally and functionally divided in two groups, i.e. the large hydrophilic SP-A and SP-D and the smaller hydrophobic SP-B and SP-C. The former belong to the family of collectins and are involved in opsonization processes, thus promoting uptake of pathogens and (nano)particles by phagocytic cell types. The latter SPs regulate interfacial surfactant adsorption dynamics, facilitating (phospho)lipid transfer and membrane fusion processes. In the context of pulmonary drug delivery, the exploitation of PS as a carrier to promote drug spreading along the alveolar interface is gaining interest. In addition, recent studies investigated the interaction of PS with drug-loaded nanoparticles (nanomedicines) following pulmonary administration, which strongly influences their biological fate, drug delivery efficiency and toxicological profile. Interestingly, the specific biophysical mode-of-action of the four SPs affect the drug delivery process of nanomedicines both on the extra-and intracellular level, modulating pulmonary distribution, cell targeting and intracellular delivery. This knowledge can be harnessed to exploit SPs for the design of unique and bio-inspired drug delivery strategies.
Collapse
Affiliation(s)
- Roberta Guagliardo
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Jesús Pérez-Gil
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, Research Institute Hospital 12 Octubre, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain.
| | - Stefaan De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
41
|
Gebai A, Gorelik A, Nagar B. Crystal structure of saposin D in an open conformation. J Struct Biol 2018; 204:145-150. [PMID: 30026085 DOI: 10.1016/j.jsb.2018.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 11/30/2022]
Abstract
Saposins are accessory proteins that aid in the degradation of sphingolipids by hydrolytic enzymes. Their structure usually comprises four α-helices arranged in various conformations including an open, V-shaped form that is generally associated with the ability to interact with membranes and/or enzymes to accentuate activity. Saposin D is required by the lysosomal hydrolase, acid ceramidase, which breaks down ceramide into sphingosine and free fatty acid, to display optimal activity. The structure of saposin D was previously determined in an inactive conformation, revealing a monomeric, closed and compact form. Here, we present the crystal structure of the open, V-shaped form of saposin D. The overall shape is similar to the open conformation found in other saposins with slight differences in the angles between the α-helices. The structure forms a dimer that serves to stabilize the hydrophobic surface exposed in the open form, which results in an internal, hydrophobic cavity that could be used to carry extracted membrane lipids.
Collapse
Affiliation(s)
- Ahmad Gebai
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada
| | - Alexei Gorelik
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada
| | - Bhushan Nagar
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada.
| |
Collapse
|
42
|
Cabré EJ, Martínez-Calle M, Prieto M, Fedorov A, Olmeda B, Loura LMS, Pérez-Gil J. Homo- and hetero-oligomerization of hydrophobic pulmonary surfactant proteins SP-B and SP-C in surfactant phospholipid membranes. J Biol Chem 2018; 293:9399-9411. [PMID: 29700110 DOI: 10.1074/jbc.ra117.000222] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 03/28/2018] [Indexed: 11/06/2022] Open
Abstract
Pulmonary surfactant is a lipid/protein mixture that reduces surface tension at the respiratory air-water interface in lungs. Among its nonlipidic components are pulmonary surfactant-associated proteins B and C (SP-B and SP-C, respectively). These highly hydrophobic proteins are required for normal pulmonary surfactant function, and whereas past literature works have suggested possible SP-B/SP-C interactions and a reciprocal modulation effect, no direct evidence has been yet identified. In this work, we report an extensive fluorescence spectroscopy study of both intramolecular and intermolecular SP-B and SP-C interactions, using a combination of quenching and FRET steady-state and time-resolved methodologies. These proteins are compartmentalized in full surfactant membranes but not in pure 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) vesicles, in accordance with their previously described preference for liquid disordered phases. From the observed static self-quenching and homo-FRET of BODIPY-FL labeled SP-B, we conclude that this protein forms homoaggregates at low concentration (lipid:protein ratio, 1:1000). Increases in polarization of BODIPY-FL SP-B and steady-state intensity of WT SP-B were observed upon incorporation of under-stoichiometric amounts of WT SP-C. Conversely, Marina Blue-labeled SP-C is quenched by over-stoichiometric amounts of WT SP-B, whereas under-stoichiometric concentrations of the latter actually increase SP-C emission. Time-resolved hetero-FRET from Marina Blue SP-C to BODIPY-FL SP-B confirm distinct protein aggregation behaviors with varying SP-B concentration. Based on these multiple observations, we propose a model for SP-B/SP-C interactions, where SP-C might induce conformational changes on SP-B complexes, affecting its aggregation state. The conclusions inferred from the present work shed light on the synergic functionality of both proteins in the pulmonary surfactant system.
Collapse
Affiliation(s)
- Elisa J Cabré
- From the Department of Biochemistry, Faculty of Biology, Complutense University, Madrid 28040, Spain
| | - Marta Martínez-Calle
- From the Department of Biochemistry, Faculty of Biology, Complutense University, Madrid 28040, Spain.,the Hospital 12 Octubre Research Institute, Madrid 28041, Spain
| | - Manuel Prieto
- the CQFM-IN and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Alexander Fedorov
- the CQFM-IN and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Bárbara Olmeda
- From the Department of Biochemistry, Faculty of Biology, Complutense University, Madrid 28040, Spain.,the Hospital 12 Octubre Research Institute, Madrid 28041, Spain
| | - Luís M S Loura
- the Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal, and .,the Centro de Química de Coimbra, University of Coimbra, Coimbra 3004-535, Portugal
| | - Jesús Pérez-Gil
- From the Department of Biochemistry, Faculty of Biology, Complutense University, Madrid 28040, Spain, .,the Hospital 12 Octubre Research Institute, Madrid 28041, Spain
| |
Collapse
|
43
|
Gebai A, Gorelik A, Li Z, Illes K, Nagar B. Structural basis for the activation of acid ceramidase. Nat Commun 2018; 9:1621. [PMID: 29692406 PMCID: PMC5915598 DOI: 10.1038/s41467-018-03844-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/14/2018] [Indexed: 01/21/2023] Open
Abstract
Acid ceramidase (aCDase, ASAH1) hydrolyzes lysosomal membrane ceramide into sphingosine, the backbone of all sphingolipids, to regulate many cellular processes. Abnormal function of aCDase leads to Farber disease, spinal muscular atrophy with progressive myoclonic epilepsy, and is associated with Alzheimer’s, diabetes, and cancer. Here, we present crystal structures of mammalian aCDases in both proenzyme and autocleaved forms. In the proenzyme, the catalytic center is buried and protected from solvent. Autocleavage triggers a conformational change exposing a hydrophobic channel leading to the active site. Substrate modeling suggests distinct catalytic mechanisms for substrate hydrolysis versus autocleavage. A hydrophobic surface surrounding the substrate binding channel appears to be a site of membrane attachment where the enzyme accepts substrates facilitated by the accessory protein, saposin-D. Structural mapping of disease mutations reveals that most would destabilize the protein fold. These results will inform the rational design of aCDase inhibitors and recombinant aCDase for disease therapeutics. Acid ceramidase (aCDase) hydrolyzes lysosomal membrane ceramide into sphingosine and its dysfunction leads to a variety of disease phenotypes. Here, the authors present structures of aCDase in its proenzyme and autocleaved forms, which provides insight into its mechanism of action.
Collapse
Affiliation(s)
- Ahmad Gebai
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Alexei Gorelik
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Zixian Li
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Katalin Illes
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Bhushan Nagar
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
44
|
Teyton L. Role of lipid transfer proteins in loading CD1 antigen-presenting molecules. J Lipid Res 2018; 59:1367-1373. [PMID: 29559523 PMCID: PMC6071766 DOI: 10.1194/jlr.r083212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/18/2018] [Indexed: 11/20/2022] Open
Abstract
Research to connect lipids with immunology is growing, but details about the specific roles of lipid transfer proteins (LTPs) in antigen presentation remain unclear. A single class of major histocompatibility class-like molecules, called CD1 molecules, can present lipids and glycolipids to the immune system. These molecules all have a common hydrophobic antigen-binding groove. The loading of this groove with various lipids throughout the life of a CD1 molecule defines the immune recognition of lipids by T cells. At each location of residence, CD1 molecules are exposed to particular physicochemical conditions, particular collections of lipids, and unique combinations of LTPs that will define which lipids bind to CD1 and which do not. The lipid transfer machinery that is used by CD1 molecules is entirely hijacked from the normal synthetic and catalytic pathways of lipids. The precise determinants that regulate the presentation of certain lipids over others with respect to chemistry, solubility, and abundance are still poorly defined and require investigation to allow the use of lipids as regular antigenic targets of immunotherapy and vaccine.
Collapse
Affiliation(s)
- Luc Teyton
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
45
|
Abstract
LPS is a potent bacterial endotoxin that triggers the innate immune system. Proper recognition of LPS by pattern-recognition receptors requires a full complement of typically six acyl chains in the lipid portion. Acyloxyacyl hydrolase (AOAH) is a host enzyme that removes secondary (acyloxyacyl-linked) fatty acids from LPS, rendering it immunologically inert. This activity is critical for recovery from immune tolerance that follows Gram-negative infection. To understand the molecular mechanism of AOAH function, we determined its crystal structure and its complex with LPS. The substrate's lipid moiety is accommodated in a large hydrophobic pocket formed by the saposin and catalytic domains with a secondary acyl chain inserted into a narrow lateral hydrophobic tunnel at the active site. The enzyme establishes dispensable contacts with the phosphate groups of LPS but does not interact with its oligosaccharide portion. Proteolytic processing allows movement of an amphipathic helix possibly involved in substrate access at membranes.
Collapse
|
46
|
Tran N, Kurian J, Bhatt A, McKenna R, Long JR. Entropic Anomaly Observed in Lipid Polymorphisms Induced by Surfactant Peptide SP-B(1-25). J Phys Chem B 2017; 121:9102-9112. [PMID: 28872861 DOI: 10.1021/acs.jpcb.7b06538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The N-terminal 25 amino-acid residues of pulmonary surfactant protein B (SP-B1-25) induces unusual lipid polymorphisms in a model lipid system, 4:1 DPPC/POPG, mirroring the lipid composition of native pulmonary surfactant. It is widely suggested that SP-B1-25-induced lipid polymorphisms within the alveolar aqueous subphase provide a structural platform for rapid lipid adsorption to the air-water interface. Here, we characterize in detail the phase behavior of DPPC and POPG in hydrated lipid assemblies containing therapeutic levels of SP-B1-25 using 2H and 31P solid state NMR spectroscopy. The appearance of a previously observed isotropic lipid phase is found to be highly dependent on the thermal cycling of the samples. Slow heating of frozen samples leads to phase separation of DPPC into a lamellar phase whereas POPG lipids interact with the peptide to form an isotropic phase at physiologic temperature. Rapid heating of frozen samples to room temperature leads to strongly isotropic phase behavior for both DPPC and POPG lipids, with DPPC in exchange between isotropic and interdigitated phases. 31P T2 relaxation times confirm the isotropic phase to be consistent with a lipid cubic phase. The observed phases exhibit thermal stability up to physiologic temperature (37 °C) and are consistent with the formation of a ripple phase containing a large number of peptide-induced membrane structural defects enabling rapid transit of lipids between lipid lamellae. The coexistance of a lipid cubic phase with interdigitated lipids suggests a specific role for the highly conserved N-terminus of SP-B in stabilizing this unusual lipid polymorphism.
Collapse
Affiliation(s)
- Nhi Tran
- Department of Chemistry, University of Florida , Gainesville, Florida 32611, United States
| | - Justin Kurian
- Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida 32610, United States
| | - Avni Bhatt
- Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida 32610, United States
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida 32610, United States
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida 32610, United States
| |
Collapse
|
47
|
Roldan N, Nyholm TKM, Slotte JP, Pérez-Gil J, García-Álvarez B. Effect of Lung Surfactant Protein SP-C and SP-C-Promoted Membrane Fragmentation on Cholesterol Dynamics. Biophys J 2017; 111:1703-1713. [PMID: 27760357 DOI: 10.1016/j.bpj.2016.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/28/2016] [Accepted: 09/06/2016] [Indexed: 12/25/2022] Open
Abstract
To allow breathing and prevent alveolar collapse, lung surfactant (LS) develops a complex membranous system at the respiratory surface. LS is defined by a specific protein and lipid composition, including saturated and unsaturated phospholipid species and cholesterol. Surfactant protein C (SP-C) has been suggested to be an essential element for sustaining the presence of cholesterol in surfactant without functional impairment. In this work, we used a fluorescent sterol-partitioning assay to assess the effect of the surfactant proteins SP-B and SP-C on cholesterol distribution in membranes. Our results suggest that in the LS context, the combined action of SP-B and SP-C appears to facilitate cholesterol dynamics, whereas SP-C does not seem to establish a direct interaction with cholesterol that could increase the partition of free cholesterol into membranes. Interestingly, SP-C exhibits a membrane-fragmentation behavior, leading to the conversion of large unilamellar vesicles into highly curved vesicles ∼25 nm in diameter. Sterol partition was observed to be sensitive to the bending of bilayers, indicating that the effect of SP-C to mobilize cholesterol could be indirectly associated with SP-C-mediated membrane remodeling. Our results suggest a potential role for SP-C in generating small surfactant structures that may participate in cholesterol mobilization and pulmonary surfactant homeostasis at the alveolar interfaces.
Collapse
Affiliation(s)
- Nuria Roldan
- Department of Biochemistry and Molecular Biology I, Complutense University, Madrid, Spain
| | - Thomas K M Nyholm
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology I, Complutense University, Madrid, Spain
| | - Begoña García-Álvarez
- Department of Biochemistry and Molecular Biology I, Complutense University, Madrid, Spain.
| |
Collapse
|
48
|
Malinina L, Patel DJ, Brown RE. How α-Helical Motifs Form Functionally Diverse Lipid-Binding Compartments. Annu Rev Biochem 2017; 86:609-636. [PMID: 28375742 DOI: 10.1146/annurev-biochem-061516-044445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipids are produced site-specifically in cells and then distributed nonrandomly among membranes via vesicular and nonvesicular trafficking mechanisms. The latter involves soluble amphitropic proteins extracting specific lipids from source membranes to function as molecular solubilizers that envelope their insoluble cargo before transporting it to destination sites. Lipid-binding and lipid transfer structural motifs range from multi-β-strand barrels, to β-sheet cups and baskets covered by α-helical lids, to multi-α-helical bundles and layers. Here, we focus on how α-helical proteins use amphipathic helical layering and bundling to form modular lipid-binding compartments and discuss the functional consequences. Preformed compartments generally rely on intramolecular disulfide bridging to maintain conformation (e.g., albumins, nonspecific lipid transfer proteins, saposins, nematode polyprotein allergens/antigens). Insights into nonpreformed hydrophobic compartments that expand and adapt to accommodate a lipid occupant are few and provided mostly by the three-layer, α-helical ligand-binding domain of nuclear receptors. The simple but elegant and nearly ubiquitous two-layer, α-helical glycolipid transfer protein (GLTP)-fold now further advances understanding.
Collapse
Affiliation(s)
- Lucy Malinina
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912; ,
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| | - Rhoderick E Brown
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912; ,
| |
Collapse
|
49
|
Echaide M, Autilio C, Arroyo R, Perez-Gil J. Restoring pulmonary surfactant membranes and films at the respiratory surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1725-1739. [PMID: 28341439 DOI: 10.1016/j.bbamem.2017.03.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 02/08/2023]
Abstract
Pulmonary surfactant is a complex of lipids and proteins assembled and secreted by the alveolar epithelium into the thin layer of fluid coating the respiratory surface of lungs. There, surfactant forms interfacial films at the air-water interface, reducing dramatically surface tension and thus stabilizing the air-exposed interface to prevent alveolar collapse along respiratory mechanics. The absence or deficiency of surfactant produces severe lung pathologies. This review describes some of the most important surfactant-related pathologies, which are a cause of high morbidity and mortality in neonates and adults. The review also updates current therapeutic approaches pursuing restoration of surfactant operative films in diseased lungs, mainly through supplementation with exogenous clinical surfactant preparations. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Mercedes Echaide
- Dept. Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain
| | - Chiara Autilio
- Dept. Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain
| | - Raquel Arroyo
- Dept. Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain
| | - Jesus Perez-Gil
- Dept. Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain.
| |
Collapse
|
50
|
All-atom molecular dynamics simulations of lung surfactant protein B: Structural features of SP-B promote lipid reorganization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3082-3092. [DOI: 10.1016/j.bbamem.2016.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/30/2016] [Accepted: 09/20/2016] [Indexed: 01/07/2023]
|